DeKalb Peachtree Airport Air Quality Study

Prepared for:

Prepared by:

September 2018

[Blank Page]

Executive Summary

The principal objective of this Study was to evaluate the impacts of DeKalb Peachtree Airport (PDK) on air quality in the vicinity of the airport. The work was broken down into five tasks described below, accompanied with summary explanations of the findings.

Task 1, Evaluate Current Air Quality Conditions: The purpose of this task was to evaluate air quality conditions in the vicinity of PDK and the greater Atlanta metropolitan area. The results revealed two important findings: (i.) air quality in the vicinity of PDK meets national and state standards and (ii.) pollutant levels have declined significantly over the past 25 years. The only exception is the pollutant ozone for which the entire Atlanta metropolitan area (including DeKalb County) does not meet the standards for this pollutant.

Task 2, Compare PDK Emissions to Other Nearby Sources: The purpose of this task was twofold: (i.) to determine PDK's contribution to overall emission in DeKalb County and the Atlanta metropolitan area and (ii.) to compare PDK emissions to other sources in the airport vicinity (e.g. motor vehicles, and manufacturing industrial facilities, etc.). The results revealed that PDK contributes 1% to 8% of pollutant emissions in DeKalb County and when compared to the Atlanta metropolitan area, PDK represents less than 1% of the overall totals.

Task 3, Compare PDK Emissions to Other Airports: The purpose of this task was to compare the types and amounts of emissions associated with PDK to those of other general aviation (GA) airports of similar size and function. The outcome demonstrates that emissions associated with PDK are comparable in the types and amounts to similar airports.

Task 4, Analyze PDK Emissions According to Aircraft Maximum Takeoff Weights (MTOW): The purpose of this task was to evaluate emissions based on three categories of aircraft maximum takeoff weights (MTOWs): (i.) less than 66,000 lbs. (Category 1), (ii.) 66,000 to 75,000 lbs. (Category 2), and (iii.) greater than 75,000 lbs. (Category 3). The results demonstrated that Category 1 aircraft generate the vast majority of emissions (84% to 96%, depending on pollutant). This outcome is expected as Category 1 aircraft comprise the majority of operations at PDK. By comparison, Category 2 and 3 aircraft represent 1% to 5% - again, depending on pollutant.

Task 5, Conduct Atmospheric Dispersion Modeling for PDK Emissions: The purpose of this task was to quantify the contributions of PDK emissions to local air quality conditions. The results showed that pollutant concentrations around the airport's perimeter and in the surrounding communities are well within the applicable federal and state air quality standards.

Overall, this Study demonstrates that PDK's operations and resultant emissions are comparable to other similar-sized GA airports. The airport's emissions also have a relatively low impact to local air quality conditions and do not cause, or contribute to, violations of federal or state air quality conditions. Finally, Category 1 aircraft comprise the vast majority of emissions at PDK with Categories 2 and 3 representing comparatively small amounts.

[Blank Page]

Table of Contents

I.	Introduction & Purpose	1
п.	Air Quality Assessment Tasks	1
	A. Task 1: Evaluate Current Air Quality Conditions	1
I	3. Task 2: Compare PDK Emissions to Other Nearby Sources	5
0	C. Task 3: Compare PDK Emissions to Other Airports	8
	D. Task 4: Analyze PDK Emissions According to Aircraft Maximum Takeoff Weights	. 10
	E. Task 5: Dispersion Modeling for PDK Airport Specific Emissions	. 13
ш.	Summary and Conclusions	. 16

Appendix A – Monitoring Data

Appendix B – Data, Assumptions, and Methodology

Appendix C – Emissions Inventory and Dispersion Analysis Results

I. Introduction & Purpose

DeKalb Peachtree Airport (PDK) is a county-owned, public-use airport located in the city of Chamblee, northeast of Atlanta, in DeKalb County, Georgia. It is classified as a general aviation (GA) airport providing service to corporate, business and personal aircraft, aircraft charters, training aircraft and helicopters. Aviation-related events such as air shows are also conducted on a periodic basis. In 2017, the airport had approximately 160,000 operations.¹

The principal aims of this Study were threefold: (i) to determine current air quality conditions near the airport, (ii) to evaluate the airport's air quality impacts in the surrounding communities, and (iii) to determine the effects of varying aircraft weight categories on air emissions. To accomplish these objectives, this work was sub-divided into five tasks described in **Table 1**.

Task No.	Task	Approach
1.	Evaluate current air quality	Obtain and analyze air quality data in the vicinity of
	conditions	PDK.
2.	Compare PDK emissions to	Quantify emissions from PDK and other sources in the
	other nearby sources	vicinity of the airport and estimate PDK's
		contribution.
3.	Compare PDK emissions to	Estimate PDK and other GA airport emissions and
	other airports	analyze the results.
4.	Analyze PDK emissions	Estimate aircraft emissions for three aircraft MTOW
	according to aircraft maximum	categories and compare the results.
	takeoff weights (MTOW)	
5.	Conduct atmospheric	Estimate air pollutant concentrations in the vicinity of
	dispersion modeling for PDK	the airport and compare to national air quality
	emissions	standards.

Table	4 4 1	Our lite	A second such Tables
laple	1. AI	Quality	Assessment lasks

II. Air Quality Assessment Tasks

For ease of understanding, the purpose, methodologies and results of the five tasks listed in **Table 1** are discussed separately in the following sections.

A. Task 1: Evaluate Current Air Quality Conditions

1. Purpose

The purpose of this task was to evaluate air quality conditions in the vicinity of PDK and the greater Atlanta metropolitan area (combined called the *Study Area*). For this analysis, the *Study Area* was divided into two sub-areas, described as follows:

- Atlanta Study Area: This area encompasses the Atlanta metropolitan area and includes DeKalb County, Fulton County, and parts of Cobb, Rockdale and Gwinnet Counties.
- Airport Study Area: This area encircles PDK and extends outward from the airport about 6 miles. It includes DeKalb County and parts of Fulton County, interstate roads I85 and I285, and a number of retail, manufacturing, and industrial facilities.

¹ Reported by the Federal Aviation Administration (FAA) Operations Network (OPSNET), 2018.

This division of the *Study Area* into the *Atlanta* and *Airport Study Areas* enables a more concise and meaningful discussion of air quality conditions in the vicinity of PDK.

2. Methodology

Under **Task 1**, air quality data was obtained from the U.S. Environmental Protection Agency (EPA) based on air monitoring conducted by the Georgia Environmental Protection Division (EPD). From this database, the Study focused on four air quality monitoring stations located within the *Airport Study Area*. These sites are illustrated in **Figure 1**, listed in **Table 2** and described below.

These four monitoring sites are located in DeKalb and Fulton Counties and range in distance from PDK from two to six miles. Taken together, these stations produce data for the seven EPA Criteria Pollutants² carbon monoxide (CO), nitrogen dioxide (NO₂), ozone (O₃), and particulate matter less than 10 microns (PM₁₀) and less than 2.5 microns (PM_{2.5}). The Criteria Pollutants of lead and sulfur dioxide (SO₂) are not monitored at these stations³. Importantly, these air quality data are the most currently available, collected over different timeframes and, in some cases, reflect past conditions. This lack of continuity is not uncommon as air monitoring is often suspended after several years of operation at a site. It is also worth noting that not all pollutants are monitored at each station. That is because the purpose of each station may differ whereby collecting PM_{10/2.5} concentration data on a local scale at one station may necessitate the monitoring of regional O₃ levels at another station.

Figure 1. Airport Study Area Air Quality Monitoring Stations

² Criteria Pollutants are those considered to be harmful for human health and the environment as determined by the EPA. They include carbon monoxide (CO), nitrogen dioxide (NO₂), sulfur dioxide (SO₂), particulate matter with diameters of 10 and 2.5 microns (PM₁₀ and PM_{2.5}), ozone (O₃), and lead (Pb).

³ The closest monitor to PDK reporting SO₂ is South DeKalb (SD) and the closest reporting lead is Panthersville Rod (PR), both about 9 miles from PDK.

Maritara	Country	Diet (Die1	Timofromo	Pollutants Monitored ²				
Monitors	County	DISC./DIF			NO ₂	O 3	PM10	PM2.5
	DoKalh	2 mi./NE	1990-2012				\checkmark	
Doraville (DV)	Dekalb		1999-2012					\checkmark
Georgia Power Substation (GP)	DeKalb	4 mi./W	1994-2014	\checkmark				
Tucker-Idlewood (TI)	DeKalb	5 mi./SE	1995-2006		\checkmark	\checkmark		
East Divors School (ED)	Fulton	6 mi./SW	1996-2012				\checkmark	
East Rivers School (ER)	Fullon		1999-2012					\checkmark
¹ Dist./Dir. = Distance from PDK in miles / Direction relative to PDK 2 CO = cachen monoxide NOs = nitrogen dioxide Os = ozone PMss and PMss = narticulate matter with diameters of 10 and 2.5								

Table 2. Airport Study Area Air Quality Monitors

² CO = carbon monoxide, NO₂ = nitrogen dioxide, O₃ = ozone, PM₁₀ and PM_{2.5} = particulate matter with diameters of 10 and 2.5 micrometers. " \checkmark " Indicates the pollutant is recorded by the monitor.

The U.S. EPA has set National Ambient Air Quality Standards (NAAQS) for Criteria Pollutants designed to help prevent harm to public health and the environment from air pollution (the Georgia EPD has adopted these same standards). The latest air quality data from the *Airport Study Area* monitors are listed in **Table 3** along with the corresponding NAAQS for each pollutant.

Dollutant a	Averaging	Linite b	NAAOS	Мо	Exceeds			
Ponutant	Period	Units	NAAQS	DV	ER	GP	TI	NAAQS
СО	8-hour ¹	ppm	9	_f	-	0.4	-	no
	1-hour ¹	ppm	35	-	-	0.4	-	no
NO.	1-hour ²	ppb	100	-	-	-	51	no
	Annual ³	ppb	53	-	-	-	26	no
O3	8-hour ⁴	ppb	75	-	-	-	89	Yes ^g
	Annual ¹	µg/m³	12	11	11	-	-	no
P1V12.5	24-hour ²	µg/m³	35	22	22	-	-	no
PM10	24-hour⁵	µg/m³	150	62	50	-	-	no

Table 3. Airport Study Area Air Quality Data

^a CO = carbon monoxide, NO₂ = nitrogen dioxide, O₃ = ozone, PM₁₀ and PM_{2.5} = particulate matter with diameters of 10 and 2.5 micrometers. ^b Units: ppm = parts per million, ppb = parts per billion, μ g/m³ = micrograms per cubic meter

^c NAAQS = National Ambient Air Quality Standards.

^d Monitors DV= Doraville, ER=East River, GP=Georgia Power Substation, TI=Tucker-Idlewood Road. Data for the most recent year being: DV = 2012, ER = 2012, GP = 2014, TI = 2006

f "-" = no measurement available, ppb = parts per billion, ppm = parts per million, μg/m³ = micrograms per cubic meter.

^g Exceedances occur for ozone, which is a regional pollutant for which the entire Atlanta Metropolitan Area reports exceedances.

¹Annual mean, averaged over 3 years.

²98th Percentile, averaged over 3 years.

³ Annual mean.

⁴ Annual fourth-highest daily maximum 8-hr concentration, averaged over 3 years.

⁵ Not to be exceeded more than once per year on average over 3 years.

Among the four air quality monitoring stations, the two most relevant to this Study are the City of Doraville (DV) and Tucker-Idlewood Road (TI) stations located approximately two and five miles east and southeast of the airport, respectively.

Pollutant data from the Doraville site is for PM_{2.5} and from the Tucker–Idlewood Road site is for ozone. These are two pollutants for which the *Atlanta Study Area* (including the area surrounding PDK) has been designated as not meeting the NAAQS. The monitoring data from these two sites are discussed below:

- Doraville PM_{2.5} Data: As shown in Figure 2, PM_{2.5} levels at this location declined steadily over a 12year period from 2001 to 2012. This downward trend is typical for PM_{2.5} as emission control
 - measures for this pollutant have also improved over this timeframe. It is important to note that these values came into full compliance with the NAAQS.
- Tucker-Idlewood Road O₃ Data: As shown in Figure 3, O₃ levels at this location also declined over the 11year period from 1997 to 2006, but still represent violations of the NAAQS. However, it is significant that elevated O₃ levels occur regionally and

Figure 2: Doraville Monitor PM_{2.5} Data

are not isolated to city or county areas. For this reason, the elevated O_3 levels at this site are representative of the entire Atlanta Study Area and are not unique to the Airport Study Area.

It is important to note that the PM_{2.5} and O₃ data from the Doraville and Tucker-Idlewood Road monitoring stations are consistent with other sites located in the *Atlanta Study Area* (see **Appendix Tables A-1** to **A-3**, **A-9** to **A-10**, and **Figure A-1**).

Data from the Georgia Power Substation and East Rivers School monitors (located four and six miles from PDK) are available for CO and $PM_{2.5}/PM_{10}$, respectively. In both cases, the pollutant levels are also well within the NAAQS.

This analysis revealed that annual average concentrations of PM_{2.5} from the DV monitor are comparable to or less than levels reported from farther monitoring locations. Additionally, trends of PM_{2.5} have been decreasing over time, as shown in **Figure 2**.

Figure 3: Tucker-Idlewood Road Monitor Ozone Data

3. Results

Based upon the evaluation of air quality conditions in the vicinity of PDK, the following results are noteworthy:

- **Pollutants of Concern**: The U.S. EPA has designated the Atlanta Area (including the area around PDK) as not meeting the NAAQS for the Criteria Pollutant and ozone.
- Air Quality Monitors: There are 19 air quality monitoring stations located throughout the greater Atlanta metropolitan area. Among these, there are four air monitoring stations located within two to six miles from PDK.

- Air Monitoring Data: Air quality data for five of the Criteria Pollutants (including PM_{2.5} and ozone) are available for the *Airport Study Area*. Data from the Doraville and Tucker-Idlewood Road monitors are the most relevant to this Study.
- Airport Study Area Air Quality: PM_{2.5} levels have declined over the 12-year period (2001-2012) to below the NAAQS for this pollutant. Ozone levels also declined over the 10-year period (1997-2006) but are still above the NAAQS. This is to be expected as O₃ is a regional pollutant and not confined to the Airport Study Area.

In summary, air quality conditions in the vicinity of PDK are were found to be within standards, with the exception of ozone, for which the entire Atlanta metropolitan area is designated as not meeting the NAAQS for this pollutant.

B. Task 2: Compare PDK Emissions to Other Nearby Sources

1. Purpose

The purpose of **Task 2** was twofold: (i.) to determine PDK's contribution to overall emission totals in DeKalb County and the Atlanta metropolitan area and (ii.) to compare PDK emissions to other sources in the airport vicinity such as motor vehicles, manufacturing industrial facilities, and petroleum storage facilities. With these data, the overall significance of PDK emissions is determined.

2. Methodology

For this analysis, PDK emissions were estimated for 2017 using the Federal Aviation Administration's (FAA) Aviation Environmental Design Tool (AEDT 2d) and included the U.S. EPA Criteria Pollutants and their precursors⁴.

Mobile source emissions (e.g. passenger cars, trucks, vans, buses etc.) were estimated using EPA's MOtor Vehicle Emissions Simulator (MOVES)⁵. For all other sources (e.g. industrial, manufacturing, petroleum storage, home heating, etc.) emissions were derived from EPA's National Emissions Inventory (NEI)⁶. In all cases, the most recent model versions and databases were used. In this case, there were two Study Areas; (i.) DeKalb County and (ii.) the greater Atlanta metropolitan area.

The following sections describe the overall technical analysis and the results. Information and data considered to be too detailed or voluminous to be included in this section are provided in **Appendix B**.

3. Technical Analysis

The primary sources of emissions associated with PDK are typical of most GA airports of its size and function. These mainly comprise aircraft engines with other smaller sources being ground support equipment (GSE) and auxiliary power units (APUs)⁷.

Other sources of emissions in DeKalb County include motor vehicles and stationary sources (see discussion above). For the most part, air emissions from these sources arise from the combustion of fossil fuels (e.g., diesel, gasoline, natural gas, etc.). Table 4 lists the primary emission sources associated with PDK and DeKalb County.

⁴ Criteria Pollutants are considered harmful for human health and the environment by the U.S. EPA. These pollutants and their precursor emissions include Carbon Monoxide (CO), nitrogen oxides (NO₂), sulfur dioxide (SO₂), particulate matter with diameters less than 10 and 2.5 microns (PM₁₀ and PM_{2.5}), volatile organic compounds (VOCs), and Lead (Pb).

⁵ EPA, MOtor Vehicle Emissions Simulator (MOVES2014a), <u>http://www.epa.gov/oms/models/moves</u>.

⁶ EPA, National Emissions Inventory Data, <u>https://www.epa.gov/air-emissions-inventories/national-emissions-inventory-nei</u>.

⁷ Ground support equipment (GSE) service aircraft between flights, and auxiliary power units (APUs) provide power to aircraft in between flights. Both GSE and APUs are small sources of emission at GA airports.

Source	Characteristics	Examples
PDK Airport	Exhaust products of fuel combustion vary depending	Pilatus PC-12
	on aircraft engine type (e.g., piston, jet, turbo-prop,	Bombardier Challenger 300
	etc.), fuel type (e.g., Jet-A and Avgas), number of	Gulfstream V
	engines, power setting (e.g., taxi/idle, take-off,	Cessna Golden Eagle
	cruise), and amount of fuel burned. APU and GSE	
	emissions are also functions of fuel types and the	
	amounts of fuel used.	
Motor	Exhaust products from fuel combustion in cars,	Interstates I-85, I-285, Buford
Vehicles	trucks, vans, buses, etc.	Highway, Clairmont Road, etc.
Stationary	Emissions from fossil fuel combustion associated	Citgo Petroleum Corp.
Sources	with industrial, and manufacturing facilities. Also	Motiva Enterprises
	includes evaporative emissions from fuel facilities	Trans Montaigne Operating
	and emissions from decomposition in landfills.	Co.
Source: KB Environm	nental Sciences, Inc., 2018.	

Table 4. Sources of Emissions

The information and data came from a variety of resources and are the most up-to-date and appropriate for this analysis. In those instances where data were not available, it was derived from relevant databases, reasonable assumptions and professional judgment. **Table 5** summarizes the sources of data and information used for this analysis.

Table 5. Data Sources

Data Source	Agency	Purpose				
Symphony Flight Data	PDK	PDK-specific data for airport operations and aircraft				
		types.				
Aviation Environmental	FAA ^a	Used to estimate emissions from airport operations.				
Design Tool (AEDT) ⁸						
Operations Network	FAA	Used for aircraft taxi times.				
(OPSNET) ⁹						
MOtor Vehicle Emissions	EPA ^b	Used to estimate emissions from motor vehicles in				
Simulator (MOVES)		DeKalb County.				
National Emissions Inventory	EPA	Used for emissions from stationary sources.				
(NEI)						
^a Federal Aviation Administration. ^b Environmental Protection Agency Source: KB Environmental Sciences, Inc. 2018						

For estimating PDK emissions, Symphony Flight Data was used as input into AEDT. For Dekalb County mobile emissions, Georgia Environmental Protection Division (EPD) data was used as input into MOVES. For estimating DeKalb County stationary emissions and Atlanta metropolitan area emissions the EPA National Emissions Inventory (NEI) was used.

⁸ FAA, Aviation Environmental Design Tool (AEDT, version 2d), <u>https://aedt.faa.gov/</u>.

⁹ FAA, Operations Network (OPSNET), <u>https://aspm.faa.gov/opsnet/sys/main.asp</u>.

4. Results

The results of this analysis are presented in **Table 6** and **7**. As shown, PDK's portion of emissions within DeKalb County is a relatively small when compared to the county's overall total. DeKalb's emissions are the combination of all mobile and stationary sources. In all but one case, the airport's total is 1 percent or less depending on the pollutant. The single exception is SO_2 , comprising 8 percent of the overall total. This is due in part to the amounts of SO_x in aircraft fuel compared to low sulfur fuels in motor vehicles. However, it is important to note that ambient (i.e., "outdoor") levels of SO_2 are consistently below the NAAQS for this pollutant (see **Appendix A**).

When compared to total emissions in the Atlanta metropolitan area, PDK's portion is less than 1 percent for all pollutants. This result is also to be expected as the airport is a comparatively small entity when compared to Atlanta Hartsfield International Airport (ATL), area wide motor vehicle traffic and other emission sources in the metro areas.

Because the greater Atlanta area (including DeKalb County and PDK) is designated by the U.S. EPA as a Nonattainment Area for ozone, emissions of NO_x and VOCs are considered to be the most important as they are pre-cursors to ozone.^{10,11} **Figure 4** shows the percent contributions of PDK to the area-wide totals for these pollutants. As shown, the airport represents less than 1% of NO_x and VOCs within this area.

Fourses	Pollutants ¹							
Sources	СО	VOC	NOx	SO ₂	PM _{2.5}	PM ₁₀		
PDK ²	726	204	78	12	4	4		
DeKalb County Total ³	122,514	19,815	9,366	146	2,100	5,446		
Atlanta Metropolitan Area ^₄	425,555	114,658	63,208	2,513	8,987	28,929		
Atlanta Metropolitan Area ⁴	425,555	114,658	63,208	2,513	8,987	28,929		

Table 6. Emissions For PDK, DeKalb County, and Atlanta Metropolitan Area

¹CO = carbon monoxide, VOC = volatile organic compounds, NO_x = nitrogen oxides, SO₂ = sulfur dioxide, PM₁₀ and PM_{2.5} = particulate matter with diameters of 10 and 2.5 micrometers.

² PDK airport emissions.

³ DeKalb County emissions include stationary sources, motor vehicles and other aviation-related sources.

⁴Atlanta Study Area includes parts of Clayton, Cobb, DeKalb, Fulton, Gwinnet, and Rockdale Counties.

Source: KB Environmental Sciences, Inc., 2018.

Table 7. Emissions For PDK, DeKalb County, and Atlanta Metropolitan Area

Study Aroa	Pollutants ¹							
Study Alea	СО	VOC	NOx	SO ₂	PM _{2.5}	PM ₁₀		
DeKalb County ²	1%	1%	1%	8%	<1%	<1%		
Atlanta Metropolitan Area ³	<1%	<1%	<1%	<1%	<1%	<1%		
¹ CO = carbon monoxide, VOC = volatile organic compounds, NO _x = nitrogen oxides, SO ₂ = sulfur dioxide, PM ₁₀ and PM _{2.5} = particulate matter with diameters of 10 and 2.5 micrometers. ² DeKalb County emissions include stationary sources, motor vehicles and other aviation-related sources. ³ Atlanta Study Area includes parts of Clayton, Cobb, DeKalb, Fulton, Gwinnet, and Rockdale Counties. Source: KB Environmental Sciences, Inc. 2018								

¹⁰ A nonattainment area is a region where air quality monitors have reported pollutant levels higher the EPA standards.

¹¹ Nitrogen Oxides (NO_x) and Volatile Organic Compounds (VOCs) are precursors to the harmful pollutant ozone (O₃). This means that VOC and NOx are emitted directly into the atmosphere, then undergo chemical reactions that form O_3 .

C. Task 3: Compare PDK Emissions to Other Airports

1. Purpose

The purpose of **Task 3** was to compare the types and amounts of emissions associated with PDK to those of other GA airports of similar size and function. This method of benchmarking "peer" airports helps determine how PDK compares to others.

2. Methodology

Comparison airports were identified based on airport classifications (e.g., GA, Large-hub Commercial, etc.) and annual operational levels (i.e., annual arrivals and departures).¹² Based on these criteria, Scottsdale Airport (SDL) in Arizona and Fort Lauderdale Executive Airport (FXE) in Florida, were two GA airports selected for this analysis. ATL (the world's busiest airport) was also used for comparison. PDK and these three airports are listed in **Table 7** by classification and operational levels.

Airport	Classification ^a	Operations^b	Differences				
DeKalb Peachtree (PDK)	GA Hub	159,000	-				
Scottsdale (SDL)	GA Hub	168,000	9,000 (+5%)				
Ft. Lauderdale Executive (FXE)	GA Hub	179,000	20,000 (+10%)				
Atlanta Hartsfield International (ATL)	709,000 (6X)						
^a Classifications based on FAA categories: GA = airports that do not have scheduled service or less than 2,500 annual passenger boardings, Large Hub Commercial = having 1% or more of U.S. annual passenger boardings ^b Operation counts are for 2017. Data Source: Federal Aviation Administration (FAA) Operations Network (OPSNET)							

Table 7. PDK Operations & Comparison Airports

As shown, the 2017 operational levels for SDL and FXE are greater than PDK by about 20,000 operations (5 to 10 percent more). Operational levels at ATL are over 700,000 more than PDK (6 times more).

Total emissions for PDK were obtained from **Task 2** *Analysis of PDK Emissions Compared to Other Nearby Sources*. As discussed, these values were derived from the latest PDK data (e.g., operational levels, aircraft fleet mix, airfield operational characteristics) for 2017 and using the FAA's AEDT.

¹² Classifications based on FAA categories: GA = airports that do not have scheduled service or less than 2,500 annual passenger boardings, Large Hub Commercial = having 1% or more of U.S. annual passenger boardings.

Total 2017 emissions for SDL, FXE, and ATL were calculated following similar methodologies, types of data and the AEDT. For these airports, the FAA Traffic Flow Management System Counts (TFMSC)¹³ and Operations Network (OPSNET)¹⁴ datasets were used. The TFMSC provides the airport operational levels and aircraft fleet mix (i.e., arrival/departure) and OPSNET provides additional airport operational data (e.g., ground-based taxi times).

Further details for this analysis are contained in Appendix B.

3. Results

The results of this analysis are presented in **Table 8** and summarized below. Because DeKalb County and the greater Atlanta metropolitan area are designed as "Non-attainment" for the pollutant ozone, emissions of NO_x and VOCs (the precursors to ozone) are provided.¹⁵

The results in **Table 8** are presented in tons/year by pollutant and arranged by airport, emission totals and percent differences compared to PDK. Using this approach, the main outcomes of this analysis are as follows:

- NO_x Emissions: NO_x associated with PDK are 10 to 12 tons/year (or 11 to 13 %) less than SDL and FXE. NO_x emissions at ATL are 54 times less for PDK.
- VOC Emissions: VOC associated with PDK are 29 to 39 tons/year (or 12 to 16%) less than SDL and FXE. VOC emissions at ATL are 5 times more than PDK.
- **CO Emissions:** CO associated with PDK are 251 tons/year (25%) less than FXE, and 101 tons/year (14%) more than SDL. CO emissions at ATL are 11 times more than PDK.
- SO₂ Emissions: SO₂ associated with PDK are 2 tons/year (13%) less than SDL and FXE. SO₂ emissions at ATL are 40 times more than PDK.
- PM_{2.5} Emissions: PM_{2.5} associated with PDK are about equal to FXE, and 1 ton/year (25%) more than SDL. PM_{2.5} emissions at ATL are 30 times more than PDK.
- PM₁₀ Emissions: PM₁₀ are associated with PDK are about equal to those of SDL and FXE. PM₁₀ emissions at ATL are 30 times more than PDK.

Airport	Emissions (tons/year)								
Airport	СО	VOC	NOx	SO ₂	PM _{2.5}	PM ₁₀			
SDL	625	233	88	15	3	4			
FXE	977	243	90	15	4	4			
ATL	8,296	1,022	5,004	517	75	75			
PDK	726	204	78	13	4	4			
Notes: CO = carbon	monoxide, VOC = v	olatile organi	c compounds,	NO _x = nitrogen	oxides, SO ₂ = s	ulfur dioxide,			
$PM_{10} \text{ and } PM_{2.5} = p$	articulate matter wi	th diameters	of 10 and 2.5 i	micrometers.					
ATL = Hartsfield-Jackson Atlanta International Airport, FXE = Fort Lauderdale Executive Airport, PDK= DeKalb									
Peachtree Airport, and SDL = Scottsdale Airport.									
Sources: FAA Aviation Environmental Design Tool (AEDT), Traffic Flow Management System Counts (TFMSC),									

Table 8. PDK Emissions Compared to Other Airports

¹³ FAA, Traffic Flow Management System Counts, <u>https://aspm.faa.gov/tfms/sys/Airport.asp</u>.

¹⁴ FAA, Operations Network (OPSNET) <u>https://aspm.faa.gov/opsnet/sys/main.asp</u>

¹⁵ See Task 1 for further information regarding Non-attainment designation.

 NO_x and VOC emissions are precursors to the criteria pollutant ozone for which the Atlanta area is in violation of the federal standard. The differences in NO_x and VOC emissions at PDK, SDL and FXE are largely attributable to the differences in operational levels and to a lesser extent the aircraft fleet mix and airfield operational conditions. In the case of ATL, these significant differences are more highly pronounced.

Airport	Poll (tons	utant /year)	PDK Comparison (Difference)			
	NOx	VOC	NOx	VOC		
DeKalb Peachtree (PDK)	78	204	-	-		
Scottsdale (SDL)	88	233	11%	12%		
Fort Lauderdale Executive (FXE)	90	243	13%	16%		
Atlanta Hartsfield (ATL)	5,004	1,022	54x	5x		
Notes: NO _x = nitrogen oxides, VOC = volatile organic compounds. Sources: FAA Aviation Environmental Design Tool (AEDT), Traffic Flow Management System Counts						

Table 9. Emissions of NOx and VOC for PDK Compared to Other Airports

D. Task 4: Analyze PDK Emissions According to Aircraft Maximum Takeoff Weights

1. Purpose

The purpose of this task is to evaluate emissions associated with PDK based on three categories of aircraft maximum takeoff weights (MTOWs): (i.) less than 66,000 lbs, (ii.) 66,000 to 75,000 lbs, and (iii.) greater than 75,000 lbs (further described in **Table 10**). The results help to determine the relative effects of aircraft size on potential air quality impacts.

2. Methodology

The estimated emissions for each aircraft category are for calendar year 2017. They include emissions from aircraft, GSE and APUs associated with PDK. The types of emissions are typical for engines burning petroleum-based fuels and include the U.S. EPA Criteria Pollutants (and their precursors, see Sections II.A and II.B for further explanation)¹⁶. Table 10 includes data on number and percent of total operations for each category.

¹⁶ Criteria Pollutants and their pre-cursors include Carbon Monoxide (CO), nitrogen oxides (NO_x), sulfur dioxide (SO₂), volatile organic compounds (VOCs), particulate matter with diameters less than 10 and 2.5 microns (PM_{10} and $PM_{2.5}$), and lead (Pb).

Category	MTOW	Operations / Percent at PDK	Example ¹	Description
1.	< 66,000 lbs.	152,000 / 96%	Raytheon Beech Baron 55	The most common aircraft at PDK and most General Aviation airports have MTOWs less than 66,000 lbs. These aircraft make up 96% of total operations at PDK. This category includes piston- engine aircraft that used leaded aviation fuel.
2.	66,000 to 75,000 Ibs.	3,700 / 2%	Gulfstream G400	Aircraft with MTOW in Category 2 are infrequent at PDK and similar GA airports, making up about 2% of total operation at PDK.
3.	> 75,000 lbs.	3,300 / 2%	Bombarider Global Express	The largest aircraft that operate at PDK, making up about 2% of total operations. Prior permission is required for these aircraft at PDK ² .
¹ Images are for ² According to	or aircraft operati AirNav.com, for a	ng at PDK. <u>https://www.r</u> aircraft over 75,000 lbs pr	blanespotters.net/photos/airport/Atlanta ior permission is required	-Dekalb-Peachtree-Airport-PDK-KPDK

Table 10. Aircraft MTOW Categories

(PPR)<u>https://www.planespotters.net/photos/airport/Atlanta-Dekalb-Peachtree-Airport-PDK-KPDK</u>

For consistency, PDK-specific aircraft data developed under **Task 2** *Analysis of PDK Emissions Compared to Other Nearby Sources* using the same model (i.e. AEDT) were also used for this analysis. This task focuses only on aircraft emissions, so data for the other nearby sources are not included.

3. Results

The results of the analysis are presented in **Table 11**, arranged by aircraft weight category (i.e., MTOW), pollutant type and percent of total. As shown in, Category 1 aircraft represents the largest source of emissions at PDK (**Figure 5**). This result is expected as the vast majority of aircraft associated with PDK are within this weight category (see **Table 10**).

It is also important to note that CO is emitted in the greatest amount followed by VOCs, NO_x , SO_2 and $PM_{10/2.5}$. This outcome is also typical of airports similar in size, function, operational levels and aircraft types compared to PDK (see Section 3 Analysis of PDK Emissions Compared to Other Airports).

The second largest amounts of emissions are from Category 2 aircraft (66,000 to 75,000 lbs.) butare significantly less than Category 1 (see above). These results are consistent with the percentage of operations for this category.

Finally, Category 3 (>75,000 lbs.) represents the least amounts of emissions, though nearly the same as Category 2. Again, this is consistent with the percentage of operations for this aircraft at PDK.

Considering lead, this pollutant is emitted by piston-engine GA aircraft that use aviation gasoline (avgas). These types of aircraft at PDK all fall under Category 1 and in total emit about 0.1 tons per year.

			Pollutants ² (tons/year)								
WITOW ⁺ Category		со	voc	NOx	SO2	PM _{2.5}	PM ₁₀	Pb			
1	< 66,000 lbs.	693	196	66	11	3	3	0.1			
2	66,000-75,000 lbs.	20	6	5	1	<1	<1	-			
3	> 75,000 lbs.	14	2	7	1	<1	<1	-			
	Total PDK	726	204	78	13	4	4	0.1			
¹ MT ² CO PM ₁₀ Sour	¹ MTOWs = maximum takeoff weights. ² CO = carbon monoxide, VOC = volatile organic compounds, NO _x = nitrogen oxides, SO ₂ = sulfur dioxide, PM ₁₀ and PM _{2.5} = particulate matter with diameters of 10 and 2.5 micrometers, Pb = lead. Source: KB Environmental Sciences, Inc., 2018.										

Table 11. Air Emissions by MTOW Category

Figures 5 show the percentage that each category contributed to pollutant emissions. Lead is not included because it is all from Category 1.

The following summarizes the results:

- CO: For CO, the lighter aircraft (with MTOWs <66,000 lbs.) tend to have slightly lower CO emissions per operation (13%) compared to the aircraft with MTOW between 66,000 and 75,000 lbs., and slightly higher than aircraft with MTOW greater than 75,000 lbs. (6%)
- VOC: Aircraft with MTOWs between 66,000 to 75,000 lbs. contribute the largest amounts of VOC emissions, followed by aircraft with MTOW less than 66,000 lbs. (23% less), and aircraft with MTOW greater than 75,000 lbs. (66% less).
- NO_x and SO_x: Aircraft with MTOW over 75,000 emit the highest amount of NO_x and SO_x, followed closely by aircraft with MTOW between 66,000 to 75,000 lbs., (3x less) and aircraft with MTOW less than 66,000 lbs. (5x less).
- PM₁₀ and PM_{2.5}: Aircraft with MTOWs between 66,000 to 75,000 lbs. emit the most PM₁₀ and PM_{2.5}, followed closely by aircraft with MTOW over 75,000 lbs. (31% less), with aircraft of MTOW less than 66,000 lbs. emitting 4x less.
- **Pb**: Piston engine aircraft that emit lead are only in Category 1 and therefore contribute to 100% of the lead emissions.

Figure 5. Percent Emissions by Aircraft Category

E. Task 5: Dispersion Modeling for PDK Airport Specific Emissions

1. Purpose

The purpose of **Task 5** was to quantify the contributions of PDK emissions to local air quality. Using the data from **Tasks 2** through **4**, atmospheric dispersion modeling was completed for criteria pollutants CO,

 NO_2 , SO_2 , and $PM_{2.5/10.}$ This analysis was conducted using FAA's AEDT dispersion modeling system. The modeling period was for the year 2017.

2. Methodology

The pollutant concentrations were estimated at 24 locations (known as receptors) in the vicinity of the airport and its surrounding communities. Designated as Airport Boundary Receptors, 15 receptors were located along the airport's boundary and represent the nearest locations the public can get to the airport. Designated as community receptors, these nine receptors represent sensitive land uses in the communities surrounding PDK. These 24 receptors are listed in **Table 12** and **13** and are shown in **Figure 6**.

Abbreviation	Location Relative to PDK
B1-B3, B15	West boundary
B4	Northwest boundary
B5-B6	North boundary
B7-B8	Northeast boundary
B9-B11	East boundary
B12	Southeast boundary
B13-B14	South boundary
	Abbreviation B1-B3, B15 B4 B5-B6 B7-B8 B9-B11 B12 B13-B14

Table 12. Airport Boundary Receptors

Table 13. Community Receptors

Name	Abbreviation	Location Relative to PDK
Ashford Park Elementary School	AP	1 mile west
Chamblee High School	СН	1 mile northwest
Chamblee Middle School	CM	1 mile northwest
Clairmont Baptist Church	СВ	0.5 miles from south
Dorje Ling Budhist Center	DL	0.7 miles east of north
Dresden Elementary School	DE	0.5 miles east
Dresdon Park	DP	0.5 miles east
Montclair Elementary School	ME	1 mile south
Yeshiva Atlanta High School	YA	1 mile northeast

Figure 6. Receptor Locations

Importantly, the dispersion modeling includes emissions from aircraft MTOW Categories 1, 2, and 3. Meteorological data (e.g., wind speed, wind direction, temperature, etc.) were obtained from the National Climatic Data Center (NCDC) from weather stations closest to PDK.

In order to account for pollutant sources non-airport pollutant sources, background values were added. These values were obtained from the closest EPA air monitoring stations (See **Appendix C**). For each pollutant and time-frame, the highest value (i.e., the "worst-case") of any receptor is shown (see **Appendix C** for more details).

3. Results

The dispersion modelling results, reported in micrograms per cubic meter ($\mu g/m^3$), are shown in **Table 14**. For comparative purposes, the NAAQS are also provided.

As shown, the highest concentrations at the nine Community Receptors are well below the air quality standards for each pollutant. Although higher, the maximum concentrations at the 15 Airport Boundary Receptors are also within the standards. Additional for the dispersion modeling analysis are provided in **Appendix C**.

		Pollutants ^c										
Receptor ^b	N	0 ₂	СО		S	D 2	PM _{2.5}		PM10			
	1-Hour ¹	Annual ²	1-Hour ¹	8-Hour ³	1-Hour ⁴	3-Hour⁵	24-Hour ⁶	Annual ⁷	24-Hour ⁶			
Community Receptors												
AP	56	30	5,351	2,493	27	23	25	10	48			
СВ	46	29	3,541	1,808	14	18	24	10	47			
СН	67	29	3,021	1,737	15	15	24	10	47			
СМ	42	29	3,991	2,018	18	18	25	10	47			
DE	77	30	3,802	1,869	17	16	25	10	47			
DL	46	29	4,452	1,915	17	17	25	10	47			
DP	86	30	3,084	1,805	14	15	24	10	47			
ME	67	29	3,616	1,893	15	16	25	10	47			
YA	43	29	2,888	1,697	11	16	24	10	47			
			Airp	ort Boundary	Receptors	b						
B1-B15	167	47	7,676	2,611	34	28	26	11	48			
NAAQS ^d	188	100	40,000	10,000	196	1,300	35	12	150			
Exceedances	None	None	None	None	None	None	None	None	None			

Table 14. Atmospheric Dispersion Modeling Results (µg/m³)^a

^a Micrograms per cubic meter.

^b AP = Ashford Park Elementary School, CB = Clairmont Baptist Church, DP = Dresdon Park, etc. See Table 12 for abbreviations. ^b Reported values are the highest for all airport boundary receptors. NAAQS = National ambient air quality standards

^cCO = carbon monoxide, VOC = volatile organic compounds, NO_x = nitrogen oxides, SO₂ = sulfur dioxide, PM₁₀ and PM_{2.5} = particulate matter with

diameters of 10 and 2.5 micrometers.

 d U.S. EPA National Ambient Air Quality Standards (NAAQS) in $\mu g/m^3$

¹1-Hour maximum, ² Annual Max, ³ Maximum 8-hour average, ⁴ 4th highest 1-hour average, ⁵ 2nd Highest 3-houir average, ⁶ Highest 24-hour average, ⁷ Highest annual average.

Notes: NO_2 is computed using AERMOD's ambient ratio method version 2 (ARM2) and has been temporally paired with background concentrations. This higher degree of accuracy is needed for NO_2 due to the complex nature of the breakdown of NOx to NO_2 and NO. Source: FAA's AEDT and EPA's AERMOD, and KB Environmental Sciences, 2018.

III. Summary and Conclusions

This section provides an overall summary and the conclusions of the Study.

- Task 1, Evaluate Current Air Quality Conditions: The results of this task revealed two important findings: (i.) air quality in the vicinity of PDK meets national and state standards for the U.S. EPA Criteria pollutants and (ii.) the pollutant levels have declined significantly over the past 25 years. The only exception is the pollutant ozone for which the greater metropolitan Atlanta area (including DeKalb County) does not meet the standards. However, ozone is a "regional" pollutant meaning it can extend over numerous counties and is formed from the combined emissions from numerous and many different sources (e.g. motor vehicles, industry, construction activities, etc. Atlanta is among over 200 areas nationwide that do not meet the ozone standard.
- Task 2, Compare PDK Emissions to Other Nearby Sources: The results of this task revealed that PDK contributes a small fraction of emissions of criteria air pollutants and their precursors, with 1% or less for most pollutants, and 8% for SO₂. When compared to the Atlanta area, PDK is less than 1% of all pollutants.
- Task 3, Compare PDK Emissions to Other Airports: The outcome of this task shows that compared to airports of similar sized and function, PDK generates the same types of emissions and in similar quantities.

- Task 4, Analyze PDK Emissions According to Aircraft Maximum Takeoff Weights (MTOW): The results of this task demonstrate that aircraft with MTOW less than 66,000 lbs. (Category 1) generate the vast majority (84% to 96% depending on pollutant). This outcome is expected as Category 1 aircraft comprise the majority of operations at PDK. By comparison, aircraft with MTOW 66,000 to 75,000 lbs. (Category 2) and greater than 75,000 lbs. (Category 3) represent 1% to 5%, again depending on pollutant.
- Task 5, Conduct Atmospheric Dispersion Modeling for PDK Emissions: The results of this task show that pollutant concentrations around the airport's perimeter and in the surrounding communities are well within the applicable federal and state air quality standards.

Overall, this Study demonstrates that PDK's operations and resultant emissions are comparable to other similar-sized GA airports. The airport's emissions also have a relatively low impact to local air quality conditions and do not cause, or contribute to, violations of federal or state air quality conditions. Finally, Category 1 aircraft comprise the vast majority of emissions at PDK with Categories 2 and 3 representing comparatively small amounts.

List of Preparers

Mike Kenney, Air Quality Specialist, responsible for overall project management. Robbie Gross, Ph.D., Air Quality Specialist responsible for technical analysis and report preparation. Paola Pringle, Air Quality Analyst, responsible for QA/QC.

Christin Gentz, Air Quality Technician, involved in data collection and report preparation.

Appendix A – Monitoring Data

This Appendix details the monitoring data used to assess **Task 1** (*Evaluation of Current Air Quality Conditions*) presented in **Section II.A** of the main report. The data presented in the following tables is from the U.S. Environmental Protection Agency (EPA) ambient air quality monitoring network which monitors Criteria Air Pollutants considered harmful for human health and the environment¹. Specifically, the data is from monitors within the *Atlanta Study Area* and the *Airport Study Area* discussed in **Section II.A** of the main report. Information on the monitors used are presented in **Table A-1** and **Figure A-1**.

Monitor (abbreviation)	County	Pollutants	Years
Bolton Road (BR)	Fulton	Lead	1990-1997
Confederate Avenue (CA)	Fulton	SO ₂	1991-2017
confederate Avenue (CA)	Fulton	O ₃	1991-2017
DeKalb Tech (DT)	DeKalb	CO	1990-2003
Doravilla (DV)	DoKalh	PM10	1990-2012
Doraville (DV)	Dekalb	PM2.5	1999-2012
East Point (EP)	Clayton	PM _{2.5}	1999-2001
East Rivers School (ER)	Fulton	PM10	1996-2012
East Rivers School (ER)	Fulton	PM2.5	1999-2012
Fire Station 8 (ES)	Fulton	PM10	1990-2017
File Station 8 (FS)	Fulton	PM2.5	1999-2017
Fulton Hoalth Dont (EH)	Fulton	PM10	1993-2008
Fulton Health Dept (FH)	Fulton	Lead	1990-1996
Georgia DOT (GD)	Clayton	PM _{2.5}	1999-2015
Georgia Power Substation (GP)	DeKalb	CO	1994-2014
		PM10	1998-2012
Coorgia Tach (CT)	Fulton	PM2.5	2006-2008
Georgia Tech (GT)	Fulton	NO ₂	1990-2009
		SO ₂	1990-2009
Gwinnett Tech (GW)	Gwinnet	PM _{2.5}	2000-2017
Gwinnett Tech (GW)	Gwinner	O ₃	1995-2017
Macland Center (MA)	Cobb	PM _{2.5}	2003-2012
Monastery (MO)	Bockdale	NO ₂	1994-2015
	Поскцаје	O3	1990-2017
Panthersville Road (PR)	DeKalb	NO ₂	2015-2017
	Dekalb	Lead	1990-2014
		PM2.5	2015-2017
Sandy Springs (SS)	Fulton	NO ₂	2014-2017
		CO	2015-2017
		PM ₁₀	2011-2017
		PM _{2.5}	1999-2017
South DeKalb (SD)	DeKalb	SO ₂	2012-2017
South Dekab (SD)	Deixaib	NO ₂	1990-2017
		O3	1990-2017
		CO	2003-2017
Tucker-Idlewood Poad (TI)	DeKalb	NO ₂	1995-2006
	DENain	O3	1995-2006

Table A-1. Study Area Monitor Details

¹ Criteria Pollutants are considered to be harmful for human health and the environment by the U.S. EPA. They include carbon monoxide (CO), nitrogen dioxide (NO₂), sulfur dioxide (SO₂), particulate matter with diameters of 10 and 2.5 microns (PM₁₀ and PM_{2.5}), ozone (O₃), and lead (Pb).

Monitor (abbreviation)	County	Pollutants	Years
Utoy Creek (UC)	Fulton	Lead	2003-2008
Source: EPA, AirData, 2018,			

Figure A-1. Full Study Area Monitor Locations

The data presented in the following sections details annual average concentrations and number of exceedances of EPA's National Ambient Air Quality Standards (NAAQS) at each monitoring station by pollutant.

A-1. Particulate Matter (PM10/2.5)

EPA monitors report data for particulate matter with aerodynamic diameters of 10 and 2.5 micrometers (PM_{10} and $PM_{2.5}$). Detailed monitoring data (i.e., concentrations and number of exceedances) for each pollutant are presented in Tables A-2 through A-4.

Tables A-2 and **A-3** present annual average concentrations in micrograms per cubic meter ($\mu g/m^3$) and the number of annual exceedances of the NAAQS, respectively, for monitors that report PM_{2.5} in the *Atlanta Study Area*. As shown, concentrations and exceedances steadily decline at all monitors with no exceedances in 2017.

			2.5					11.01	/	
Year	GD	EP	SD	DV	ER	FS	GT	SS	GW	MA
2017	11	-	8	-	-	10	-	11	9	-
2016	9	-	13	-	-	10	-	11	8	-
2015	10	-	9	-	-	10	-	10	9	-
2014	11	-	10	-	-	11	-	-	9	-
2013	10	-	9	-	-	10	-	-	9	-
2012	11	-	10	10	10	11	-	-	10	10
2011	13	-	12	12	12	13	-	-	11	11
2010	13	-	12	12	12	14	-	-	12	12
2009	12	-	11	12	12	12	-	-	12	10
2008	14	-	13	13	13	8	14	-	13	13
2007	16	-	15	16	16	-	16	-	14	15
2006	17	-	15	14	15	18	15	-	17	16
2005	17	-	15	16	16	17	-	-	16	15
2004	17	-	16	15	16	18	-	-	16	15
2003	16	-	15	15	16	18	-	-	16	15
2002	15	-	15	15	16	17	-	-	16	-
2001	17	16	17	18	17	19	-	-	16	-
2000	19	20	17	19	19	21	-	-	19	-
1999	21	19	21	22	21	23	-	-	-	-
Note: "-"	signifies no	data availa	able.							
Source: E	PA, AirData	, 2018.								

Table A-2. PM₂₅ Annual Average Concentrations (µg/m³)

Table A-3. PM_{2.5} Annual Number of Exceedances

Year	GD	EP	SD	DV	ER	FS	GT	SS	GW	MA
2017	0	-	0	-	-	0	-	0	0	-
2016	1	-	2	-	-	1	-	1	1	-
2015	0	-	0	-	-	0	-	0	0	-
2014	0	-	0	-	-	0	-	-	0	-
2013	0	-	0	-	-	0	-	-	0	-
2012	0	-	0	0	0	0	-	-	1	0
2011	0	-	0	0	0	0	-	-	0	0
2010	0	-	1	0	1	1	-	-	0	0
2009	0	-	1	1	0	0	-	-	0	0
2008	1	-	1	0	1	0	1	-	0	1
2007	3	-	5	7	7	-	3	-	1	2
2006	0	-	0	0	2	1	0	-	0	2
2005	3	-	5	7	6	1	-	-	1	1
2004	5	-	6	4	6	7	-	-	1	3
2003	4	-	3	7	8	7	-	-	3	3
2002	1	-	4	2	2	2	-	-	0	-
2001	4	3	10	13	9	8	-	-	2	-
2000	4	8	10	14	12	9	-	-	3	-
1999	10	5	22	30	16	16	-	-	-	-
Note: "-"	signifies no	data availa	able.							
Source: E	PA, AirData	, 2018.								

Table A-4 presents annual average concentrations (in $\mu g/m^3$) for monitors that report PM₁₀ in the *Atlanta Study Area*. There have not been any recorded exceedances of the NAAQS for PM₁₀ at these monitors, therefore, an exceedance table is not provided.

						(1-0)
Year	SD	DV	ER	FS	GT	FH
2017	-	-	-	18	-	-
2016	-	-	-	16	-	-
2015	17	-	-	-	-	-
2014	18	-	-	6	-	-
2013	18	-	-	6	-	-
2012	20	16	15	-	19	-
2011	21	17	17	-	20	-
2010	-	19	18	-	18	-
2009	-	21	21	-	18	-
2008	-	21	21	-	22	22
2007	-	28	29	-	27	24
2006	-	23	26	12	23	23
2005	-	23	25	12	25	23
2004	-	25	26	13	22	22
2003	-	26	25	10	22	24
2002	-	18	19	13	23	25
2001	-	20	21	27	27	36
2000	-	20	23	13	27	35
1999	-	23	25	15	22	30
1998	-	30	-	14	30	28
1997	-	27	-	17	-	30
1996	-	27	-	13	-	28
1995	-	28	-	15	-	30
1994	-	27	-	14	-	28
1993	-	28	-	17	-	36
1992	-	28	-	15	-	-
1991	-	36	-	17	-	-
1990	-	50	-	20	-	-
Note: "-" Source: E	signifies no PA, AirData	data availa , 2018.	able.			

Table A-4. PM₁₀ Annual Average Concentrations (µg/m³)

A-2. Nitrogen Dioxide (NO₂)

EPA monitors report data for NO₂ and **Tables A-5** and **A-6** present annual average NO₂ concentrations in parts per billion (ppb) and the number of annual exceedances of the NAAQS for those monitoring stations within the *Atlanta Study Area*. As shown, concentrations have decreased over time and there have been no exceedances since 2004.

Year	PR	SD	TI	GT	SS	MO			
2017	35	27	-	-	32	-			
2016	34	25	-	-	32	-			
2015	31	23	-	-	30	7			
2014	-	25	-	-	31	8			
2013	-	22	-	-	-	8			

Table A-5.	. NO₂ Annual	Average	Concentrations	(ppb)
------------	--------------	---------	-----------------------	-------

Year	PR	SD	TI	GT	SS	MO	
2012	-	27	-	-	-	8	
2011	-	31	-	-	-	8	
2010	-	31	-	-	-	9	
2009	-	24	-	31	-	7	
2008	-	29	-	31	-	10	
2007	-	32	-	34	-	11	
2006	-	33	26	36	-	12	
2005	-	30	28	36	-	13	
2004	-	31	30	35	-	12	
2003	-	30	30	34	-	13	
2002	-	31	30	38	-	14	
2001	-	36	33	44	-	16	
2000	-	38	34	44	-	16	
1999	-	41	40	46	-	16	
1998	-	38	32	45	-	16	
1997	-	32	29	48	-	15	
1996	-	33	35	49	-	12	
1995	-	30	30	37	-	13	
1994	-	28	-	43	-	13	
1993	-	30	-	45	-	-	
1992	-	30	-	47	-	-	
1991	-	30	-	45	-	-	
1990	-	32	-	48	-	-	
Note: "-"	signifies no	data availa	able.				
Source: EPA, AirData, 2018.							

Table A-6. NO₂ Annual Number of Exceedances

Year	PR	SD	TI	GT	SS	MO		
2017	0	0	-	-	0	-		
2016	0	0	-	-	0	-		
2015	0	0	-	-	0	0		
2014	-	0	-	-	0	0		
2013	-	0	-	-	-	0		
2012	-	0	-	-	-	0		
2011	-	0	-	-	-	0		
2010	-	0	-	-	-	0		
2009	-	0	-	0	-	0		
2008	-	0	-	0	-	0		
2007	-	0	-	0	-	0		
2006	-	0	0	0	-	0		
2005	-	0	0	0	-	0		
2004	-	0	0	1	-	0		
2003	-	0	0	0	-	0		
2002	-	0	0	1	-	0		
2001	-	1	0	3	-	0		
2000	-	0	0	5	-	0		
1999	-	1	0	3	-	1		
1998	-	3	0	1	-	0		

Year	PR	SD	TI	GT	SS	МО		
1997	-	0	0	4	-	0		
1996	-	0	0	4	-	0		
1995	-	0	0	0	-	0		
1994	-	0	-	2	-	0		
1993	-	0	-	1	-	-		
1992	-	0	-	2	-	-		
1991	-	0	-	3	-	-		
1990	-	0	-	2	-	-		
Note: "-"	Note: "-" signifies no data available.							
Source: EPA, AirData, 2018.								

A-3. Sulfur Dioxide (SO₂)

EPA monitors in the Study Area report data for SO_2 and **Tables A-7** and **A-8** present annual average SO_2 concentrations (in ppb) and the number of annual exceedances of the NAAQS for these monitors. As shown by the three monitors, concentrations have significantly decreased over time, with no exceedances since 2009.

Year	SD	GT	СА
2017	1	-	2
2016	1	-	2
2015	1	-	1
2014	1	-	1
2013	1	-	1
2012	2	-	2
2011	4	-	6
2010	4	-	7
2009	-	8	6
2008	-	13	10
2007	-	14	11
2006	-	15	13
2005	-	13	12
2004	-	12	11
2003	-	13	11
2002	-	12	11
2001	-	12	11
2000	-	15	11
1999	-	16	11
1998	-	16	11
1997	-	16	12
1996	-	14	12
1995	-	14	11
1994	-	16	15
1993	-	27	20
1992	-	27	21
1991	-	27	25
1990	-	31	-

Table A-7. SO₂ Annual Average Concentrations (ppb)

Year	SD	GT	CA			
Source: EPA, AirData, 2018.						

Table A-8. SO₂ Annual Number of Exceedances

Year	SD	GT	CA		
2017	0	0	0		
2016	0	-	0		
2015	0	-	0		
2014	0	-	0		
2013	0	-	0		
2012	0	-	0		
2011	0	-	0		
2010	0	-	0		
2009	-	1	1		
2008	-	1	0		
2007	-	2	2		
2006	-	6	1		
2005	-	2	0		
2004	-	0	0		
2003	-	1	1		
2002	-	2	0		
2001	-	1	0		
2000	-	1	0		
1999	-	6	0		
1998	-	3	0		
1997	-	6	1		
1996	-	3	0		
1995	-	4	1		
1994	-	4	4		
1993	-	12	10		
1992	-	22	9		
1991	-	28	5		
1990	-	38	-		
Note: "-" signifies no data available. Source: EPA, AirData, 2018.					

A-4. Ozone (03)

EPA monitors report data for O_3 and **Tables A-9** and **A-10** present annual average O_3 concentrations (in ppb) and the number of annual exceedances of the NAAQS for monitors within the Study Area. As shown, concentrations and NAAQS exceedances have generally decreased over time with the fewest exceedances in 2017 compared to any prior year.

Year	SD	TI	CA	GW	MO
2017	0.04	-	0.05	0.04	0.05
2016	0.05	-	0.05	0.05	0.05
2015	0.04	-	0.05	0.04	0.04
2014	0.04	-	0.04	0.04	0.05
2013	0.04	-	0.04	0.04	0.04
2012	0.05	-	0.05	0.05	0.05

Table A-9. O₃ Annual Average Concentrations (ppb)

Year	SD	TI	СА	GW	MO		
2011	0.05	-	0.05	0.05	0.05		
2010	0.05	-	0.05	0.05	0.05		
2009	0.04	-	0.04	0.04	0.04		
2008	0.05	-	0.05	0.05	0.05		
2007	0.05	-	0.05	0.06	0.05		
2006	0.05	0.05	0.05	0.06	0.05		
2005	0.05	0.05	0.05	0.05	0.05		
2004	0.05	0.05	0.05	0.05	0.05		
2003	0.05	0.05	0.05	0.05	0.05		
2002	0.05	0.05	0.05	0.05	0.05		
2001	0.05	0.05	0.05	0.05	0.05		
2000	0.05	0.06	0.06	0.06	0.05		
1999	0.06	0.06	0.07	0.06	0.06		
1998	0.06	0.06	0.06	0.06	0.06		
1997	0.05	0.05	0.06	0.05	0.06		
1996	0.05	0.05	0.05	0.05	0.05		
1995	0.05	0.05	0.05	0.05	0.05		
1994	0.04	-	0.05	-	0.05		
1993	0.05	-	0.05	-	0.06		
1992	0.04	-	0.04	-	0.05		
1991	0.05	-	0.03	-	0.05		
1990	0.05	-	-	-	0.06		
Note: "-"	Note: "-" signifies no data available.						

Source: EPA, AirData, 2018.

Year	SD	TI	СА	GW	MO
2017	1	-	6	0	1
2016	7	-	12	6	9
2015	4	-	10	4	3
2014	3	-	7	2	7
2013	1	-	3	1	4
2012	13	-	16	6	15
2011	18	-	25	17	34
2010	10	-	15	5	10
2009	7	-	11	4	3
2008	22	-	21	7	23
2007	35	-	36	35	27
2006	40	30	38	40	31
2005	19	26	36	24	29
2004	17	11	19	17	20
2003	16	18	26	20	26
2002	37	41	45	35	35
2001	23	33	30	12	26
2000	46	47	58	43	31
1999	63	55	87	55	76
1998	47	48	71	53	74
1997	26	27	52	31	43

Year	SD	TI	CA	GW	MO	
1996	31	40	39	32	42	
1995	60	45	53	34	52	
1994	14	-	30	-	31	
1993	43	-	59	-	66	
1992	17	-	21	-	38	
1991	28	-	0	-	51	
1990	60	-	-	-	73	
Note: "-" signifies no data available.						
Source: E	PA, AirData	, 2018.				

A-5. Carbon Monoxide (CO)

EPA monitors report data for CO and **Table A-11** presents annual average CO concentrations in parts per million (ppm) for reporting monitors in the Study Area. There have been no reported NAAQS exceedances for CO in the Study Area, therefore, an exceedance table is not presented. As shown, concentrations have generally decreased over time.

Year	SD	DT	GP	SS
2017	0.342	-	-	0.57
2016	0.290	-	-	0.80
2015	0.313	-	-	0.80
2014	0.314	-	0.34	0.64
2013	0.298	-	0.43	-
2012	0.331	-	0.43	-
2011	0.332	-	0.43	-
2010	0.345	-	0.40	-
2009	-	-	0.38	-
2008	0.53	-	0.40	-
2007	0.45	-	0.54	-
2006	0.58	-	0.61	-
2005	0.55	-	0.59	-
2004	0.54	-	0.61	-
2003	0.62	0.45	0.75	-
2002	-	0.61	0.67	-
2001	-	0.69	0.76	-
2000	-	0.50	0.83	-
1999	-	0.63	0.93	-
1998	-	0.91	0.98	-
1997	-	0.79	0.98	-
1996	-	0.76	1.11	-
1995	-	0.77	1.40	-
1994	-	0.84	1.34	-
1993	-	0.86	-	-
1992	-	0.88	-	-
1991	-	0.85	-	-
1990	-	0.93	-	-
Note: "-" signifies no data available. Source: EPA, AirData, 2018.				

Table A-11. CO Annual Average Concentrations (ppm)

A-6. Lead

EPA monitors report data for lead and **Table A-12** presents annual average lead concentrations in $\mu g/m^3$. There have been no reported NAAQS exceedances for lead for the monitors within the Study Area, therefore an exceedance table is not provided. As shown, concentrations have decreased over time.

Year	PR	ЕН	BK	UC
2017	-	-	-	-
2016	-	-	-	-
2015	0.002	-	-	-
2014	0.002	-	-	-
2013	0.002	-	-	-
2012	0.003	-	-	-
2011	0.003	-	-	-
2010	0.003	-	-	-
2009	0.003	-	-	-
2008	0.067	-	-	0.004
2007	-	-	-	0.003
2006	-	-	-	0.003
2005	-	-	-	0.005
2004	-	-	-	0.004
2003	-	-	-	0.005
2002	0.019	-	-	-
2001	0.028	-	-	-
2000	0.021	-	-	-
1999	0.026	-	-	-
1998	0.012	-	-	-
1997	0.014	-	0.017	-
1996	0.018	0.028	0.023	-
1995	0.019	0.029	0.034	-
1994	0.018	0.026	0.027	-
1993	0.017	0.023	0.015	-
1992	0.022	0.032	0.025	-
1991	0.027	0.033	0.028	-
1990	0.021	0.039	0.023	-
Note: "-" signifies no data available.				
Source: EPA, AirData, 2018.				

Table A-12. Lead Annual Average Concentrations (µg/m³)

A-8. Pollutant Trends

Pollutant trends have been decreasing as shown in the previous tables. Figures A-2 and A-3 display these trends for all monitors for $PM_{2.5}$ and O_3 .

Figure A-2: O₃ Annual Data from All Monitors

Figure A-3: PM_{2.5} Annual Data from All Monitors

Appendix B – Data, Assumptions, and Methodology

The materials in **Appendix B** include technical information that summarize the data, assumptions, methodology, and other information used in preparing the analyses under **Task 2** (*Analysis of PDK Emissions Compared to Other Nearby Sources*), **Task 3** (*Analysis of PDK Emissions Compared to Other Airports*), **Task 4** (*PDK Emissions Based on Aircraft Maximum Takeoff Weight*), and **Task 5** (*Dispersion Modeling for PDK Airport Specific Emissions*), provided in **Sections II.B** through **II.E**, respectively, of the main report.

B-1. Aircraft Activity Levels

Aircraft activity levels (aircraft arrival and departure operations) were developed based on aircraft activity from the Flight Symphony Data provided by PDK. This data set includes the International Civil Aviation Organization (ICAO) aircraft code which indicates the airframe, operation type (i.e., arrival/departure), and number of operations.

Because the Symphony Flight Data does not capture 100-percent of the aircraft operations (as it is based on transponder activity for certain aircraft classes) the aircraft fleet mix was scaled to match PDK's total aircraft operations as reported by FAA's Operations Network (OPSNET). Additionally, the highest emitting engines were assigned to each aircraft.

Table B-1 presents the aircraft operations and engine assignments at PDK for 2017.

Airframe	MTOW	Operations	
Aerostar PA-60	6,100	107	
Airbus A320-100 Series	169,756	4	
Bell 407 / Rolls-Royce 250-C47B	5,000	2	
Boeing 737-800 Series	174,200	8	
Boeing MD-88	160,000	2	
Boeing Stearman PT-17 / A75N1	3,000	2	
Bombardier Challenger 300	36,000	5,630	
Bombardier Challenger 601	43,100	2,805	
Bombardier CRJ-100	36,000	12	
Bombardier CRJ-200	82,500	244	
Bombardier CRJ-700	82,500	8	
Bombardier Global Express	99,500	649	
Bombardier Global 5000 Business	92,500	300	
Bombardier Learjet 24	15,000	4	
Bombardier Learjet 31	18,300	918	
Bombardier Learjet 35	18,300	1,168	
Bombardier Learjet 40	18,300	507	
Bombardier Learjet 45	18,300	3,318	
Bombardier Learjet 55	18,300	214	
Bombardier Learjet 60	35,700	1,868	
Bombardier Learjet 75	18,300	2,759	
Cessna 150 Series	2,200	79	
Cessna 172 Skyhawk	2,450	3,405	
Cessna 182	2,800	1,337	

Table B-1. PDK Aircraft Fleet Mix and Annual Operations

Airframe	MTOW	Operations
Cessna 206	3,600	184
Cessna 208 Caravan	8,750	1,648
Cessna 210 Centurion	3,000	492
Cessna 310	6,100	229
Cessna 340	6,100	471
Cessna 402	6,100	10
Cessna 414	6,100	745
Cessna 421 Golden Eagle	6,100	713
Cessna 425 Conquest I	9,900	52
Cessna 441 Conquest II	9,900	158
Cessna 500 Citation I	14,700	154
Cessna 501 Citation ISP	14,700	800
Cessna 525 CitationJet	14,700	6,984
Cessna 525C CitationJet	14,700	395
Cessna 550 Citation II	14,800	1,913
Cessna 560 Citation Excel	16,300	11,489
Cessna 560 Citation V	16,300	4,181
Cessna 650 Citation III	20,000	1,209
Cessna 680 Citation Sovereign	30,000	3,266
Cessna 680-A Citation Latitude	30,000	1,106
Cessna 750 Citation X	35,700	2,030
CESSNA CITATION 510	8,645	452
Cessna S550 Citation S/II	14,800	32
Cirrus SR20	2,440	550
Cirrus SR22	2,440	8,914
COMMANDER980/1000	9,900	24
Dassault Falcon 10	15,000	111
Dassault Falcon 2000	35,700	2,666
Dassault Falcon 20-F	28,700	413
Dassault Falcon 50	35,700	1,372
Dassault Falcon 900	19,200	920
DeHavilland DHC-2 Mk III Beaver	3,000	2
Dornier 328 Jet	35,700	884
Dornier 328-100 Series	30,843	8
EADS Socata TB-10 Tobago	3,000	6
EADS Socata TB-20 Trinidad	3,000	10
EADS Socata TBM-700	8,750	477
Eclipse 500 / PW610F	6,000	2,172
Embraer 500	8,645	905
Embraer 505	14,800	4,857
Embraer EMB110 Bandeirante	12,500	2
Embraer EMB120 Brasilia	26,433	30
Embraer ERJ135	45,420	98

Airframe	MTOW	Operations
Embraer Legacy	45,420	531
Fairchild SA-226-T Merlin III	12,500	38
Fairchild SA-226-TC Metro II	12,500	1,466
Falcon 7X	35,700	203
Gulfstream G650	90,500	169
Gulfstream G150	23,500	599
Gulfstream G200	36,000	956
Gulfstream G280	23,500	645
Gulfstream G300	74,600	550
Gulfstream G400	74,600	3,173
Gulfstream G500	90,500	1,915
Gulfstream II	64,800	12
Hawker HS-125 Series 600	18,300	58
Helio U-10 Super Courier	3,000	2
Honda HA-420 Hondajet	14,100	257
Israel IAI-1124 Westwind I	23,500	84
Israel IAI-1125 Astra	23,500	833
Lancair 360	2,450	15
Lockheed L-1329 Jetstar II	18,300	4
Maule MT-7-235	3,000	26
Mitsubishi MU-2	12,500	199
Mitsubishi MU-300 Diamond	14,100	50
Mooney M20-K	3,000	1,220
Nord Transall C-160	46,500	2
Partenavia P.68 Victor	3,600	15
Piaggio P.180 Avanti	12,500	137
Pilatus PC-12	8,750	13,849
Pilatus Turbo Trainer PC-9	2,200	4
Piper PA-23 Apache/Aztec	6,100	13
Piper PA-24 Comanche	3,000	216
Piper PA-27 Aztec	6,100	90
Piper PA-28 Cherokee Series	2,200	3,256
Piper PA-30 Twin Comanche	3,600	84
Piper PA-31 Navajo	6,100	708
Piper PA-31T Cheyenne	9,900	441
Piper PA-32 Cherokee Six	3,000	1,818
Piper PA-34 Seneca	6,100	199
Piper PA-42 Cheyenne Series	11,200	422
Piper PA46-TP Meridian	9,900	1,482
Raytheon Beech 1900-C	16,950	115
Raytheon Beech 55 Baron	6,100	599
Raytheon Beech 60 Duke	6,100	36
Raytheon Beech Baron 58	6,100	3,234

Airframe	MTOW	Operations
Raytheon Beech Bonanza 36	8,750	4,625
Raytheon Beech D17S Staggerwing	2,450	18
Raytheon Beechjet 400	14,100	6,167
Raytheon Hawker 1000	18,300	78
Raytheon Hawker 4000 Horizon	35,700	285
Raytheon Hawker 800	18,300	4,210
Raytheon King Air 100	12,500	208
Raytheon King Air 90	12,500	3,882
Raytheon Premier I	14,800	606
Raytheon Super King Air 200	12,500	3,064
Raytheon Super King Air 300	12,500	5,187
Robinson R44 Raven	2,400	32
Rockwell Commander 500	6,100	1,085
Rockwell Commander 690	12,500	70
Rockwell Sabreliner 60	15,000	296
Rockwell Sabreliner 75	15,000	4
Ryan Navion B	3,000	6
Saab 340-A	27,300	2
Sikorsky S-76 Spirit	10,000	56
Sikorsky SH-60 Sea Hawk	20,250	2
SOCATA TBM 850	9,900	976
Total 159,066		
Note: MTOW = Maximum TakeOff Weights. Source: PDK Symphony Flight Database, FAA's OPSNET, and KB Environmental Sciences, 2018.		

Two airports with similar hub size and general aviation (GA) operations were also chosen for evaluation being Fort Lauderdale Executive Airport (FXE) in Florida and Scottsdale Airport (SDL) in Arizona. Operational data for these airports were obtained from the FAA Traffic Flow management System Counts (TFMSC) database. Similar to PDK's Symphony Flight dataset, the TFMSC does not capture every operation, therefore, operations were scaled up using FAA's OPSNET for accuracy. Again, the highest emitting engines were applied. The same methodology was applied to Atlanta Hartsfield International Airport (ATL). Tables B-2 through B-4 present the fleet mixes for FXE, SDL and ATL, respectively. MTOW was not used for the analysis of other airports and is not included in the tables.

Airframe	Operations
Aerostar PA-60	1,109
Boeing DC-3	1,885
Bombardier Challenger 300	2,877
Bombardier Challenger 601	322
Bombardier CRJ-200	1,870
Bombardier Global 5000 Business	302
Bombardier Global Express	6,569
Bombardier Learjet 31	1,246

Table B-2. FXE Aircraft Fleet Mix and Annual Operations

Airframe	Operations
Bombardier Learjet 35	280
Bombardier Learjet 40	458
Bombardier Learjet 45	12,220
Bombardier Learjet 55	439
Bombardier Learjet 60	5,050
Cessna 150 Series	1,813
Cessna 172 Skyhawk	511
Cessna 182	1,632
Cessna 206	1,159
Cessna 208 Caravan	488
Cessna 210 Centurion	4,024
Cessna 310	3,476
Cessna 340	220
Cessna 402	4,183
Cessna 414	261
Cessna 421 Golden Eagle	337
Cessna 441 Conquest II	1,627
Cessna 500 Citation I	1,732
Cessna 501 Citation ISP	2,020
Cessna 525 CitationJet	1.136
Cessna 525C CitationJet	258
Cessna 550 Citation II	901
Cessna 560 Citation Excel	11.289
Cessna 560 Citation V	16,525
Cessna 650 Citation III	4,001
Cessna 680 Citation Sovereign	3,843
Cessna 680-A Citation Latitude	866
Cessna 750 Citation X	1,601
CESSNA CITATION 510	606
Cirrus SR20	875
Cirrus SR22	3.134
Dassault Falcon 10	2,195
Dassault Falcon 2000	598
Dassault Falcon 20-C	545
Dassault Falcon 50	711
Dassault Falcon 900	3,918
EADS Socata TBM-700	515
Eclipse 500 / PW610F	1.738
Embraer 500	700
Embraer 505	450
Embraer EMB120 Brasilia	208
Falcon 7Y	4 016
Gulfstream G150	560
Gunsti cam G150	500

Airframe	Operations	
Gulfstream G280	1,605	
Gulfstream G300	386	
Gulfstream G400	538	
Gulfstream V-SP	352	
Hawker HS-125 Series 1	1,647	
Hawker HS-125 Series 700	6,845	
Honda HA-420 Hondajet	7,322	
Israel IAI-1124 Westwind I	727	
Israel IAI-1125 Astra	1,412	
Israel IAI-1126 Galaxy	599	
Mitsubishi MU-2	6,531	
Mooney M20-K	1,536	
Partenavia P.68 Victor	454	
Piaggio P.180 Avanti	1,075	
Pilatus PC-12	299	
Piper PA-27 Aztec	1,960	
Piper PA-28 Cherokee Series	667	
Piper PA-31 Navajo	348	
Piper PA-31T Cheyenne	719	
Piper PA-32 Cherokee Six	3,846	
Piper PA-34 Seneca	208	
Piper PA46-TP Meridian	329	
Raytheon Beech 55 Baron	2,321	
Raytheon Beech Baron 58	295	
Raytheon Beech Bonanza 36	1,412	
Raytheon Beechjet 400	5,414	
Raytheon Hawker 1000	2,386	
Raytheon Hawker 4000 Horizon	276	
Raytheon King Air 100	416	
Raytheon King Air 90	651	
Raytheon Premier I	946	
Raytheon Super King Air 200	235	
Raytheon Super King Air 300	4,445	
Rockwell Commander 690	458	
Rockwell Sabreliner 60	723	
SOCATA TBM 850	341	
Total	179,023	
Source: FAA's TFMSC and OPSNET, and KB Environmental Sciences, 2018.		

Table B-3. SDL Aircraft Fleet Mix and Annual Operations

Airframe	Operations
Bombardier Challenger 300	3,878
Bombardier Challenger 600	2,855
Bombardier Global 5000 Business	1,868

Airframe	Operations	
Honda HA-420 Hondajet	2,919	
Israel IAI-1125 Astra	1,215	
Israel IAI-1126 Galaxy	2,155	
Pilatus PC-12	1,321	
Piper PA-34 Seneca	1,062	
Piper PA46-TP Meridian	1,204	
Raytheon Beech Baron 58	6,367	
Raytheon Beechjet 400	350	
Raytheon Hawker 1000	653	
Raytheon Hawker 4000 Horizon	7,173	
Raytheon King Air 90	1,892	
Raytheon Premier I	10,894	
Raytheon Super King Air 200	15,864	
Raytheon Super King Air 300	366	
Rockwell Commander 690	1,848	
SOCATA TBM 850	420	
Total	168,131	
Source: FAA's TFMSC and OPSNET, and KB Environmental Sciences, 2018.		

Table B-4. ATL Aircraft Fleet Mix and Annual Operations

	•
Aircraft	Operations
Boeing MD-88	183,983
Bombardier CRJ-200	81,094
Boeing 717-200 Series	69,962
Boeing 737-700 Series	68,047
Boeing 737-900 Series	55,105
Boeing 757-200 Series	54,212
Boeing 737-800 Series	53,968
Boeing MD-90	46,151
Bombardier CRJ-900	41,990
Airbus A320-100 Series	41,238
Airbus A321-100 Series	39,820
Airbus A319-100 Series	29,421
Bombardier CRJ-700	16,042
Boeing 737-400 Series	12,783
Embraer ERJ175	13,272
Boeing 767-300 Series	9,583
Airbus A330-300 Series	7,968
Boeing 767-400 Series	6,956
Boeing 757-300 Series	6,889
Embraer ERJ170	5,176
Embraer ERJ190	4,758
Boeing 777-200 Series	5,675

Boeing 777-300 Series	2,683
Boeing 747-400 Series	2,620
Pilatus PC-12	2,088
Boeing 747-SP	1,456
Raytheon Beech 1900-C	1,236
Airbus A300B4-600 Series	1,009
Cessna 208 Caravan	964
Boeing MD-11 Freighter	789
Raytheon Super King Air 200	749
Cessna 560 Citation Excel	717
Boeing DC-10-10 Series	658
Airbus A340-300 Series	527
Airbus A340-600 Series	390
Raytheon Hawker 800	385
Raytheon Beechjet 400	337
Embraer 505	322
Bombardier Challenger 600	309
Bombardier Challenger 300	424
Boeing 737-500 Series	284
Boeing 767-200 Series	282
Gulfstream G400	282
Cessna 680 Citation Sovereign	275
Bombardier Learjet 35	265
Cessna 750 Citation X	246
Airbus A330-200 Series	240
Dassault Falcon 2000	235
Raytheon Super King Air 300	246
Boeing MD-83	218
Cessna 560 Citation V	211
Cessna 525 CitationJet	239
Rockwell Commander 500	192
Bombardier Learjet 60	197
Gulfstream G500	191
Cirrus SR22	154
Raytheon Beech Baron 58	153
Bombardier Learjet 45	142
Raytheon King Air 90	139
Embraer ERJ145	143
Bombardier Global Express	119
Bombardier CRJ-100	153
Gulfstream G150	113
Cessna 525A CitationJet	112
Fairchild SA-226-T Merlin III	110
Cessna 525B CitationJet	108

Gulfstream G200	104
Israel IAI-1125 Astra	103
Cessna 550 Citation II	102
Dassault Falcon 900	97
Boeing 727-200 Series	94
Dassault Falcon 50	86
Cessna 680-A Citation Latitude	77
Boeing 787-10 Dreamliner	78
Boeing MD-82	77
Boeing 737-800 MAX	73
Dassault Falcon 20-C	68
Gulfstream G280	67
Embraer 500	66
Boeing DC-9-10 Series	62
Airbus A380-800 series	60
Raytheon Hawker 4000 Horizon	59
Eclipse 500 / PW610F	52
Dassault Falcon 50-EX	52
Cessna 525C CitationJet	46
Bombardier Learjet 40	46
Piper PA46-TP Meridian	65
Bombardier Learjet 75	45
Airbus A350-900 series	41
Sikorsky S-92	22
Cessna 650 Citation III	36
Raytheon Premier I	36
Dassault Falcon 10	35
Raytheon Beech Bonanza 36	36
Gulfstream I	34
Piper PA-31 Navajo	32
Bombardier Learjet 31	29
Fairchild SA-26-T Merlin II	28
Sikorsky S-76 Spirit	19
Cessna 421 Golden Eagle	29
Cessna 501 Citation ISP	29
Embraer Legacy	46
Bombardier Global 5000 Business	22
Gulfstream G300	22
T-38 Talon	16
Lockheed C-130 Hercules	25
Cessna 172 Skyhawk	16
Raytheon King Air 100	18
Raytheon King Air 91	18
Boeing DC-9-30 Series	18

Piper PA-42 Cheyenne Series	35
Boeing MD-81	12
Cessna 425 Conquest I	21
COMMANDER980/1000	15
Antonov 124 Ruslan	14
Raytheon Hawker 1000	16
EADS Socata TBM-700	14
Bombardier Learjet 55	12
Embraer Legacy 500 (EMB-550)	12
Honda HA-420 Hondajet	12
BAE Jetstream 41	12
Israel IAI-1124 Westwind I	12
BOEING 737-800 Poseidon	11
SOCATA TBM 850	11
Piper PA-34 Seneca	10
Embraer ERJ135-LR	10
Hawker HS-125 Series 1	10
Boeing F/A-18 Hornet	8
Piaggio P.180 Avanti	9
Mooney M20-K	8
Boeing 737-600 Series	8
Raytheon Beech 55 Baron	8
Cessna 414	8
Embraer EMB120 Brasilia	8
Bombardier Learjet 70	8
Mitsubishi MU-2	8
Piper PA-28 Cherokee Series	16
Lockheed Martin F-16 Fighting Falcon	5
Agusta A-109	4
Antonov 12 Cub	7
Cessna 340	7
Boeing C-17A	6
Cessna 210 Centurion	6
Embraer EMB110 Bandeirante	6
Ilyushin 76 Candid	6
Fairchild A-10A Thunderbolt II	5
Lancair 360	7
Cirrus SR20	5
Boeing F-15 Eagle	4
Lockheed P-3 Orion	5
Cessna 310	7
Sikorsky SH-60 Sea Hawk	5
Piper PA-32 Cherokee Six	9
Cessna 182	7

Total	879,498
Bell 222	1
Bell 206B-3	1
McDonnell Douglas 600N	1
Boeing DC-6	1
Boeing B-52 Stratofortress	1
Rockwell 1121 Jet Commander	1
Robinson R44 Raven	1
Hawker Hunter	2
Lockheed ES-3A Shadow	1
Grumman A-6 Intruder	1
Grumman C-1 Trader	1
Lockheed S-3 Viking	1
Bell 412 SP	1
Shorts 330	2
CIRRUS SE-50 Vision	2
Bockwell Sabreliner 40	2
Boeing KC-135 Stratotanker	2
DeHavilland DHC-6-100 Twin Otter	2
Aerospatiale SA-355F Twin Star	2
Raytheon Reech 99	2
Boeing 747-200 Series	2
Rockwell T-2 Buckeye	2
Antonov 74 Codler	2
Antonov 74 Coolor	2
Airbus A210 200 Series	2
Cessna 402	3
Coorte 402	4
Piper PA-24 Comanche	4
Dornier 328 Jet	4
Boeing DC-8 Series 70	4
Cessna 500 Citation I	4
Raytheon Beech 60 Duke	4
Boeing 737-200 Series	4
COMMANDER980/1001	4
Boeing 767-200 ER	3

B-2. Aircraft Emission Factors

FAA's Aviation Environmental Design Tool (AEDT, version 2d) contains a database of aircraft/enginespecific criteria pollutant² emission factors based on engine manufacturer, model, and operational mode. The level of aircraft-related emissions is reflective of the time that an aircraft operates in each of the operational modes with the entire cycle referred to as a landing/take-off (LTO) cycle. An LTO cycle consists of the following four operational modes, with specific emission factors in AEDT:

- Taxi/idle includes the time an aircraft taxies between the runway and a terminal, and all ground-based delay incurred through the aircraft route.
- Approach begins when an aircraft descends below the atmospheric mixing height and ends when an aircraft touches down on a runway.
- Takeoff begins when full power is applied to an aircraft and ends when an aircraft reaches approximately 500 to 1,000 feet. At this altitude, pilots typically power back for a gradual ascent.
- Climb out begins when an aircraft powers back from the takeoff mode and ascends above the atmospheric mixing height. A mixing height of 3,000 was used for this assessment.

B-3. Aircraft Taxi Times

PDK-specific taxi-in and -out times, and delay periods were derived from FAA's Aviation System Performance Metrics (ASPM).³ An airfield taxi-in of 4.96 minutes and taxi-out of 12.53 minutes were used for PDK for 2017. For FXE, an airfield taxi-in of 4.97 minutes and taxi-out of 12.69 minutes were used. For SDL, an airfield taxi-in of 4.98 minutes and taxi-out of 12.54 minutes were used.

B-4. Auxiliary Power Units (APUs)

APUs are on-board engines that provide power to an aircraft while taxiing or at the terminal gate. Larger aircraft use an APU to run heat and air conditioning, and to provide electrical power for the aircraft. The APU can also be used to restart the engines before departing from the gate area. For this assessment, AEDT default aircraft/APU combinations with an operating time of 26 minutes, where applicable, were used.

B-5. Ground support equipment (GSE)

GSE is a term used to describe the equipment that service aircraft after arrival and before departure at an airport. Types of GSE include, but are not limited to, aircraft tugs, baggage tugs, belt loaders, fuel or hydrant trucks, water trucks, lavatory trucks, and cargo loaders, among others. Air emissions resulting from the operation of GSE vary depending on the type of equipment, fuel type (gasoline, diesel, propane, electric, etc.) and the duration of equipment operation (engine run time).

For this assessment, the GSE population, including equipment type, fuel type, and operational data were assigned using AEDT defaults.

B-6. Motor Vehicles

The level of emissions that would result from motor vehicles depends on several factors including the population of vehicles, the vehicle fleet mix, the motor vehicle emission rates, travel distance, the year of

nitrogen dioxide (NO₂), sulfur dioxide (SO₂), particulate matter with diameters of 10 and 2.5 microns (PM₁₀ and PM_{2.5}), ozone (O₃), and lead (Pb). ³ FAA, Aviation System Performance Metrics (ASPM), <u>https://aspm.faa.gov</u>.

² Criteria Pollutants are considered to be harmful for human health and the environment by the U.S. EPA. They include carbon monoxide (CO),

analysis, and meteorological factors. All motor vehicles travelling on roadways within DeKalb County were included in this assessment.

The EPA's MOtor Vehicle Emissions Simulator (MOVES, version 2014a) was used to estimate emissions from motor vehicles. MOVES input data was obtained from the Georgia Environmental Protection Division (EPD) and are specific to DeKalb County. The output is based on the following functional components: (i) total population of vehicles in the year 2017, (ii) distance traveled, and (iii) the types of vehicles.

B-7. Stationary Sources

Emissions resulting from stationary sources such as industrial and commercial facilities, fuel facilities, and landfills were obtained from the most recent EPA National Emissions Inventory (NEI 2014). Stationary sources located on DeKalb County were extracted and used for comparison to PDK emissions.

Appendix C – Emissions Inventory and Dispersion Analysis Results

This Appendix presents the detailed emissions inventory and dispersion modeling results.

C-1. Emissions Inventory Results

The results of the Criteria Air Pollutants (and their precursors)⁴ inventories segregated by source for PDK and DeKalb County are presented in **Tables C-1**. **Table C-2** presents the emissions at PDK by source for each maximum takeoff weight (MTOW) category. **Table C-3** present PDK emissions compared to other airports.

Table C-1. PDK Criteria Air Pollutant Emissions Inventory by Source (tons/year)

Source	СО	VOC	NO _x	SOx	PM _{2.5}	PM ₁₀
PDK Aircraft	623	200	68	12	3	3
PDK GSE	98	3	9	<1	<1	<1
PDK APU	5	<1	1	<1	<1	<1
Dekalb Stationary	36,564	15,160	3,106	97	1,274	4,544
DeKalb Motor Vehicles	85 <i>,</i> 950	4,656	6,260	49	826	902
Total PDK	726	203	78	13	4	4
Total Dekalb County	122,514	19,815	9,366	146	2,100	5,446
Atlanta Study Area ³	425,555	114,658	63,208	2,513	8,987	28,929
Notes: CO = carbon monoxide, VOC	= volatile orgar	nic compounds	, NO _x = nitrog	en oxides, SO ₂	= sulfur dioxid	e, PM ₁₀ and

PM_{2.5} = particulate matter with diameters of 10 and 2.5 micrometers. Source: KB Environmental Sciences, Inc., 2018.

Table C-2. PDK Emissions by Aircraft MTOW Category (tons/year)

Cotocom	Emissions (tons)							
Category	со	VOC	NOx	SO ₂	PM _{2.5}	PM ₁₀	Pb	
< 66,000 lbs.	693	196	66	11	3	3	0.1	
66,000-75,000 lbs.	20	6	5	1	<1	<1	-	
> 75,000 lbs.	14	2	7	1	<1	<1	-	
Total PDK	726	204	78	13	4	4	0.1	

Notes: MTOWs = maximum takeoff weights and PDK= DeKalb Peachtree Airport.

Notes: CO = carbon monoxide, VOC = volatile organic compounds, $NO_x = nitrogen oxides$, $SO_2 = sulfur dioxide$, PM_{10} and $PM_{2.5} = particulate matter with diameters of 10 and 2.5 micrometers, Pb = lead. Source: KB Environmental Sciences, Inc., 2018.$

⁴ Criteria Pollutants emissions lead to air pollutants that are considered to be harmful for human health and the environment by the U.S. EPA. Emitted pollutants and their pre-cursors include carbon monoxide (CO), Volatile Organic Carbons (VOCs), nitrogen oxides (NO_x), sulfur oxides (SO_x), particulate matter with diameters of 10 and 2.5 microns (PM_{10} and $PM_{2.5}$), ozone (O_3), and lead (Pb).

Airport	Emissions (tons/year)									
	CO	VOC	NOx	SO ₂	PM _{2.5}	PM10	Pb			
SDL	625	233	88	15	3	4	0.03			
FXE	977	243	90	15	4	4	0.10			
ATL	8,296	1,022	5,004	517	75	75	.0003ª			
PDK	726	204	78	13	4	4	0.10			
Notes: ^a The relatively low amount of Pb emissions is due to a small number of general aviation piston engine aircraft operating at the commercial airport ATL. CO = carbon monoxide, VOC = volatile organic compounds, NOx = nitrogen oxides, SO2 = sulfur dioxide, PM10 and PM2.5 = natively to matter with diameters of 10 and 2.5 micromotore										
ATL = Hartsfield-Jackson Atlanta International Airport, FXE = Fort Lauderdale Executive Airport, PDK= DeKalb Peachtree										
Airport, and SDL = Scottsdale Airport.										
Sources: FAA Aviat	ion Environmental D	Design Tool (A	EDT), Traffic F	low Manageme	nt System Cour	nts (TFMSC), KB				
Environmental Scie	ences, Inc., 2018.									

Table C-3. PDK Emissions Compared to Other Airports

C-2. Dispersion Modeling Results

FAA's Aviation Environmental Design Tool (AEDT 2d) and the American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD) tools were used to perform a year-long dispersion modeling simulation for 2017. The modeling was performed to quantify the contributions of PDK on local air quality. Concentrations for criteria pollutants CO, NO₂, SO₂, PM₁₀ and PM_{2.5} were computed for this analysis.

Concentrations are reported at receptors located along the airport boundary and at various sensitive locations in the vicinity of the airport, such as, schools, parks, and religious institutions. **Table C-6** shows the receptor names, locations, and distances to PDK. The receptors correspond to those in **Figure 6** of the main report and shown again in **Figure C-1**.

Table C-7 shows a summary of the highest concentrations at PDK for all receptors during the modeling period. The concentrations are broken down into predicted (modeled using AEDT/AERMOD), background (reported by EPA monitoring data), and the combined total used to compare to the NAAQS. The EPA monitor used for background concentrations for all receptors is the South Dekalb (SD). The SD monitor was chosen because it is located outside of urban areas, twelve miles south of PDK, and is the only site reporting data until 2017 for all modelled criteria pollutants.

Figure C-1. Receptor Locations

Table C-6. Receptor Locations

Name	Location Relative to PDK	Latitude	Longitude						
Ashford Park Elementary School (AP)	1 mile west of PDK	33.87421	-84.3217						
Chamblee High School (CH)	1 mile northeast of north runway end	33.89806	-84.3072						
Chamblee Middle School (CM)	1 mile northwest of PDK	33.8965	-84.3114						
Clairmont Baptist Church (CB)	0.5 miles from south runway end	33.86242	-84.31						
Dorje Ling Budhist Center (DL)	0.7 miles east of north runway end	33.88202	-84.2852						
Dresden Elementary School (DE)	0.5 miles east of PDK	33.86934	-84.2923						
Dresdon Park (DP)	0.5 miles east of south runway end	33.86714	-84.2971						
Montclair Elementary School	1 mile south of PDK	33.85577	-84.3121						
Yeshivia Atlanta High School (YA)	1 mile northeast of north runway end	33.88583	-84.2759						
Boundary 1 (B1)	West boundary	33.873016	-84.30933						
Boundary 2 (B2)	West boundary	33.878769	-84.30937						

Name	Location Relative to PDK	Latitude	Longitude
Boundary 3 (B3)	West boundary	33.882736	-84.30701
Boundary 4 (B4)	Northwest boundary	33.8855	-84.30834
Boundary 5 (B5)	North boundary	33.885449	-84.30391
Boundary 6 (B6)	North boundary	33.885416	-84.29797
Boundary 7 (B7)	Northeast boundary	33.885431	-84.29484
Boundary 8 (B8)	Northeast boundary	33.882984	-84.29495
Boundary 9 (B9)	East boundary	33.878916	-84.29684
Boundary 10 (B10)	East boundary	33.874975	-84.29596
Boundary 11 (B11)	East boundary	33.872026	-84.30019
Boundary 12 (B12)	Southeast boundary	33.868481	-84.30275
Boundary 13 (B13)	South boundary	33.866621	-84.3045
Boundary 14 (B14)	South boundary	33.868668	-84.3065
Boundary 15 (B15)	West boundary	33.872484	-84.3054

Table C-7. PDK Dispersion Modeling Results (µg/m³)

Averagi				Below			
Pollutant	Pollutant Time	Form	Predicted	Background	Total	NAAQS	NAAQS?
NO_2^a	1-Hour	8th Highest of daily max.	152	15	167	188	yes
Annual	Annual	Highest	4	15	19	100	yes
0	1-Hour	Highest	5,499	2,177	7,676	40,000	yes
CO 8-H	8-Hour	Highest	1,045	1,566	2,611	10,000	yes
SO ₂	1-Hour	4th Highest of 1- hour daily max.	26	8	34	196	yes
	3-Hour	2nd Highest	16	12	28	1300	yes
DM	24-Hour	8th Highest	1	24	26	35	yes
P1V12.5	Annual	Highest	0.2	10	11	12	yes
PM ₁₀	24-Hour	2nd Highest	2	46	48	150	yes
Note: Total C	oncentrations =	Predicted + Background.					

A further detailed breakdown of dispersion results is presented in **Table C-7**, which shows the highest concentrations of each modelled pollutant at each receptor location.

Table C-8. Highest AEDT Model Values at Each Receptor Location ($\mu g/m^3$)

	NO ₂		СО		SO ₂		PM _{2.5}		PM10
Receptor	8th Highest 1-Hour	Highest Annual	Highest 1-Hour	Highest 8-Hour	4 th Highest 1-Hour	2 nd Highest 3-Hour	Highest 24-Hour	Highest Annual	Highest 24-Hour
СВ	56	30	5,351	2,493	27	23	25	10	48
DP	46	29	3,541	1,808	14	18	24	10	47
YA	67	29	3,021	1,737	15	15	24	10	47
СН	42	29	3,991	2,018	18	18	25	10	47
ME	77	30	3,802	1,869	17	16	25	10	47
AP	46	29	4,452	1,915	17	17	25	10	47
CM	86	30	3,084	1,805	14	15	24	10	47
DE	67	29	3,616	1,893	15	16	25	10	47

	NO ₂		CO		SO ₂		PM2.5		PM10
Receptor	8th Highest 1-Hour	Highest Annual	Highest 1-Hour	Highest 8-Hour	4 th Highest 1-Hour	2 nd Highest 3-Hour	Highest 24-Hour	Highest Annual	Highest 24-Hour
DL	43	29	2,888	1,697	11	16	24	10	47
B1	77	30	6,446	2,278	26	20	25	10	47
B2	133	31	4,515	2,046	20	19	25	10	47
B3	115	30	3,848	1,905	18	19	25	10	47
B4	97	30	4,510	2,191	16	16	25	10	47
B5	59	30	3,190	1,792	13	15	24	10	47
B6	88	30	4,025	2,100	18	17	25	10	47
B7	74	30	3,944	1,894	17	18	25	10	47
B8	83	30	7,676	2,501	19	19	25	10	48
B9	122	30	4,415	2,206	22	19	25	10	47
B10	116	31	3,803	1,925	18	17	25	10	47
B11	142	32	3,974	1,866	16	16	25	10	47
B12	97	31	6,185	2,338	24	20	25	10	47
B13	101	30	5,411	2,303	27	21	25	11	47
B14	107	30	3,698	1,921	18	17	25	10	47
B15	152	33	6,994	2,611	34	28	26	11	48
Source: FAA's AEDT and EPA's AERMOD, and KB Environmental Sciences, 2018.									

[End of Appendices]