Public Hearing: YES ⊠ **NO** □ **Department:** Planning & Sustainability

SUBJECT:

COMMISSION DISTRICT(S): 1 & 7

Application of Embry Hills Church of Christ c/o Michelle Battle for a Special Land Use Permit (SLUP) to add a new 700-seat sanctuary and expand the parking lot to accommodate 243 parking spaces, at 3214 Chamblee-Tucker Road.

PETITION NO: D1. SLUP-20-1244110 2020-0836

PROPOSED USE: New 700-seat sanctuary and expansion of parking lot.

LOCATION: 3214 Chamblee-Tucker Road, Chamblee, GA 30341

PARCEL NO.: 18-283-02-012, 18-284-04-007 & 18-284-04-008

INFO. CONTACT: Jeremy McNeil, Sr Planner

PHONE NUMBER: 404-371-2155

PURPOSE:

Application of Embry Hills Church of Christ c/o Michelle Battle for a Special Land Use Permit (SLUP) to add a new 700-seat sanctuary and expand the parking lot to accommodate 243 parking spaces. The property is located on the north side of Chamblee Tucker Road, approximately 150 feet east of North Embry Circle, at 3214, 3220, and 3250 Chamblee Tucker Road in Chamblee, Georgia. The property has approximately 811 feet of frontage along Chamblee Tucker Road and contains 5.8 acres.

RECOMMENDATION:

COMMUNITY COUNCIL: (12/14/2020) Denial. (8/17/2020) Full Cycle Deferral.

PLANNING COMMISSION: (1/7/2021) Approval. (9/1/2020) Full Cycle Deferral.

PLANNING STAFF: Approval with conditions.

STAFF ANALYSIS: The site is located within the Suburban Character Area (SUB) per the DeKalb County 2035 Comprehensive Plan. The proposed church expansion is consistent with the following area policies: The non-residential development in suburban areas shall be limited to small-scale convenience goods/services to meet the needs of the surrounding residents. Also, based off the submitted materials, the proposed church expansion should not create adverse impacts upon any adjoining land use by reason of noise, smoke, odor, dust, vibration, etc. Therefore, it is the recommendation of Staff that this application be "Approved, with conditions".

PLANNING COMMISSION VOTE: (1/7/2021) Approval 8-0-0. P. Womack, Jr. moved, E. Patton seconded for Approval. (9/1/2020) Full Cycle Deferral 7-0-0. P. Womack, Jr. moved, G. McCoy seconded for a "Full Cycle Deferral". V. Moore was no longer present.

COMMUNITY COUNCIL VOTE/RECOMMENDATION: (12/14/2020) Denial 3-2-0. (8/17/2020) Full Cycle Deferral 4-0-0.

Recommended Conditions-SLUP-20-1244110

- 1. Additional landscaping in the required parking setbacks, as approved by the County Arborist, to help enhance the visual buffer.
- 2. Additional fencing along the edge of the parking lot areas to help shield headlights from spillover onto adjacent residential properties.
- 3. New 6" high curbing around the perimeter of the existing rear parking lot.
- 4. A minimum of 58 parking spaces shall be constructed of a pervious surface in the new parking lot.
- 5. Site and building lights to be downward facing and designed so as not to be directed at residential properties or spill onto said properties.
- 6. Security gates with locks shall be maintained to the entrance to the rear parking area to cut down on unauthorized usage.

DeKalb County

DeKalb County Department of Planning & Sustainability

330 Ponce De Leon Avenue, Suite 300 Decatur, GA 30030

(404) 371-2155 / plandev@dekalbcountyga.gov

Michael Thurmond Chief Executive Officer

Case No.:

Planning Commission Hearing Date: January 7, 2021 Board of Commissioners Hearing Date: January 28, 2021

STAFF ANALYSIS

Location/Address:	North side of Chamblee Tucker	Commission District: 01	Super District: 07

Road, approximately 150 feet east of North Embry Circle, at 3214, 3220, and 3250 Chamblee Tucker

SLUP-20-1244110

Road Chamblee, Georgia.

Parcel ID: 18-283-02-012; 18-284-04-007; and 18-284-04-008

Request: A Special Land Use Permit (SLUP) to add a new 700-seat sanctuary and expand the

parking lot to accommodate 243 parking spaces.

Property Owner/Agent: Embry Hills Church of Christ

Applicant/Agent: Battle Law P.C.

Acreage: 5.80 acres

Existing Land Use: Place of worship and three detached single-family structures.

Surrounding Properties/

Adjacent Zoning:

North: R-100 (Residential Medium Lot-100) District; Detached Single Family Residences. **East:** NS (Neighborhood Shopping Commercial) District; *Asiklar Camisi (Masjid)*. **South:** R-100 (Residential Medium Lot-100) and RSM (Small Lot Residential Mix); Detached Single Family Residences and Muti-Family housing. **West:** R-100

Agenda #: D1

(Residential Medium Lot) District; Detached Single Family Residences.

Comprehensive Plan: Suburban (SUB)

X

Consistent Inconsistent

Proposed Density: N/A	Existing Density: N/A
Proposed Square Ft.: N/A	Existing Units/Square Feet: N/A
Proposed Lot Coverage: 55%	Existing Lot Coverage: 43%

SUBJECT PROPERTIES

The subject properties are located on the north side of Chamblee Tucker Road, approximately 150 feet east of North Embry Circle, at 3214, 3220, and 3250 Chamblee Tucker Road Chamblee, Georgia. All three sites combined contain approximately 5.80 acres with approximately 670 feet of frontage along Chamblee Tucker Road. The surrounding properties to the north are detached, single-family residences. The surrounding properties to the south across Chamblee Tucker Road are detached, single-family residences and multi-family housing. The property west of the subject property is a detached, single-family residence. The subject property to the east is the location of *Asiklar Camisi (Masjid)*. The subject properties are zoned R-100 (Residential Medium Lot-100) District.

ADJACENT ZONING

The properties are currently zoned R-100 (Residential Medium Lot-100) District along the Chamblee Tucker road corridor. To the south of the site properties, across Chamblee Tucker Road, are R-100 (Residential Medium Lot-100) and RSM (Small Residential Lot Mix) zoned properties. To the north and west of the subject properties are R-100 (Residential Medium Lot-100) zoned properties. Directly east of the subject properties, is the NS (Neighborhood Shopping Commercial) zoning district.

PROJECT ANALYSIS

The applicant is requesting a Special Land Use Permit (SLUP) for the expansion of an existing place of worship. Based on the submitted materials, the applicant is proposing to demolish the three single family home buildings on the subject properties; expand the existing church building that will include a new sanctuary with 700 fixed seats; expand the parking lot area to provide for a total of 243 parking spaces at a ratio of 1 space for every 2.88 fixed seats; and enlarge the existing detention pond and "install on-site water quality."

The submitted site plan depicts the existing place of worship with the proposed addition. The site plan also depicts 243 parking spaces along the western, eastern, and northern parts of the structure. Also, located east of the proposed structure is placement of the proposed renovated detention pond.

The existing sidewalk along Chamblee Tucker Road will be maintained to provide pedestrian access to the place of worship. The existing ingress and egress from Chamblee Tucker Road will also to be maintained for entry/exit for the place of worship.

IMPACT ANALYSIS

Section 27-7.4.6 of the DeKalb County Code states that the following criteria shall be applied in evaluating and deciding any application for a Special Land Use Permit.

A. Adequacy of the size of the site for the use contemplated and whether or not adequate land area is available for the proposed use including provision of all required yards, open space, off-street parking, and all other applicable requirements of the zoning district in which the use is proposed to be located:

Located on 5.80 acres, adequate land area is available to for the proposed church expansion. All required yards, open space, and off-street parking are satisfied within the R-100 (Residential Medium Lot-100) District.

B. Compatibility of the proposed use with adjacent properties and land uses and with other properties and land uses in the district:

The current use is compatible with the adjacent and surrounding properties.

C. Adequacy of public services, public facilities, and utilities to serve the contemplated use:

It appears that there are adequate public streets and services are available for the proposed church expansion.

D. Adequacy of the public street on which the use is proposed to be located and whether or not there is sufficient traffic carrying capacity for the proposed use, so as not to unduly increase traffic or create congestion in the area:

The subject property is located on Chamblee-Tucker Road which is classified as a "minor arterial" street and has adequate capacity to handle the volume of traffic generated by the proposed use.

E. Whether or not existing land uses located along access routes to the site will be adversely affected by the character of the vehicles or the volume of traffic generated by the proposed use.

The proposal will not adversely affect the character of the vehicles or the volume of traffic generated by the proposed use. Traffic generated by the subject property has already been absorbed and accommodated over the past years as a place of worship.

F. Adequacy of ingress and egress to the subject property and to all proposed buildings, structures, and uses thereon, with particular reference to pedestrian and automotive safety and convenience, traffic flow and control, and access in the event of fire or other emergency:

Based on the submitted site plan, there is one access point to the site with street frontage along Chamblee Tucker Road. Emergency vehicles can access the site safely from this one access point. According to the site plan, it appears traffic will flow in a circular pattern to access the drive-through lane and available parking spaces.

G. Whether or not the proposed use would create adverse impacts upon any adjoining land use by reason of noise, smoke, odor, dust, or vibration that would be generated by the proposed use:

The proposed church expansion should not create adverse impacts upon any adjoining land use by reason of noise, smoke, odor, dust or vibration.

H. Whether or not the proposed use would create adverse impacts upon any adjoining land use by reason of the hours of operation of the proposed use:

The hours of operation of the place of worship should not create adverse impacts upon adjoining land uses.

I. Whether or not the proposed use will create adverse impacts upon any adjoining land use by reason of the manner of operation of the proposed use.

The manner of operation for the proposed place of worship should not create adverse impacts upon adjoining land uses.

Whether or not the proposed use is otherwise consistent with the requirements of the zoning district classification in which the use is proposed to be located.

Places of Worships are a permitted use within the R-100 (Residential Medium Lot-100) District with a Special Land Use Permit (SLUP).

J. Whether or not the proposed use is consistent with the policies of the comprehensive plan.

The site is located within the Suburban Character Area (SUB) per the *DeKalb County 2035 Comprehensive Plan*. The proposed church expansion is consistent with the following area policies: The non-residential development in suburban areas shall be limited to small-scale convenience goods/services to meet the needs of the surrounding residents.

K. Whether or not the proposed use provides for all required buffer zones and transitional buffer zones where required by the regulations of the zoning district in which the use is proposed to be located.

The proposed church expansion will abut R-100 (Medium Residential Lot) District to the north and west. The applicant will provide a 20-foot transitional buffer adjacent to all residential areas.

L. Whether or not there is adequate provision of refuse and service areas.

Adequate provision of refuse areas will be provided on site.

M. Whether the length of time for which the special land use permit is granted should be limited in duration:

There does not appear to be any compelling reasons for limiting the duration of the requested Special Land Use Permit.

N. Whether or not the size, scale and massing of proposed buildings are appropriate in relation to the size of the subject property and in relation to the size, scale and massing of adjacent and nearby lots and buildings.

The proposed SLUP is compatible in size and massing of adjacent and nearby commercial buildings in the area.

O. Whether the proposed use will adversely affect historic buildings, sites, districts, or archaeological resources.

The proposed SLUP will not adversely affect historic buildings, sites, districts, or archaeological resources.

P. Whether the proposed use satisfies the requirements contained within the supplemental regulations for such special land use permit.

The proposed SLUP complies with all of the following supplemental regulations per Sec.27-4.2.42. of the DeKalb County Zoning Code:

- A. Any building or structure established in connection with places of worship, monasteries or convents shall be located at least fifty (50) feet from any residentially zoned property. Where the adjoining property is zoned for nonresidential use, the setback for any building or structure shall be no less than twenty (20) feet for a side-yard and no less than thirty (30) feet for a rear-yard.
- B. The required setback from any street right-of-way shall be the front-yard setback for the applicable residential district.
- C. The parking areas and driveways for any such uses shall be located at least twenty (20) feet from any property line, with a visual screen, provided by a six-foot-high fence or sufficient vegetation established within that area.
- D. Places of worship, convents and monasteries shall be located on a minimum lot area of three (3) acres and shall have frontage of at least one hundred (100) feet along a public street.
- E. Places of worship, convents and monasteries shall be located only on a thoroughfare or arterial.

- F. Any uses, buildings or structures operated by a place of worship that are not specifically included within the definition of place of worship must fully comply with the applicable zoning district regulations, including, but not limited to, any requirement for a special land use permit.
- R. Whether or not the proposed use will create a negative shadow impact on any adjoining lot or building as a result of the proposed building height.

The proposed SLUP request does not create a negative shadow impact on any adjoining lot or building.

S. Whether the proposed use would be consistent with the needs of the neighborhood or the community as a whole, be compatible with the neighborhood, and would not be in conflict with the overall objective of the comprehensive plan.

The proposed SLUP request may be consistent with the needs of the neighborhood or the community as a whole and would not be in conflict with the overall objective of the *Comprehensive Plan*.

COMPLIANCE WITH DISTRICT STANDARDS

The site zoned R-100 (Residential Medium Lot-100) District must comply with minimum development standards per Article 2 – Table 2.2 Residential Zoning Districts Dimensional Requirements of the DeKalb County Zoning Ordinance.

STANDARD	NDARD REQUIREMENT		COMPLIANCE	
LOT WIDTH (M)	MININUM OF 100 FEET ON A PUBLIC STREET FRONTAGE	627 FEET	YES	
LOT AREA (M)	15,000 SQUARE FEET	252,648 SQUARE FEET	YES	
LOT COVERAGE	Max. 35%	57%	No. A variance is required	
FRONT BUILDING SETBACK	40 FEET	40 FEET	YES	
SIDE BUILDING SETBACK	10 FEET	50 FEET	YES	
REAR SETBACK	SETBACK 40 FEET		YES	
HEIGHT	HT 35 FEET		YES	
OPEN SPACE	MINIMUM 20%	45%	YES	
PARKING – ARTICLE 6	175 (MIN) (One (1) space for each four (4) seats in the largest assembly room) 350 (MAX) (One (1) space for each two (2) seats in the largest assembly room)	243 SPACES	YES	

STAFF RECOMMENDATION:

The site is located within the Suburban Character Area (SUB) per the DeKalb County 2035 Comprehensive Plan. The proposed church expansion is consistent with the following area policies: The non-residential development in suburban areas shall be limited to small-scale convenience goods/services to meet the needs of the surrounding residents. Also, based of the submitted materials, the proposed church expansion will not create adverse impacts upon any adjoining land use by reason of noise, smoke, odor, dust or vibration. Therefore, the Planning and Sustainability Department recommends **approval** of the requested Special Land Use Permit (SLUP) subject to the following conditions:

- 1. Additional landscaping in the required parking setbacks, as approved by the County Arborist, to help enhance the visual buffer.
- 2. Additional fencing along the edge of the parking lot areas to help shield headlights from spillover onto adjacent residential properties.
- 3. New 6" high curbing around the perimeter of the existing rear parking lot.
- 4. A minimum of 58 parking spaces shall be constructed of a pervious surface in the new parking lot
- 5. Site and building lights to be downward facing and designed so as not to be directed at residential properties or spill onto said properties
- 6. Security gates with locks shall be maintained to the entrance to the rear parking area to cut down on unauthorized usage.

Attachments:

- 1. Department and Division Comments
- 2. Application
- 3. Site Plan
- 4. Zoning Map and Land Use Map
- 5. Aerial Photograph/Site Photographs

DEKALB COUNTY GOVERNMENT PLANNING DEPARTMENT DISTRIBUTION FORM

NOTE: PLEASE RETURN ALL COMMENTS VIA EMAIL OR FAX TO EXPEDITE THE PROCESS TO MADOLYN SPANN MSPANN@DEKALBCOUNTYGA.GOV OR JOHN REID JREID@DEKALBCOUNTYGA.GOV

COMMENTS FORM: PUBLIC WORKS TRAFFIC ENGINEERING

Case No.: 549-20-124410 Parcel I.D. #: 18 Address: 3214 ChAmiles Turke Rd	3-2-63-,02-012
Chamble, Gra	
l Adjacent R	Condway (s):
<u></u>	
(classification)	(classification)
Capacity (TPD)	Capacity (TPD)
Latest Count (TPD) Hourly Capacity (VPH)	Latest Count (TPD)
Peak Hour. Volume (VPH)	Hourly Capacity (VPH) Peak Hour. Volume (VPH)
Existing number of traffic lanes	Existing number of traffic lanes
Existing right of way width Proposed number of traffic lanes	Existing right of way width Proposed number of traffic lanes
Proposed right of way width	Proposed right of way width
Please provide additional information relating to the following sta	· · · · · · · · · · · · · · · · · · ·
According to studies conducted by the Institute of Traffic Engines generate an average of fifteen (15) vehicle trip end (VTE) per 1, 00 factor. Based on the above formula, thesquare foot place with approximately peak hour vehicle trip ends.	ers (ITE) <u>6/7TH E</u> dition (whichever is applicable), churches 00 square feet of floor area, with an cight (8%) percent peak hou
Single Family residence, on the other hand, would generate ten (1) peak hour factor. Based on the above referenced formula, the a maximum ofunits per acres, and the given fact that the provehicle trip end, and peak hour vehicle trip end would be generated.	(Single Family Residential) District designation which allows pject site is approximately acres in land area, daily
COMMENTS:	
Would Intrap Tartic	Flow. Hothing Hos
,	

Signature:

DEKALB COUNTY GOVERNMENT PLANNING DEPARTMENT DISTRIBUTION FORM

The following areas below may warrant comments from the Development Division. Please respond accordingly as the issues relate to the proposed request and the site plan enclosed as it relates to Chapter 14. You may address applicable disciplines.

DEVELOPMENT ANALYSIS:

Transportation/Access/Row

Consult the Georgia DOT as well as the DeKalb County Transportation Department prior to land development permit. Verify widths from the centerline of the roadways to the property line for possible right-of-way dedication. Improvements within the right-of-way may be required as a condition for land development application review approval. Safe vehicular circulation is required. Paved off-street parking is required.

• Storm Water Management

Compliance with the Georgia Stormwater Management Manual, DeKalb County Code of Ordinances 14-40 for Stormwater Management and 14-42 for Storm Water Quality Control, to include Runoff Reduction Volume where applicable is required as a condition of land development permit approval. Use Volume Three of the G.S.M.M. for best maintenance practices. Use the NOAA Atlas 14 Point Precipitation Data set specific to the site. Recommend Low Impact Development features/ Green Infrastructure be included in the proposed site design to protect as much as practicable the statewaters and special flood hazard areas.

Flood Hazard Area/Wetlands

The presence of FEMA Flood Hazard Area was not indicated in the County G.I.S. mapping records for the site; and should be noted in the plans at the time of any land development permit application. Encroachment of flood hazard areas require compliance with Article IV of Chapter 14 and FEMA floodplain regulations.

• Landscaping/Tree Preservation

Landscaping and tree preservation plans for any building, or parking lot must comply with DeKalb County Code of Ordinances 14-39 as well as Chapter 27 Article 5 and are subject to approval from the County Arborist.

• Tributary Buffer

State water buffer was reflected in the G.I.S. records for the site. Typical state waters buffer have a 75' undisturbed stream buffer and land development within the undisturbed creek buffer is prohibited without a variance per DeKalb County Code of Ordinances 14-44.1.

Fire Safety

Plans for land development permit must comply with Chapter 12 DeKalb County Code for fire protection and prevention.

DEKALB COUNTY GOVERNMENT PLANNING DEPARTMENT DISTRIBUTION FORM

NOTE: PLEASE RETURN ALL COMMENTS VIA EMAIL OR FAX TO EXPEDITE THE PROCESS TO MICHELLE M ALEXANDER mmalexander@dekalbcountyga.gov OR JOHN REID IREID@DEKALBCOUNTYGA.GOV

COMMENTS FORM: PUBLIC WORKS WATER AND SEWER

Case No.: SLUP-20-1244110
Parcel I.D. #: <u>18-283-02-012; 18-284-04-007; and 18-284-04-008</u>
Address: 3214, 3220, and 3250 Chamblee Tucker Road
Chamblee, Georgia
WATER:
Size of existing water main: 8" DI Water Main (adequate/inadequate)
Distance from property to nearest main: Adjacent to Property
Size of line required, if inadequate: <u>N/A</u>
SEWER:
Outfall Servicing Project: North Fork Peachtree Creek Basin
Is sewer adjacent to property: Yes (X) No () If no, distance to nearest line:
Water Treatment Facility: RM Clayton WTF () adequate () inadequate
Sewage Capacity; *_* (MGPD) Current Flow: 127 (MGPD)
COMMENTS:
* Please note that the sewer capacity has not been reviewed or approved for this project. A Sewer Capacity Request (SCR) must be completed and submitted for review. This can be a lengthy process and should be addressed early in the process.

Signature:

DEKALB COUNTY GOVERNMENT PLANNING DEPARTMENT DISTRIBUTION FORM

NOTE: PLEASE RETURN ALL COMMENTS VIA EMAIL OR FAX TO EXPEDITE THE PROCESS TO MICHELLE M ALEXANDER mmalexander@dekalbcountyga.gov OR JOHN REID IREID@DEKALBCOUNTYGA.GOV

COMMENTS FORM: PUBLIC WORKS WATER AND SEWER

Case No.: <u>Z-20-1244119</u>
Parcel I.D. #:18-050-12-005
Address: 1377 Scott Boulevard
Decatur, Georgia
WATER:
Size of existing water main: 8" DI Water Main adequate/inadequate)
Distance from property to nearest main: Adjacent to Property
Size of line required, if inadequate: N/A
SEWER:
Outfall Servicing Project: South Fork Peachtree Creek Basin
Is sewer adjacent to property: Yes (X) No () If no, distance to nearest line:
Water Treatment Facility: RM Clayton WTF () adequate () inadequate
Sewage Capacity; * (MGPD) Current Flow: 127 (MGPD)
COMMENTS:
* Please note that the sewer capacity has not been reviewed or approved for this project. A Sewer Capacity Request (SCR) must be completed and submitted for review. This can be a lengthy process and should be addressed early in the process.
Signature:

08/13/2020

To: Mr. John Reid, Senior Planner

From: Ryan Cira, Environmental Health Manager Cc: Alan Gaines, Technical Services Manager

Re: Rezone Application Review

General Comments:

DeKalb County Health Regulations prohibit use of on-site sewage disposal systems for:

- multiple dwellings
- · food service establishments
- hotels and motels
- commercial laundries
- funeral homes
- schools
- · nursing care facilities
- personal care homes with more than six (6) clients
- child or adult day care facilities with more than six (6) clients
- residential facilities containing food service establishments

If proposal will use on-site sewage disposal, please contact the Land Use Section (404) 508-7900.

Any proposal, which will alter wastewater flow to an on-site sewage disposal system, must be reviewed by this office prior to construction.

This office must approve any proposed food service operation or swimming pool prior to starting construction.

Public health recommends the inclusion of sidewalks to continue a preexisting sidewalk network or begin a new sidewalk network. Sidewalks can provide safe and convenient pedestrian access to a community-oriented facility and access to adjacent facilities and neighborhoods.

For a public transportation route, there shall be a 5ft. sidewalk with a buffer between the sidewalk and the road. There shall be enough space next to sidewalk for bus shelter's concrete pad installation. Recommendation: Provide trash can with liner at each bus stop with bench and monitor for proper removal of waste.

Since DeKalb County is classified as a Zone 1 radon county, this office recommends the use of radon resistant construction.

Board of Health

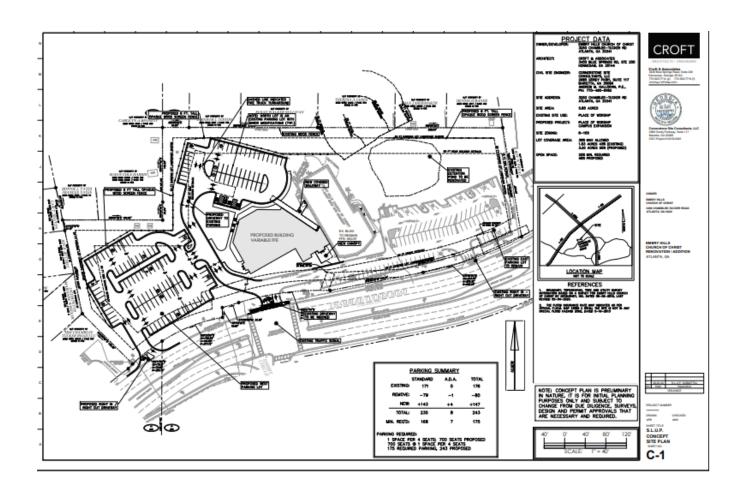
New Cases:

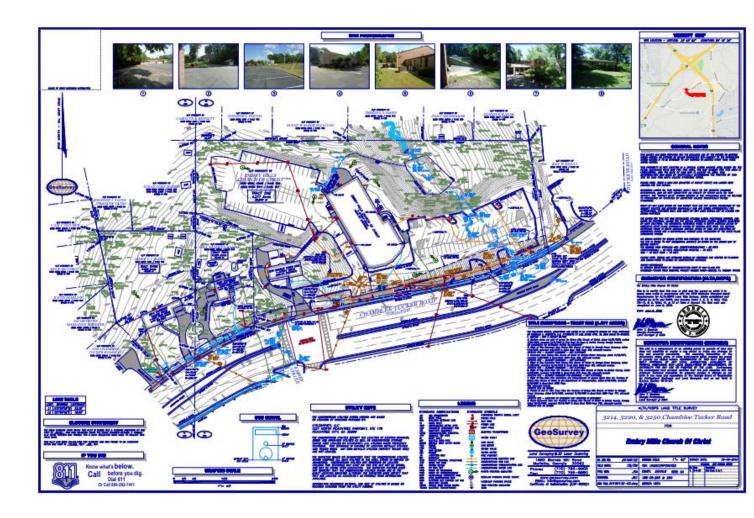
- N.1 SLUP-20-12244105 2020-0833 / 18-111-03-018 2933 North Druid Hills Road, Atlanta, GA 30329
 - Please review general comments.
 - Septic system installed on location surrounding 2933 North Druid Hills. The location with septic system installed was 2814 North Druid Hills Road on 08/02/1963.
- N.2 LP-20-1244107 / 2020-0834 /18-196-04,18-196-04-033, 18-196-04-034, 18-196-04-035, 18-196-04-037, 18-196-04-038, 18-196-04-039, 18-196-04-040, 18-196-04-041 2814 Clairemont Road, Atlanta, GA 30329
 - Please review general comments.
 - Septic installed on property 2920 Clairmont Road on 04/07/1974 within the vicinity of property 2814 Clairemont.
- N.3 Z-20-1244108 / 2020-0835 / 18-196004-029, 18-196-04-033, 18-196-04-034, 18-196-04-04-035, 18-196-04-037, 18-196-04-038, 18-196-04-039, 18-196-04-040, 18-196-04-041 2814 Clairmont Road, Atlanta, GA 30329
 - Please review general comments.
- N.4 SLUP-20-1244110 / 2020-0836 / 18-283-02-012, 18-283-02-007, 18-283-02-008 3214 Chamblee-Tucker Road, Chamblee, GA 30341
 - Please review general comments.
 - Septic system installed on property 04/13/1961
- N.5 LP-20-1244114 / 2020-0837 / 16-252-02-002 8400 Pleasant Hill Way, Lithonia, GA 30058
 - Please review general comments.
 - Septic system installed on property near vicinity at 8406 Pleasant Hill Way
- N.6 Z-20-1244113 / 2020-0838 / 16-254-02-002 8400 Pleasant Hill Way, Lithonia, GA 30058
 - Please review general comments.
- N.7 Z-20-1244119 / 2020-0839 / 18-050-12-005 1377 Scott Blvd., Decatur, GA 30030
 - Please review general comments.

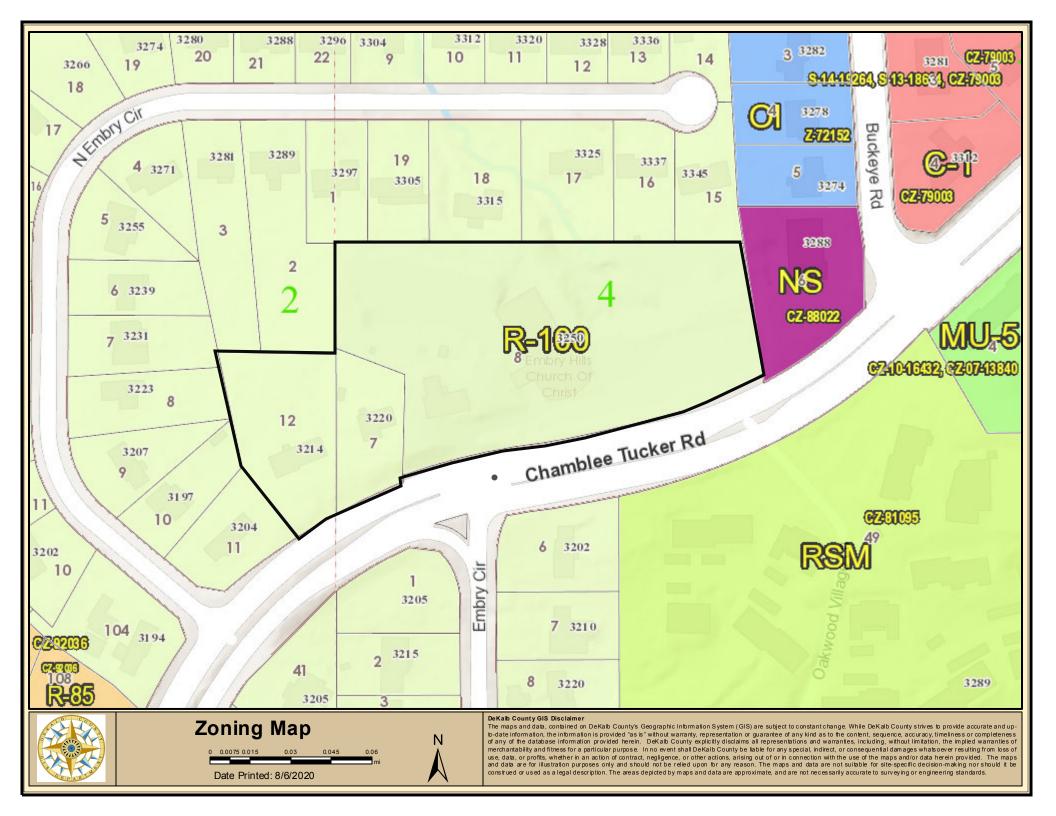
DeKalb County Board of Health445 Winn Way – Box 987
Decatur, GA 30031
404.294.3700 • www.dekalbhealth.net

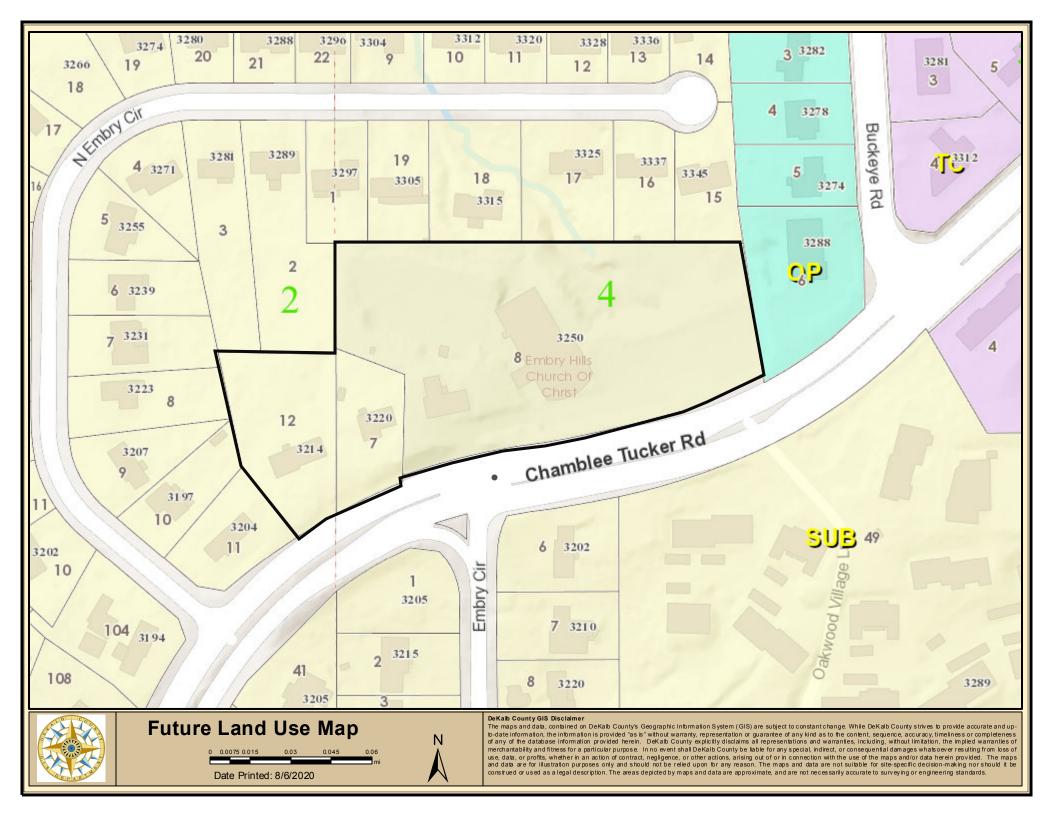
Board of Health

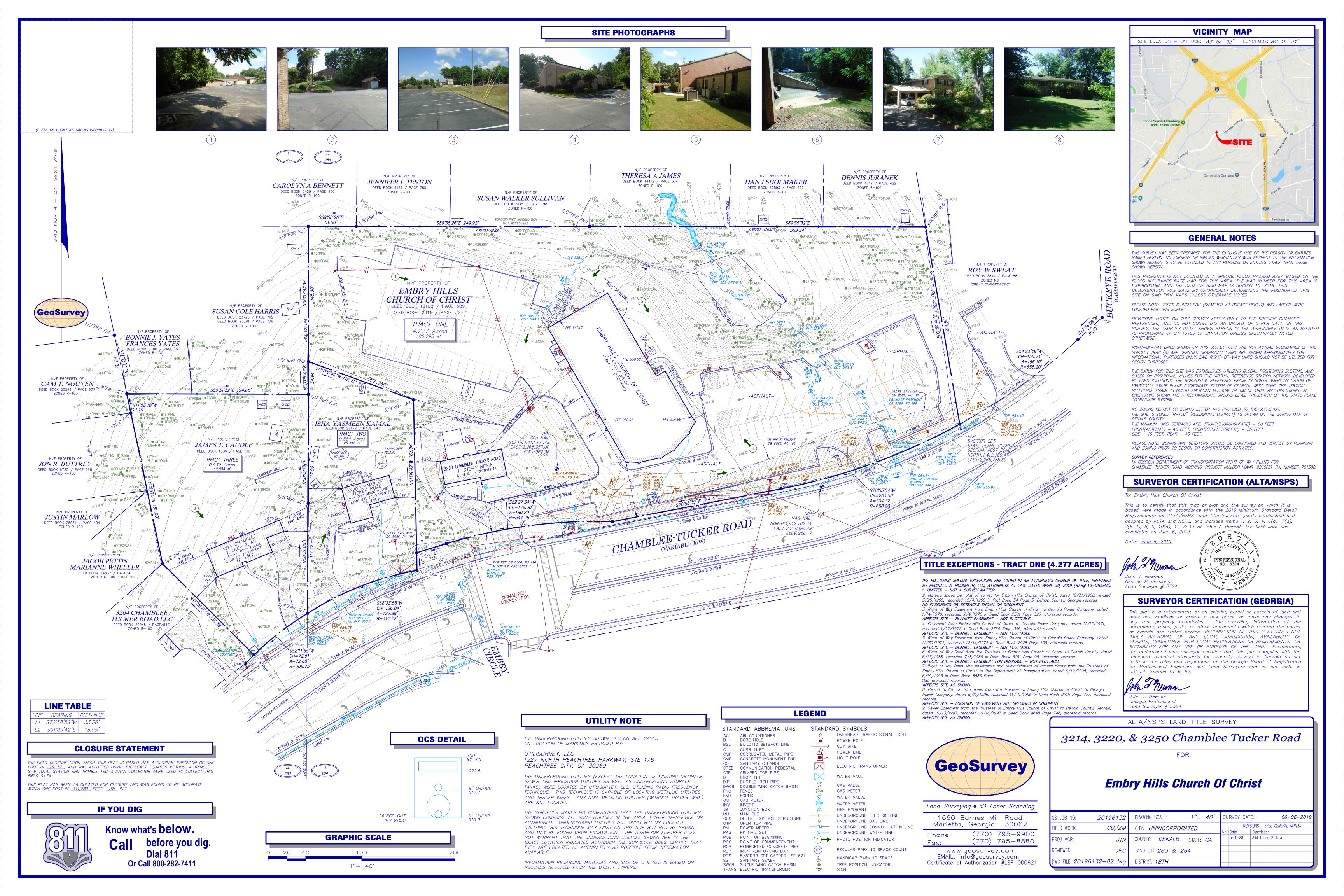
- N.8 Z-20-1244120 / 2020-0840 / 15-201-07-001, 15-201-07-003, 15-201-07-004, 15-201-07-005, 15-201-07-007
 - 3229 Memorial Drive, Decatur, GA 30032
 - Septic system installed on in same vicinity. The location is 3232 Memorial Drive on 04/21/1970.
 - Please review general comments.
- N.9 TA-20-1244141 / 2020-0841 / 18-043-01-004 4900 Memorial Drive, Stone Mountain, GA 30083
 - Please review general comments.
 - Septic System installed on 09/11/1964 at property 4947 Memorial Drive.

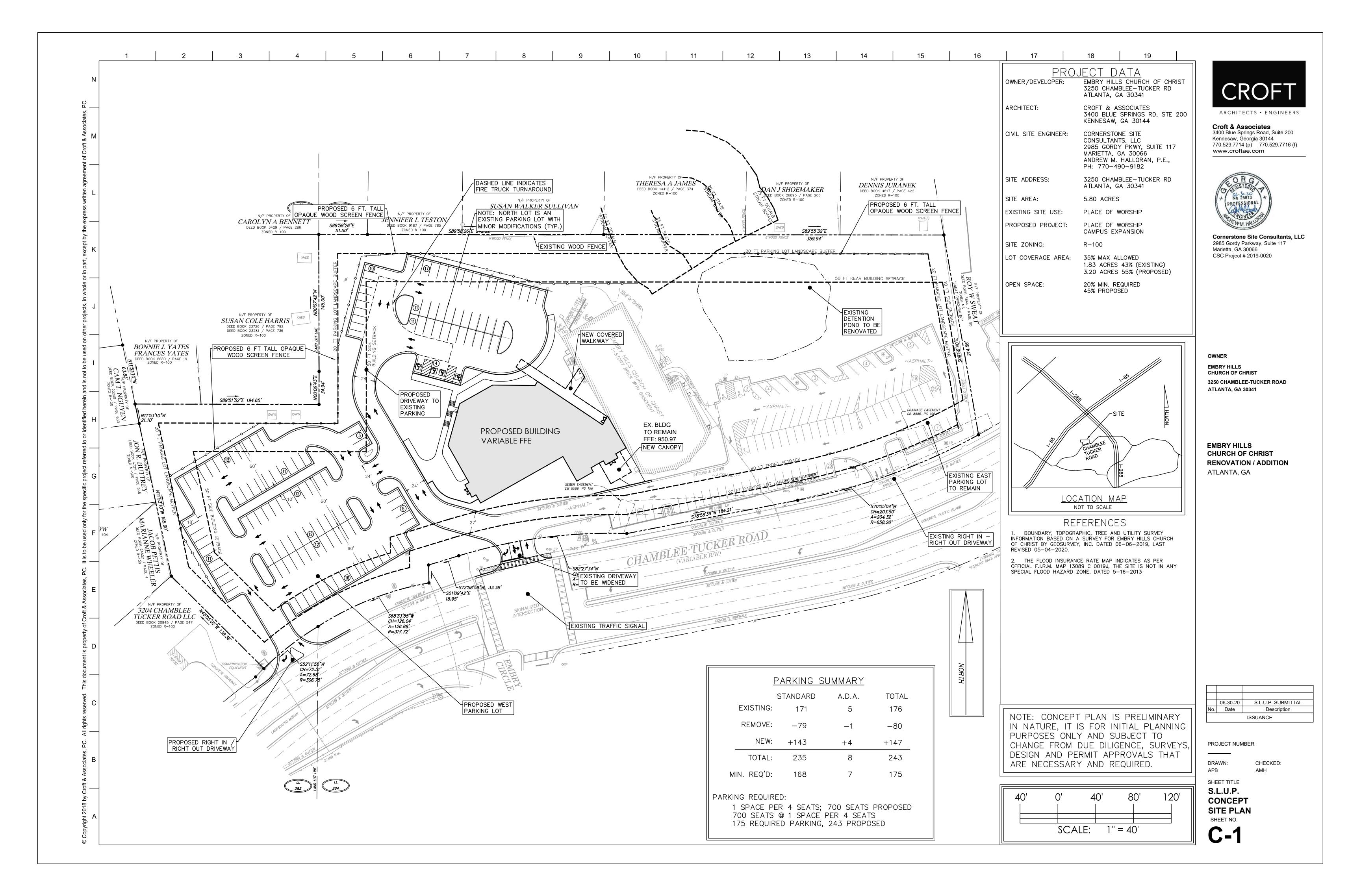


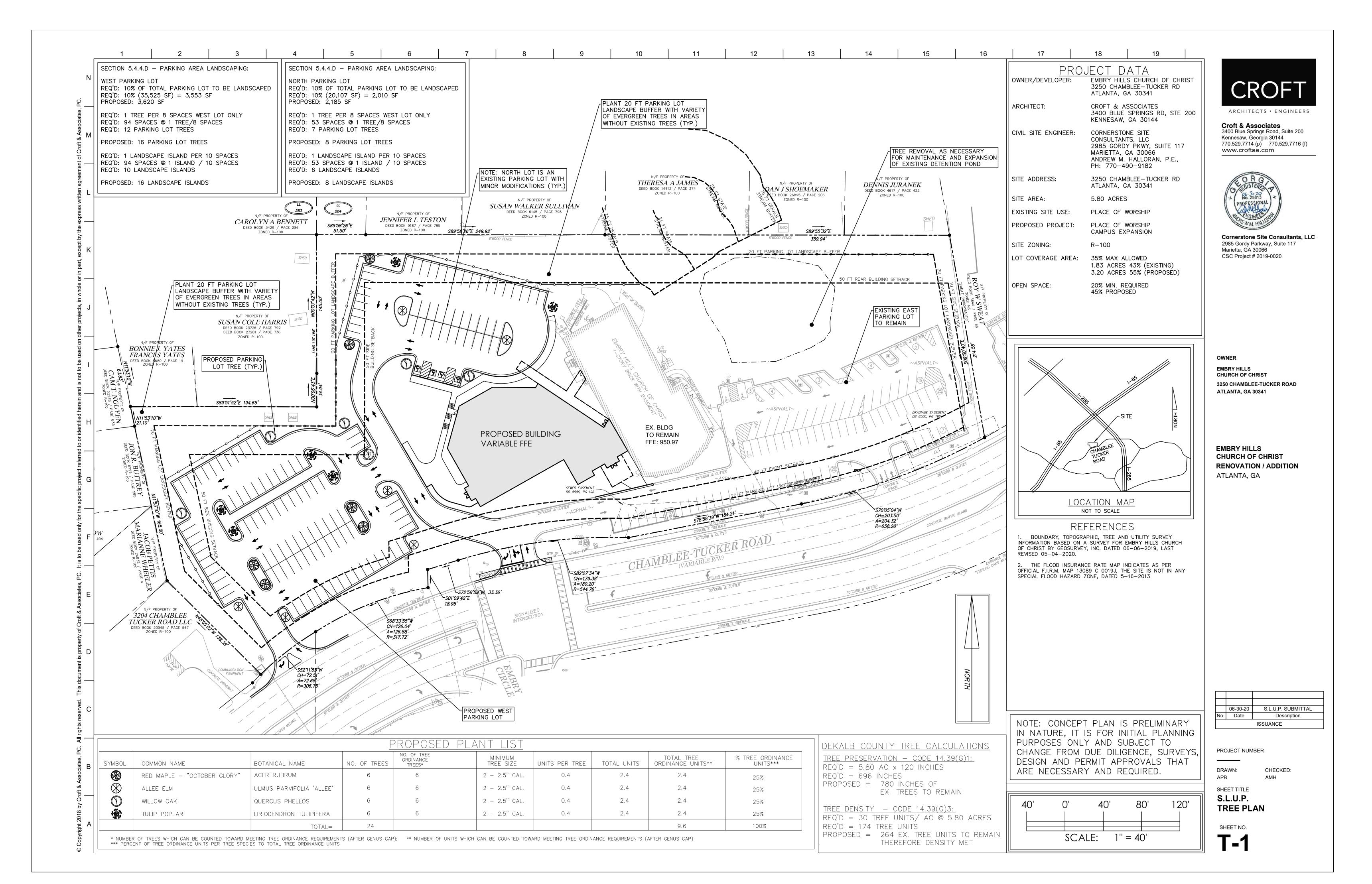

DEPARTMENT OF PLANNING & SUSTAINABILITY

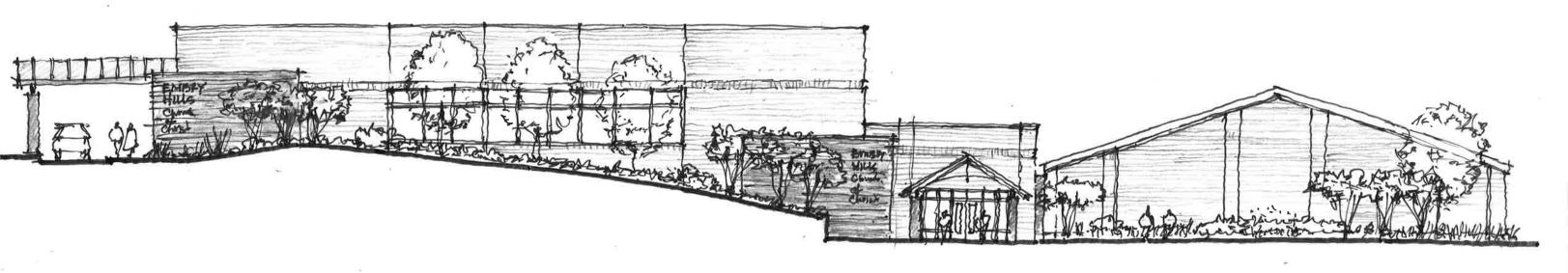

SPECIAL LAND USE PERMIT APPLICATION


Amendments will not be accepted after 5 working days after the filing date.


Date Received:Application No.:	
APPLICANT NAME: Embry Hills Church of Christ, Inc. c/o Battle Law, P. C.	
Daytime Phone #:404.601.7616 Fax #:404.745.0045	
Mailing Address: One West Court Square Suite 750 Decatur, GA 30030	_
E-mail: mlb@battlelawpc.com	-
OWNER NAME: Embry Hills Church of Christ, Inc. more than one owner, attach contact information for each owner)	_ (If
Daytime Phone #: Fax #:	
Mailing Address: _3250 Chamble Tucker Road , Atlanta, GA 30341	
E-mail: _jjohnson@fg-inc.net	-
SUBJECT PROPERTY ADDRESS OR LOCATION: 3214,3220 & 3250 Chamblee-Tucker Road	
Atlanta, DeKalb County, GA, <u>30341</u>	_
District(s):18 Land Lot(s):283 & 284 _ Block(s):02 & 04 _ Parcel(s):012, 007 & 008	
Acreage or Square Feet: _+/-5.80 _ Commission District(s):1 & 7 Existing Zoning:R-100	_
Proposed Special Land Use (SLUP): A SLUP for a Place of Worship pursuant to DeKalb County Zoning Ordinano	<u>:e</u>
I hereby authorize the staff of the Planning and Development Department to inspect the property that is the subject of this application. Owner: Agent: X Signature of Applicant: Applicant: Agent:	
(Check One)	
Printed Name of Applicant: Battle (aw, P.C.	
Notary Signature and Seal: JANET JENNINGS Notary Public, Cobb Co., Georgia My Commission Expires 5-6-2024	







NEW SANCTUARY

HEW ENTRY CONNECTOR

BXISTING

Conceptual Elevation Chamblee-Tucker Road - Etappy HIUS CHURCH OF CHRIST @.26.2020

Stormwater Management Report

For

Renovations & Additions to Embry Hills Church of Christ

Owner / Developer

Embry Hills Church of Christ 3250 Chamblee-Tucker Road Atlanta, GA 30341

Issue Date: 11-14-2020

Prepared By:

Cornerstone Site Consultants, LLC
2985 Gordy Parkway, Suite 117, Marietta, GA 30066
770-490-9182; Project #: 2019-0020

Table of Contents

Introduction

Background Methodology Executive Summary

Basin Analysis

Existing Conditions Proposed Conditions Stormwater Pond Data Summary 10% Downstream Analysis

Appendices

Appendix A	Stormwater code
Appendix B	Data – Page
	 Rainfall reference table & computer model rainfall table
	Runoff Coefficients
	Water Quality Calculations
Appendix C	Reference MapsPage 33
	Location Map
	FEMA map
	USGS Quad map
	Soil Survey
	Soil hydro group charts
Appendix D	Drainage MapsPage 65
	Pre-developed Conditions Drainage Map
	Post-developed Conditions Drainage Map
	Downstream Drainage Map
	Inlet Drainage Map
Appendix E	Hydraflow Computer Model ResultsPage 70
	Summary Page
	Hydrographs
	Time of Concentration Calculations
Appendix F	Storm Sewer Computer Model Results
1-1	Storm sewer model results
	Storm sewer model profiles
	Inlet Calculations
	Channel Calculations
Appendix G	Outlet Control Structure InformationPage 141
, ipportain o	Ex. Pond Plan, O.C.S Detail & Computer Model
	West Pond Plan, O.C.S. Detail & Computer Model
	Expanded East Pond Plan, O.C.S. Detail, Computer Model & OCS
	Stability Calculation
Appendix H	Operation & Maintenance DocumentsPage 161
Appendix II	age 101

Introduction

The purpose of this hydrology study is to demonstrate the design intent of the stormwater management plan associated with the proposed improvements for the Embry Hills Church of Christ, Special Land Use Permit would be able to meet Dekalb County stormwater requirements. Since minor changes to the final design may occur during the design and land disturbance permitting process, this report may be revised in the future, but still meet the design intent.

Background

This is a stormwater management report for the proposed building and parking lot project at the existing campus for the Embry Hills Church of Christ located at 3250 Chamblee Tucker Road. There is an existing detention pond located in the "East" basin that collects drainage from the existing building and parking lot as well as a large offsite area from the Chamblee Tucker Right of Way. There is a small existing gravel infiltration basin in the Northeast corner of the existing parking lot that was installed in 2015. The church has acquired 2 additional single family homes to the west of their original campus boundary to a total site area of 5.8 acres. The proposed project seeks to build a new building, driveway and expanded parking lots. The new driveway and building are in the East basin, and the new parking lot in the west basin include a pervious paver system in a majority of the new parking lot combined with an underground stormwater detention system that allows for infiltration. The outlet from this pond is proposed to be directed through a new storm pipe system to the renovated East pond. The redeveloped disturbed area for the proposed building and parking lot is less than 40%. Approximately 0.80 acres of impervious area in the East basin is new/redeveloped and the remaining impervious area is existing. Therefore, the water quality/channel protection for the redeveloped portion of the east basin is limited to treating just the 0.80 acres of new/redeveloped impervious area. The existing stone infiltration basin in the Northeast corner of the "east basin' will remain. The detention pond is designed based on modeling the east basin in the "wooded" condition and 90% of those peak flowrates as the allowable flowrate. The West basin provides for full runoff reduction, water quality, channel protection and detention. The south basin is reduced to a very small area and no treatment is necessary.

Methodology:

The Dekalb County stormwater code references the use of the 2016 Georgia Stormwater Manual as the reference guide for stormwater management analysis. Rainfall data used for the analysis was based on data from NOAA specific to the site location. Copies of this data sheet and the computer model are provided in the appendix of this report. The TR-55 method was used for hydrology analysis of the onsite pre-developed and post-developed conditions as well as the downstream conditions through the Hydrostudio software. The travel times of the maximum flow path were determined using TR55 method which were then used to determine the time of concentration for each basin. A copy of these references can be found in the

attachments section at the end of this study. The minimum time of concentration of 5 minutes was used for the analysis of all basins with a computed time of concentration less than 5 minutes. Runoff coefficients were based on the Georgia Stormwater Manual Table 4-3, where "CN" values are dependent on soil conditions, site terrain and topography. The design storms for the 1, 2, 5, 10, 25, 50 and 100-year storm events were used to calculate the peak flowrates for both existing and proposed basins. A summary of the peak flow rates can be found at the end of the basin study. The storm sewer pipe analysis used hydrology calculations based on the rational method and calculations modeled through Hydraflow Storm Sewers, version 2018.

Executive Summary:

This is an executive summary of the key pre-developed and post-developed hydrology study metrics for the proposed development. Downstream Hydrological Assessment was done for the 100 year storm per Georgia Stormwater Manual.

<u>Peak Flow Summary: East Basin</u> – based on the current Dekalb County code for allowable flow rates to demonstrate the pond is designed to control flowrates with the proposed development to current code. The Allowable pre-flow is based on the church property reset to wooded conditions (CN = 55) and factored by 90% as required by Dekalb County then added with the peak runoff flow from the offsite basin from the west including drainage from Chamblee Road.

Basin	Post Cumulative Drainage Area (Ac.)	Return Frequency (years)	Precipitation Value for 24 hr Event (in.)	Allowable Pre- flow @ Study Pt (90% of onsite) (cfs) Hyd. # 9	Post – developed flow @ Study Pt (cfs) Hyd. # 16	Storage (CF) Hyd. # 15	Ponding Elevation (ft) Hyd. # 15	Change (CFS)
		1	3.36	21.26	20.08	921.31	22016	-1.18
	2	3.68	24.19	23.23	921.65	23965	-0.96	
	5	4.38	31.09	29.47	922.33	28073	-1.62	
East	East 5.42	10	4.99	37.40	34.13	922.91	31794	-3.27
	25	5.87	46.82	39.20	923.75	37689	-7.62	
		50	6.58	54.63	42.29	924.45	42971	-12.34
		100	7.33	63.05	46.28	925.18	48872	-16.77

<u>Peak Flow Summary: East Basin – comparison of existing (current) conditions.</u>

The previous chart is provided for Dekalb County permit review to demonstrate that the proposed pond meets the criteria for current Dekalb County code. The chart below is provided for the general public to provide the modeling data comparing the existing (current) conditions to proposed design to demonstrate the anticipated improvement in the peak flowrate control with the proposed improvements to the detention pond.

Basin	Post Cumulative Drainage Area (Ac.)	Return Frequency (years)	Precipitation Value for 24 hr Event (in.)	Existing Flow @ Study Pt (cfs) Hyd. # 6	Post – developed flow @ Study Pt (cfs) Hyd. # 16	Change (CFS)	% Decrease
		1	3.36	25.65	20.08	-5.57	-21.72%
		2	3.68	29.70	23.23	-6.47	-21.78%
	5.40	5	4.38	38.58	29.47	-9.11	-23.61%
East	5.42	10	4.99	51.84	34.13	-17.71	-34.16%
		25	5.87	65.43	39.20	-26.23	-40.09%
		50	6.58	75.27	42.29	-32.98	-43.82%
		100	7.33	85.72	46.28	-39.44	-46.01%

<u>Peak Flow Summary: West Basin</u> – based on the current Dekalb County code for allowable flow rates to demonstrate the west pond is designed to control flowrates with the proposed development to current code. The Allowable pre-flow is based on the church property reset to wooded conditions (CN = 55) and factored by 90% as required by Dekalb County. Note that the drainage from this detention pond will be routed over to the detention pond in the east basin. As shown in the chart below, the analysis indicates the proposed development will reduce the peak runoff rates in this basin.

Peak Flow Summary: West Basin

Basin	Post	Return	Precipitati	Allowable	Post –	Ponding	Storage	Change	% of
	Cumulative	Frequency	on Value	Pre-	developed	Elevation	(CF)	(CFS)	Allowable
	Drainage	(years)	for 24 hr	developed	flow @	(ft)	Hyd. # 13		
	Area (Ac.)		Event (in.)	flow (90%	Study Pt	Hyd. #13			
				of onsite)	(cfs)				
				@ Study Pt	Hyd. # 20				
				(cfs)					
				Hyd. #19					
		1	3.36	0.36	0.20	4705	949.94	-0.16	44%
		2	3.68	0.60	0.31	5240	950.05	-0.29	48%
		5	4.38	1.25	0.58	5778	950.16	-0.67	54%
				1.120	0.00	0,,0	, 551.5		01,0
West	0.36	10	4.99	1.91	0.86	6354	950.27	-1.05	55%
		10	1.,,	'''	0.00		700.27	1.00	0070
		25	5.87	2.99	1.30	7424	950.48	-1.69	57%
		25	0.07	2.//	1.50	/ 727	750.40	-1.07	37 70
		50	6.58	3.94	1.69	8407	950.68	-2.25	57%
		30	0.50	3.74	1.07	0407	/50.00	-2.23	37/8
		100	7.33	5.00	2.12	9581	950.92	-2.88	58%
			, .00	0.00	2,12	, 301	700.72	2.00	33/0

<u>Peak Flow Summary: South Basin</u> – based on the current Dekalb County code for allowable flow rates to demonstrate the west pond is designed to control flowrates with the proposed development to current code. The Allowable pre-flow is based on the church property reset to wooded conditions (CN = 55) and factored by 90% as required by Dekalb County. As shown in the chart below, the analysis indicates the proposed development will reduce the peak runoff rates in this basin.

Peak Flow Summary: South Basin

Basin	Post Cumulative Drainage Area (Ac.)	Return Frequency (years)	Precipitati on Value for 24 hr Event (in.)	Allowable Pre- developed flow (90% of onsite) @ Study Pt Hyd. # 23 (cfs)	Post – developed flow @ Study Pt Hyd. #24 (cfs)	Change (CFS)	% of Allowable
		1	3.36	0.04	0.02	-0.02	-50%
		2	3.68	0.07	0.02	-0.05	-71%
		5	4.38	0.14	0.04	-0.1	-71%
South	0.02	10	4.99	0.21	0.05	-0.16	-76%
		25	5.87	0.34	0.07	-0.27	-79%
		50	6.58	0.44	0.09	-0.35	-80%
		100	7.33	0.56	0.11	-0.45	-80%

Peak Flow Summary: Downstream Basin – The downstream conditions were studied at three locations. The chart below is the 10% downstream study point at North Fork Peachtree Creek, and the chart indicates a decrease in peak flowrates as a result of the proposed detention pond improvements. The second analysis is the downstream channel just to the north of the pond in the neighborhood, and the proposed detention pond improvements will reduce the peak flowrate and the velocity in the channel as compared with existing conditions. The third analysis is on the storm pipe system in North Embry Circle, which indicates that the proposed detention pond improvements will reduce the backwater at the entrance to the storm pipe.

Peak Flow Summary Part 1: Downstream Basin @ North Fork Peachtree Creek

Basin	Post Cumulative Drainage Area (Ac.)	Return Frequency (years)	Precipitati on Value for 24 hr Event (in.)	Allowable Pre- developed flow @ Study Pt Hyd. # 26 (cfs)	Post – developed flow @ Study Pt Hyd. #28 (cfs)	Change (CFS)
		1	3.36	5847.5	5844.4	-3.1
		2	3.68	6866.8	6862.8	-4.0
	5500	5	4.38	9170.1	9164.0	-6.1
Down	5500	10	4.99	11236.1	11229.0	-7.1
stream		25	5.87	14283.0	14274.5	-8.5
		50	6.58	16772.1	16763.3	-8.8
		100	7.33	19418.2	19410.1	-8.1

Downstream Channel Flow Summary Part 2:

The existing channel north of the detention pond was analyzed and the modeling indicates that the proposed stormwater pond improvements will both decrease the peak flowrate and the velocity in the downstream channel:

Storm Event	Current Conditions	Post Development	Change
	Peak Flowrate	Conditions Peak	
	(CFS)	Flowrate with	
		Detention Pond	
		Improvements (CFS)	
1 yr	25.65	20.08	-5.57
10 yr	51.84	34.13	-17.71
100 yr	85.72	46.82	-38.9

Storm Event	Current Conditions Velocity (FPS)	Post Development Conditions Velocity with Detention Pond Improvements (FPS)	Change
1 yr	6.93	6.46	-0.47
10 yr	8.39	7.48	-0.91
100 yr	9.54	8.16	-1.38

Downstream Storm Pipe Summary at North Embry Circle Part 3:

The storm pipe analysis of the existing downstream 36" storm pipe system on North Embry Circle is provided in Appendix F. Here is the summary of the analysis:

<u>Current conditions:</u> the existing 36" storm pipe system the drains under Embry Hills circle is modeled with a headwater at the entrance to the existing pipe that would rise to the street level at 913.36, which would indicate the 100 year flow to the storm pipe could over top Embry Hills Circle during a 100 year storm event.

<u>Post developed conditions (with detention pond improvements):</u>

The headwater at the entrance to the existing pipe is modeled at 909.88, which is 3.48 feet below the road elevation and just a foot above the top of the storm pipe for a significant improvement from the existing conditions.

Therefore the proposed detention pond improvements will significantly reduce the headwater on the storm pipe and allow it to convey the water with a lower headwater.

In addition, we do recommend that Dekalb County further evaluate this storm pipe system for any potential maintenance of the storm pipe line.

East Basin Analysis

Pre-developed conditions hydrologic analysis

There is an existing detention pond in the East basin on the site. Appendix D1 provides the predeveloped drainage map outlining the 4.0 acre onsite basin area that drains to the existing detention pond as well as a 4.77 acre offsite area from offsite properties and Chamblee Tucker Road storm pipe system that discharge into the existing detention pond. A small 0.37 acre bypass basin is also shown that drains just north of the pond area.

The first part of the analysis was to model the existing detention pond system under current existing conditions. The results are listed in the model as hydrograph #6. The summary of the peak storms routed through the existing detention pond is in the next page and the model suggests that the larger storms could overtop the detention pond dam and only provides minimal detention to the larger storms.

Per Dekalb County code, the onsite 4 acre basin was modeled as a wooded condition to mimic the pre-developed peak runoff rates of the area prior to development as hydrograph #8, and only 90% of this rate was modeled to provide the 10% reduction required by Dekalb County. Then hydrograph #8 was added to the 4.77 acre offsite area hydrograph #2 to create a study point for allowable flowrates as a basis for this design listed as hydrograph #9 for the comparison study point.

Hyd.	Hydrograph Type	Hydrograph Name	Peak Outflow (cfs)							
No.			1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr
1	NRCS Runoff	Pre East Onsite Ex Pond	10.38	12.18		16.26	19.91	25.26	29.67	34.36
2	NRCS Runoff	Pre East Offsite	20.87	23.26		28.46	32.96	39.43	44.62	50.08
3	Junction	Pre To Ex East Pond	31.10	35.31		44.61	52.80	64.68	74.28	84.44
4	Pond Route	Pre East Pond Routed	25.54	29.51		38.20	51.23	64.48	74.02	84.13
5	NRCS Runoff	Pre East Bypass	0.115	0.191		0.397	0.608	0.952	1.255	1.595
6	Junction	Pre East Study Pt - Ex	25.65	29.70		38.58	51.84	65.43	75.27	85.72
8	NRCS Runoff	Pre East -90% condition	0.951	1.626		3.490	5.416	8.574	11.35	14.47
9	Junction	Pre East Study Pt Code	21.26	24.19		31.09	37.40	46.82	54.63	63.05

Time of concentration calculations are provided in Appendix E where a minimum of 5 minutes is used for any basins that compute Tc times less than 5 minutes. According to the USDA soil maps, the soils on the site include soil groups which have a hydraulic soil group designation of TYPE B. The TR-55 model computed a hydrograph.

East Basin Existing Detention Pond Summary Data:

The purpose of this chart is just to demonstrate the model's indication of the current (existing) peak flow rates out of the existing detention pond and the ponding levels in the existing detention pond.

Design	Peak Inflow	Peak Outflow	Ponding	Peak storage
Storm (yrs.)	rate (cfs)	rate (cfs)	elevation (ft)	volume (cf)
1	31.10	25.54	923.27	12302
2	35.31	29.51	923.49	13192
5	44.61	38.20	924.04	15348
10	52.80	51.23	924.21	15982
25	64.68	64.48	924.31	16411
50	74.28	74.02	924.38	16683
100	84.44	84.13	924.45	16953

NOTE: Top of dam is approximately 924.00

Post Developed - To Pond

In the post developed conditions as shown on the post development drainage map in Appendix D2, the church proposes to build a new church building and driveway within the east basin drainage area. This will convert about 0.28 acres of landscape/wooded area to impervious area in this basin and modeled as hydrograph #11. In addition, the church plans to build a new parking lot in the West basin with some pervious pavers in the parking areas (modeled as hydrograph #12) and then routed through a proposed underground stormwater detention pond (hydrograph #13). Due to the lack of a defined storm channel system in the west basin and proximity to nearby homes, the drainage from the west detention pond will be diverted to the east basin so that it drains into a defined channel. Notice that the outflow hydrograph flowrates from the west basin are all below 1 cfs except for the 100 year storm. Therefore hydrograph #14 combines the east basin, west basin and the offsite basin from Chamblee tucker road and routes that through the proposed renovation to the existing pond as hydrograph #15 and then combined with the small bypass area just north of the pond for a Post Developed study point as hydrograph #16.

Hyd.	Hydrograph	Hydrograph	Peak Outflow (cfs)									
١	' -	1		'			•			'		
11	NRCS Runoff	Post East Onsite to Pond	11.86	13.74		17.95	21.67	27.16	31.62	36.33		
12	NRCS Runoff	Post West to West Pond	3.090	3.551		4.575	5.489	6.814	7.884	9.015		
13	Pond Route	Post West Pond Routed	0.025	0.043		0.128	0.259	0.585	0.957	1.477		
14	Junction	Post To East Pond	32.65	36.93		46.38	54.65	66.61	76.41	86.89		
15	Pond Route	Post East Pond Routed	19.98	23.07		29.17	33.70	38.55	41.45	45.28		
16	Junction	Post East Study Pt	20.08	23.23		29.47	34.13	39.20	42.29	46.28		

Time of concentration is 5 minutes for the basin. According to the USDA soil maps, the soils on the site include soil groups which have a hydraulic soil group designation of TYPE B. The TR-55 model computed a hydrograph.

Post Developed Bypass analysis

The 0.37 acre bypass basin is a small wooded basin that is outside the existing detention pond area and remains relatively wooded in the post condition.

Runoff Reduction:

Runoff Reduction treatment for the new impervious area of the developed site will be provided by the pervious pavers and underground detention system in the west basin.

Water Quality:

As noted on the Pre-developed drainage map, there is a small existing gravel infiltration trench providing water quality to the existing parking lot in the Northeast corner of the site. Water quality volume is provided for the basin through the modified detention pond as a stormwater pond with a low flow orifice and gravel filter. See appendix B for calculations.

Channel Protection:

Channel protection for the redeveloped onsite area is provided by extended detention in the expanded detention pond system. Calculations are provided in appendix B.

Stormwater Detention:

The existing detention pond is proposed to be expanded to provide storage volume for the onsite impervious area. A summary of the detention pond model is provided below.

<u>Proposed Expanded East Detention Pond Summary Data:</u>

Design	Peak Inflow	Peak Outflow	Ponding	Peak storage
Storm (yrs.)	rate (cfs)	rate (cfs)	elevation	volume (cf)
			(ft)	
1	32.65	19.98	921.31	22016
2	36.93	23.07	921.65	23965
5	46.38	29.17	922.33	28073
10	54.65	33.70	922.91	31794
25	66.61	38.55	923.75	37689
50	76.41	42.29	924.45	42971
100	86.89	45.28	925.18	48872

NOTE: Top of expanded detention pond elevation proposed at 926.00

Conclusion:

In summary, the proposed expanded detention pond provides 2 to 3 times more storage volume than in the existing detention pond and controls the outflow peak design flowrates to the code allowable flowrates for this basin.

West Basin Analysis

Pre-developed conditions hydrologic analysis

The pre developed drainage map in Appendix D outlines a 1.29 acre basin that drains to the northwest and consists of impervious area from existing houses, driveways, landscaped and wooded areas. The actual existing conditions is modeled as hydrograph # 18. The drainage from this basin generally sheet flows to the existing homes to the north west. The west basin is then modeled as "wooded" conditions, a CN of 55 in hydrograph #19.

Time of concentration is 5 minutes for the basin. According to the USDA soil maps, the soils on the site include soil groups which have a hydraulic soil group designation of Type B.

Post Developed - To Pond

As shown on the post developed drainage map, the church proposes a new parking lot in this basin with a mixture of paved surfaces and pervious paver surfaces (Hydrograph #12) that will then drain to a proposed underground detention pond. The outlet pipe from that detention pond will drain to the east basin as described in the east basin analysis with hydrograph #13, and will not drain to the western study point.

Time of concentration is 5 minutes for the basin. According to the USDA soil maps, the soils on the site include soil groups which have a hydraulic soil group designation of TYPE B. The TR-55 model computed a hydrograph. Below are the impervious area calculations and basin description.

Hyd.	Hydrograph Hydrograph		Peak Outflow (cfs)								
No.	Туре	Name	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	
									1		
12	NRCS Runoff	Post West to West Pond	3.090	3.551		4.575	5.489	6.814	7.884	9.015	
13	Pond Route	Post West Pond Routed	0.025	0.043		0.128	0.259	0.585	0.957	1.477	

Post Developed Bypass analysis

The bypass basin consists of the remainder of the west basin that consists of some landscaped slopes and wooded areas. Since the drainage from the proposed detention pond will drain to the east basin, this bypass area is the only drainage that will drain to the west basin study point. This is modeled as hydrograph #20

Hyd.	Hydrograph	Hydrograph	Peak Outflow (cfs)									
No.	Туре	Name	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr		
ı	1	1										
18	NRCS Runoff	Pre West - actual	1.242	1.648		2.626	3.557	4.999	6.228	7.573		
19	NRCS Runoff	Pre West - 90% condition	0.360	0.599		1.246	1.905	2.986	3.936	5.000		
20	NRCS Runoff	Post West Study Point	0.204	0.312		0.584	0.862	1.303	1.688	2.117		

Runoff Reduction:

Runoff Reduction for the new impervious area of the developed site will be provided by a combination of the pervious paver system allowing infiltration through the pervious nature of the pavers and a gravel infiltration trench below the underground detention pond system. The detail of the system is included in the construction plans on sheet C502 and in Appendix G. The runoff reduction volume design is provided in Appendix B of this report. This would satisfy water quality as well.

Channel Protection:

Channel protection requirement is met by limited the outflow from this detention pond to less than 2 cfs for the 1 year storm per GA stormwater manual section 2.2.4.2.

Stormwater Detention:

A detention pond system is proposed for the storage with an outlet control structure from an underground storm pipe detention system with infiltration gravel trench below, which drains to the new storm sewer system to the East basin detention pond. A summary of the detention pond model is provided below.

West Underground Detention Pond Summary Data:

Design Storm (yrs.)	Peak Inflow rate (cfs)	Peak Outflow rate (cfs)	Ponding elevation (ft)	Peak storage volume (cf)
1	2.85	0.03	949.94	4705
2	3.30	0.04	950.05	5240
5	4.31	0.13	950.16	5778
10	5.20	0.26	950.27	6354
25	6.52	0.59	950.48	7424
50	7.59	0.96	950.68	8407
100	8.72	1.48	950.92	9581

NOTE: Top of underground detention pond elevation proposed at 952.00

Peak Flow Summary: West Basin

Basin	Post Cumulative Drainage Area (Ac.)	Return Frequency (years)	Precipitati on Value for 24 hr Event (in.)	Allowable Pre- developed flow @ Study Pt (cfs) Hyd. #19	Post – developed flow @ Study Pt (cfs) Hyd. # 20	Ponding Elevation (ft) Hyd. #13	Storage (CF) Hyd. # 13	Change (CFS)	% of Allowable
		1	3.36	0.40	0.20	4705	949.94	-0.20	50.00%
		2	3.68	0.67	0.31	5240	950.05	-0.36	46.27%
	0.07	5	4.38	1.39	0.58	5778	950.16	-0.81	41.73%
West	0.36	10	4.99	2.12	0.86	6354	950.27	-1.26	40.57%
		25	5.87	3.32	1.30	7424	950.48	-2.02	39.16%
		50	6.58	4.38	1.69	8407	950.68	-2.69	38.58%
		100	7.33	5.56	2.12	9581	950.92	-3.44	38.13%

Conclusion:

In summary, the proposed west basin detention pond provides the stormwater treatment with a very low outflow rate diverted to the eastern basin. The remaining west basin bypass area is shown in the chart above to be 50% or less than the allowable rates, which is considerably less than the 90% required by Dekalb County.

South Basin Analysis

Pre-developed conditions hydrologic analysis

The pre developed drainage map in Appendix D outlines a small 0.14 acre basin that drains to the south to the Chamblee Tucker Right of way and consists of impervious area from existing houses, driveways, landscaped and wooded areas. The actual existing conditions is modeled as hydrograph # 22. The drainage from this basin generally sheet flows to the street. The west basin is then modeled as "wooded" conditions, a CN of 55 in hydrograph #23.

Time of concentration is 5 minutes for the basin. According to the USDA soil maps, the soils on the site include soil groups which have a hydraulic soil group designation of Type B.

Post Developed conditions

As shown on the post developed drainage map, this basin is reduced in area to approximately 0.02 acres. The remaining landscape area drains to the street and a reduced flowrate is shown by hydrograph #24.

Time of concentration is 5 minutes for the basin. According to the USDA soil maps, the soils on the site include soil groups which have a hydraulic soil group designation of TYPE B. The TR-55 model computed a hydrograph. Below are the impervious area calculations and basin description.

Hyd.	Hydrograph	Hydrograph	Peak Outflow (cfs)									
No.	Туре	Name		2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr		
22	NRCS Runoff	Pre South - actual	0.162	0.209		0.321	0.426	0.589	0.726	0.875		
23	NRCS Runoff	Pre South-90% condition	0.040	0.067		0.140	0.213	0.335	0.441	0.560		
24	NRCS Runoff	Post South Study Point	0.016	0.021		0.036	0.049	0.071	0.089	0.110		

Peak Flow Summary: South Basin

Basin	Post Cumulative Drainage Area (Ac.)	Return Frequency (years)	Precipitati on Value for 24 hr Event (in.)	Allowable Pre- developed flow @ Study Pt Hyd. # 23 (cfs)	Post – developed flow @ Study Pt Hyd. #24 (cfs)	Change (CFS)	% of Allowable
		1	3.36	0.04	0.02	-0.02	50.00%
		2	3.68	0.07	0.02	-0.05	28.57%
	0.00	5	4.38	0.15	0.04	-0.11	26.67%
South	0.02	10	4.99	0.23	0.05	-0.18	21.74%
		25	5.87	0.36	0.07	-0.29	19.44%
		50	6.58	0.48	0.09	-0.39	18.75%
		100	7.33	0.60	0.11	-0.49	18.33%

Conclusion:

In summary, the reduction in the area left in proposed south basin naturally decreases the developed peak runoff flowrates shown in the chart above to be 50% or less than the allowable rates, which is considerably less than the 90% required by Dekalb County. Since there is a decrease in the runoff rate and no impervious area proposed, no further stormwater management is proposed in this basin.

Downstream Analysis:

Appendix D3 shows the downstream drainage map. The study point contains a 5500 acre downstream basin that is modeled as hydrograph #26, where the site is less at 10% of the basin. The location was estimated to be in a drainage channel just prior to convergence with North Fork Peachtree Creek. The downstream basin is then modeled without the onsite area and drainage from Chamblee Tucker as hydrograph #27. Then hydrograph #27 is added to the post development hydrographs from the East and West basins to develop hydrograph #28 to demonstrate the post conditions at the 10% downstream study point. The summary indicates a decrease in the downstream condition as a result of stormwater management.

Basin	Return	Pre-developed	Post –developed	Change
	Frequency	flow (cfs)	flow (cfs)	(cfs)
		Hyd. # 26	Hyd. # 28	(CIS)
Downstream	1	5847.5	5844.4	-3.1
	2	6866.8	6862.8	-4.0
	5	9170.1	9164.0	-6.1
	10	11236.1	11229	-7.1
	25	14283.0	14274.5	-8.5
	50	16772.1	16763.3	-8.8
	100	19418.2	19410.1	-8.1

Hyd.	Hydrograph	, , , , , , , , , , , , , , , , , , , ,	Peak Outflow (cfs)								
No.	Туре	Name	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	
1	I	1	ı	1					1		
26	NRCS Runoff	Pre Downstream with site	5847.5	6866.8		9170.1	11236.1	14283.0	16772.1	19418.2	
27	NRCS Runoff	Downstream w/o site	5836.4	6853.8		9152.7	11214.8	14256.0	16740.3	19381.4	
28	Junction	Post Downstream with site	5844.4	6862.8		9164.0	11229.0	14274.5	16763.3	19410.1	

Conclusion

This report provided a stormwater analysis of the existing conditions, post developed conditions, downstream and on-site storm sewer system for the building and parking lot project for Embry Hills Church of Christ, located at 3250 Chamblee Tucker Road. The renovated and proposed stormwater detention ponds if constructed as designed indicate a significant reduction in peak flowrates. The downstream conditions analysis indicates a slight decrease to the peak flowrates to the 10% study point. New on-site storm sewer pipe systems were designed to provide capacity for the 100 year peak flow runoff rate design storm.

Appendix A Stormwater code

REVIEW CHECKLIST for STORMWATER MANAGEMENT PLANS

DEVELOPMEN	T NAME:			(PHASE/	/UNIT)	
TAX PARCEL N	UMBER:		ADDRESS:			
DISTRICT:	LAND LOT	: ZO	NING DISTRIC	T: O	OVERLAY:	
REVIEWED BY:		ENG	INEER/PHONE:			
DATE:		PROJ	ECT NUMBER:			
	COMMERCIAL	INDUSTRIAL	MUNICIPAL	RESIDENTIAL	MIXED	

Note: Plans must adhere to guidelines in the Georgia Stormwater Management Manual (GSMM) Volumes I, II, and III as well as the DeKalb County Government Ordinances inclusive of Chapters 14, 22.5, and 27 Specific references are made to Chapter 14 Sections 37, 38, 39, 40, 42, 44.1, 166, 167, 217, 218, 219, and Article 4.

Provide the following:

A. BACKGROUND/GENERAL INFORMATION

- 1 Development name on the cover of the report
- 2 Engineer's seal, signature, address and telephone number on the cover of the report
- 3 Developer's name, address, and telephone number on the cover of the report
- 4 Date on the cover of the report and vicinity map in the report
- 5 Include revision date on the cover of the report
- 6 Provide statement of post-construction pond/storm water drainage ownership.

B. REGULATORY

1 For all proposed developments, including public single-family residential, execute and return the attached Operation & Maintenance Agreement, **The Agreement must be approved and recorded prior to the pre-construction meeting**. The agreement must state the deed book and page of the property in addition to defining minimum recommended post construction inspection and maintenance schedule and site specific plan. **Refer to GSMM Volume Three and include best practices.**

- 2 A stream buffer variance is required for encroachment of stream buffers.
- 3 Contact the Army Corps of Engineers for permit determination/approval. ACOE approval is required prior to stormwater plan approval if it applies to the proposed scope of work.
- 4 Provide flood study per the Flood Plain Management Ordinance and in accordance with FEMA approved methodology if it applies.
- 5 Add engineer's certification to plans: "Engineer certifies that the flood study was prepared in accordance with a FEMA approved methodology". IF a LOMR or CLOMR, etc. is needed, the Applicant must send documents to FEMA w/copy sent along with plans.

Page 1 of 11 REVIEW CHECKLIST for STORMWATER MANAGEMENT PLANS A

April 24, 2018

6 Provide wetlands delineation. Show limits and area (acres or square feet) of encroachment and the 25' undisturbed DeKalb County buffer.

7 Offsite easements are/may be required (see plans). (Offsite easement needed for stormwater on a permanent basis must be delineated, legal description written and recorded in perpetuity at DC courthouse).

8 Other _				

C. STORMWATER MANAGEMENT REPORT/HYDRO

- 1. The submittal does not meet the requirements of the DeKalb County ordinances and G.S.M.M. Please refer to the appropriate sections in the regulations that cover the topics of water quality treatment, runoff reduction volume (RRV), channel protection volume, over-bank flood protection, extreme flood protection, and ten-percent downstream analysis and comply.
- 2. Consider the use of available Better Site Design (checking for availability for usage to decrease the size of the pond) "credits" to reduce WQV and CPV.
- 3. Provide supporting engineering calculations for all Better Site Design "credits". Please see Section 1.4.4 of the GSMM for a complete listing of all available design credits.
- 4. Provide brief summary of Better Site Design "credits". Per the GSMM, design credits cannot be claimed twice for the same area. Credit areas and features must be identified and delineated on the construction drawings and final plat.

5. Provide executive summary of the report's findings to include a table similar to:

	Flow Summar	У					
Basin	Cumulative	Return	Precipitation	Pre-	Post-	Ponding	Storage
	Drainage	Frequency	Value for 24	development	development	Elevation	(cubic
	Area	Storm	hour Event	Flow (cfs)	Flow (cfs)	(ft MSL)	feet)
		(yrs)	(inches)				
		1					
		2					
		5					
		10					
		25					
		50					
		100					
		10% D.S.					

Page 2 of 11 REVIEW CHECKLIST for STORMWATER MANAGEMENT PLANS

April 24, 2018

DeKalb County requires post development release flow rates not to exceed pre development flows.

- 6. Include a narrative paragraph/summary in the report that includes a description of existing site, soils, slopes, vegetative cover, and proposed improvements, methodologies and procedures, calculations, summary of results and a conclusion detailing the findings of the drainage investigation.
- 7. State the existing and proposed impervious surface by acre and percent of site for each basin.
- 8. Provide a breakdown of proposed impervious surface by roofs, roads, sidewalks, access drives, driveways, etc.
- 9. Delineate all drainage areas/basins to include offsite drainage and bypass.
- 10. Detailed pre and post developed drainage area maps are required.
- 11. DeKalb Rational "C" and/or SCS "CN" values need clarification and/or further explanation (see hydro).
- 12. **P**rovide a list or table of the rainfall values used. <u>Use 3.36 inch as the value for the one year (1-year) precipitation depth</u> when using the Annual Maximum time series, or use the Partial Duration time series http://hdsc.nws.noaa.gov/hdsc/pfds/pfds map cont.html?bkmrk=ga: NOAA ATLAS 14 POINT PRECIPITATION FREQUENCY ESTIMATES.
- 13. <u>Show</u> segmented time of concentration (TC) **flow paths on <u>scaled</u>** drainage maps. The time of concentration (TC) for pre and/or post developed conditions needs clarification and/or further explanation (see hydro).
- 14. The SCS method and other approved methodologies are required for detention analysis. The Flow Summary Rational method is only acceptable for pipe design within certain acreage limits. The DeKalb Rational Method can be used for detention design for drainage areas up to 5 acres.
- **15.** A **10% downstream analysis is required.** Provide basin drainage map showing POS, and peak flow analysis results with and without detention to the labelled study point.
- 16. The 10% downstream analysis must specifically prove and state that no structures (businesses, homes, culverts, streets, etc) between the analysis points will be adversely impacted by the increase in site runoff based on hydrograph timings to the 10% downstream study point.
- 17. Provide RRV, WQV and CPV calculations. If RRV is not included provide detailed technical justification based on soil characteristics and or site topography related to best practices for runoff reduction volume.

- 18. Provide fore-bay calculations (0. I"/acre of impervious area). Can be counted towards total WQV.
- 19. Provide WQV and/or CPV orifice sizing calculations for the 24-hour drawdown.
- 20. Round orifice size up to the next highest whole number (e.g. computed = 2.6", round to 3").
- 21. Spreadsheets for WQV, CPV, Orifice sizing, Bio-retention, Sand Filter sizing, and other Green Infrastructure/Low Impact Development features and the Manning's Equation. Please use and include these with your submittal.
- 22. The pond report (stage-storage) does not agree with what is dimensioned on the plans.
- 23. The volumes required by the hydro do not agree with the proposed pond grading on the plans.
- 24. Provide 50% of net WQV as dead pool storage for Wet Extended Detention pond.
- 25. Micro pool pond required (for less than 10 acre drainage areas). Show 25-30% of net WQV as dead pool storage.
- 26. Show that the 100-year storm, including offsite pass-through, is safely passed around or through the pond and through the emergency overflow weir. Otherwise, show how the offsite will be managed.

27. Disturbed bypass areas greater than 10% of the drainage basin require water quality treatment.

- 28. Extended dry detention may be used to fully meet CPV, Qp25 and Qf (The 100-year, 24-hour storm event) requirements only.
- 29. Extended dry detention must be used in conjunction with other onsite BMPs to meet the 80% TSS water quality requirements of the GSMM.
- 30. Underground detention must comply with Section 3.4.3 of the GSMM.
- 31. Include Outlet Control Structure (OCS) and pond cross section details in the study. See Section 3.2, and Appendix in the GSMM for pond detail requirements.
- 32. If CPV is waived, then the 2 through 25 year attenuation is required as well as safely passing the 100 year storm.
- 33. If WQV and CPV requirements are met, the only additional requirements are flood control for the 25-year event and safe passage of the 100-year event.

34. Other	

- 35. For projects other than stormwater hotspots, if less than 40 % of the site is being disturbed only that portion of the property is required to meet the stormwater compliance regulations.
- 36. Minimize the area of land disturbed, designing to maintenance existing grades where practical and maximizing the use of low impact features and Green Infrastructure as much as practical. Include best management practices per volume three of the G.S.M.M.

D. PLAN/DETAIL SHEETS

- 1. Show existing and proposed R/W lines, lot lines/building envelop pavement and other impervious areas, curb and gutter, and R/W widths.
- 2. Provide floodplain statement. Reference the 2016, or most recent, FEMA Firm Panel number and any applicable CLOMA.
- 3. Provide wetlands statement. (The statement is to indicate if the site is within any area of a wetland)
- 4. Delineate wetland areas and note the areas (in acres/ft²) to be impacted. Show 25' wetland buffer.
- 5. Provide a copy of wetland study and/or N.W.I. Map number if wetland is to be impacted.
- 6. Show areas of proposed cut/fill in the floodplain. Provide cut and fill sections. Cut and fill must balance, within boundary of site. Maximum compensatory grading is 150 cubic yards of per acre of floodplain on site. See Floodplain Management Ordinance for additional cut/fill requirements.
- 7. Show all existing and proposed lakes with surface area, normal pool elevation, and dam height, top width, % slopes. Provide details for existing/proposed outlets/drain pipes and spillways.
- 8. Show/note all Minimum Floor Elevations (MFE) for all lots located adjacent to the FEMA designated flood hazard area. For residential developments, the MFE is measured as 3' above the 100-year flood elevation to the bottom of the footing, or one foot above top of dam or wall.
- 9. Show/note the 100-year flood plain limits/sections, elevations, floodway limits. Indicate the source of the information.
- 10. Provide a copy of FEMA approved methodology flood study.

- 11. Show the 25' (state) and 50' (county) undisturbed stream buffers from the edge of wrested development.
- 12. Show stream buffer as <u>measured from the wrested bank</u>, <u>not the centerline of the</u> creek.
- 13. Show/note the boundaries of other natural feature protection and conservation areas such as wetlands, lakes, ponds, and other setbacks (e.g. septic tank and drinking water well setbacks).
- 14. Provide plan view of major manhole junctions to include pipe sizes, materials, angles and invert elevations.
- 15. Identify/show/delineate alt Better Site Design "credits". Note on plan that any conservation areas will be recorded at the DeKalb County Courthouse in perpetuity with the affected properties.
- 16. Show grading of all open channels. Include cross-sections and calculations to provide 25-year storm capacity, velocities, dimensions, freeboard, and permanent grassing/sodding details to sustain the Q_{p25} velocity.
- 17. Drainage other than sheet flow across two or more lots requires a dedicated drainage easement. Define any such drainage easements with adequate labels.
- 18. Show a 15 ft minimum Access/Maintenance easement to and 10 ft minimum around the outer limits of the pond(s) from the right-of-way.
- 19. Use Formula One at end of this section to determine the minimum drainage easement width requirement per Section 14-40b (Standards) (10' minimum).
- 20. Show storm sewers extending to the rear of the lot unless discharging to defined channel approved by the Land Development Department.
- 21. Show water quality ponds and BMPs outside of creeks/streams, floodplains, wetlands, and buffers.
- 22. General minimum slope for pond(s) is 3:1. Show 3:1 grading of pond(s).
- 23. Residential pond(s) should be located within a subdivision common place. No part of the facility should be located on private property.
- 24. Pond construction requires minimum setback of 20' from property line, 100' to 250' from a Private well and 50' from a septic tank/leach field
- 25. Show and dimension the aquatic bench.

- 26. Show the fore bay. (0.1" per impervious acre)
- 27. Show the micro pool (25-30% of net WQV).
- 28. Show a safety bench if the pond is deeper than 4'or required slopes of greater than 3:1.
- 29. Provide pond under drain (3" mm. drain pipe with 3" mm. gate valve located in OCS). Also, provide manufacturer and maintenance specs.
- 30. Add note to plan: "The pond's maintenance under drain is intended to drain the pond for infrequent maintenance and inspection purposes. The gate valve must be closed immediately after construction of the pond. After construction is completed, it can only be opened upon authorization by the DeKalb County Land Development Department."
- 31. Provide a complete pond profile detail sheet including compaction detail, water surface elevations, structure and freeboard elevations, perforated and wrapped under drain pipe, material specifications, cutoff trench with anti-seep collar, orifice and spillway sizes and location, standard 10' embankment berm width and minimum slopes of 3:1 per GSMM. (excavated ponds require an 8' minimum top of berm width).
- 32. Provide construction detail for emergency spillway.
- 33. Consider use of reverse slope pipe attached to riser, with its inlet submerged 1' below the permanent pool elevation.
- 34. For earthen pond embankments, use impervious cut-off trench with anti-seep collar to restrict piping of soils through embankment.
- 35. Provide a trash rack or skimmer hood. (a flat top trash rack is not advised for private developments. It is not allowed for public single-family residential developments). Trash rack must have 10 times the surface area of the orifice it protects.
- 36. Provide a wetland seeding schedule for extended detention wet pond. See Appendix F of the GSMM.
- 37. Add note to plan: "No woody vegetation is allowed within 15' of the downstream toe of earthen embankment". (i.e. stumps, etc)
- 38. Add note to plans that all retaining wall designs greater than 4' in height shall be submitted and approved by the DeKalb County Land Development Department prior to installation. Keystone block walls are unacceptable for the pond's retaining wall.
- 39. HDPE pipe is only allowed outside of the R/W and on non-single family projects (i.e. commercial, industrial). (Junction boxes are required to have manhole access. Plans should reference AASHTO M294 requirements.

- 40. Provide pipe bedding detail.
- 41. Show curb inlet placement at low points in road.
- 42. Show the 100-year ponding elevation at inlet. Ponding shall not occur on adjacent property without obtaining a drainage easement.
- 43. Provide appropriate energy dissipation devices at all pipe outlets, open channels, and outlet control structures and culverts if exit velocities exceed 4 fps. Show/note the type of energy dissipation to be provided. Provide sizing calculations if rip-rap is proposed.
- 44. Provide emergency spillway construction detail.
- 45. If water depth in a pond is 4 feet or greater provide 5' chain link fence with 10' access gates to be placed **at the outer edge** of the 10' access easement to service **around the pond**.

<u>Formula 1</u>

Drainage Easement Formula

The following formula is a tool to be used in determining the required width for drainage easements assigned to storm pipes.

The minimum required easement width for storm pipe installation is a function of the required clearance on each side of the pipe, the pipe diameter, the embankment slope and the pipe's depth of cover at the deepest point. The County typical minimum width is 15 feet.

Given a minimum 2 feet of clearance between the pipe walls and an embankment slope of 2:1 (H:V), the formula is:

Minimum easement width = 4' + diameter + (3 x maximum pipe cover depth) = total easement width (feet), to be centered on structure/pipe.

E. PIPE PROFILES/CULVERT DESIGN/OPEN CHANNELS

Pipe

- 1. Show a minimum of 18" of cover for pipe. Additional cover may be required depending on expected loading.
- 2. All pipes requiring a manhole base larger than 48" in diameter must be identified by showing base unit and reduction cone, inverts of pipes, etc.
- 3. Verify that the pond outlet discharge pipe has been checked for inlet and outlet control.
- 4. Match crowns on adjacent pipe.
- 5. Provide a minimum of 12"vertical and horizontal separation between all buried utilities & storm pipes.

Page 8 of 11 REVIEW CHECKLIST for STORMWATER MANAGEMENT PLANS

April 24, 2018

- 6. Show all sanitary and water line, and other utility crossings on storm profiles.
- 7. Show catch basin top and pipe invert elevations.
- 8. Show curb inlet at low point of Street
- 9. Provide pipe profiles with existing and proposed ground surface profiles, pipe lengths, slopes, inverts, type, and hydraulic grade lines.
- 10. Show 25-year hydraulic grade line. It must be below the crown of the pipe. Please provide supporting data in pipe profile chart or hydro study.
- 11. Note on plans: All storm pipe and structures shall comply with GADOT standards for design, construction, and installation.
- 12. Inverts on all structures shown to be paved smooth.
- 13. All metal pipes used must be BCCMP with re-rolled ends and hugger/corrugated bands used for connection.
- 14. Minimum acceptable pipe diameter for County maintained sections and systems is 18 inches.
- 15. Minimum slope is 1% for BCCMP and 0.50% for RCP. For slopes < 1%, show that a minimum of 2.5 fps is attained for the 2-year frequency event.
- 16. Velocity in pipe No. (s) ______exceeds 15 fps. Velocities should be between 3-15 fps.
- 17. CMP' or BCCMP pipe(s) exceed(s) 12% slope. RCP pipe exceed(s) 12% slope.
- 18. On CMP pipe exceeding a 12% slope, show anchor collars. Provide construction detail and locations.
- 19. RCP is recommended under roads.
- 20. Angle conflict among pipes will require a larger manhole for structure.

Provide Pipe chart indicating the following:

- 1. Pipe Numbers
- 2. Invert elevations
- 3. Pipe Sizes
- 4. Pipe Slope
- 5. Pipe Length
- 6. Contributing Drainage Area
- 7. Design discharge (Q25 for piped drainage; Q100 for culverts)

Page 9 of 11 REVIEW CHECKLIST for STORMWATER MANAGEMENT PLANS

April 24, 2018

- 8. Design storm frequency (25-year for piped drainage; 100-year for culverts)
- 9. Runoff Coefficient for CMP
- 10. Pipe material/coating. Indicate corrugation spacing and height
- 11. Velocity (V25 may not exceed erosive velocity at outlet headwall unless additional energy dissipation is provided.)
- 12. Gutter spread (not to exceed eight feet in width for a 10-year design storm event)

Open channel chart indicating the following:

- 1. Open Channel Numbers
- 2. Contributing Drainage Area
- 3. Runoff coefficient (per future land use plan and assuming no detention)
- 4. Conveyance Size. Provide typical cross section
- 5. Lining Material (riprap, sod, vegetative, etc.)
- 6. Channel Length
- 7. Channel Slope (for min and max values)
- 8. Velocity (V25 may not exceed erosive velocity)
- 9. Design Storm frequency (25-year)
- 10. Design discharge (25-year)
- 11. Normal flow Depth (25-year)
- 12. Indicate free board capacity

Culverts

- 1. Headwater & Tail water Limitations: for drainage facilities with cross-sectional areas equal to or less than 30 ft², HW/D for the 100-year frequency storm must be equal to or less than 1.5. For drainage facilities with cross-sectional areas greater than 30 ft², HW/D for the 100-year frequency storm must be equal to or less than 1.2. Culverts must be sized to maintain flood-free conditions on major thoroughfares with at least 18-inches freeboard at the low-point of the road. (All criteria from Section 4.3, culvert design, of the GSMM are required.)
- 2. As stated above, inlet/outlet control calculations are required for all street crossings in addition to Manning's equation. Insure that Tc is representative of the drainage area.
- 3. The weighted runoff coefficient for major culvert analysis (Q=CfCIA) should be based on full build-out using the current zoning plan for the entire receiving area (Cf=Frequency factor).
- 4. Show 25-year ponding limits above pipe (culvert) unless detention or floodplain conveyance.
- 5. Show 25-year hydraulic grade line in all culverts unless detention or floodplain conveyance.
- 6. RCP is required for culvert(s) placed in streams with any base flow.

OTHER REVIEW COMMENTS:

DEPARTMENT OF PLANNING & SUSTAINABILITY										

Appendix B Data

- Rainfall reference table
- CN Values
- Site Review Tool
- Water Quality Design

NOAA Atlas 14, Volume 9, Version 2 Location name: Atlanta, Georgia, USA* Latitude: 33.8841°, Longitude: -84.2596° Elevation: 942.63 ft**

* source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

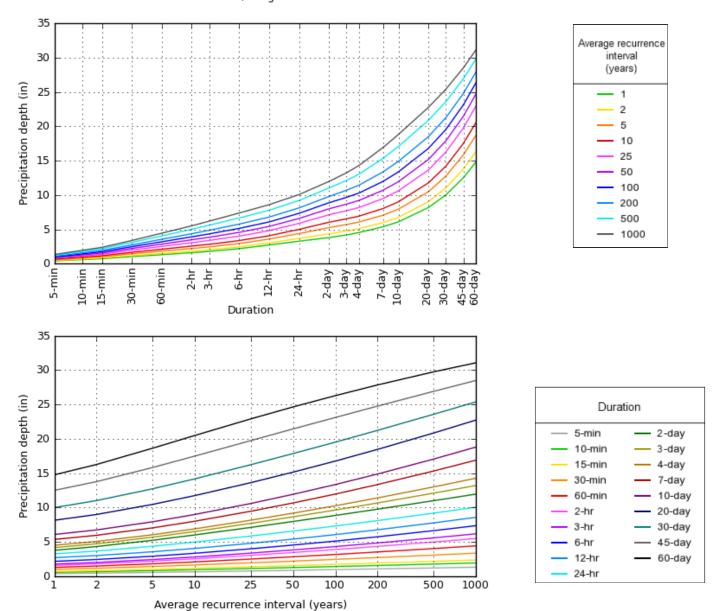
Sanja Perica, Deborah Martin, Sandra Pavlovic, Ishani Roy, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Michael Yekta, Geoffery Bonnin

NOAA, National Weather Service, Silver Spring, Maryland

PF tabular | PF graphical | Maps & aerials

PF tabular

PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹											
Duration				Average	recurrence	interval (y	ears)				
Duration	1	2	5	10	25	50	100	200	500	1000	
5-min	0.405 (0.323-0.515)	0.466 (0.371-0.593)	0.568 (0.451-0.724)	0.655 (0.518-0.837)	0.779 (0.602-1.01)	0.876 (0.666-1.15)	0.976 (0.724-1.29)	1.08 (0.777-1.45)	1.22 (0.854-1.66)	1.33 (0.912-1.82)	
10-min	0.593 (0.473-0.755)	0.683 (0.543-0.869)	0.832 (0.661-1.06)	0.960 (0.759-1.23)	1.14 (0.882-1.48)	1.28 (0.975-1.68)	1.43 (1.06-1.89)	1.58 (1.14-2.12)	1.79 (1.25-2.43)	1.95 (1.34-2.67)	
15-min	0.724 (0.577-0.920)	0.832 (0.663-1.06)	1.01 (0.806-1.29)	1.17 (0.926-1.49)	1.39 (1.08-1.81)	1.57 (1.19-2.05)	1.74 (1.29-2.31)	1.93 (1.39-2.59)	2.18 (1.53-2.97)	2.38 (1.63-3.25)	
30-min	1.02 (0.815-1.30)	1.18 (0.937-1.50)	1.44 (1.14-1.83)	1.66 (1.31-2.12)	1.97 (1.52-2.56)	2.22 (1.69-2.90)	2.47 (1.83-3.27)	2.73 (1.97-3.67)	3.09 (2.16-4.21)	3.37 (2.31-4.62)	
60-min	1.31 (1.04-1.67)	1.50 (1.19-1.91)	1.83 (1.45-2.32)	2.11 (1.67-2.69)	2.52 (1.95-3.28)	2.84 (2.17-3.73)	3.19 (2.37-4.23)	3.55 (2.56-4.77)	4.05 (2.83-5.51)	4.44 (3.04-6.07)	
2-hr	1.60 (1.29-2.00)	1.82 (1.47-2.29)	2.21 (1.78-2.78)	2.56 (2.05-3.22)	3.06 (2.41-3.95)	3.47 (2.68-4.50)	3.90 (2.94-5.12)	4.36 (3.19-5.79)	5.00 (3.55-6.73)	5.50 (3.83-7.43)	
3-hr	1.78 (1.45-2.21)	2.02 (1.64-2.51)	2.44 (1.98-3.04)	2.82 (2.28-3.52)	3.38 (2.69-4.33)	3.84 (3.00-4.94)	4.33 (3.30-5.64)	4.86 (3.59-6.41)	5.60 (4.02-7.48)	6.19 (4.34-8.29)	
6-hr	2.19 (1.80-2.68)	2.45 (2.02-3.01)	2.93 (2.40-3.59)	3.36 (2.75-4.13)	4.01 (3.23-5.07)	4.55 (3.60-5.78)	5.13 (3.96-6.60)	5.76 (4.32-7.50)	6.65 (4.85-8.78)	7.37 (5.25-9.74)	
12-hr	2.72 (2.27-3.28)	3.03 (2.52-3.66)	3.57 (2.97-4.32)	4.07 (3.37-4.93)	4.80 (3.92-5.98)	5.42 (4.35-6.77)	6.07 (4.76-7.69)	6.78 (5.16-8.70)	7.78 (5.76-10.1)	8.58 (6.21-11.2)	
24-hr	3.27 (2.77-3.89)	3.68 (3.11-4.38)	4.38 (3.69-5.21)	4.99 (4.18-5.95)	5.87 (4.84-7.16)	6.58 (5.34-8.08)	7.33 (5.81-9.11)	8.11 (6.26-10.2)	9.20 (6.91-11.8)	10.1 (7.40-12.9)	
2-day	3.79 (3.25-4.44)	4.34 (3.71-5.08)	5.25 (4.48-6.16)	6.03 (5.13-7.09)	7.12 (5.94-8.53)	7.98 (6.55-9.63)	8.86 (7.12-10.8)	9.77 (7.64-12.1)	11.0 (8.38-13.9)	12.0 (8.94-15.2)	
3-day	4.18 (3.61-4.85)	4.74 (4.09-5.51)	5.70 (4.91-6.62)	Chang	ged to	3.36	in th	9	12.1 2-15.1)	13.2 (9.98-16.6)	
4-day	4.52 (3.92-5.21)	5.08 (4.41-5.86)	6.06 (5.24-6.99)	compl	uter n	nodel	per D)ekalk	13.0 1-16.2)	14.3 (10.9-17.9)	
7-day	5.37 (4.71-6.11)	5.98 (5.24-6.81)	7.05 (6.17-8.04)	Count	ty Rei	view S	Stand	ards	15.3 1-18.9)	16.9 (13.0-20.9)	
10-day	6.09 (5.39-6.88)	6.76 (5.97-7.63)	7.94 (7.00-8.98)	9.01 (7.91-10.2)	10.6 (9.21-12.4)	11.9 (10.2-14.0)	13.4 (11.2-15.9)	14.9 (12.1-17.9)	17.1 (13.5-20.9)	18.8 (14.6-23.1)	
20-day	8.16 (7.31-9.06)	9.00 (8.07-10.0)	10.5 (9.36-11.7)	11.8 (10.5-13.1)	13.6 (12.0-15.6)	15.2 (13.1-17.4)	16.8 (14.2-19.5)	18.5 (15.3-21.9)	20.9 (16.8-25.1)	22.7 (18.0-27.5)	
30-day	10.0 (9.04-11.0)	11.0 (9.96-12.1)	12.7 (11.5-14.0)	14.2 (12.7-15.7)	16.2 (14.3-18.3)	17.9 (15.6-20.3)	19.5 (16.7-22.5)	21.2 (17.7-24.8)	23.6 (19.2-28.0)	25.4 (20.3-30.4)	
45-day	12.5 (11.4-13.6)	13.8 (12.6-15.0)	15.8 (14.4-17.3)	17.5 (15.9-19.2)	19.8 (17.5-21.9)	21.4 (18.8-24.0)	23.1 (19.9-26.3)	24.8 (20.8-28.6)	26.9 (22.0-31.6)	28.5 (23.0-33.8)	
60-day	14.8 (13.5-16.0)	16.3 (14.9-17.6)	18.6 (17.0-20.2)	20.5 (18.7-22.3)	22.9 (20.4-25.2)	24.7 (21.7-27.3)	26.3 (22.7-29.6)	27.9 (23.5-31.8)	29.8 (24.5-34.6)	31.1 (25.3-36.7)	

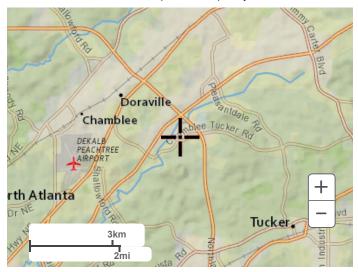

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

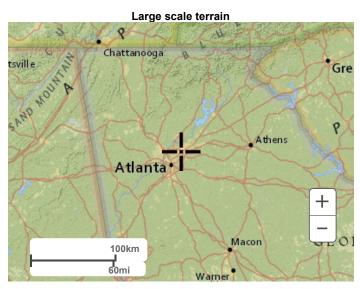
Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.

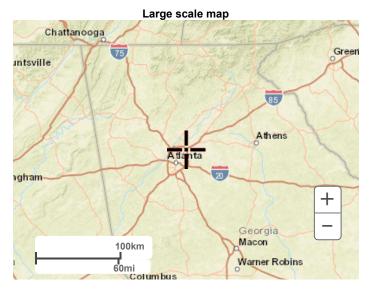
Back to Top

PF graphical

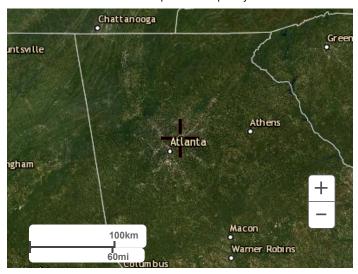
PDS-based depth-duration-frequency (DDF) curves Latitude: 33.8841°, Longitude: -84.2596°


NOAA Atlas 14, Volume 9, Version 2


Created (GMT): Sun Nov 8 16:50:55 2020


Back to Top

Maps & aerials


Small scale terrain

Large scale aerial

Back to Top

US Department of Commerce
National Oceanic and Atmospheric Administration
National Weather Service
National Water Center
1325 East West Highway
Silver Spring, MD 20910
Questions?: HDSC.Questions@noaa.gov

Disclaimer

NOAA Atlas 14, Volume 9, Version 2 Location name: Atlanta, Georgia, USA* Latitude: 33.8856°, Longitude: -84.255° Elevation: 958.4 ft**

NORR

of 177

* source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Deborah Martin, Sandra Pavlovic, Ishani Roy, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Michael Yekta, Geoffery Bonnin

NOAA, National Weather Service, Silver Spring, Maryland

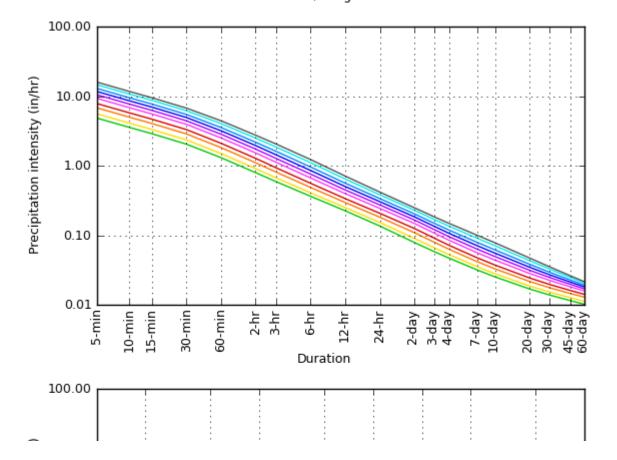
PF tabular | PF graphical | Maps & aerials

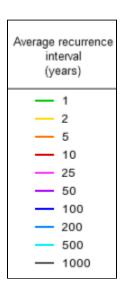
PF tabular

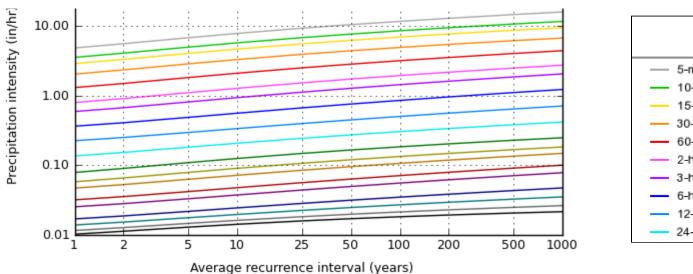
PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches/hour) ¹												
Duration	Average recurrence interval (years)											
Duration	1	2	5	10	25	50	100	200	500	1000		
5-min	4.86 (3.88-6.18)	5.59 (4.45-7.12)	6.82 (5.41-8.69)	7.86 (6.22-10.0)	9.35 (7.22-12.2)	10.5 (7.99-13.8)	11.7 (8.69-15.5)	13.0 (9.32-17.4)	14.7 (10.2-19.9)	16.0 (10.9-21.9)		
10-min	3.56 (2.84-4.53)	4.10 (3.26-5.21)	4.99 (3.97-6.36)	5.76 (4.55-7.35)	6.84 (5.29-8.90)	7.70 (5.85-10.1)	8.58 (6.36-11.4)	9.49 (6.83-12.7)	10.7 (7.50-14.6)	11.7 (8.01-16.0)		
15-min	2.90 (2.31-3.68)	3.33 (2.65-4.24)	4.06 (3.22-5.17)	4.68 (3.70-5.98)	5.56 (4.30-7.24)	6.26 (4.76-8.19)	6.98 (5.17-9.24)	7.72 (5.55-10.4)	8.72 (6.10-11.9)	9.51 (6.51-13.0)		
30-min	2.05 (1.63-2.60)	2.35 (1.87-3.00)	2.87 (2.28-3.66)	3.31 (2.62-4.23)	3.94 (3.05-5.12)	4.43 (3.37-5.80)	4.94 (3.66-6.54)	5.47 (3.93-7.34)	6.19 (4.32-8.42)	6.74 (4.62-9.23)		
60-min	1.31 (1.04-1.67)	1.50 (1.19-1.91)	1.83 (1.45-2.32)	2.11 (1.67-2.69)	2.52 (1.95-3.28)	2.84 (2.17-3.73)	3.19 (2.37-4.23)	3.55 (2.56-4.77)	4.05 (2.83-5.51)	4.44 (3.04-6.07)		
2-hr	0.798 (0.644-1.00)	0.911 (0.734-1.14)	1.11 (0.890-1.39)	1.28 (1.02-1.61)	1.53 (1.20-1.97)	1.74 (1.34-2.25)	1.95 (1.47-2.56)	2.18 (1.59-2.89)	2.50 (1.78-3.36)	2.75 (1.91-3.72)		
3-hr	0.593 (0.482-0.737)	0.673 (0.547-0.837)	0.814 (0.659-1.01)	0.939 (0.758-1.17)	1.13 (0.894-1.44)	1.28 (0.998-1.65)	1.44 (1.10-1.88)	1.62 (1.20-2.13)	1.86 (1.34-2.49)	2.06 (1.45-2.76)		
6-hr	0.365 (0.301-0.447)	0.409 (0.337-0.502)	0.489 (0.401-0.600)	0.561 (0.459-0.690)	0.669 (0.540-0.847)	0.760 (0.601-0.965)	0.857 (0.662-1.10)	0.962 (0.722-1.25)	1.11 (0.810-1.47)	1.23 (0.877-1.63)		
12-hr	0.226 (0.188-0.272)	0.251 (0.209-0.304)	0.297 (0.247-0.359)	0.337 (0.280-0.409)	0.399 (0.326-0.496)	0.450 (0.361-0.562)	0.504 (0.395-0.638)	0.563 (0.428-0.722)	0.645 (0.478-0.840)	0.712 (0.516-0.929)		
24-hr	0.136 (0.115-0.162)	0.153 (0.130-0.182)	0.182 (0.154-0.217)	0.208 (0.174-0.248)	0.244 (0.202-0.299)	0.274 (0.222-0.337)	0.305 (0.242-0.380)	0.338 (0.261-0.426)	0.383 (0.288-0.490)	0.419 (0.308-0.539)		
2-day	0.079 (0.068-0.092)	0.090 (0.077-0.106)	0.109 (0.093-0.128)	0.126 (0.107-0.148)	0.148 (0.124-0.178)	0.166 (0.137-0.201)	0.185 (0.148-0.226)	0.204 (0.159-0.253)	0.229 (0.175-0.289)	0.249 (0.186-0.316)		
3-day	0.058 (0.050-0.067)	0.066 (0.057-0.076)	0.079 (0.068-0.092)	0.091 (0.078-0.106)	0.107 (0.090-0.128)	0.120 (0.100-0.144)	0.134 (0.109-0.163)	0.148 (0.117-0.183)	0.168 (0.129-0.210)	0.184 (0.139-0.231)		
4-day	0.047 (0.041-0.054)	0.053 (0.046-0.061)	0.063 (0.055-0.073)	0.072 (0.062-0.083)	0.085 (0.072-0.101)	0.096 (0.080-0.114)	0.107 (0.087-0.129)	0.119 (0.095-0.146)	0.136 (0.105-0.169)	0.149 (0.113-0.186)		
7-day	0.032 (0.028-0.036)	0.036 (0.031-0.041)	0.042 (0.037-0.048)	0.048 (0.042-0.055)	0.056 (0.049-0.066)	0.064 (0.054-0.075)	0.071 (0.059-0.085)	0.080 (0.064-0.097)	0.091 (0.072-0.112)	0.101 (0.078-р.124)		
10-day	0.025	0.028	0.033	0.038	0.044	0.050	0.056	0.062	0.071	0.078		

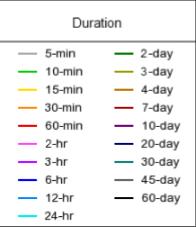
	(0.022-0.029)	(0.025-0.032)	(0.029-0.037)	(0.033-0.043)	(0.038-0.051)	(0.042-0.058)	(0.047-0.066)	(0.051-0.075)	(0.056-0.087)	(0.061-0.096)
20-day	0.017 (0.015-0.019)	0.019 (0.017-0.021)	0.022 (0.019-0.024)	0.024 (0.022-0.027)	0.028 (0.025-0.032)	0.032 (0.027-0.036)	0.035 (0.030-0.041)	0.038 (0.032-0.046)	0.043 (0.035-0.052)	0.047 (0.037-0.057)
30-day	0.014 (0.013-0.015)	0.015 (0.014-0.017)	0.018 (0.016-0.019)	0.020 (0.018-0.022)	0.023 (0.020-0.025)	0.025 (0.022-0.028)	0.027 (0.023-0.031)	0.029 (0.025-0.034)	0.033 (0.027-0.039)	0.035 (0.028-0.042)
45-day	0.012 (0.011-0.013)	0.013 (0.012-0.014)	0.015 (0.013-0.016)	0.016 (0.015-0.018)	0.018 (0.016-0.020)	0.020 (0.017-0.022)	0.021 (0.018-0.024)	0.023 (0.019-0.026)	0.025 (0.020-0.029)	0.026 (0.021-0.031)
60-day	0.010 (0.009-0.011)	0.011 (0.010-0.012)	0.013 (0.012-0.014)	0.014 (0.013-0.015)	0.016 (0.014-0.017)	0.017 (0.015-0.019)	0.018 (0.016-0.021)	0.019 (0.016-0.022)	0.021 (0.017-0.024)	0.022 (0.018-0.025)

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

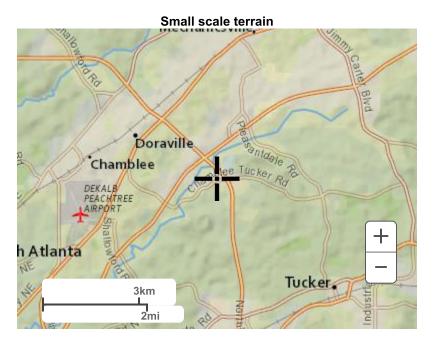

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.


Please refer to NOAA Atlas 14 document for more information.

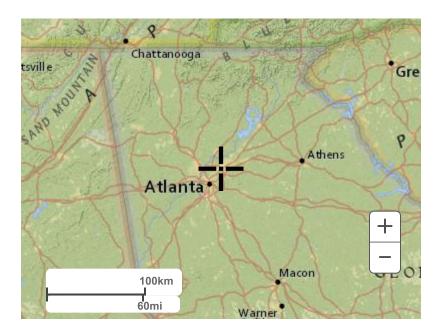

Back to Top

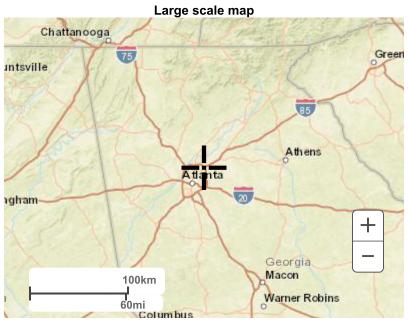

PF graphical

PDS-based intensity-duration-frequency (IDF) curves Latitude: 33.8856°, Longitude: -84.2550°

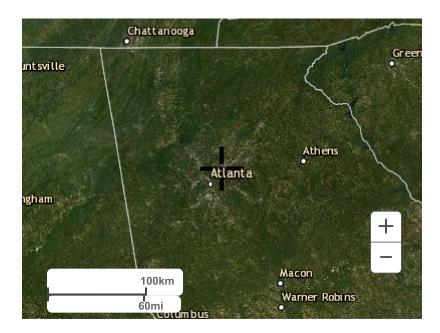


NOAA Atlas 14, Volume 9, Version 2

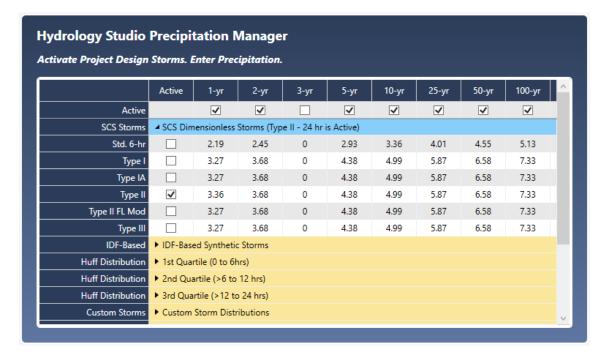

Created (GMT): Tue Nov 10 15:57:49 2020


Back to Top

Maps & aerials



Large scale terrain


Large scale aerial

Back to Top

<u>US Department of Commerce</u> <u>National Oceanic and Atmospheric Administration</u> National Weather Service
National Water Center
1325 East West Highway
Silver Spring, MD 20910
Questions?: HDSC.Questions@noaa.gov

Disclaimer

Embry Hills 2020 Precipitation Data

Table 2.1.5-1 Runoff Curve Numbers

Cover description		Curve numbers for hydrologic soil groups					
Cover type and	Av	rerage percent					
hydrologic condition	im	pervious area [*]	Α	В	С	D	
Cultivated land:	without conservation t		72 62	81 71	88 78	91 81	
Pasture or range land	68 39	79 61	86 74	89 80			
Meadow: good condition	30	58	71	78			
Wood or forest land:	45 25	66 55	77 70	83 77			
Open space (lawns, p Poor condition Fair condition (Good condition) ³ 68 49 39	79 69 61	86 79 74	89 84 80			
Impervious areas: Paved parking (excluding right	lots, roofs, driveways -of-way)	s, etc.	98	98	98	98	
right-of-way)		· ·	98 83 76 72	98 89 85 82	98 92 89 87	98 93 91 89	
Urban districts: Commercial and busi Industrial	ness	85% 72%	89 81	92 88	94 91	95 93	
Residential districts I 1/8 acre or less (town 1/4 acre 1/3 acre 1/2 acre 1 acre 2 acres Developing urban ar Newly graded areas only, no vegetation)	houses)	65% 38% 30% 25% 20% 12%	77 61 57 54 51 46	85 75 72 70 68 65	90 83 81 80 79 77	92 87 86 85 84 82	

¹ Average runoff condition, and $I_a = 0.2S$

 $^{^2}$ The average percent impervious area shown was used to develop the composite CNs. Other assumptions are as follows: impervious areas are directly connected to the drainage system, impervious areas have a CN of 98, and pervious areas are considered equivalent to open space in good hydrologic condition. If the impervious area is not connected, the SCS method has an adjustment to reduce the effect.

 $^{^3}$ CNs shown are equivalent to those of pasture. Composite CNs may be computed for other combinations of open space cover type.

East Basin			
	Sizing Color	detion	
Water Quality & Channel Protection Note: This for just the redeveloped are		ulation	
Note: This for just the redeveloped are	ea .		
Water Quality Volume	Value	Units	Notes
Impervious Area		acres	Redeveloped East Basin
Total Drainage Area		acres	Nedeveloped Last Basin
% Impervious	100	acics	
Rv		Inches	
WOV		Acre-feet	
Required WQv	3310.56		
Proposed WQv	3400		3310 CF - 25% to micropool
1 Topocca TTQT	0-,00	Oi	3310 CF - 25% (3310) = 2485 CF
Water Quality Release			3010 01 2070(0010) 2400 01
Proposed WQv for Release	2530	CF	
Avg. Release Rate			
Upper WQv Elevation	916.6		
Lower WQv Elevation			
Avg. Head			
	0.00679935		+
Orifice Diameter			Use 1" for Design
Offino Elamoto.	1.11002020		000 1 10. 200.g
Channel Protection Volume			
P	3.36		1 year rainfall
CN for site	98		From Hydroflow
la	0.04		Trom Try a. cc
la / P	0.04		
Tc		hours	
qu	1000		From Figure 2.1.5-6
qo/qi	0.018		1 10111 1 Igaro 2.1.0 0
	0.65760449		
	0.00.00		From Hydroflow - 1 year developed storm
Runoff Volume	8513		volume
vr		Inches	Volumo
	0.12851669		
Required Cpv	5598		
Proposed Cpv	6950		Elev. 918
riopessa sp.	0000	OI .	2.04. 010
Channel Protection Release			
Proposed WQv for Release	4420	CF	6950 - 2530 = 4420
Avg. Release Rate			
Upper WQv Elevation	918		
Lower WQv Elevation			
Avg. Head			
	0.01269888		
Orifice Diameter			Use 1.5" for Design
00			000 1.0 1.1 = 1.1.3.1

Georgia Stormwater Management Manual Stormwater Quality Site Development Review Tool Version 2.2

Name of Developer: Development Name: Site Location / Address: Building Addition 3250 Chamblee Tucker Road Atlanta, GA Development Type: Institutional, Public & Semi Public						neral Information Date Submitted: Permit Number: Developer Contact: Phone Number: Name of Engineer(s): Maintenance Responsibility:					Cornerstone Site Consultants Embry Hills Church of Christ						
Total Pre-Development A Total Post-Development A Total Treated A	rea (ac):	5.80 5.80 5.43		`		100% -	Total Suspended Solids (TSS) Removal										
Total Untreated A		0.37				80% -											
I (ac) P (ac) CA (ac)						60% - 40% - 20% - 0% - 100% - 80% -	%08 DB 1	% % % % % % % % % % % % % % % % % % %	%09 DB 3	%O DB 4	DB 5	DB 6	DB 7	%O	%O DB 9	% O DB 10	
Target TSS Re Total Target Runoff Red Runoff Reduction Vo Total Target Water (% TSS	duction Volume Ach Quality Vo	olume (cf) nieved (cf)	Yes 10,070 2,140 12,084 84%		% RR Target Met	40% - 20% - 0% -	%S DB 1	%86 DB 2	%05 DB 3	% O	% ODB 5	% O DB 6	% O DB 7	%0 DB 8	% O DB 9	% O DB 10	
				Of	fficial	Use	Only										
Tracking #: Reviewed By: Date Approved:							Conditi	ons of	Approv	al:							

Georgia Stormwater Management Manual Stormwater Quality Site Development Review Tool, v2.2

Stormy	vater	Qualit	ty Site	Devel	opme	nt Rev	view To	ol, v2	2.2		
Development Name: Building Add Drainage Basin Name: East Basin	ition								data input cells calculation cells constant values		
				Site Data	a				ochotant values		
ndicate Pre-Development Land Cover and Runoff Curve Numbers in the Sit	e's Disturbe	d Δrea									
Cover Type	HSG* A (acres)	CN	HSG B (acres)	CN	HSG C (acres)	CN	HSG D (acres)	CN	Total	% Cover	
Woods - Good Condition	(40.00)	30	4.37	55	(40.00)	70	(4.0.00)	77	4.37	100%	
Select a land cover type		0		0		0		0	0.00	0%	
Select a land cover type Select a land cover type		0		0		0		0	0.00	0% 0%	
Select a land cover type		0		0		0		0	0.00	0%	
Local Jurisdiction Input									0.00	0%	
Other									0.00	0%	
Total	0.00		4.37		0.00		0.00	2.22	4.37	100%	
SG = hydrologic soil group Weighted CN Weighted CN Potential Max Soil Retention, S _{pre} (in) 8.18											
ndicate Post-Development Land Cover and Runoff Curve Numbers in the S	ite's Disturb	ed Area									
Cover Type	HSG A (acres)	CN	HSG B (acres)	CN	HSG C (acres)	CN	HSG D (acres)	CN	Total	% Cover	
Impervious - 7700		98	2.30	98		98		98	2.30	53%	
Open space - Good condition (grass cover > 75%) Woods - Good Condition		39 30	1.00 1.07	61 55		74 70		80 77	1.00 1.07	23% 24%	
Select a land cover type		0	1.07	0		0		0	0.00	0%	
Select a land cover type		0		0		0		0	0.00	0%	
Local Jurisdiction Input									0.00	0%	
Other									0.00	0%	
Total	0.00		4.37		0.00		0.00		4.37	100%	
					Po	tential Max Soil I	Impervious (ac) Rv Weighted CN Retention, S _{post} (in)	2.30 0.52 79 2.66			
			Conser	vation Are	ea Credits						
cenario 1: Natural Conservation Area *See the GSMM Volume 2, Section 2.3.3.3 fo	r more informa	tion.			Scenario 3: S	oil Restoration	*See the GSMM	Volume 2, Sec	tion 4.23 for mor	e information.	
Check the box if a portion of the post-developed area is protected by a conserprotection.	vation easeme	nt or equivaler	nt form of				f a portion of the possement or equivale			oil restoration a	nd is protected by a
	Note: The green above is checked		f the Scenario 1 box				elopment with rest uivalent form of pro		protected by a c	conservation	Note: The green cell will unlock if the Scenario 3 box above is checked
cenario 2: Site Reforestation/Revegetation *See the GSMM Volume 2, Section 4.22	? for more infor	mation.			Scenario 4: S	ite Reforestatio	on/Revegetation &	Soil Restora	ation	*See the GSM more informati	M Volume 2, Section 4.22 and 4.23 for on.
Check the box if a portion of the post-developed area employs <u>site reforestation</u> conservation easement or equivalent form of protection.	on/revegetation	and is protect	ed by a		Check the box if the same portion of the post-developed area employs site reforestation/revegetation and soil restoration, and is protected by a conservation easement or equivalent form of protection.						
	Note: The green above is checked		f the Scenario 2 box				estored soils in a re on easement or equ			nd protected	Note: The green cell will unlock if the Scenario 4 box above is checked
	Total Co	nservation Ar	ea Credit (acres)	0.00	-+						

Georgia Stormwater Management Manual Stormwater Quality Site Development Review Tool, v2.2

Development Name: Building Addition

Drainage Basin Name: East Basin

calculation cells
constant values

Water Quality Goals

Target Runoff Reduction Storm (in) 1.0

Total Site Area for Water Quality Volume (acres) 4.37

Target Runoff Reduction Volume (cf) 8,307

Target Water Quality Volume (cf) 9,969

Select BMPs for Runoff Reduction and Water Quality

		Area D	Praining to Eacl	h BMP	Storage Volume	RR Conveyance			Ru	noff Reduction	Calculations			WQ Cald	ulations
		On-site Pervious Area (acres)	On-site Impervious Area (acres)	Offsite Area (acres)	Provided by BMP (cf)	Volume Provided by BMP (cf)	Down-stream BMP	RR Volume from Direct Drainage (cf)	RR Volume from Upstream Practices (cf)	Total RR Volume Received by BMP (cf)	Runoff Reduction %	RR Achieved (cf)	Remaining RR Volume (cf)	WQ _v from Direct Drainage (cf)	Effective TSS Removal %
BMP 1	Infiltration Trench	0.07	0.13		420		BMP 2	461	0	461	100%	420	41	553	100%
BMP 2	Stormwater Pond	1.63	2.17	4.77	10,000			7,779	41	7,820	0%	0	7,820	9,335	80%
BMP 3	Select a BMP							0	0	0	N/A	0	0	0	N/A
BMP 4	Select a BMP							0	0	0	N/A	0	0	0	N/A
BMP 5	Select a BMP							0	0	0	N/A	0	0	0	N/A
BMP 6	Select a BMP							0	0	0	N/A	0	0	0	N/A
BMP 7	Select a BMP							0	0	0	N/A	0	0	0	N/A
BMP 8	Select a BMP							0	0	0	N/A	0	0	0	N/A
BMP 9	Select a BMP							0	0	0	N/A	0	0	0	N/A
BMP 10	Select a BMP							0	0	0	N/A	0	0	0	N/A
	TOTAL UNTREATED AREA (acres)	1.70 0.37	2.30 0.00	4.77				8,240				420		9,888	

Target Runoff Reduction Volume (cf)	8,307
Target Achieved?	No
Remaining Runoff Reduction Volume (cf)	7,887

Target Water Quality Volume (cf)	9,969
% TSS Removal Achieved	80%
Target Achieved?	Yes!
Remaining TSS Removal %	0%

Georgia Stormwater Management Manual Stormwater Quality Site Development Review Tool, v2.2

Development Name: Building Addition

Drainage Basin Name: East Basin

calculation cells constant values

Channel and Flood Protection Calculations

	1-yr, 24-hr	2-yr, 24-hr	25-yr, 24-hr	100-yr, 24-hr
	storm	storm	storm	storm
Target Rainfall Event (in)				

	1-yr, 24-hr	2-yr, 24-hr	25-yr, 24-hr	100-yr, 24-hr
	storm	storm	storm	storm
Pre-Development Runoff Volume (in)	0.00	0.00	0.00	0.00
Post Development Runoff Volume (in) with no BMPs	0.00	0.00	0.00	0.00
Post-Development Runoff Volume (in) with BMPs	0.00	0.00	0.00	0.00
Adjusted CN	0	0	0	0

*See Stormwater Management Standards to Determine Detention Requirements.

Comments

Georgia Stormwater Management Manual Stormwater Quality Site Development Review Tool, v2.2

Stormy	vater (Qualit	ty Site I	Devel	opme	nt Rev	view To	ol, v2	2.2		
Development Name: Building Add Drainage Basin Name: West Basin	ition								data input cells calculation cells		
									constant values		
				Site Data	3						
ndicate Pre-Development Land Cover and Runoff Curve Numbers in the Sit	te's Disturbed	l Area									
Cover Type	HSG* A (acres)	CN	HSG B (acres)	CN	HSG C (acres)	CN	HSG D (acres)	CN	Total	% Cover	
Woods - Good Condition		30	1.29	55		70		77	1.29	100%	
Select a land cover type		0		0		0		0	0.00	0% 0%	
Select a land cover type Select a land cover type		0		0		0		0	0.00	0%	-
Select a land cover type		0		0		0		0	0.00	0%	
Local Jurisdiction Input								J	0.00	0%	
Other									0.00	0%	
Total	0.00		1.29		0.00		0.00		1.29	100%	
HSG = hydrologic soil group							Impervious (ac)	0.00			
					P	otential Max Soil	Weighted CN Retention, S _{pre} (in)		1		
ndicate Post-Development Land Cover and Runoff Curve Numbers in the S	ite's Disturbe	ed Area									
Cover Type	HSG A (acres)	CN	HSG B (acres)	CN	HSG C (acres)	CN	HSG D (acres)	CN	Total	% Cover	
Impervious		98	0.46	98		98		98	0.46	33%	
Open space - Fair condition (grass cover 50% to 75%)		49	0.31	69		79		84	0.31	22%	
Open space - Good condition (grass cover > 75%) Open space - Good condition (grass cover > 75%)		39 39	0.19 0.15	61 61		74 74		80 80	0.19 0.15	13% 11%	
Woods - Good Condition		30	0.30	55		70		77	0.30	21%	
Local Jurisdiction Input			0.30			70		- 77	0.00	0%	
Other									0.00	0%	
Total	0.00		1.41		0.00		0.00		1.41	100%	
							Impervious (ac)	0.46			_
							Rv	0.34			
					_		Weighted CN	74			
					Ро	tential Max Soil I	Retention, S _{post} (in)	3.60			
			Conser	vation Are	a Credits						
Scenario 1: Natural Conservation Area *See the GSMM Volume 2, Section 2.3.3.3 for	r more informat	ion.			Scenario 3: S	Soil Restoration	*See the GSMM \	√olume 2, Sec	tion 4.23 for mo	re information.	
Check the box if a portion of the post-developed area is protected by a conser protection.	rvation easeme	nt or equivaler	nt form of				f a portion of the po sement or equivale			oil restoration a	nd is protected by a
	Note: The green of above is checked		the Scenario 1 box				velopment with restoution		protected by a	conservation	Note: The green cell will unlock if the Scenario 3 box above is checked
Scenario 2: Site Reforestation/Revegetation *See the GSMM Volume 2, Section 4.22	2 for more inforr	nation.			Scenario 4: S	Site Reforestation	on/Revegetation &	Soil Restora	tion	*See the GSM more informati	M Volume 2, Section 4.22 and 4.23 for on.
Check the box if a portion of the post-developed area employs <u>site reforestation</u> conservation easement or equivalent form of protection.	on/revegetation	and is protect	ed by a				f the same portion of is protected by a c				estation/revegetation and soil protection.
	Note: The green of above is checked		the Scenario 2 box				estored soils in a re on easement or equ			nd protected	Note: The green cell will unlock if the Scenario 4 box above is checked
	Total Co	nservation Ar	ea Credit (acres)	0.00							

Georgia Stormwater Management Manual Stormwater Quality Site Development Review Tool, v2.2

Development Name: Building Addition data input cells

Drainage Basin Name: West Basin calculation cells

constant values

Water Quality Goals

Target Runoff Reduction Storm (in) 1.0

Total Site Area for Water Quality Volume (acres) 1.41

Target Runoff Reduction Volume (cf) 1,759

Target Water Quality Volume (cf) 2,110

Select BMPs for Runoff Reduction and Water Quality

		Area [Oraining to Each	ı ВМР	Storage Volume	RR Conveyance			Ru	noff Reduction	Calculations			WQ Calc	ulations
		On-site Pervious Area (acres)	On-site Impervious Area (acres)	Offsite Area (acres)	Provided by BMP (cf)	Volume Provided by BMP (cf)	Down-stream BMP	RR Volume from Direct Drainage (cf)	RR Volume from Upstream Practices (cf)	Total RR Volume Received by BMP (cf)	Runoff Reduction %	RR Achieved (cf)	Remaining RR Volume (cf)	WQ _v from Direct Drainage (cf)	Effective TSS Removal %
BMP 1	Infiltration Trench	0.50	0.46		2,500			1,677	0	1,677	100%	1,677	0	2,012	100%
BMP 2	Vegetated Filter Strip (A & B hydrologic soils)	0.45				82		82	0	82	50%	41	41	98	60%
BMP 3	Select a BMP							0	0	0	N/A	0	0	0	N/A
BMP 4	Select a BMP							0	0	0	N/A	0	0	0	N/A
BMP 5	Select a BMP							0	0	0	N/A	0	0	0	N/A
BMP 6	Select a BMP							0	0	0	N/A	0	0	0	N/A
BMP 7	Select a BMP							0	0	0	N/A	0	0	0	N/A
BMP 8	Select a BMP							0	0	0	N/A	0	0	0	N/A
BMP 9	Select a BMP							0	0	0	N/A	0	0	0	N/A
BMP 10	Select a BMP							0	0	0	N/A	0	0	0	N/A
	TOTAL UNTREATED AREA (acres)	0.95 0.00	0.46 0.00	0.00				1,759				1,718		2,110	

Target Runoff Reduction Volume (cf)	1,759
Target Achieved?	No
Remaining Runoff Reduction Volume (cf)	41

Target Water Quality Volume (cf)	2,110
% TSS Removal Achieved	98%
Target Achieved?	Yes!
Remaining TSS Removal %	0%

Georgia Stormwater Management Manual Stormwater Quality Site Development Review Tool, v2.2

Development Name: Building Addition

Drainage Basin Name: West Basin

Calculation cells constant values

Channel and Flood Protection Calculations

	1-yr, 24-hr	2-yr, 24-hr	25-yr, 24-hr	100-yr, 24-hr
	storm	storm	storm	storm
Target Rainfall Event (in)				

	1-yr, 24-hr	2-yr, 24-hr	25-yr, 24-hr	100-yr, 24-hr
	storm	storm	storm	storm
Pre-Development Runoff Volume (in)	0.00	0.00	0.00	0.00
Post Development Runoff Volume (in) with no BMPs	0.00	0.00	0.00	0.00
Post-Development Runoff Volume (in) with BMPs	0.00	0.00	0.00	0.00
Adjusted CN	0	0	0	0

*See Stormwater Management Standards to Determine Detention Requirements.

Comments

Georgia Stormwater Management Manual Stormwater Quality Site Development Review Tool, v2.2

HSG A (acres) CN	
Site Data	
Note Name	
Cover Type	
Woods - Good Condition 30 0.14 55 70 77 0.14 100%	
Select a land cover type 0 0 0 0 0 0 0 0 0	
Select a land cover type 0 0 0 0 0 0 0 0 0	
Select a land cover type 0 0 0 0 0 0 0 0 0	
Local Jurisdiction Input	
Total 0.00 0.14 0.00 0.00 0.00 0.00 0.14 100% HSG = hydrologic soil group Impervious (ac) Weighted CN S5 0.18 HSG = hydrologic soil group HSG = hydrol	
Impervious (ac) 0.00 Weighted CN 55	
Weighted CN Potential Max Soil Retention, S pre (in) 8.18	
Potential Max Soil Retention, S _{pre} (in) 8.18	
Cover Type HSG A (acres) CN HSG B (acres) CN HSG C (acres) CN HSG D (acres) CN Total % Cover Woods - Good Condition 30 0.02 55 70 77 0.02 100% Select a land cover type 0 0 0 0 0 0.00 0% Select a land cover type 0 0 0 0 0 0.00 0% Select a land cover type 0 0 0 0 0 0.00 0% Local Jurisdiction Input 0 0 0 0 0.00 0%	
Cover Type (acres) CN HSG B (acres) CN (acres) CN Iotal % Cover Woods - Good Condition 30 0.02 55 70 77 0.02 100% Select a land cover type 0 0 0 0 0.00 0% Select a land cover type 0 0 0 0 0 0.00 0% Select a land cover type 0 0 0 0 0 0.00 0% Local Jurisdiction Input 0 0 0 0 0.00 0%	
Select a land cover type 0 0 0 0 0.00 0% Select a land cover type 0 0 0 0 0.00 0% Select a land cover type 0 0 0 0 0.00 0% Select a land cover type 0 0 0 0 0.00 0% Local Jurisdiction Input 0 0 0 0.00 0%	
Select a land cover type 0 0 0 0 0.00 0% Select a land cover type 0 0 0 0 0.00 0% Select a land cover type 0 0 0 0 0.00 0% Local Jurisdiction Input 0 0 0 0.00 0%	
Select a land cover type 0 0 0 0 0.00 0% Select a land cover type 0 0 0 0 0 0 0% Local Jurisdiction Input 0 0 0 0 0 0 0%	
Select a land cover type 0 0 0 0 0.00 0% Local Jurisdiction Input 0 0 0 0 0 0 0 0% 0	
Local Jurisdiction Input 0.00 0%	
Other 0.00 0%	
Total 0.00 0.02 0.00 0.00 0.00 100%	
Impervious (ac) 0.00 Rv 0.05 Weighted CN 55 Potential Max Soil Retention, S _{post} (in) 8.18	
Conservation Area Credits	
Scenario 1: Natural Conservation Area *See the GSMM Volume 2, Section 2.3.3.3 for more information. Scenario 3: Soil Restoration *See the GSMM Volume 2, Section 4.23 for more information.	
Check the box if a portion of the post-developed area is protected by a conservation easement or equivalent form of protection. Check the box if a portion of the post-developed area employs soil restoration and is protected conservation easement or equivalent form of protection.	ected by a
Area (ac) of development protected by a conservation easement or equivalent form of protection. Note: The green cell will unlock if the Scenario 1 box above is checked Note: The green cell will unlock if the Scenario 1 box above is checked Area (ac) of development with restored soils and protected by a conservation Area (ac) of development of development with restored soils and protected by a conservation Note: The green cell will unlock if the Scenario 1 box above is checked	e green cell will unlock if the Scenario
*Scenario 2: Site Reforestation/Revegetation *See the GSMM Volume 2, Section 4.22 for more information. *See the GSMM Volume 2, more information. *See the GSMM Volume 2, more information.	оче із спескей
Check the box if a portion of the post-developed area employs site reforestation/revegetation and is protected by a Check the box if the same portion of the post-developed area employs site reforestation/revegence.	pe 2, Section 4.22 and 4.23 for
conservation easement or equivalent form of protection. <u>restoration</u> , and is protected by a conservation easement or equivalent form of protection.	ne 2, Section 4.22 and 4.23 for revegetation and soil
conservation easement or equivalent form of protection. Area (ac) of development reforested/revegetated and protected by a Source of the Scenario 2 box Note: The green cell will unlock if the Scenario 2 box Area (ac) with restored soils in a reforested & revegetated area and protected Source of Source	ne 2, Section 4.22 and 4.23 for revegetation and soil

Georgia Stormwater Management Manual Stormwater Quality Site Development Review Tool, v2.2

Development Name:	Building Addition	data input cell
Orainage Basin Name:	South Basin	calculation cel
		constant value

Water Quality Goals

Target Runoff Reduction Storm (in) 1.0

Total Site Area for Water Quality Volume (acres) 0.02

Target Runoff Reduction Volume (cf) 4

Target Water Quality Volume (cf) 4

Select BMPs for Runoff Reduction and Water Quality

	Area Draining to Each BMP		Storage Volume RR Conveyance Volume			Runoff Reduction Calculations				WQ Calculations					
		On-site Pervious Area (acres)	On-site Impervious Area (acres)	Offsite Area (acres)	Provided by BMP (cf)	Volume Provided by BMP (cf)	Down-stream BMP	RR Volume from Direct Drainage (cf)	RR Volume from Upstream Practices (cf)	Total RR Volume Received by BMP (cf)	Runoff Reduction %	RR Achieved (cf)	Remaining RR Volume (cf)	WQ _v from Direct Drainage (cf)	Effective TSS Removal %
BMP 1	Vegetated Filter Strip (A & B hydrologic soils)	0.02				4		4	0	4	50%	2	2	4	60%
BMP 2	Select a BMP							0	0	0	N/A	0	0	0	N/A
BMP 3	Select a BMP							0	0	0	N/A	0	0	0	N/A
BMP 4	Select a BMP							0	0	0	N/A	0	0	0	N/A
BMP 5	Select a BMP							0	0	0	N/A	0	0	0	N/A
BMP 6	Select a BMP							0	0	0	N/A	0	0	0	N/A
BMP 7	Select a BMP							0	0	0	N/A	0	0	0	N/A
BMP 8	Select a BMP							0	0	0	N/A	0	0	0	N/A
BMP 9	Select a BMP							0	0	0	N/A	0	0	0	N/A
BMP 10	Select a BMP							0	0	0	N/A	0	0	0	N/A
	TOTAL UNTREATED AREA (acres)	0.02 0.00	0.00 0.00	0.00				4				2		4	

Target Runoff Reduction Volume (cf)	4
Target Achieved?	No
Remaining Runoff Reduction Volume (cf)	2

Target Water Quality Volume (cf)	4
% TSS Removal Achieved	60%
Target Achieved?	No
Remaining TSS Removal %	20%

Georgia Stormwater Management Manual Stormwater Quality Site Development Review Tool, v2.2

Development Name: Building Addition

Drainage Basin Name: South Basin

calculation cells constant values

Channel and Flood Protection Calculations

	1-yr, 24-hr	2-yr, 24-hr	25-yr, 24-hr	100-yr, 24-hr
	storm	storm	storm	storm
Target Rainfall Event (in)				

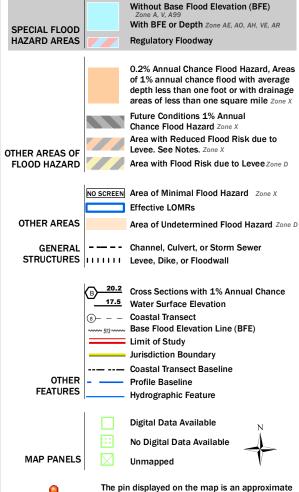
	1-yr, 24-hr	2-yr, 24-hr	25-yr, 24-hr	100-yr, 24-hr
	storm	storm	storm	storm
Pre-Development Runoff Volume (in)	0.00	0.00	0.00	0.00
Post Development Runoff Volume (in) with no BMPs	0.00	0.00	0.00	0.00
Post-Development Runoff Volume (in) with BMPs	0.00	0.00	0.00	0.00
Adjusted CN	0	0	0	0

*See Stormwater Management Standards to Determine Detention Requirements.

Comments

Appendix C Reference Maps

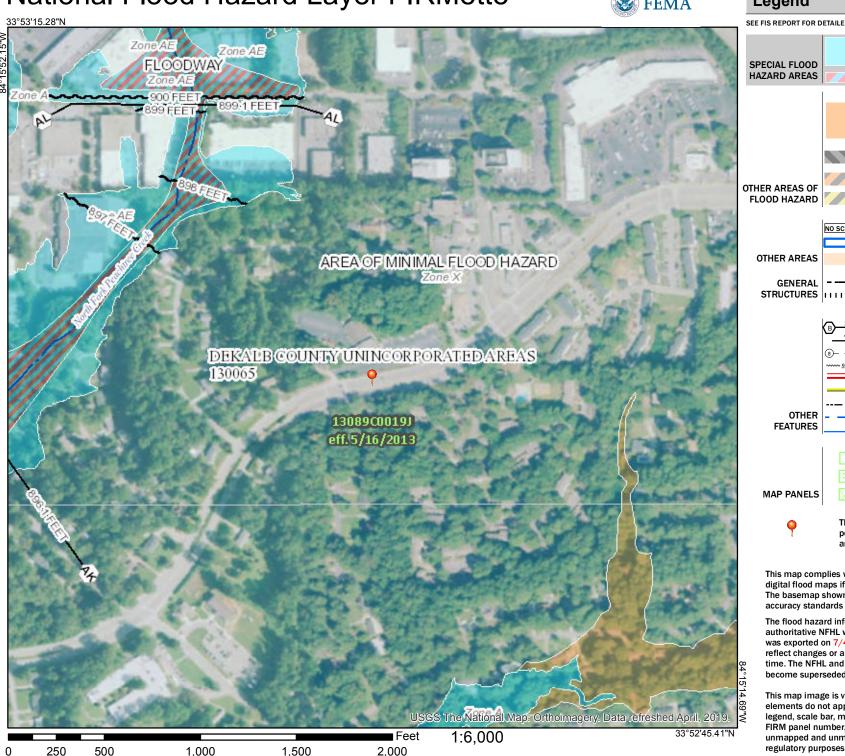
- Location map
- FEMA map
- USGS Quad map
- Soil Survey
- Soil Hydro Map

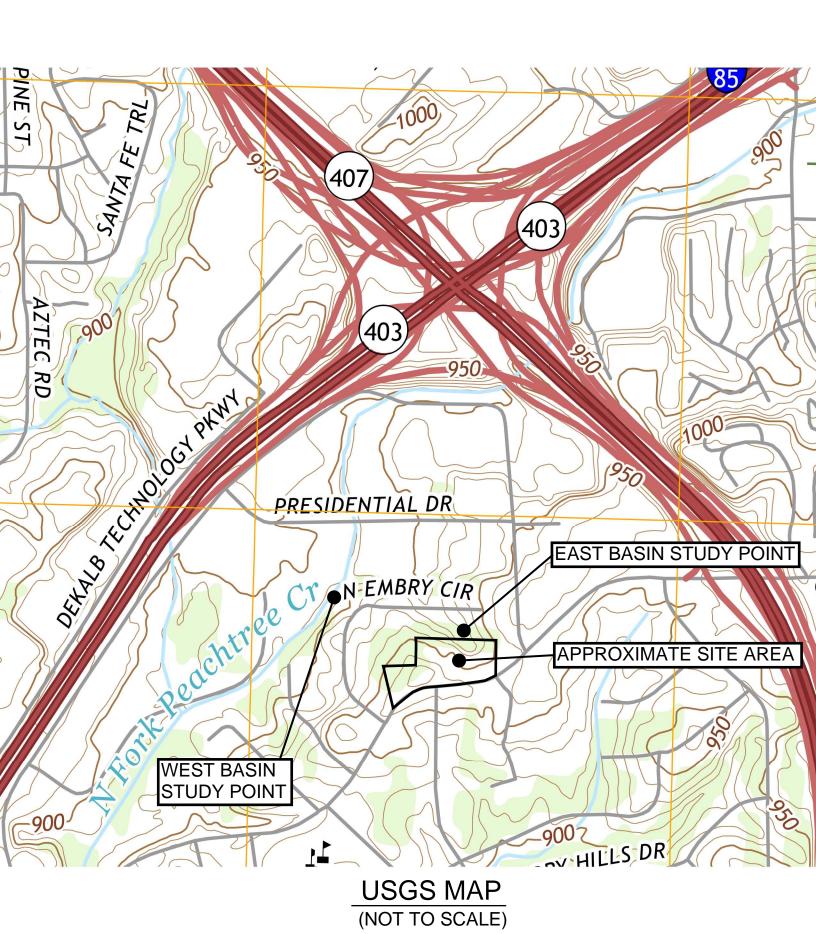


National Flood Hazard Layer FIRMette

C2 - FEMA MAP Legend

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT


This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap


point selected by the user and does not represent


an authoritative property location.

The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 7/4/2019 at 11:25:25 AM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.

This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes.

MAP LEGEND

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

Soil Map Unit Points

Special Point Features

tos Blowout

Borrow Pit

Clay Spot

Closed Depression

Gravel Pit

Gravelly Spot

Landfill

Lava Flow

Marsh or swamp

Mine or Quarry

Miscellaneous Water

Perennial Water

Rock Outcrop

Sandy Spot

Severely Eroded Spot

Saline Spot

Sinkhole

Slide or Slip

Sodic Spot

GEND

Spoil Area

Stony Spot

Wery Stony Spot

Wet Spot
 Other

Special Line Features

Water Features

Δ

Streams and Canals

Transportation

Rails

Interstate Highways

US Routes

Major Roads

Local Roads

Background

Aerial Photography

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:15.800.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: DeKalb County, Georgia Survey Area Data: Version 11, Sep 16, 2019

Soil map units are labeled (as space allows) for map scales 1:50.000 or larger.

Date(s) aerial images were photographed: Apr 13, 2019—Apr 22, 2019

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

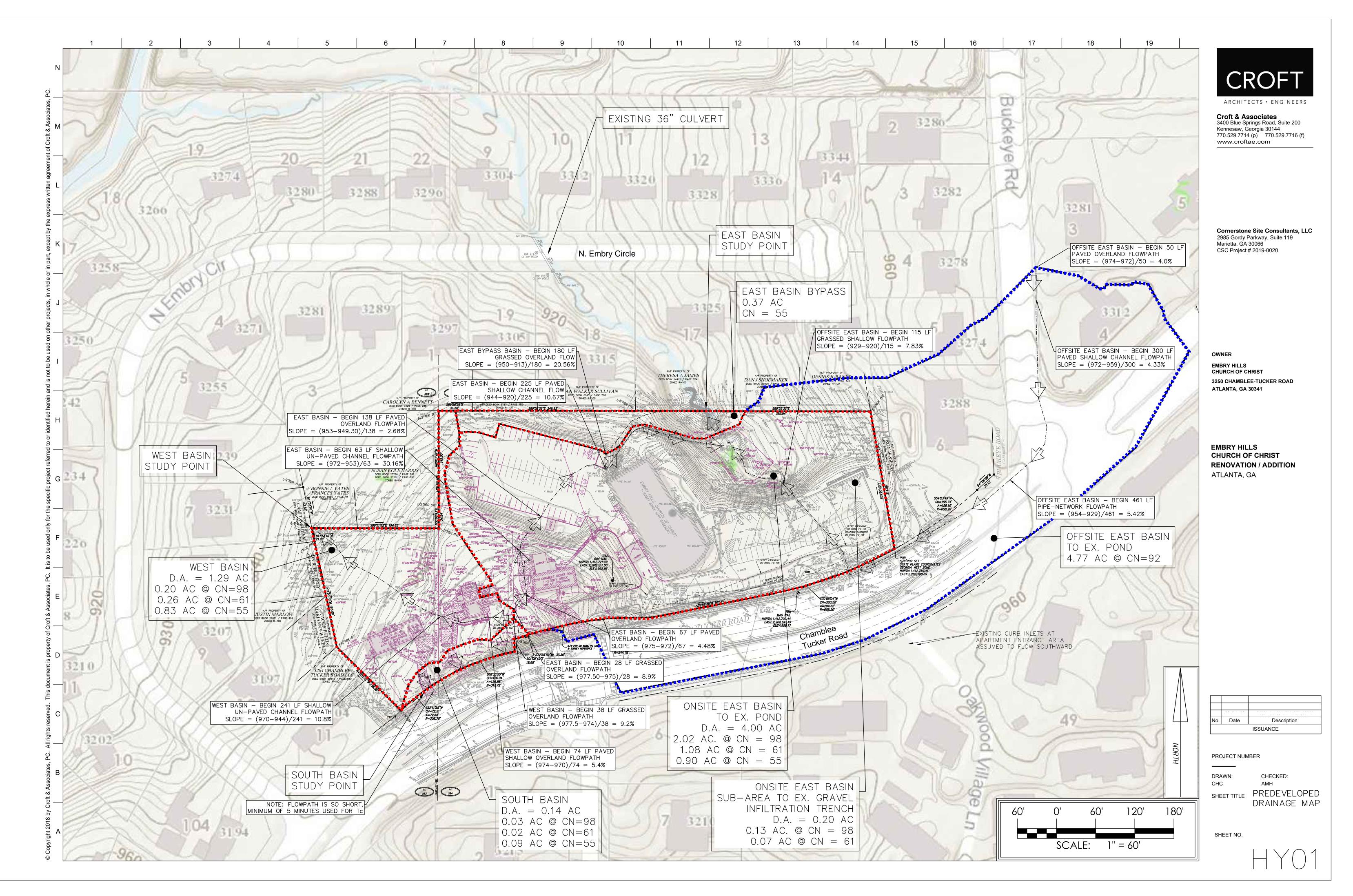
Map Unit Legend

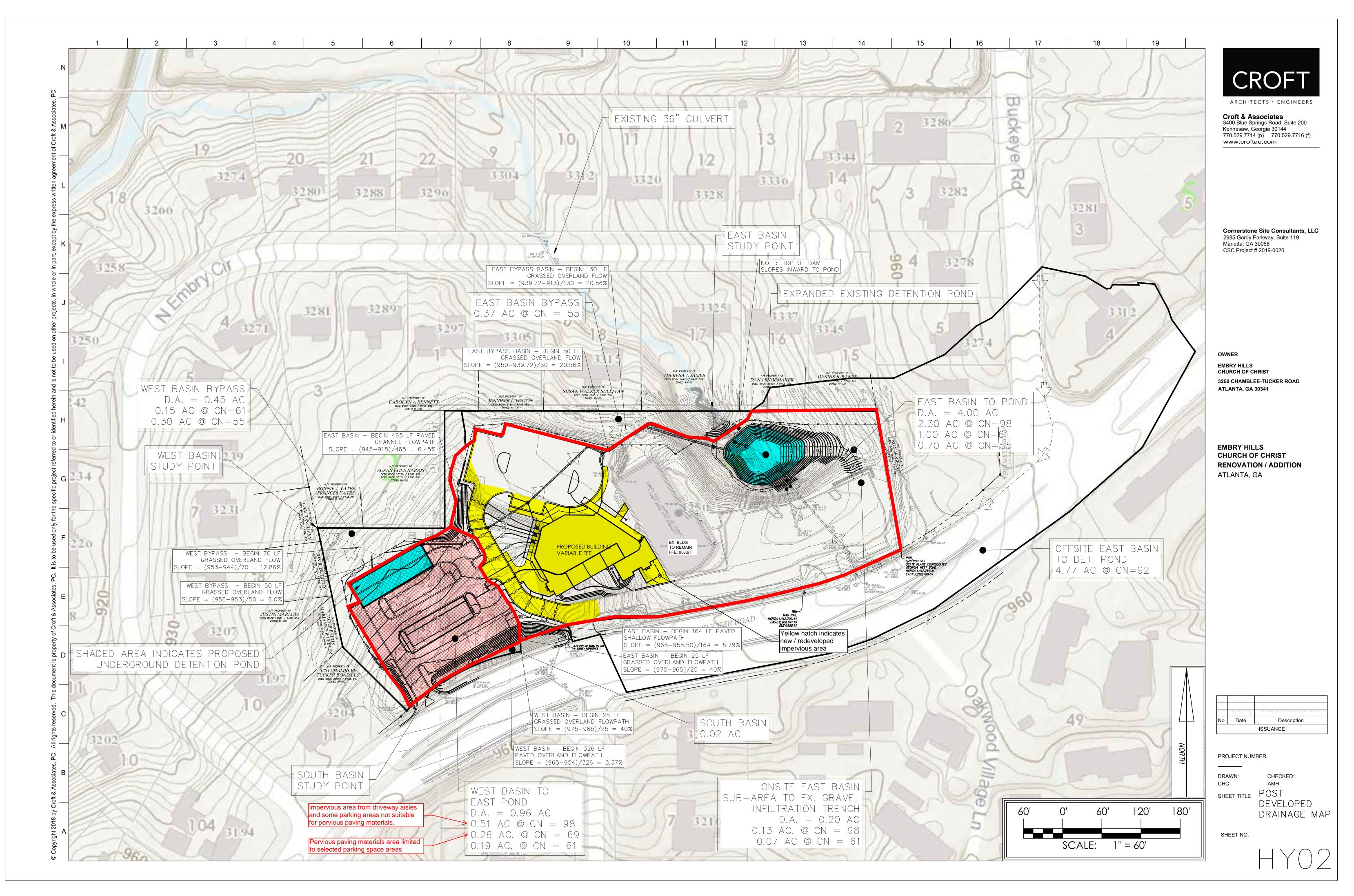
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
CuC	Cecil-Urban land complex, 2 to 10 percent slopes	5.5	18.0%
PfC	Pacolet sandy loam, 2 to 10 percent slopes	5.2	17.0%
PfD	Pacolet sandy loam, 10 to 15 percent slopes	0.3	1.1%
PuE	Pacolet-Urban land complex, 10 to 25 percent slopes	18.6	61.2%
Tf	Toccoa sandy loam, 0 to 2 percent slopes, frequently flooded	0.0	0.0%
Ud	Urban land	0.8	2.7%
Totals for Area of Interest		30.4	100.0%

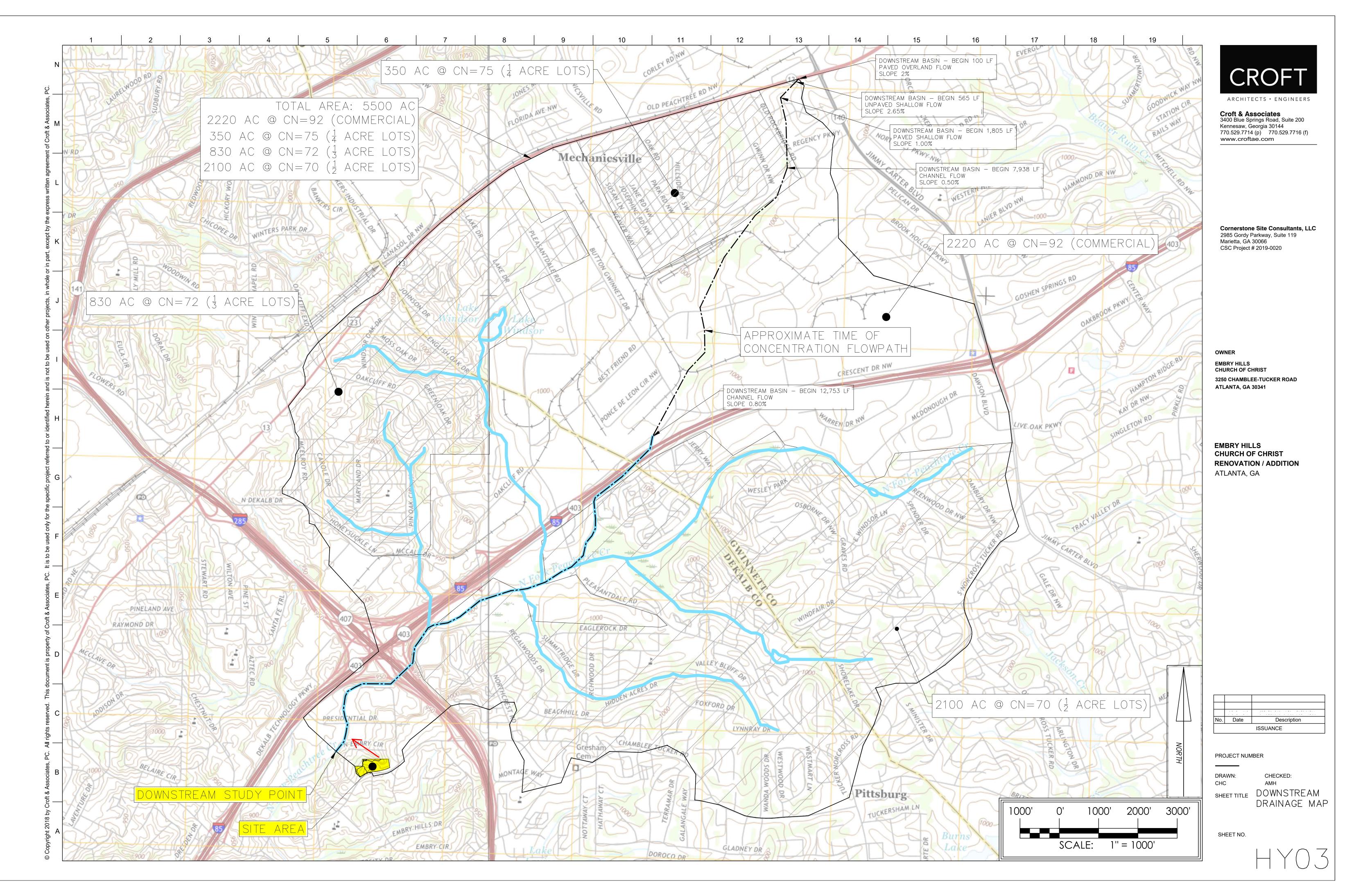
SOIL SERIES INTERPRETATIONS

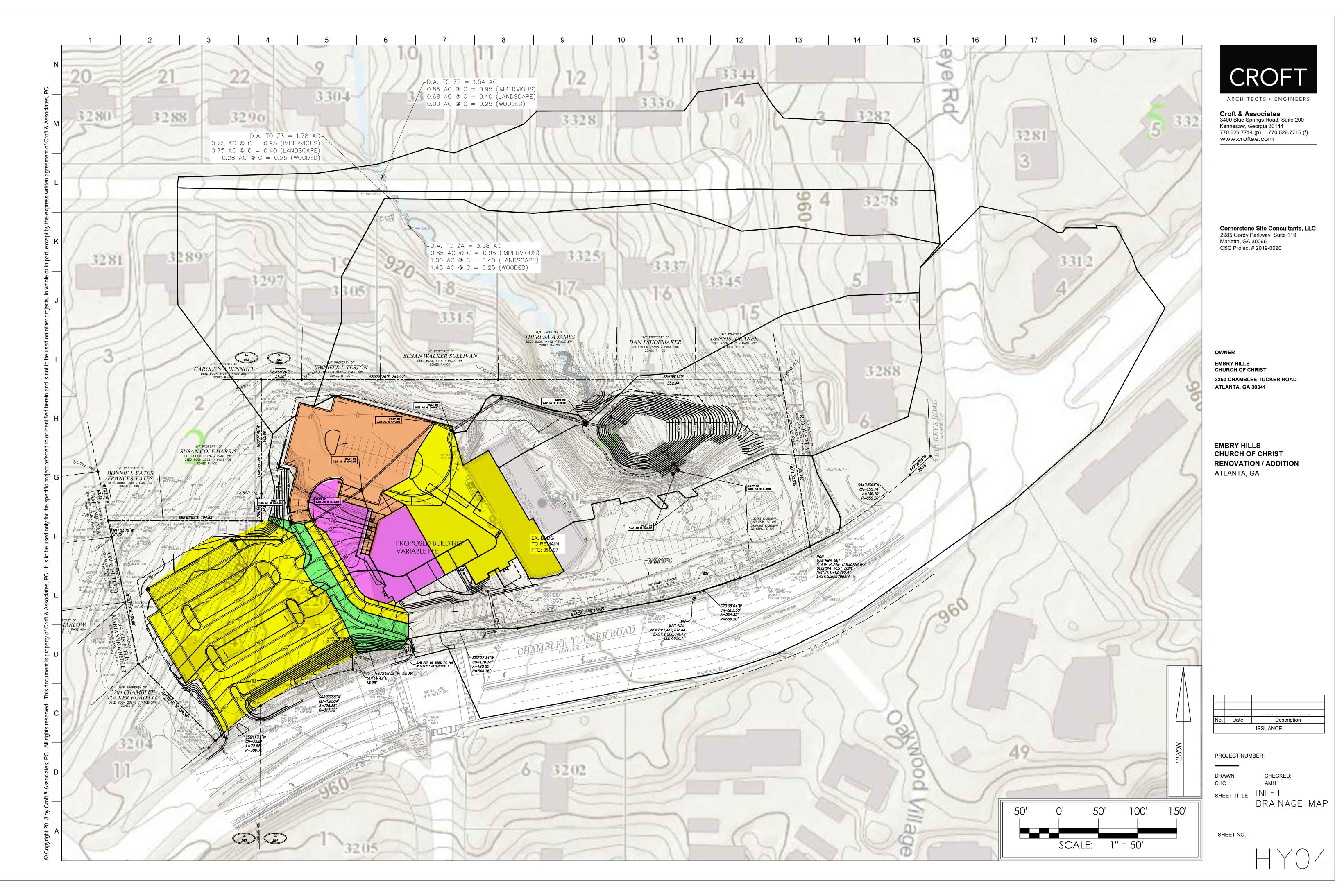
ESTIMATED SOIL PROPERTIES										
				CORF	ROSIVITY	DEP1	тн то:			
SOIL SERIES	PERMEABILITY (In/Hrs.)	SOIL REACTION (pH)	SHRINK- SWELL POTENTIAL	STEEL	CONCRETE	WATER TABLE (Ft.)	BEDROCK!	FLOOD FRE- QUENCY	HYDRO- GROUP	SEPTIC TANK ABSORPTION FIELDS
BRASSTOWN	0.6-2.0	4.5-6.0	Low	Mod.	High	>6.0	40-60	None	В	2-8%:M;r,pk 8-15%:M;r,pk,s 15+%:S;s
BREVARD	0.6-2.0	4.5-6.0	Low	Mod.	Mod.	>6.0	>60	None	В	2-8%:L 8-15%:M;s 15+%:S;s
BROOKMAN	0.06-0.2	4.5-7.8	Mod.	Mod.	Mod.	0-1.0	>60	None Rare Occ Freq	D	None, Rare:S;w.pk Occ,Freq:S;f,w,pk
BUNCOMBE	6.0-20	4.5-6.0	Low	Low	Mod.	>6.0	>60	Rare Occ Freq	А	Rare:S:pf Occ,Freq:S:f.pf
BURTON	0.6-6.0	3.6-6.0	Low	High	High	>6.0	20-40	None	В	5-%:S;r 15+%:S;r,s
CAHABA	0.6-2.0	4.5-6.0	Low	Mod.	Mod.	>6.0	>60	None Rare Occ	В	None:L Rare:M;f Occ:S;f
CAINHOY	<0.06	6.6-8.4	High	High	High	+1-1.0	>60	Freq	Α	S;pf
CAPE FEAR	0.06-0.2	4.5-6.0	Mod.	High	High	0-1.5	>60	None Rare	D	S;w,pk
CAPERS	<0.06	6.6-8.4	High	High	High	+1-1.0	>60	Freq	D	S;w,f,pk
CAPSHAW	0.06-0.2	5.1-7.8	Mod.	High	Mod.	3.5-5.0	48>60	None	С	Spk
CARNEGIE	0.2-0.6	4.5-5.5	Low	Low	Mod.	>6.0	>60	None	С	S;pk
CARTECAY	2.0-6.0	5.1-6.5	Low	Low	Mod.	0.5-1.5	>60	Occ Freq	С	S;w,f
CATASKA	2.0-20	4.5-5.5	Low	Low	Mod.	>6.0	20-40	None	~~	10-15%:S;r 15+%:S;r,s
CECIL	0.6-0.2	4.5-5.5	Low	Mod.	Mod.	>6.0	>60	None	В	0-8%:M;pk 8-15%:M;pk,s 15+%:S;s
CEDARBLUFF	0.06-0.2	5.1-6.0	Mod.	High	Mod.	0.5-1.0	>60	Freq	Ç.	S;f,pk,w
CENTENARY	2.0-0.6	4.5-6.0	Low	Mod.	High	3.5-5.0	>60	None	А	S;w,p,f
CHANDLER	2.0-0.6	4.5-6.0	Low	Low	High	>6.0	>60	None	В	S;s

GaSWCC


SOIL SERIES INTERPRETATIONS


ſ				ESTIMAT	ED SOIL	PROPER	TIES				
					CORF	ROSIVITY	DEP	тн то:			
	SOIL SERIES	PERMEABILITY (In./Hrs.)	SOIL REACTION (pH)	SHRINK- SWELL POTENTIAL	STEEL	CONCRETE	WATER TABLE (Ft.)	BEDROCK (In.)	FLOOD FRE- QUENCY	HYDRO- GROUP	SEPTIC TANK ABSORPTION FIELDS
	OSIER	6.0-2.0	3.6-6.0	Low	High	High	0-1.0	>60	None Rare Occ Freq	A/D	None, Rare:S;w,pf Occ, Freq:S;w,f,pf
1	OUSLEY	6.0-20	4.5-5.5	Low	Low	High	1.5-3.0	>60	Occ Freq	*	S;f,w,pf
	PACOLET	0.6-2.0	4.5-6.0	Low	High	High	>6.0	>60	None	В	2-8%:M;pk 8-15%:M;s,pk 154%:S;s
4	PASQUATANK	0.6-2.0	4.5-5.5	Low	High	Mod.	1.0-2.0	>60	None	B/D	S;w
	PELHAM	0.6-2.0	3.6-5.5	Low	High	High	0-1.0	>60	None Rare Occ Freq	B/D	None, Rare:S;w Occ, Freq:S;w,f
	PELION	.06-0.6	3.6-5.5	Low	High	High	1.0-2.5	>60	None	B/D	S;pk,w
	PERSANTI	0.06-0.2	3.6-5.5	Mod.	High	High	2.0-3.5	>60	None	С	S;w,pk
	PICKNEY	6.0-20	3.6-6.0	Low	High	High	+1-1.0	>60	None	A/D	S;w,pf
	PLUMMER	0.6-2.0	3,6-5.5	Low	Mod.	High	0-1.0	>60	None Rare Occ Freq	B/D	None, Rare:S;w,pf Occ, Freq:S;w,f,pf
	POINDEXTER	0.6-2.0	5.1-7.3	Low	Mod.	Mod.	>6.0	20-40	None	В	2-15%;S;r 15+%:S;r,s
	PONZER	0.06-2.0	3.6-7.8	Low	High	High	0-1.0	>60	None Rare Occ Freq	D	Rare:S;w,pk Occ, Freq:S;f,w,pk
	POOLER	0.06-0.2	3.6-5.5	Mod.	High	High	0-1.0	>60	None	D	Spk,w
	PORTERS	2.0-6.0	4.5-6.0	Low	Low	High	>6.0	40-60	None	В	8-15%:M;r,s 6-8%:M;r 15+%:S;s
	PORTSMOUTH	0.6-2.0	3.6-6.0	Low	High	High	0-1.0	>60	None	B/D	S;w,pf
	POTTSBURG	0.6-2.0	3.6-6.0	Low	High	High	0-1.0	>60	None Rare Occ	B/D	None,Rare;S;w,pf Occ;S;f,w,pf
	RABUN	0.6-2.0	5.1-6.5	Low	High	Mod.	>6.0	>60	None	В	2-8%:M;pk 8-15%:M;s,pk 15+%:S;s
	RAINS	0.6-2.0	3.6-5.5	Low	High	High	0-1.0	>60	None Rare Occ Freq	B/D	None,Rare:S;w Occ.Freq:S;f,w


GaSWCC


Appendix D Drainage Maps

- Predeveloped Conditions Drainage Map
- Post Developed Conditions Drainage Map
- 10% Downstream Drainage Map
- Inlet Drainage Map

Appendix E Hydraflow Computer Model Data

- Summary Pages
- Time of Concentration Calculations
- Hydrographs

11-12-2020

Hydrograph by Return Period

Hydrology Studio v 3.0.0.16

Peak Outflow (cfs) Hyd. Hydrograph Hydrograph No. Type Name 50-yr 100-yr 3-yr 5-yr 10-yr 25-yr 1-yr 2-yr NRCS Runoff Pre East Onsite Ex Pond 10.38 12.18 16.26 19.91 25.26 29.67 34.36 1 2 **NRCS Runoff** Pre East Offsite 20.87 23.26 28.46 32.96 39.43 44.62 50.08 3 Junction Pre To Ex East Pond 31.10 35.31 44.61 52.80 64.68 74.28 84.44 Pond Route Pre East Pond Routed 25.54 29.51 38.20 51.23 64.48 74.02 4 84.13 NRCS Runoff 0.397 0.608 0.952 5 Pre East Bypass 0.115 0.191 1.255 1.595 Pre East Study Pt - Ex 25.65 29.70 38.58 51.84 65.43 75.27 85.72 6 Junction 8 NRCS Runoff Pre East -90% condition 0.951 1.626 3.490 5.416 8.574 11.35 14.47 54 63 **46 82** Pre East Study Pt Code 21.26 31.09 37.40 9 Junction 24.19 This is what is going East to east pond from NRCS Runoff Post East Onsite to Pond 17.95 21.67 11 11.86 13.74 west pond 12 **NRCS Runoff** Post West to West Pond 3.090 3.551 4.575 5.489 6.814 7.884 9.015 **6**.957 13 Pond Route Post West Pond Routed 0.025 0.043 0.128 0.259 0.585 1.477 14 Junction Post To East Pond 32.65 36.93 46.38 54.65 66.61 76.41 86.89 15 Pond Route Post East Pond Routed 19.98 23.07 29.17 33.70 38.55 41.45 45.28 Post East Study Pt 20.08 29.47 34.13 39.20 42.29 46.28 16 Junction 23.23 NRCS Runoff Pre West - actual 2.626 3.557 4.999 18 1.242 1.648 6.228 7.573 19 NRCS Runoff Pre West - 90% condition 0.360 0.599 1.246 1.905 2.986 3.936 5.000 0.204 0.584 20 **NRCS Runoff** Post West Study Point 0.312 0.862 1.303 1.688 2.117 22 **NRCS Runoff** Pre South - actual 0.162 0.209 0.321 0.426 0.589 0.726 0.875 23 **NRCS Runoff** Pre South-90% condition 0.040 0.067 0.140 0.213 0.335 0.441 0.560 24 **NRCS Runoff** Post South Study Point 0.016 0.021 0.036 0.049 0.071 0.089 0.110 NRCS Runoff Pre Downstream with site 5847.5 6866.8 9170.1 11236.1 14283.0 16772.1 19418.2 26 27 **NRCS Runoff** 5836.4 6853.8 9152.7 11214.8 14256.0 16740.3 19381.4 Downstream w/o site Post Downstream with site 28 Junction 5844.4 6862.8 9164.0 11229.0 14274.5 16763.3 19410.1

Page 71 of 177

11-12-2020

Hydrograph 1-yr Summary

Hydrology Studio v 3.0.0.16

Peak Time to Hydrograph Inflow Maximum Maximum Hyd. Hydrograph Hydrograph Flow Peak Volume Hyd(s) Elevation Storage No. Type Name (cfs) (hrs) (cuft) (cuft) (ft) NRCS Runoff Pre East Onsite Ex Pond 20,841 1 10.38 11.97 2 **NRCS Runoff** Pre East Offsite 20.87 11.95 44,693 3 Junction Pre To Ex East Pond 31.10 11.95 65,534 1, 2 Pond Route Pre East Pond Routed 25.54 12.00 65,534 923.27 12,302 4 3 5 NRCS Runoff 12.00 415 Pre East Bypass 0.115 Junction Pre East Study Pt - Ex 25.65 12.00 65,949 6 4, 5 8 NRCS Runoff Pre East -90% condition 0.951 12.03 4,278 Pre East Study Pt Code 11.95 48,972 9 Junction 21.26 2, 8 NRCS Runoff Post East Onsite to Pond 11.86 11.97 23,897 11 12 **NRCS Runoff** Post West to West Pond 3.090 11.97 6,258 13 Pond Route Post West Pond Routed 0.025 24.03 2,895 12 949.94 4,705 14 Junction Post To East Pond 32.65 11.95 71,485 2, 11, 13 Pond Route Post East Pond Routed 68,899 15 19.98 12.03 921.31 22,016 14 69,314 Post East Study Pt 20.08 12.03 16 Junction 5, 15 NRCS Runoff Pre West - actual 1.242 11.97 2,862 18 19 NRCS Runoff Pre West - 90% condition 0.360 12.00 1,302 **NRCS Runoff** 0.204 12.00 614 20 Post West Study Point NRCS Runoff 22 Pre South - actual 0.162 11.97 356 NRCS Runoff Pre South-90% condition 0.040 12.00 23 146 24 **NRCS Runoff** Post South Study Point 0.016 11.98 38.3 NRCS Runoff Pre Downstream with site 5847.5 12.33 30,321,020 26 NRCS Runoff 5836.4 27 Downstream w/o site 12.33 30,263,520 28 Junction Post Downstream with site 5844.4 12.33 30,333,340 16, 20, 27

Page 72 of 177

11-12-2020

Hydrograph 2-yr Summary

Hydrology Studio v 3.0.0.16

Peak Time to Hydrograph Inflow Maximum Maximum Hyd. Hydrograph Hydrograph Flow Peak Volume Hyd(s) Elevation Storage No. Type Name (cfs) (hrs) (cuft) (cuft) (ft) NRCS Runoff Pre East Onsite Ex Pond 1 12.18 11.97 24,489 2 **NRCS Runoff** Pre East Offsite 23.26 11.95 50,164 35.31 3 Junction Pre To Ex East Pond 11.95 74,653 1, 2 Pond Route Pre East Pond Routed 29.51 12.00 74,653 923.49 13,192 4 3 5 NRCS Runoff Pre East Bypass 12.00 566 0.191 Junction Pre East Study Pt - Ex 29.70 12.00 75,218 6 4, 5 8 NRCS Runoff Pre East -90% condition 1.626 12.03 5,826 9 Pre East Study Pt Code 24.19 11.97 55,990 Junction 2, 8 NRCS Runoff Post East Onsite to Pond 13.74 11.97 11 27,782 12 **NRCS Runoff** Post West to West Pond 3.551 11.97 7,227 13 Pond Route Post West Pond Routed 0.043 19.47 3,482 12 950.05 5,240 14 Junction Post To East Pond 36.93 11.95 81,429 2, 11, 13 Pond Route Post East Pond Routed 15 23.07 12.03 78,801 921.65 23,965 14 Post East Study Pt 23.23 12.03 79,367 16 Junction 5, 15 NRCS Runoff Pre West - actual 1.648 11.97 3,618 18 19 NRCS Runoff Pre West - 90% condition 0.599 12.00 1,773 **NRCS Runoff** 20 Post West Study Point 0.312 11.98 817 NRCS Runoff 22 Pre South - actual 0.209 11.97 445 NRCS Runoff Pre South-90% condition 0.067 12.00 199 23 24 **NRCS Runoff** Post South Study Point 0.021 11.97 49.1 **NRCS Runoff** Pre Downstream with site 6866.8 12.33 35,373,840 26 NRCS Runoff 6853.8 27 Downstream w/o site 12.33 35,306,750 28 Junction Post Downstream with site 6862.8 12.33 35,387,200 16, 20, 27

Page 73 of 177

11-12-2020

Hydrograph 5-yr Summary

Hydrology Studio v 3.0.0.16

Peak Time to Hydrograph Inflow Maximum Maximum Hyd. Hydrograph Hydrograph Flow Peak Volume Hyd(s) Elevation Storage No. Type Name (cfs) (hrs) (cuft) (cuft) (ft) NRCS Runoff Pre East Onsite Ex Pond 1 16.26 11.97 32,854 2 **NRCS Runoff** Pre East Offsite 28.46 11.95 62,238 3 Junction Pre To Ex East Pond 44.61 11.95 95,092 1, 2 924.04 Pond Route Pre East Pond Routed 38.20 12.00 95,091 15,348 4 3 5 NRCS Runoff Pre East Bypass 0.397 954 11.98 Junction Pre East Study Pt - Ex 38.58 12.00 96,046 6 4, 5 8 NRCS Runoff Pre East -90% condition 3.490 12.02 9,829 9 Pre East Study Pt Code 31.09 11.97 72,067 Junction 2, 8 NRCS Runoff Post East Onsite to Pond 17.95 11.97 36,605 11 12 **NRCS Runoff** Post West to West Pond 4.575 11.95 9,413 13 Pond Route Post West Pond Routed 0.128 14.27 5,554 12 950.16 5,778 14 Junction Post To East Pond 46.38 11.95 104,397 2, 11, 13 Pond Route Post East Pond Routed 15 29.17 12.03 101,756 14 922.33 28,073 Post East Study Pt 29.47 12.03 102,711 16 Junction 5, 15 NRCS Runoff Pre West - actual 2.626 11.97 5,465 18 19 NRCS Runoff Pre West - 90% condition 1.246 11.98 2,992 **NRCS Runoff** 0.584 20 Post West Study Point 11.97 1,333 NRCS Runoff 22 Pre South - actual 0.321 11.97 658 NRCS Runoff Pre South-90% condition 335 23 0.140 11.98 24 **NRCS Runoff** Post South Study Point 0.036 11.97 75.8 **NRCS Runoff** Pre Downstream with site 9170.1 12.33 46,883,410 26 NRCS Runoff 27 Downstream w/o site 9152.7 12.33 46,794,510 46,898,740 28 Junction Post Downstream with site 9164.0 12.33 16, 20, 27

Page 74 of 177

11-12-2020

Hydrograph 10-yr Summary

Hydrology Studio v 3.0.0.16

Peak Time to Hydrograph Inflow Maximum Maximum Hyd. Hydrograph Hydrograph Flow Peak Volume Hyd(s) Elevation Storage Name No. Type (cfs) (hrs) (cuft) (cuft) (ft) NRCS Runoff Pre East Onsite Ex Pond 40,477 1 19.91 11.97 2 **NRCS Runoff** Pre East Offsite 32.96 11.95 72,845 52.80 3 Junction Pre To Ex East Pond 11.95 113,322 1, 2 Pond Route Pre East Pond Routed 51.23 113,321 924.21 15,982 4 11.97 3 5 NRCS Runoff Pre East Bypass 0.608 1,350 11.97 Junction Pre East Study Pt - Ex 51.84 11.97 114,672 6 4, 5 8 NRCS Runoff Pre East -90% condition 5.416 12.00 13,909 9 Pre East Study Pt Code 37.40 11.97 86,754 Junction 2, 8 NRCS Runoff Post East Onsite to Pond 21.67 11.97 44,569 11 12 **NRCS Runoff** Post West to West Pond 5.489 11.95 11,374 13 Pond Route Post West Pond Routed 0.259 13.05 7,441 12 950.27 6,354 14 Junction Post To East Pond 54.65 11.95 124,855 2, 11, 13 Pond Route Post East Pond Routed 33.70 122,207 922.91 15 12.03 14 31,794 Post East Study Pt 34.13 12.03 123,557 16 Junction 5, 15 NRCS Runoff Pre West - actual 3.557 11.97 18 7,256 19 NRCS Runoff Pre West - 90% condition 1.905 11.97 4,234 **NRCS Runoff** 0.862 20 Post West Study Point 11.97 1,852 NRCS Runoff 22 Pre South - actual 0.426 11.97 863 NRCS Runoff Pre South-90% condition 11.97 474 23 0.213 24 **NRCS Runoff** Post South Study Point 0.049 11.97 102 **NRCS Runoff** Pre Downstream with site 11236.1 12.32 57,304,950 26 NRCS Runoff 27 Downstream w/o site 11214.8 12.32 57,196,260 28 Junction Post Downstream with site 11229.0 12.32 57,321,870 16, 20, 27

Page 75 of 177

Hydrograph 25-yr Summary

Hydrology Studio v 3.0.0.16

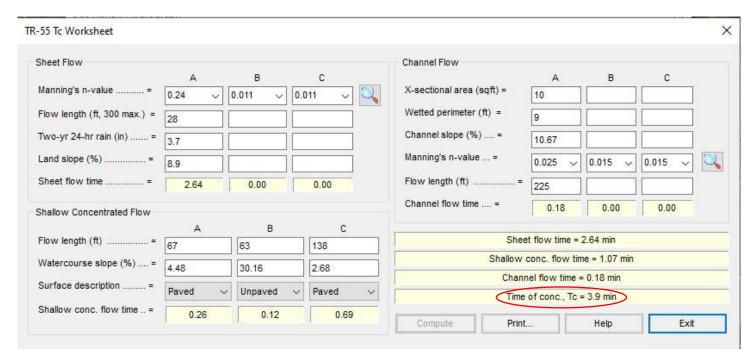
11-12-2020 Peak Time to Hydrograph Inflow Maximum Maximum Hyd. Hydrograph Hydrograph Flow Peak Volume Hyd(s) Elevation Storage Name No. Type (cfs) (hrs) (cuft) (cuft) (ft) NRCS Runoff Pre East Onsite Ex Pond 51,874 1 25.26 11.97 2 **NRCS Runoff** Pre East Offsite 39.43 11.95 88,240 3 Junction Pre To Ex East Pond 64.68 11.95 140,114 1, 2 Pond Route Pre East Pond Routed 64.48 140,113 924.31 16,411 4 11.97 3 5 NRCS Runoff Pre East Bypass 0.952 2,000 11.97 Junction Pre East Study Pt - Ex 65.43 11.97 142,113 6 4, 5 8 NRCS Runoff Pre East -90% condition 8.574 12.00 20,595 9 Pre East Study Pt Code 46.82 11.97 108,835 Junction 2, 8 NRCS Runoff Post East Onsite to Pond 27.16 11.95 56,383 11 12 **NRCS Runoff** Post West to West Pond 6.814 11.95 14,270 13 Pond Route Post West Pond Routed 0.585 12.45 10,250 12 950.48 7,424 14 Junction Post To East Pond 66.61 11.95 154,874 2, 11, 13 Pond Route Post East Pond Routed 15 38.55 12.03 152,215 14 923.75 37,689 Post East Study Pt 39.20 12.03 154,214 16 Junction 5, 15 NRCS Runoff Pre West - actual 4.999 11.97 10,074 18 19 NRCS Runoff Pre West - 90% condition 2.986 11.97 6,269 **NRCS Runoff** 1.303 20 Post West Study Point 11.97 2,691 NRCS Runoff 22 Pre South - actual 0.589 11.97 1,183 NRCS Runoff Pre South-90% condition 0.335 11.97 703 23 24 **NRCS Runoff** Post South Study Point 0.071 11.97 144 **NRCS Runoff** Pre Downstream with site 14283.0 12.32 72,803,180 26 NRCS Runoff 27 Downstream w/o site 14256.0 12.32 72,665,090 28 Junction Post Downstream with site 14274.5 12.32 72,822,790 16, 20, 27

Page 76 of 177

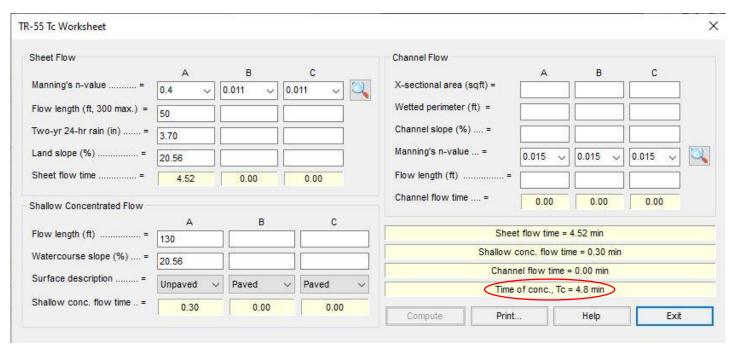
11-12-2020

Hydrograph 50-yr Summary

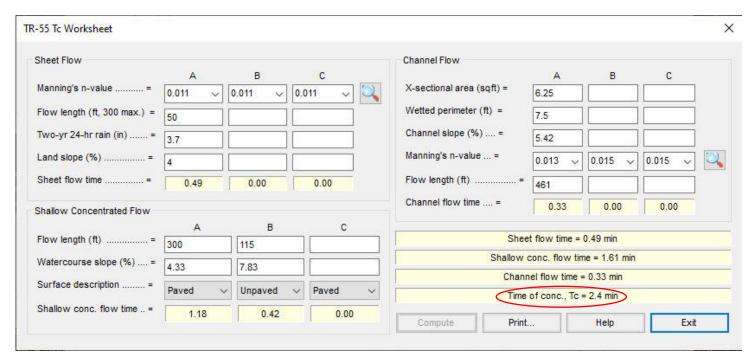
Hydrology Studio v 3.0.0.16

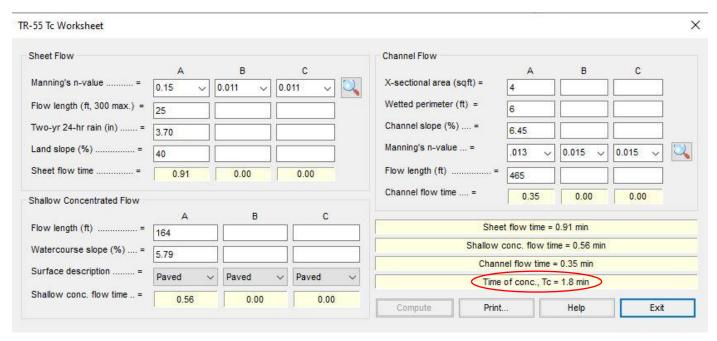

Peak Time to Hydrograph Inflow Maximum Maximum Hyd. Hydrograph Hydrograph Flow Peak Volume Hyd(s) Elevation Storage No. Type Name (cfs) (hrs) (cuft) (cuft) (ft) NRCS Runoff Pre East Onsite Ex Pond 29.67 1 11.95 61,328 2 **NRCS Runoff** Pre East Offsite 44.62 11.95 100,717 3 Junction Pre To Ex East Pond 74.28 11.95 162,045 1, 2 Pond Route Pre East Pond Routed 74.02 162,044 924.38 16,683 4 11.97 3 5 NRCS Runoff 1.255 2,579 Pre East Bypass 11.97 Junction Pre East Study Pt - Ex 75.27 11.97 164,623 6 4, 5 8 NRCS Runoff Pre East -90% condition 11.35 12.00 26,563 9 Pre East Study Pt Code 54.63 11.97 127,280 Junction 2, 8 NRCS Runoff Post East Onsite to Pond 31.62 11.95 66,122 11 12 **NRCS Runoff** Post West to West Pond 7.884 11.95 16,648 13 Pond Route Post West Pond Routed 0.957 12.22 12,571 12 950.68 8,407 14 Junction Post To East Pond 76.41 11.95 179,409 2, 11, 13 Pond Route Post East Pond Routed 15 41.45 12.03 176,744 14 924.45 42,971 Post East Study Pt 42.29 12.03 179,323 16 Junction 5, 15 NRCS Runoff Pre West - actual 11.97 12,510 18 6.228 19 NRCS Runoff Pre West - 90% condition 3.936 11.97 8,086 **NRCS Runoff** 20 Post West Study Point 1.688 11.97 3,434 NRCS Runoff 22 Pre South - actual 0.726 11.97 1,458 11.97 NRCS Runoff Pre South-90% condition 0.441 906 23 24 **NRCS Runoff** Post South Study Point 0.089 11.97 180 NRCS Runoff Pre Downstream with site 16772.1 12.32 85,604,490 26 NRCS Runoff 27 Downstream w/o site 16740.3 12.32 85,442,230 28 Junction Post Downstream with site 16763.3 12.32 85,625,520 16, 20, 27

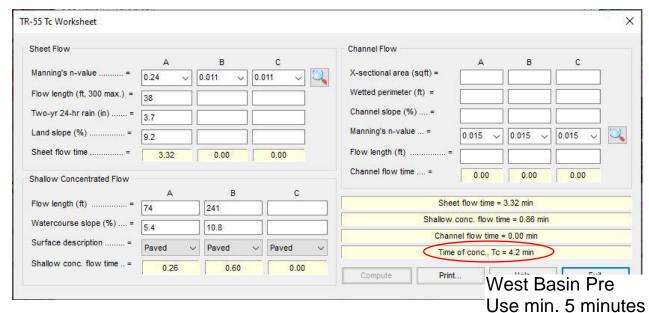
Page 77 of 177


Hydrograph 100-yr Summary

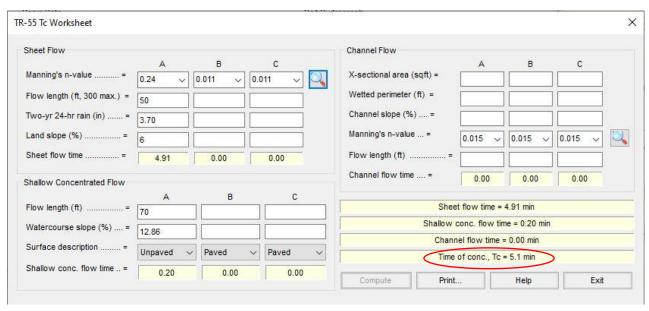
11-12-2020 Hydrology Studio v 3.0.0.16 Peak Time to Hydrograph Inflow Maximum Maximum Hyd. Hydrograph Hydrograph Flow Peak Volume Hyd(s) Elevation Storage No. Type Name (cfs) (hrs) (cuft) (cuft) (ft) NRCS Runoff Pre East Onsite Ex Pond 1 34.36 11.95 71,503 2 **NRCS Runoff** Pre East Offsite 50.08 11.95 113,936 3 Junction Pre To Ex East Pond 84.44 11.95 185,439 1, 2 Pond Route Pre East Pond Routed 185,438 924.45 16,953 4 84.13 11.97 3 5 NRCS Runoff 3,236 Pre East Bypass 1.595 11.97 Junction Pre East Study Pt - Ex 85.72 11.97 188,675 6 4, 5 8 NRCS Runoff Pre East -90% condition 14.47 12.00 33,330 Pre East Study Pt Code 63.05 11.97 147,265 9 Junction 2, 8 NRCS Runoff Post East Onsite to Pond 36.33 11.95 76,558 11 12 **NRCS Runoff** Post West to West Pond 9.015 11.95 19,190 13 Pond Route Post West Pond Routed 1.477 12.12 15,061 12 950.92 9,581 14 Junction Post To East Pond 86.89 11.95 205,555 2, 11, 13 Pond Route Post East Pond Routed 202,883 15 45.28 12.05 14 925.18 48,872 206,118 Post East Study Pt 46.28 12.03 16 Junction 5, 15 NRCS Runoff Pre West - actual 7.573 11.97 15,211 18 19 NRCS Runoff Pre West - 90% condition 5.000 11.97 10,145 **NRCS Runoff** 20 Post West Study Point 2.117 11.97 4,271 NRCS Runoff 22 Pre South - actual 0.875 11.97 1,761 NRCS Runoff Pre South-90% condition 0.560 23 11.97 1,137 24 **NRCS Runoff** Post South Study Point 0.110 11.97 220 NRCS Runoff Pre Downstream with site 19418.2 12.32 99,342,720 26 NRCS Runoff 27 Downstream w/o site 19381.4 12.32 99,154,370 28 Junction Post Downstream with site 19410.1 12.32 99,365,690 16, 20, 27


Page 78 of 177


East Basin to Pond (Pre-construction)
Use min. 5 minutes


East Basin Bypass Use min. 5 minutes

Offsite East Basin Use min. 5 minutes



East Basin To Pond Post Use min. 5 minutes

TR-55 Tc Worksheet Sheet Flow X-sectional area (sqft) = 0.011 0.011 Wetted perimeter (ft) = Flow length (ft, 300 max.) = 25 Channel slope (%) = Two-yr 24-hr rain (in) .. Manning's n-value ... = Land slope (%) 0.015 Sheet flow time ... Flow length (ft) Channel flow time = 0.00 0.00 Shallow Concentrated Flow Flow length (ft) Sheet flow time = 0.91 min Shallow conc. flow time = 1.46 min Watercourse slope (%) = Channel flow time = 0.00 min Surface description Time of conc., Tc = 2.4 min Shallow conc. flow time .. = 0.00

> West Basin To Underground Post Use min. 5 minutes

CALCULATION FOR DOWNSTREAM MAP TC - 42.48 min

Sheet Flow - 1.13 min

Assume n= 0.011 for paved parking areas

Assume 100 ft for flow length

Assume 2% slope

Shallow Concentrated Flow - 18.38

Assume unpaved drainage Assume flow length of 565 ft

Water slope of (1030 elev. - 1015 elev.) / 565 ft= 2.65% slope

Assume paved storm pipe/gutter drainage through residential complex until crossing Old Rockbridge Road

Assume flow Length of 1805 ft.

Water slope (1015'-1000') / 1805 ft = 0.83 % slope

Assume min. 1% slope

Channel Flow - 22.97

Due to large drainage area and unknown creek dimensions, channel design is based on a typical cross section view of a winding vegetated creek crossing within the area. n=0.03 Section 1:

Assume flow length of 7938ft @ 40 ft = 0.5 % slope

Section 2:

Assume flow length of 12753 ft @ 100 ft = 0.8% slope

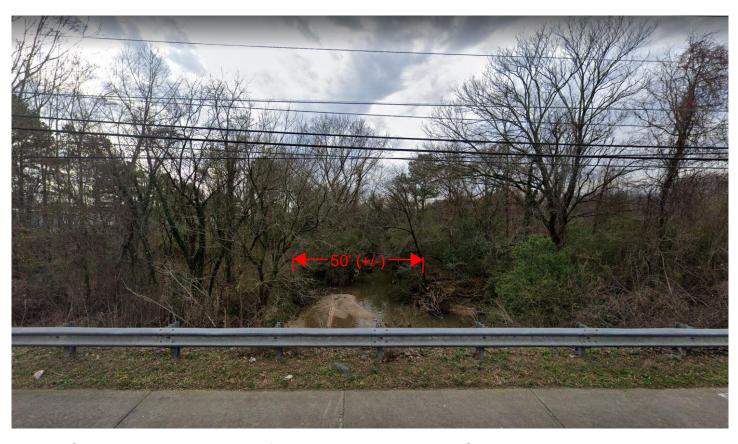
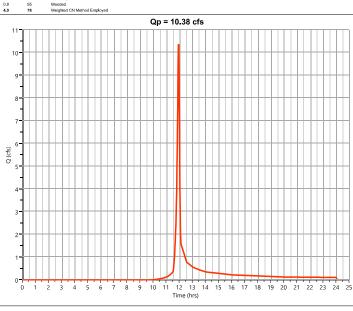


Image Clip at the intersection of North Fork Peachtree Creek and Pleasantdale Road facing Southwest. Assumed channel creek dimensions 100 ft from bridge to be a width of 50 ft by depth of 10 ft.

4...

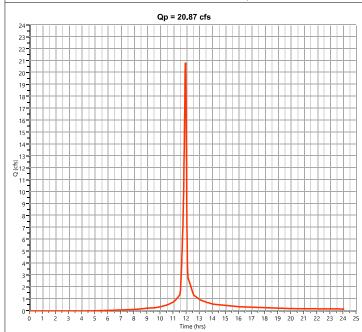
11-12-2020


Hydrology Studio v 3.0.0.16 11-12-2020 Hydrology Studio v 3.0.0.16

Pre East Onsite Ex Pond Hyd. No. 1

Hydrograph Type	= NRCS Runoff	Peak Flow	= 10.38 cfs
Storm Frequency	= 1-yr	Time to Peak	= 11.97 hrs
Time Interval	= 1 min	Runoff Volume	= 20,841 cuft
Drainage Area	= 4.0 ac	Curve Number	= 78*
Tc Method	= User	Time of Conc. (Tc)	= 5.0 min
Total Rainfall	= 3.36 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484

* Composite CN Worksheet


AREA (80)	CN	DESCRIPTION
2.02	98	Impervious
1.08	61	Landscape

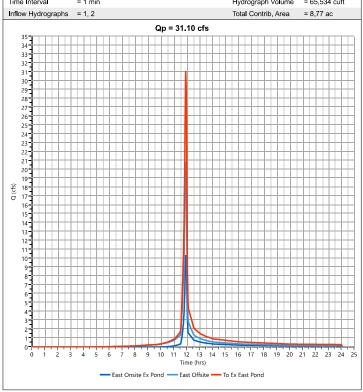
Pre East Offsite

Hyd. No. 2

Hydrograph Type	= NRCS Runoff	Peak Flow	= 20.87 cfs
Storm Frequency	= 1-yr	Time to Peak	= 11.95 hrs
Time Interval	= 1 min	Runoff Volume	= 44,693 cuft
Drainage Area	= 4.77 ac	Curve Number	= 92
Tc Method	= User	Time of Conc. (Tc)	= 5.0 min
Total Rainfall	= 3.36 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484

Hydrograph Report

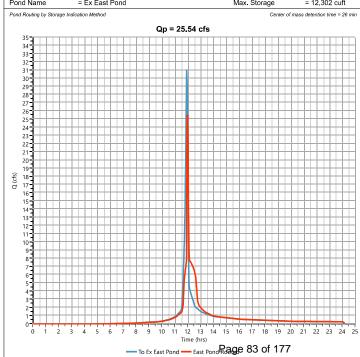
Hydrology Studio v 3.0.0.16


11-12-2020

Hydrograph Report Project Name: Project Name: Hydrology Studio v 3.00.16 11-12-2020

Pre To Ex East Pond

Hyd. No	. 3
---------	-----

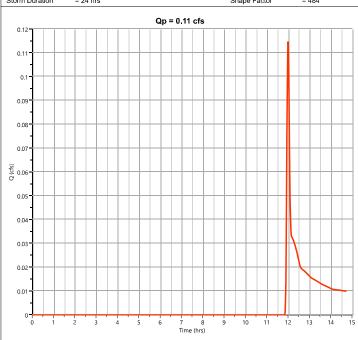

Hydrograph Type	= Junction	Peak Flow	= 31.10 cfs
Storm Frequency	= 1-yr	Time to Peak	= 11.95 hrs
Time Interval	= 1 min	Hydrograph Volume	= 65,534 cuft
Inflow Hydrographs	= 1, 2	Total Contrib. Area	= 8.77 ac

Pre East Pond Routed

Hyd. No. 4

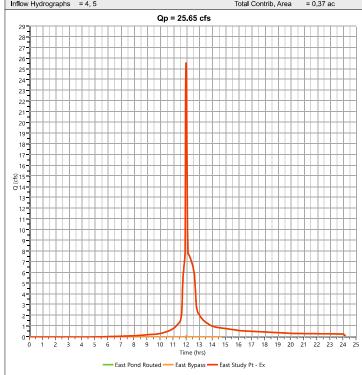
Hydrograph Type	= Pond Route	Peak Flow	= 25.54 cfs
Storm Frequency	= 1-yr	Time to Peak	= 12.00 hrs
Time Interval	= 1 min	Hydrograph Volume	= 65,534 cuft
Inflow Hydrograph	= 3 - To Ex East Pond	Max. Elevation	= 923.27 ft
Pond Name	= Ex East Pond	Max. Storage	= 12,302 cuft

Hyd. No. 6


Hydrograph Report Hydrology Studio v 3.0.0.16 11-12-2020

Pre East Bypass

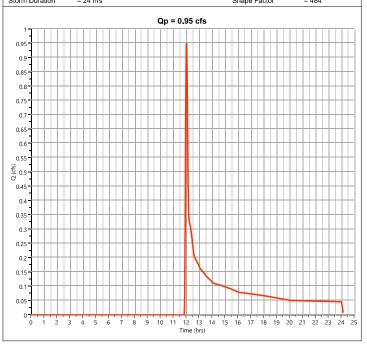
Hydrology Studio v 3.0.0.16


Hyd. No. 5

Hydrograph Type	= NRCS Runoff	Peak Flow	= 0.115 cfs
Storm Frequency	= 1-yr	Time to Peak	= 12.00 hrs
Time Interval	= 1 min	Runoff Volume	= 415 cuft
Drainage Area	= 0.37 ac	Curve Number	= 55
Tc Method	= User	Time of Conc. (Tc)	= 5.0 min
Total Rainfall	= 3.36 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484

Pre East Study Pt - Ex

Hydrograph Type	= Junction	Peak Flow	= 25.65 cfs
Storm Frequency	= 1-yr	Time to Peak	= 12.00 hrs
Time Interval	= 1 min	Hydrograph Volume	= 65,949 cuft
Land and the state of the state of	4 5	Total Constally Assess	0.07



Hydrograph Report

Hydrology Studio v 3.0.0.16 11-12-2020

Pre East -90% condition Hyd. No. 8

Hydrograph Type	= NRCS Runoff	Peak Flow	= 0.951 cfs
Storm Frequency	= 1-yr	Time to Peak	= 12.03 hrs
Time Interval	= 1 min	Runoff Volume	= 4,278 cuft
Drainage Area	= 3.93 ac	Curve Number	= 55
Tc Method	= User	Time of Conc. (Tc)	= 10.0 min
Total Rainfall	= 3.36 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484

Hydrograph Report

Hydrology Studio v 3.0.0.16 11-12-2020

Peak Flow

Time to Deal.

Pre East Study Pt Code

= Junction

Hydrograph Type

Hyd. No. 9 = 21.26 cfs

Storm Frequency	= 1-yr		Time to Peak	= 11.95 hrs
Time Interval	= 1 min		Hydrograph Volume	= 48,972 cuft
Inflow Hydrographs	= 2, 8		Total Contrib, Area	= 8.7 ac
		Qp = 21.26 cfs		
24		·		
23				
22				
21				
20				
19-				
18				
17				
4				
16				
15				
14-				
13				
(\$\$\text{\$\ext{\$\text{\$\exitin{\ext{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exitin{\exitin{\exitin{\exitin{\exitin{\text{\$\exitin{\exitin{\exitin{\text{\$\text{\$\texitit{\$\text{\$\texitit{\$\text{\$\texititit{\$\text{\$\texititit{\$\text{\$\texitit{\$\text{\$\e				
11-				
10				
9				
8				
7-1				
6				
5				
4				
-				
3				
2				
12				
0 1 2 3	4 5 6 7 8 9	10 11 12 13 14 15	16 17 18 19 20	21 22 22 24
0 1 2 3		Time (hrs)		L1 CC C3 C4
	East Offsite E	ast -90% condition — Pag	age,84.of 177	

Post East Onsite to Pond

= NRCS Runoff

= 1-yr

= 1 min

= 4.0 ac

= 3.36 in

= 24 hrs

= User

11-12-2020

Hydrology Studio v 3.0.0.16 11-12-2020

> Peak Flow Time to Peak

Runoff Volume

Curve Number

Time of Conc.

Design Storm

Shape Factor

Hydrology Studio v 3.0.0.16 Post West to West Pond

Hydrograph Report

Hyd. No. 12

	= 11.86 cfs	
	= 11.97 hrs	
	= 23,897 cuft	
	= 81*	
(Tc)	= 5.0 min	
	= Type II	
	= 484	

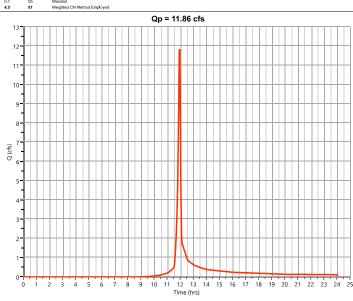
Hyd. No. 11

* Composite Ch	Worksheet
AREA (oc) CN	DESCRIPTION

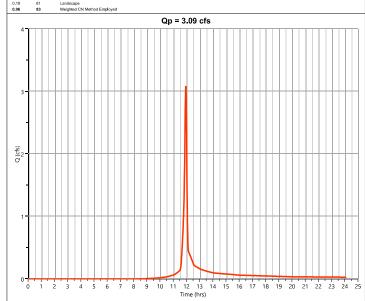
Hydrograph Type

Storm Frequency

Time Interval


Drainage Area

Total Rainfall


Storm Duration

Tc Method

AREA (ac)	CN	DESCRIPTION
2.3	98	Impervious
1.0	61	Landscaped
0.7	66	Wonded

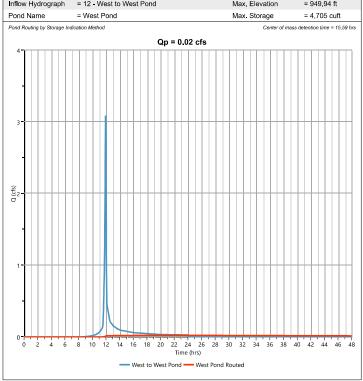
Hydrograph Type	= NRCS Runoff	Peak Flow	= 3.090 cfs
Storm Frequency	= 1-yr	Time to Peak	= 11.97 hrs
Time Interval	= 1 min	Runoff Volume	= 6,258 cuft
Drainage Area	= 0.96 ac	Curve Number	= 83*
Tc Method	= User	Time of Conc. (Tc)	= 5.0 min
Total Rainfall	= 3.36 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484
* Composite CN Worksheet			

Hydrograph Report

Hydrology Studio v 3.0.0.16

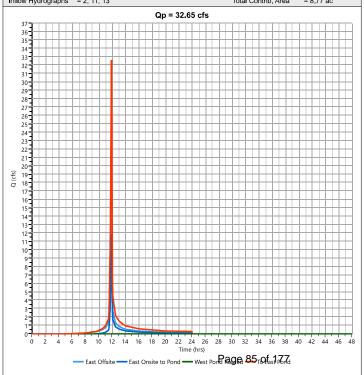
11-12-2020

Hydrology Studio v 3.0.0.16


Hydrograph Report

11-12-2020

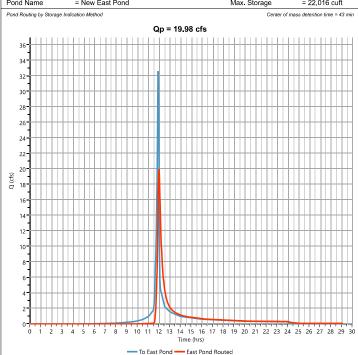
Post West Pond Routed


Post West Pond Routed		Hyd. No. 13	

Hydrograph Type	= Pond Route	Peak Flow	= 0.025 cfs
Storm Frequency	= 1-yr	Time to Peak	= 24.03 hrs
Time Interval	= 1 min	Hydrograph Volume	= 2,895 cuft
Inflow Hydrograph	= 12 - West to West Pond	Max. Elevation	= 949.94 ft
Pond Name	= West Pond	Max. Storage	= 4,705 cuft

Post To East Pond Hyd. No. 14

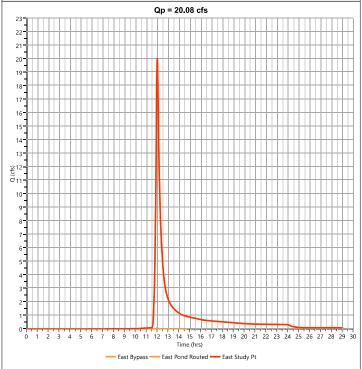
Hydrograph Type = Junction Peak Flow = 32.65 cfs Time to Peak Storm Frequency = 1-yr = 11.95 hrs Hydrograph Volume Time Interval = 1 min = 71.485 cuft Inflow Hydrographs = 2, 11, 13 Total Contrib. Area = 8.77 ac



Hyd. No. 16

Hydrology Studio v 3.0.0.16 11-12-2020

Post East Pond Routed Hyd. No. 15



Post East Study Pt

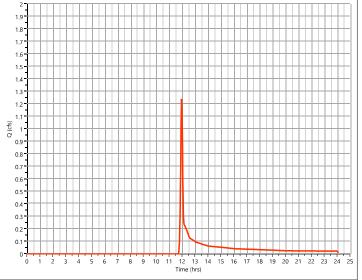
Hydrograph Report

Hydrograph Type = Junction Peak Flow = 20.08 cfs Time to Peak = 12.03 hrs Storm Frequency = 1-yr Hydrograph Volume Time Interval = 1 min = 69.314 cuft Inflow Hydrographs = 5, 15 Total Contrib. Area = 0.37 ac

Hydrograph Report

Hydrology Studio v 3.0.0.16 11-12-2020

Pre West - actual Hyd. No. 18

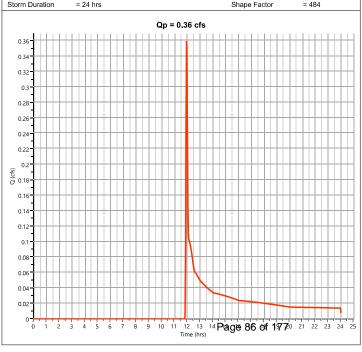

Hydrograph Type	= NRCS Runoff	Peak Flow	= 1.242 cfs
Storm Frequency	= 1-yr	Time to Peak	= 11.97 hrs
Time Interval	= 1 min	Runoff Volume	= 2,862 cuft
Drainage Area	= 1.29 ac	Curve Number	= 63*
Tc Method	= User	Time of Conc. (Tc)	= 5.0 min
Total Rainfall	= 3.36 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484

On = 1.24 efe

* Composite CN Worksheet AREA (ac) CN

0.2	98	Impervious
0.26	61	Landcape
0.83	55	Wooded
1 29	63	Weighted CN Method Employ

	ωp = 1.24 cis													
2			П	П	П	П	П	П	П	П	Т	П		
1.9			П	П		П	П	П	П	П	T	Т		
1.8			П	П		П	П	П	П	П	T	Т		
1.7			П	П	П		П	П	П	П	T	Т		
1.6			П	П	П	П	П	П	П	П	Т	П	П	



Hydrograph Report

Hydrology Studio v 3.0.0.16 11-12-2020

Pre West - 90% condition

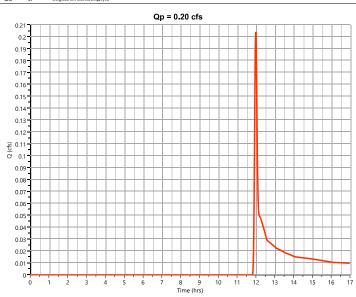
Hydrograph Type	= NRCS Runoff	Peak Flow	= 0.360 cfs
Storm Frequency	= 1-yr	Time to Peak	= 12.00 hrs
Time Interval	= 1 min	Runoff Volume	= 1,302 cuft
Drainage Area	= 1.16 ac	Curve Number	= 55
Tc Method	= User	Time of Conc. (Tc)	= 5.0 min
Total Rainfall	= 3.36 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484

Hyd. No. 22

Hydrograph Report 11-12-2020 Hydrology Studio v 3.0.0.16 11-12-2020

Post West Study Point

Hydrology Studio v 3.0.0.16


Hyd. No. 20

Hydrograph Type	= NRCS Runoff	Peak Flow	= 0.204 cfs
Storm Frequency	= 1-yr	Time to Peak	= 12.00 hrs
Time Interval	= 1 min	Runoff Volume	= 614 cuft
Drainage Area	= 0.45 ac	Curve Number	= 57*
Tc Method	= TR55	Time of Conc. (Tc)	= 5.13 min
Total Rainfall	= 3.36 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484

* Composite CN Worksheet

0.15	61	Landscaped
n 3	55	Wonderl


Pre South - actual

Hydrograph Type	= NRCS Runoff	Peak Flow	= 0.162 cfs
Storm Frequency	= 1-yr	Time to Peak	= 11.97 hrs
Time Interval	= 1 min	Runoff Volume	= 356 cuft
Drainage Area	= 0.14 ac	Curve Number	= 65*

Tir Dra Tc Method = User Time of Conc. (Tc) = 5.0 min Total Rainfall = 3.36 in Design Storm = Type II Storm Duration = 24 hrs Shape Factor = 484

* Composite CN Worksheet

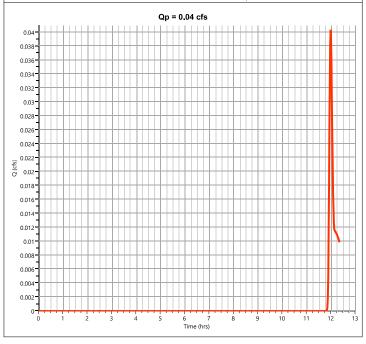
AREA (ac)	CN	DESCRIPTION
0.03	98	Impervious
0.02	61	Landscape

Hydrograph Report

Hydrology Studio v 3.0.0.16

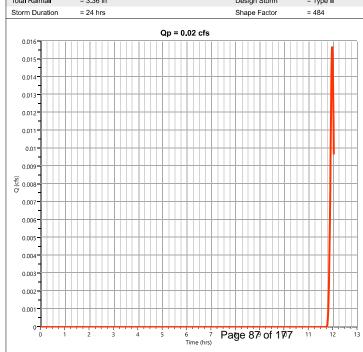
11-12-2020

Hydrology Studio v 3.0.0.16


Hydrograph Report

11-12-2020

Pre South-90% condition

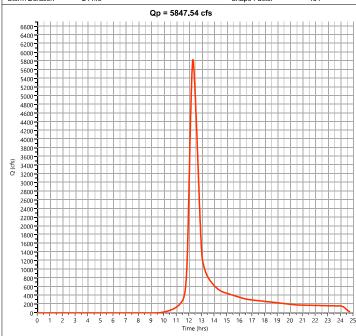

e South-90%	condition		Hyd. No. 23
ydrograph Type	= NRCS Runoff	Peak Flow	= 0.040 cfs

Hydrograph Type	= NRCS Runoff	Peak Flow	= 0.040 cfs
Storm Frequency	= 1-yr	Time to Peak	= 12.00 hrs
Time Interval	= 1 min	Runoff Volume	= 146 cuft
Drainage Area	= 0.13 ac	Curve Number	= 55
Tc Method	= User	Time of Conc. (Tc)	= 5.0 min
Total Rainfall	= 3.36 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484

Post South Study Point

Hydrograph Type	= NRCS Runoff	Peak Flow	= 0.016 cfs
Storm Frequency	= 1-yr	Time to Peak	= 11.98 hrs
Time Interval	= 1 min	Runoff Volume	= 38.3 cuft
Drainage Area	= 0.02 ac	Curve Number	= 61
Tc Method	= User	Time of Conc. (Tc)	= 5.0 min
Total Rainfall	= 3.36 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484

Hyd. No. 27


11-12-2020

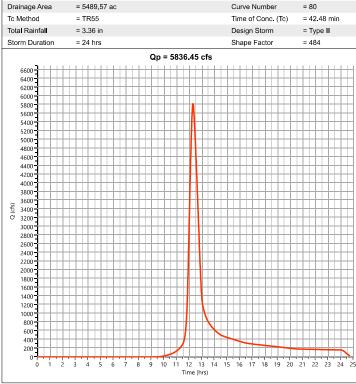
Hydrology Studio v 3.0.0.16

Pre Downstream with site

Hyd. No. 26

Hydrograph Type	= NRCS Runoff	Peak Flow	= 5847.5 cfs
Storm Frequency	= 1-yr	Time to Peak	= 12.33 hrs
Time Interval	= 1 min	Runoff Volume	= 30,321,020 cuft
Drainage Area	= 5500.0 ac	Curve Number	= 80
Tc Method	= TR55	Time of Conc. (Tc)	= 42.48 min
Total Rainfall	= 3.36 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484

Downstream w/o site


Hydrograph Type

Storm Frequency

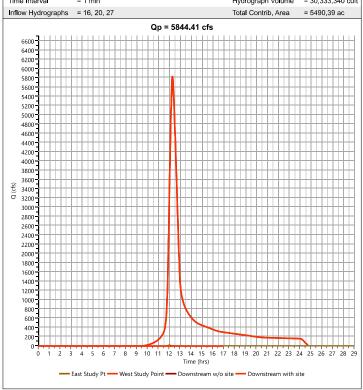
Time Interval

Hydrograph Report

= NRCS Runoff	Peak Flow	= 5836.4 cfs
= 1-yr	Time to Peak	= 12.33 hrs
= 1 min	Runoff Volume	= 30,263,520 cuft
= 5489.57 ac	Curve Number	= 80
= TR55	Time of Conc. (Tc)	= 42.48 min
= 3.36 in	Design Storm	= Type II

Hydrograph Report

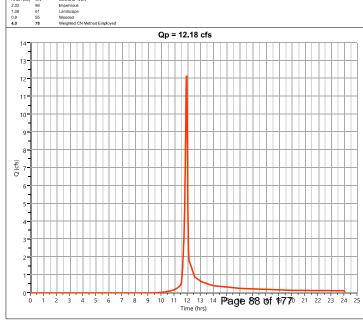
Hydrology Studio v 3.0.0.16


11-12-2020

Hydrology Studio v 3.0.0.16 11-12-2020

Post Downstream with site

Hyd. No. 28

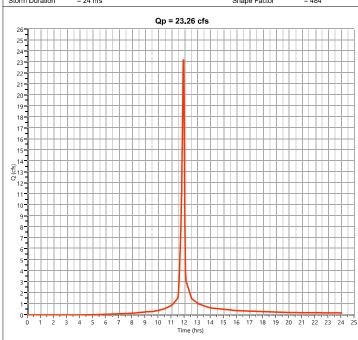

Hydrograph Type	= Junction	Peak Flow	= 5844.4 cfs
Storm Frequency	= 1-yr	Time to Peak	= 12.33 hrs
Time Interval	= 1 min	Hydrograph Volume	= 30,333,340 cuft
Inflow Hydrographs	= 16, 20, 27	Total Contrib. Area	= 5490.39 ac

Pre East Onsite Ex Pond

Hydrograph Report

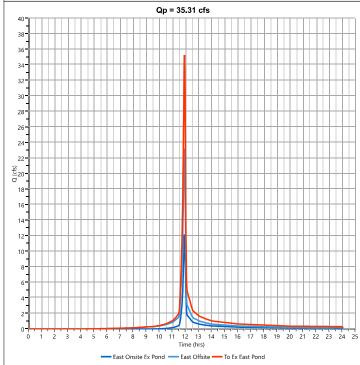
Hydrograph Type	= NRCS Runoff	Peak Flow	= 12.18 cfs
Storm Frequency	= 2-yr	Time to Peak	= 11.97 hrs
Time Interval	= 1 min	Runoff Volume	= 24,489 cuft
Drainage Area	= 4.0 ac	Curve Number	= 78*
Tc Method	= User	Time of Conc. (Tc)	= 5.0 min
Total Rainfall	= 3.68 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484
* Composite CN Workshe	et		

Pre East Offsite


Hyd. No. 3

11-12-2020

Hydrograph Report Hydrology Studio v 3.0.0.16 11-12-2020


Hyd. No. 2

Hydrograph Type	= NRCS Runoff	Peak Flow	= 23.26 cfs
Storm Frequency	= 2-yr	Time to Peak	= 11.95 hrs
Time Interval	= 1 min	Runoff Volume	= 50,164 cuft
Drainage Area	= 4.77 ac	Curve Number	= 92
Tc Method	= User	Time of Conc. (Tc)	= 5.0 min
Total Rainfall	= 3.68 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484

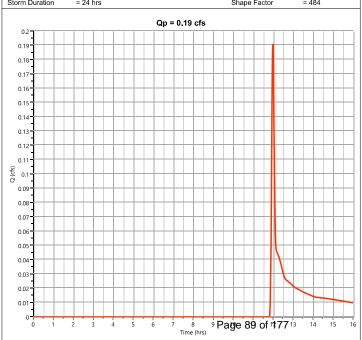
Pre To Ex East Pond

Hydrograph Report

Hydrology Studio v 3.0.0.16 11-12-2020

Pre East Pond Routed Hyd. No. 4

Hydrograph Type	= Pond Route	Peak Flow	= 29.51 cfs
Storm Frequency	= 2-yr	Time to Peak	= 12.00 hrs
Time Interval	= 1 min	Hydrograph Volume	= 74,653 cuft
Inflow Hydrograph	= 3 - To Ex East Pond	Max. Elevation	= 923.49 ft
Pond Name	= Ex East Pond	Max. Storage	= 13,192 cuft
Pond Routing by Storage Inc	lication Method	Center of mas	ss detention time = 30 min
	Qp = 29.51 cfs		
40 - 38			
36			
34			
32			
30			

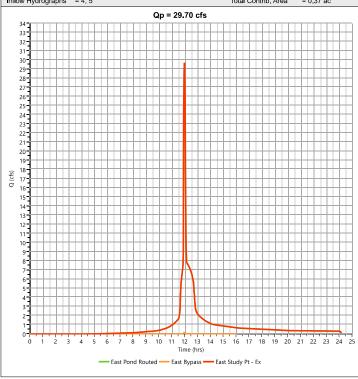

Pond Routing by Storage Indication Method	Center of mass detention time = 30 min
Qp = 29.51 cfs	
40-	
38	
36	
34-	
32	
30	
28-	
26-	
-	
24	
22-	
g ₂₀ -	
18-	
16-	
14-	
12-	
10	
8-	
- 	
6-1	
4-	
2	
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1	15 16 17 18 19 20 21 22 23 24 25
Time (hrs)	15 15 11 15 15 20 21 22 25 24 2.
To Ex East Pond East Pond F	Routed

Hydrograph Report

Hydrology Studio v 3.0.0.16 11-12-2020

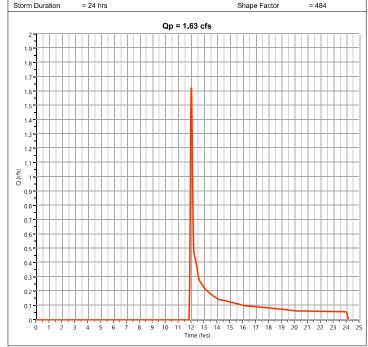
Pre East Bypass Hyd. No. 5

Hydrograph Type	= NRCS Runoff	Peak Flow	= 0.191 cfs
Storm Frequency	= 2-yr	Time to Peak	= 12.00 hrs
Time Interval	= 1 min	Runoff Volume	= 566 cuft
Drainage Area	= 0.37 ac	Curve Number	= 55
Tc Method	= User	Time of Conc. (Tc)	= 5.0 min
Total Rainfall	= 3.68 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484


Hyd. No. 8

Pre East Study Pt - Ex

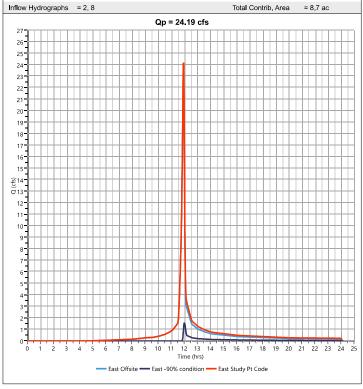
Hydrology Studio v 3.0.0.16


Hyd. No. 6

Hydrograph Type	= Junction	Peak Flow	= 29.70 cfs
Storm Frequency	= 2-yr	Time to Peak	= 12.00 hrs
Time Interval	= 1 min	Hydrograph Volume	= 75,218 cuft
Inflow Hydrographs	= 4.5	Total Contrib. Area	= 0.37 ac

Pre East -90% condition

Hydrograph Type	= NRCS Runoff	Peak Flow	= 1.626 cfs
Storm Frequency	= 2-yr	Time to Peak	= 12.03 hrs
Time Interval	= 1 min	Runoff Volume	= 5,826 cuft
Drainage Area	= 3.93 ac	Curve Number	= 55
Tc Method	= User	Time of Conc. (Tc)	= 10.0 min
Total Rainfall	= 3.68 in	Design Storm	= Type II
	4		

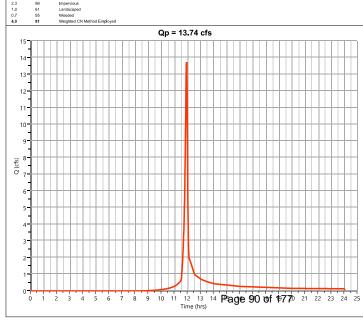


Hydrograph Report Hydrology Studio v 3.0.0.16

Pre East Study Pt Code

11-12-2020 Hyd. No. 9

Hydrograph Type	= Junction	Peak Flow	= 24.19 cfs
Storm Frequency	= 2-yr	Time to Peak	= 11.97 hrs
Time Interval	= 1 min	Hydrograph Volume	= 55,990 cuft
Inflow Hydrographs	= 2, 8	Total Contrib. Area	= 8.7 ac


Hydrograph Report

Hydrology Studio v 3.0.0.16 11-12-2020

Post East Onsite to Pond

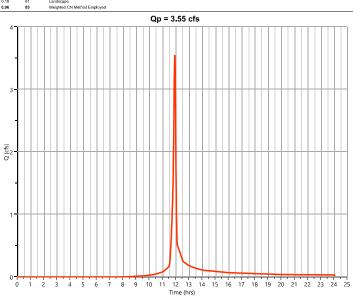
* Composite CN Workshe	et		
Storm Duration	= 24 hrs	Shape Factor	= 484
Total Rainfall	= 3.68 in	Design Storm	= Type II
Tc Method	= User	Time of Conc. (Tc)	= 5.0 min
Drainage Area	= 4.0 ac	Curve Number	= 81*
Time Interval	= 1 min	Runoff Volume	= 27,782 cuft
Storm Frequency	= 2-yr	Time to Peak	= 11.97 hrs
Hydrograph Type	= NRCS Runoff	Peak Flow	= 13.74 cfs

98	Impervious
61	Landscaped
55	Wooded
	98 61

Hyd. No. 13

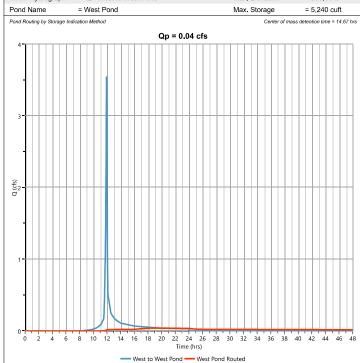
11-12-2020

Hydrology Studio v 3.0.0.16


Post West to West Pond

Hyd. No. 12

Hydrograph Type	= NRCS Runoff	Peak Flow	= 3.551 cfs
Storm Frequency	= 2-yr	Time to Peak	= 11.97 hrs
Time Interval	= 1 min	Runoff Volume	= 7,227 cuft
Drainage Area	= 0.96 ac	Curve Number	= 83*
Tc Method	= User	Time of Conc. (Tc)	= 5.0 min
Total Rainfall	= 3.68 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484


AREA (ac)	CN	DESCRIPTION
0.51	98	Impervious
0.26	69	Pervious Paving

Post West Pond Routed

Hydrograph Report

Hydrograph Type	= Pond Route	Peak Flow	= 0.043 cfs
Storm Frequency	= 2-yr	Time to Peak	= 19.47 hrs
Time Interval	= 1 min	Hydrograph Volume	= 3,482 cuft
Inflow Hydrograph	= 12 - West to West Pond	Max. Elevation	= 950.05 ft
Pond Name	= West Pond	Max. Storage	= 5.240 cuft

Hydrograph Report

Inflow Hydrographs = 2, 11, 13

= Junction

= 2-yr

= 1 min

Hydrology Studio v 3.0.0.16 Post To East Pond

Hydrograph Type

Storm Frequency

Time Interval

Qp = 36.93 cfs

Hyd. No. 14 = 36.93 cfs

= 11.95 hrs

= 81.429 cuft

= 8.77 ac

Peak Flow

Time to Peak

Hydrograph Volume

Total Contrib. Area

11-12-2020

40 38 36 34 32 30 28 26 24 41 11 12 10 8 6 6 41 12 11 10 8 6 6 11 11 12 10 0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 Time (hrs)		⁴² T		П		Т		П			Т	П	T	П	Ī	T	П	T	П	Т	П	Т	Т	П	П			Т	П	П	Т	1
36 34 32 30 28 26 26 24 26 28 30 32 34 36 38 40 42 44 46 48		40	Н	Н	+	+	Н	H	Н	+	t	Н	+	Н	+	$^{+}$	Н	+	Н	+	Н	Н	+	Н	Н	+	H	+	Н	+	+	-
34 32 30 28 26 24 24 27 20 18 16 14 12 10 8 6 4 21 10 10 10 10 10 10 10 10 10 1		38	Н	Н	+	+	Н	Н	+	+	+	Н	+	Н	+	+	Н	+	Н	+	Н	Н	+	Н	Н	+	H	+	Н	+	+	-
32 30 28 26- 24 27 20 18 16- 14- 12- 10- 8- 6- 4- 21- 10- 8- 6- 4- 21- 10- 8- 10- 10- 10- 10- 10- 10- 10- 10		36	Н	Н	+	+	Н	Н	+	+	+	Н	+	Н	+	+	Н	+	Н	+	Н	H	+	Н	Н	+	H	+	Н	+	+	-
30 28 26 24 26 28 30 32 34 36 38 40 42 44 46 48		34	Н	Н	+	+	H	+	+	+	+	Н	+	Н	+	+	Н	+	Н	+	Н	+	+	Н	Н	+	H	+	Н	+	+	-
28 22 22 20 18 16 14 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48		32	Н	Н	+	+	Н	╫	+	H	H	Н	+	H	+	+	Н	+	Н	+	Н	H	+	Н	Н	H	H	+	Н	+	+	-
26- 24- 24- 36- 20- 18- 16- 14- 12- 10- 8- 6- 4- 2- 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48		30	Ш	Н	+	+	H	4	+	H	H	Н	+	H	4	+	Н	+	Н	+	H	H	4	Н	Н	4	H	+	Н	\mathbb{H}	+	-
24 22 0 20 18 16 14 12 10 8 6 4 2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48		28	Ш	Н	\perp	+	Н	4	Н	4	ļ	Н	+	H	4	ļ	Н	+	Н	+	Н	H	4	Н	Н	4	H	4	Н	Щ	4	-
24 22 0 20 18 16 14 12 10 8 6 4 2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48		- 1	Ш	Ш	\perp	4	Ш	4	\perp		1	Ц	1	H	4	1	Ц	1	Ц	+	Н	L		Н	Ш	1	L	\perp	Ц	\perp	4	-
22 0 20 18 16 14 12 10 8 6 4 2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48		- 1	Ш	\sqcup	\perp	4	Ш	4	Щ		1	Ц	1	Ц	4	1	Ц	1	Ц	+	Н	L		Ц	Щ	1	L	\perp	Ц	\perp	4	-
18 16 16 14 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48	_	- 1	Ш	Ш	Ш	1	Ш	Ц	Ц		L	Ц	1	Ц	Ц	1	Ц	1	Ц	1	Ц	\perp		Ц	Ц	Ш	L	\perp	Ц	Ш	1	
18 16 16 14 12 12 10 10 10 10 10 10 10 10 10 10 10 10 10	Q (cfs	20	Ш	Ш	Ш	1	Ш	Ц			L	Ц	1	Ц		1	Ц	1	Ц		Ц	L		Ц	Ш				Ц	Ш	1	
16 14 12 10 10 8 6 6 4 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48		- 1	Ш	Ш		1		Ц			L	Ц		Ш			Ц	1	Ц		Ш	L		Ц	Ш				Ц	Ш	_	
14 12 10 8 6 4 2 0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48		- 1										Ш					Ш							Ш	Ш							
12 10 8 6 4 4 2 0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48		- 1																							Ш							
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48		- 1		П	П	Τ	П	I	П	П	Τ	П	Τ	П		Τ	П	T	П	Τ	П	П		П	П				П	П	T	1
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48		- 1	П	П		Ť	П	1	Т		T	П		П		T	П	T		T	П			П	П					П		1
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48		- 1		П	Т	T		ı	Т	Т	Ť	П	T	П	T	Ť	П	Ť	П	T	П	T	T	П	П	Т	П	T	П	П	T	1
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48		8	П	П	Т	†		1	Т	T	Ť	П	Ť	П	T	Ť	П	Ť	П	Ť	Ħ	T	\top	П	П	Т	T	\top	П	П	Ť	1
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48		6		П	Т	Ť	Т	1	Т	T	t	Н	Ť	Т	T	Ť	Н	Ť	Н	Ť	Ħ	t	†	Ħ	П	Ħ	Ħ	†	Н	П	Ť	1
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48		4	Ш	\parallel	\top	†		١	†	H	t	Н	Ť	Ħ	\dagger	t	Н	t	Н	t	H	t	+	\parallel	Н		Ħ		Н	\forall	+	1
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 Time(hrs)		2	Н	†	†	$^{+}$		N					†	H	\dagger	t	Н	†	H	$^{+}$	H	t	+	$\dagger \dagger$	Н	H	H	+	Н	\forall	†	1
Time (hrs)		0	2	4	6	8	10	12	1	4	16	18	1 2	0.0	22	1 2	4	26	28	3	0	32	34	36	38	3 4	H	42	44	1 46	5 .	- 48
		,	-									, .			Ti	ime	(hr	s)		. ,			5-7	50	,,,	- "	,		-,-			

East Offsite — East Onsite to Pond — West Pond Routed — To East Pond

Hydrograph Report

Hydrology Studio v 3.0.0.16

Hydrograph Type

11-12-2020

Project Name:

Post East Pond Routed

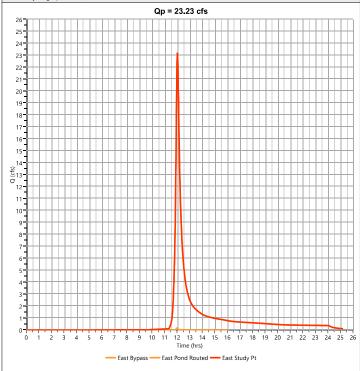
= Pond Route

Hyd. No. 15 = 23.07 cfs

Peak Flow

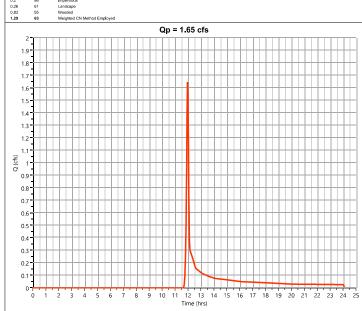
Tiyurograpii Type	- Folia Noute	reak riow	- 23.07 CIS
Storm Frequency	= 2-yr	Time to Peak	= 12.03 hrs
Time Interval	= 1 min	Hydrograph Volume	= 78,801 cuft
Inflow Hydrograph	= 14 - To East Pond	Max. Elevation	= 921.65 ft
Pond Name	= New East Pond	Max. Storage	= 23,965 cuft
Pond Routing by Storage In	dication Method	Center of ma	ass detention time = 38 m
	Qp = 23.07 cfs		
42			
40			
38			
36			
34			
4			
32			
30			
28-			
26			
24			
4			
트 네	.		
18			
16			
14			
12	<mark></mark>		
10			
4			
8-			
6-			
4			
2-			
0-7			
0 1 2 3	4 5 6 7 8 9 10 11 12 13 14 15 Time (hrs)	16 17 18 19 20 21	22 23 24 25
	To East Pond — East Pond Re	2age 91 of 177	
	— 10 East Pond — East Pond Ro	June group C. C. III	

11-12-2020


Hyd. No. 16

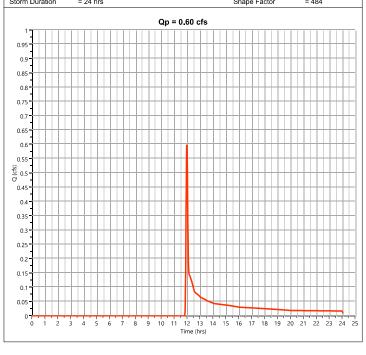
Hydrograph Report

Hydrology Studio v 3.0.0.16 11-12-2020


Post East Study Pt

Pre West - actual

Hydrograph Type	= NRCS Runoff	Peak Flow	= 1.648 cfs
Storm Frequency	= 2-yr	Time to Peak	= 11.97 hrs
Time Interval	= 1 min	Runoff Volume	= 3,618 cuft
Drainage Area	= 1.29 ac	Curve Number	= 63*
Tc Method	= User	Time of Conc. (Tc)	= 5.0 min
Total Rainfall	= 3.68 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484
* Composite CN Workshee	et		



Hydrograph Report

Hydrology Studio v 3.0.0.16

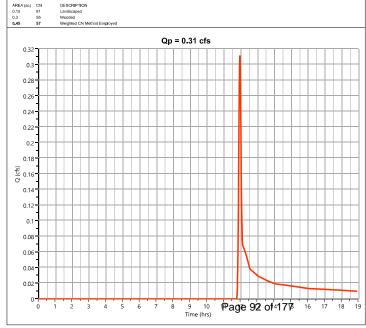
Pre West - 90% condition Hyd. No. 19

Hydrograph Type	= NRCS Runoff	Peak Flow	= 0.599 cfs
Storm Frequency	= 2-yr	Time to Peak	= 12.00 hrs
Time Interval	= 1 min	Runoff Volume	= 1,773 cuft
Drainage Area	= 1.16 ac	Curve Number	= 55
Tc Method	= User	Time of Conc. (Tc)	= 5.0 min
Total Rainfall	= 3.68 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484

Hydrograph Report

Hydrology Studio v 3.0.0.16 11-12-2020

Post West Study Point

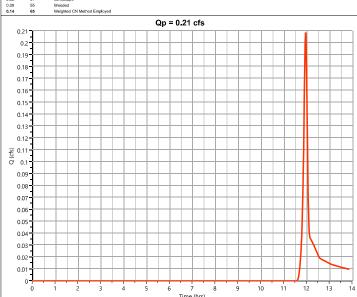

11-12-2020

Hyd. No. 20

Hyd. No. 18

Hydrograph Type	= NRCS Runoff	Peak Flow	= 0.312 cfs
Storm Frequency	= 2-yr	Time to Peak	= 11.98 hrs
Time Interval	= 1 min	Runoff Volume	= 817 cuft
Drainage Area	= 0.45 ac	Curve Number	= 57*
Tc Method	= TR55	Time of Conc. (Tc)	= 5.13 min
Total Rainfall	= 3.68 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484

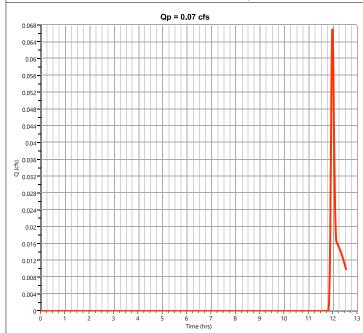
* Composite CN Worksheet


Hyd. No. 23

Hyd. No. 22 Pre South - actual

Hydrograph Type	= NRCS Runoff	Peak Flow	= 0.209 cfs
Storm Frequency	= 2-yr	Time to Peak	= 11.97 hrs
Time Interval	= 1 min	Runoff Volume	= 445 cuft
Drainage Area	= 0.14 ac	Curve Number	= 65*
Tc Method	= User	Time of Conc. (Tc)	= 5.0 min
Total Rainfall	= 3.68 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484

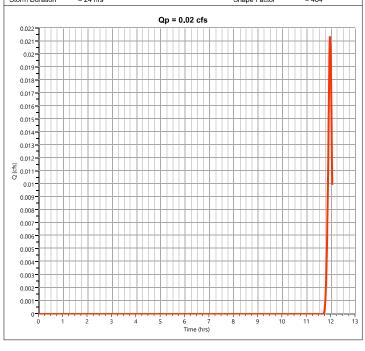
* Composite CN Worksheet


AREA (ac)	CN	DESCRIPTION
0.03	98	Impervious
0.02	61	Landscape

Pre South-90% condition

Hydrograph Report

Hydrograph Type	= NRCS Runoff	Peak Flow	= 0.067 cfs
Storm Frequency	= 2-yr	Time to Peak	= 12.00 hrs
Time Interval	= 1 min	Runoff Volume	= 199 cuft
Drainage Area	= 0.13 ac	Curve Number	= 55
Tc Method	= User	Time of Conc. (Tc)	= 5.0 min
Total Rainfall	= 3.68 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484


Hydrograph Report

Hydrology Studio v 3.0.0.16 11-12-2020

Po

ost South Study Point		Hyd. No. 24
Hudrograph Type - NPCS Pupoff	Peak Flow	= 0.021 ofc

Hydrograph Type	= NRCS Runoff	Peak Flow	= 0.021 cfs
Storm Frequency	= 2-yr	Time to Peak	= 11.97 hrs
Time Interval	= 1 min	Runoff Volume	= 49.1 cuft
Drainage Area	= 0.02 ac	Curve Number	= 61
Tc Method	= User	Time of Conc. (Tc)	= 5.0 min
Total Rainfall	= 3.68 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484

Hydrograph Report

Hydrology Studio v 3.0.0.16 11-12-2020

Pre Downstream with site

= NRCS Runoff

= 2-yr

= 1 min

Hydrograph Type

Storm Frequency

Time Interval

Hyd. No. 26 = 6866.8 cfs

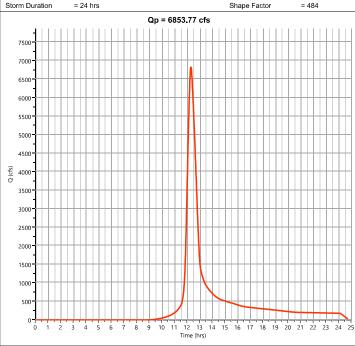
= 12.33 hrs

= 35.373.840 cuft

Peak Flow

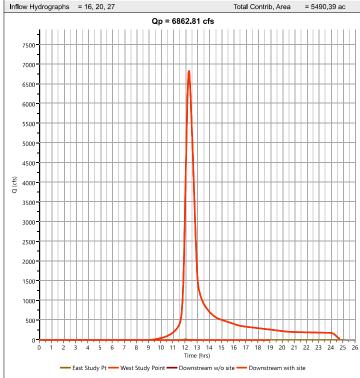
Time to Peak

Runoff Volume


				,
Drainage Area	= 5500.0 ac		Curve Number	= 80
Tc Method	= TR55		Time of Conc. (Tc)	= 42.48 min
Total Rainfall	= 3.68 in		Design Storm	= Type II
Storm Duration	= 24 hrs		Shape Factor	= 484
		Qp = 6866.78 cfs		
4				
7500				
1				
7000				
6500				
6000				
5500				
5000				
5000				
4500				
€ 4000				
(£) 4000				
3500				
3000				
1				
2500				
2000				
1500				
1000				
4		11111111111		
500				
0				
0 1	2 3 4 5 6 7	8 9 10 11 12 13 14P	Page 93 of 177∞	21 22 23 24
		Time (hrs)		

Hyd. No. 28

Downstream w/o site

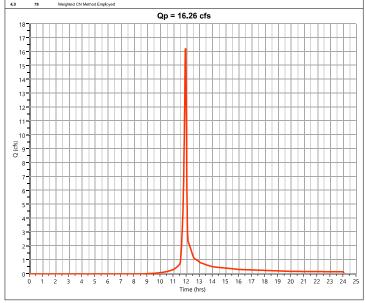

Hyd. No. 27

Hydrograph Type	= NRCS Runoff	Peak Flow	= 6853.8 cfs
Storm Frequency	= 2-yr	Time to Peak	= 12.33 hrs
Time Interval	= 1 min	Runoff Volume	= 35,306,750 cuft
Drainage Area	= 5489.57 ac	Curve Number	= 80
Tc Method	= TR55	Time of Conc. (Tc)	= 42.48 min
Total Rainfall	= 3.68 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484

Post Downstream with site

Hydrograph Type = Junction Peak Flow = 6862.8 cfs Storm Frequency Time to Peak = 12.33 hrs = 2-yr Time Interval Hydrograph Volume = 1 min = 35.387.200 cuft

Hydrograph Report

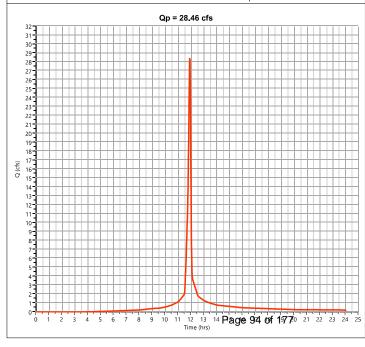

Hydrology Studio v 3.0.0.16 11-12-2020

Pre East Onsite Ex Pond Hyd. No. 1

Hydrograph Type	= NRCS Runoff	Peak Flow	= 16.26 cfs
Storm Frequency	= 5-yr	Time to Peak	= 11.97 hrs
Time Interval	= 1 min	Runoff Volume	= 32,854 cuft
Drainage Area	= 4.0 ac	Curve Number	= 78*
Tc Method	= User	Time of Conc. (Tc)	= 5.0 min
Total Rainfall	= 4.38 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484

* Composite CN Worksheet

AREA (80)	UN	DESCRIPTION
2.02	98	Impervious
1.08	61	Landscape
0.9	55	Wooded



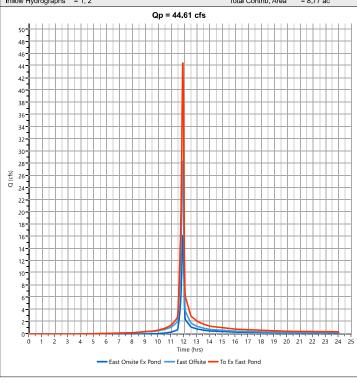
Hydrograph Report

Hydrology Studio v 3.0.0.16 11-12-2020

Pre East Offsite Hyd. No. 2

Storm Duration	= 24 hrs	Shape Factor	= 484
Total Rainfall	= 4.38 in	Design Storm	= Type II
Tc Method	= User	Time of Conc. (Tc)	= 5.0 min
Drainage Area	= 4.77 ac	Curve Number	= 92
Time Interval	= 1 min	Runoff Volume	= 62,238 cuft
Storm Frequency	= 5-yr	Time to Peak	= 11.95 hrs
Hydrograph Type	= NRCS Runoff	Peak Flow	= 28.46 cfs

11-12-2020


Hydrograph Report

Hydrology Studio v 3.0.0.16 11-12-2020

Pre To Ex East Pond

Hyd. No. 3

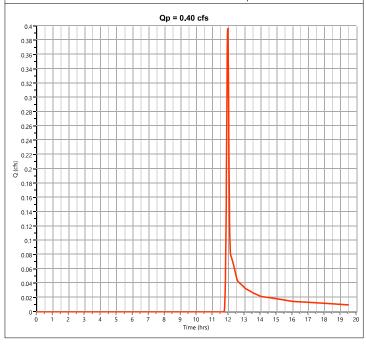
Hydrograph Type	= Junction	Peak Flow	= 44.61 cfs
Storm Frequency	= 5-yr	Time to Peak	= 11.95 hrs
Time Interval	= 1 min	Hydrograph Volume	= 95,092 cuft
Inflow Hydrographs	= 1, 2	Total Contrib. Area	= 8.77 ac

Pre East Pond Routed

v	= 38.20 cfs
ook	= 12 00 brs

Hyd. No. 4

Hydrograph Type	= Pond Route	Peak Flow	= 38.20 cfs
Storm Frequency	= 5-yr	Time to Peak	= 12.00 hrs
Time Interval	= 1 min	Hydrograph Volume	= 95,091 cuft
Inflow Hydrograph	= 3 - To Ex East Pond	Max. Elevation	= 924.04 ft
Pond Name	= Ex East Pond	Max. Storage	= 15,348 cuft
Road Routing by Storogo Indication Method		Center of me	see detention time = 35 min


	Qp = 38.20 cfs	
	ωρ – συ.ευ cis	
50		
48		
46		
44-		
4		
42 1		
40		
38		
36		
34		
32		
4		
30		
28		
€ 26 Ø 24		
σ ₂₄		
22		
20		
4		
18-		
16-		
14		
12-		
10-		
4		
8-		
61		
4-1		
2		
0-1	+++++	
0 1 2 3 4 5 6 7	8 9 10 11 12 13 14 15 16 17 18 Time (hrs)	3 19 20 21 22 23 24
_	To Ex East Pond — East Pond Routed	

Hydrograph Report

Hydrology Studio v 3.0.0.16 11-12-2020

Hyd. No. 5 Pre East Bypass

Hydrograph Type	= NRCS Runoff	Peak Flow	= 0.397 cfs
Storm Frequency	= 5-yr	Time to Peak	= 11.98 hrs
Time Interval	= 1 min	Runoff Volume	= 954 cuft
Drainage Area	= 0.37 ac	Curve Number	= 55
Tc Method	= User	Time of Conc. (Tc)	= 5.0 min
Total Rainfall	= 4.38 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484

Hydrograph Report

Hydrology Studio v 3.0.0.16 11-12-2020

Peak Flow

Time to Peak

Pre East Study Pt - Ex

= Junction

= 5-yr

Hydrograph Type

Storm Frequency

Hyd. No. 6

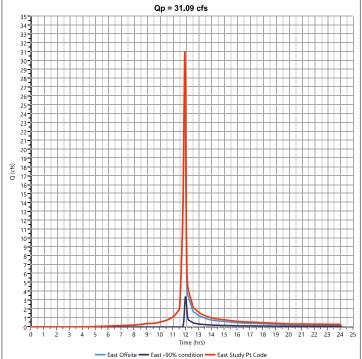
= 38.58 cfs

= 12.00 hrs

Time Interval			Hydrograph Volume	
Inflow Hydrographs	s = 4, 5		Total Contrib, Area	= 0.37 ac
		Qp = 38.58 cfs		
44 -				
42				
40				
38				
36				
4				
34				
32				
30				
28				
26				
4				
24 - Sp				
(\$) 22				
20				
18				
16				
4				
14-1				
12				
10	+++++++++++++++++++++++++++++++++++++++			
8				
6				
4				
4				
2				
0-1-1-1-1	3 4 5 6 7	8 9 10 11 12 13 14	15 16 17 10 10 20	24 22 22 24
0 1 2		Time (hrs)		21 22 23 24 3
	East I	Pond Routed — East Bypass — Ea	ୟୁଲୁ _{କ୍} ର୍5୍ରେମ 177	
		**	•	

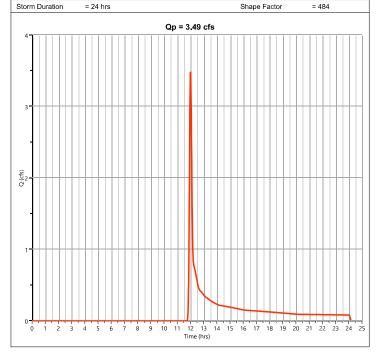
Hyd. No. 8

11-12-2020


Hydrograph Report Hydrology Studio v 3.0.0.16

Pre East Study Pt Code

Hvd. No. 9


= =================================			yaio.
Hydrograph Type	= Junction	Peak Flow	= 31.09 cfs
Storm Fraguency	= E vm	Time to Dook	= 11 07 bro

Hydrograph Type	= Junction	Peak Flow	= 31.09 cfs
Storm Frequency	= 5-yr	Time to Peak	= 11.97 hrs
Time Interval	= 1 min	Hydrograph Volume	= 72,067 cuft
Inflow Hydrographs	= 2, 8	Total Contrib. Area	= 8.7 ac

Pre East -90% condition

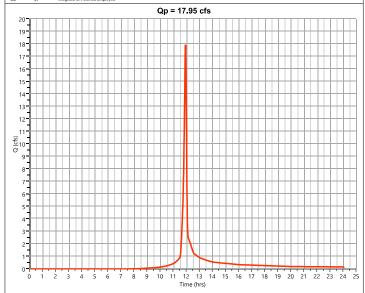
Hydrograph Type	= NRCS Runoff	Peak Flow	= 3.490 cfs
Storm Frequency	= 5-yr	Time to Peak	= 12.02 hrs
Time Interval	= 1 min	Runoff Volume	= 9,829 cuft
Drainage Area	= 3.93 ac	Curve Number	= 55
Tc Method	= User	Time of Conc. (Tc)	= 10.0 min
Total Rainfall	= 4.38 in	Design Storm	= Type II

Hydrograph Report

Post East Onsite to Pond

Hydrology Studio v 3.0.0.16

Hyd. No. 11

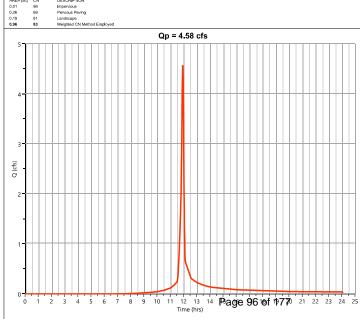

11-12-2020

Hydrograph Type	= NRCS Runoff	Peak Flow	= 17.95 cfs
Storm Frequency	= 5-yr	Time to Peak	= 11.97 hrs
Time Interval	= 1 min	Runoff Volume	= 36,605 cuft
Drainage Area	= 4.0 ac	Curve Number	= 81*
Tc Method	= User	Time of Conc. (Tc)	= 5.0 min
Total Rainfall	= 4.38 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484

* Composite CN Worksheet

AREA (ac)	CN	DESCRIPTION
2.3	98	Impervious
1.0	61	Landscaped

4.0	81	Weighted CN Method Employed
4.0	94	Weighted CN Method Employed
0.7	55	Wooded


Hydrograph Report

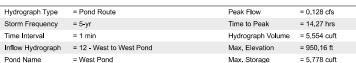
Hydrology Studio v 3.0.0.16 11-12-2020

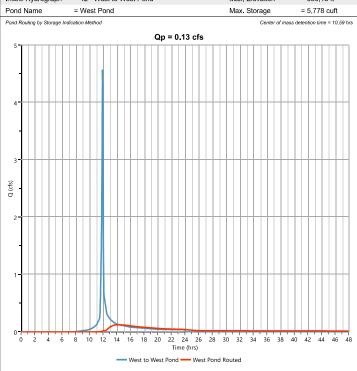
Post West to West Pond

Hyd. No. 12

Hydrograph Type	= NRCS Runoff	Peak Flow	= 4.575 cfs
Storm Frequency	= 5-yr	Time to Peak	= 11.95 hrs
Time Interval	= 1 min	Runoff Volume	= 9,413 cuft
Drainage Area	= 0.96 ac	Curve Number	= 83*
Tc Method	= User	Time of Conc. (Tc)	= 5.0 min
Total Rainfall	= 4.38 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484
* Composite CN Worksheet			

11-12-2020


11-12-2020


Hydrograph Type

= Junction

Hydrograph Report Hydrology Studio v 3.0.0.16 11-12-2020

Post West Pond Routed Hyd. No. 13

Post To East Pond Hyd. No. 14

Peak Flow

= 46.38 cfs

Project Name:

	- Junction		reak HOW	- 40.30 CIS
Storm Frequency	= 5-yr		Time to Peak	= 11.95 hrs
Time Interval	= 1 min		Hydrograph Volume	= 104,397 cuft
Inflow Hydrographs	= 2, 11, 13		Total Contrib. Area	= 8.77 ac
		Qp = 46.38 cfs		
52				
50				
48				
46				
44				
42				
4				
38				
4				
36				
34				
32				
30				
(£) 28 0 26				
7				
24				
22				
20				
18				
16				
14				
12				
10				
8				
6				
4 7				
2				
0 2 4 6	5 8 10 12 14 16 18	8 20 22 24 26 28 Time (hrs)	30 32 34 36 38 4	0 42 44 46 4
	— East Offsite — East Onsi	te to Pond — West Pond R	outed — To East Pond	

Hydrograph Report

Hydrology Studio v 3.0.0.16 11-12-2020

Hyd. No. 15

Hyd. No. 16

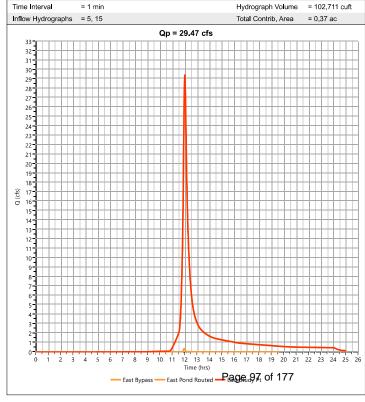
Post East Pond Routed

Hydrograph Type	= Pond Route	Peak Flow	= 29.17 cfs
Storm Frequency	= 5-yr	Time to Peak	= 12.03 hrs
Time Interval	= 1 min	Hydrograph Volume	= 101,756 cuft
Inflow Hydrograph	= 14 - To East Pond	Max. Elevation	= 922.33 ft

Inflow Hydrograph	= 14 - To East Pond	Max. Elevation	= 922.33 ft
Pond Name	= New East Pond	Max. Storage	= 28,073 cuft
Pond Routing by Storage In	ndication Method	Center of a	mass detention time = 41 mir
	Qp = 29.17 ct	fs	
Fond Routing by Storage In 52 - 50 - 48 - 44 - 44 - 42 - 40 - 38 - 36 - 32 - 30 - 22 - 20 - 18 - 16 - 12 - 12 - 12 - 12 - 12 - 12 - 12	ndication Method	Center of I	mass detention time = 41 min
10 8 6 4 4 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 0 0	3 4 5 6 7 8 9 10 11 12 13 Time thrs	14 15 16 17 18 19 20 2	1 22 23 24 25 2
	To East Pond East F		

Hydrograph Report

= Junction


= 5-yr

Hydrology Studio v 3.0.0.16 11-12-2020

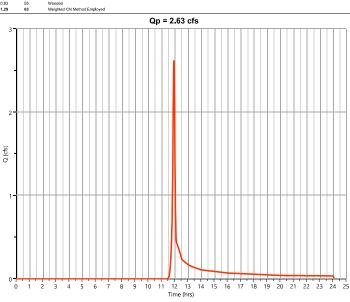
Post East Study Pt Hydrograph Type

Storm Frequency

Peak Flow = 29.47 cfs Time to Peak = 12.03 hrs = 102.711 cuft

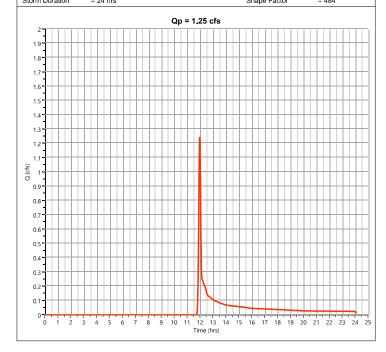
Pre West - actual

Hyd. No. 19


Hydrology Studio v 3.0.0.16 11-12-2020

Hyd. No. 18

Hydrograph Type	= NRCS Runoff	Peak Flow	= 2.626 cfs
Storm Frequency	= 5-yr	Time to Peak	= 11.97 hrs
Time Interval	= 1 min	Runoff Volume	= 5,465 cuft
Drainage Area	= 1.29 ac	Curve Number	= 63*
Tc Method	= User	Time of Conc. (Tc)	= 5.0 min
Total Rainfall	= 4.38 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484


AREA (ac)	CN	DESCRIPTION
0.2	98	Impervious
0.26	61	Landcape

Pre West - 90% condition

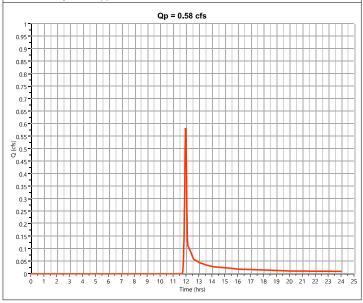
Hydrograph Report

Hydrograph Type = NRCS Runoff Peak Flow = 1.246 cfs Storm Frequency Time to Peak = 11.98 hrs = 5-yr Time Interval = 1 min Runoff Volume = 2.992 cuft Drainage Area = 1.16 ac Curve Number = 55 = 5.0 min Tc Method = User Time of Conc. (Tc) Total Rainfall = 4.38 in Design Storm = Type II Storm Duration = 24 hrs Shape Factor = 484

Hydrograph Report

Hydrology Studio v 3.0.0.16

11-12-2020


Post West Study Point Hyd. No. 20

Hydrograph Type	= NRCS Runoff	Peak Flow	= 0.584 cfs
Storm Frequency	= 5-yr	Time to Peak	= 11.97 hrs
Time Interval	= 1 min	Runoff Volume	= 1,333 cuft
Drainage Area	= 0.45 ac	Curve Number	= 57*
Tc Method	= TR55	Time of Conc. (Tc)	= 5.13 min
Total Rainfall	= 4.38 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484

* Composite CN Worksheet

0.15	61	Landscaped
0.2	66	Wonded

Weighted CN Method Employed

Hydrograph Report

Hydrology Studio v 3.0.0.16

11-12-2020

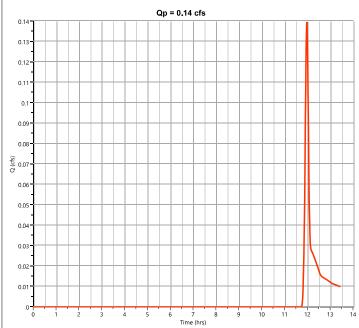
Pre South - actual

Hyd. No. 22

Hydrograph Type	= NRCS Runoff	Peak Flow	= 0.321 cfs
Storm Frequency	= 5-yr	Time to Peak	= 11.97 hrs
Time Interval	= 1 min	Runoff Volume	= 658 cuft
Drainage Area	= 0.14 ac	Curve Number	= 65*
Tc Method	= User	Time of Conc. (Tc)	= 5.0 min
Total Rainfall	= 4.38 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484

* Composite CN Worksheet

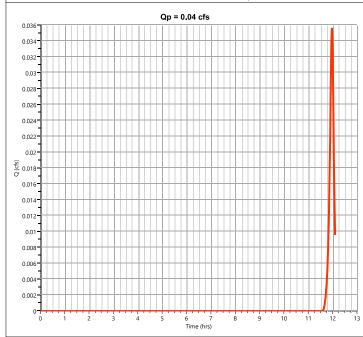

Qp = 0.32 cfs 0.28 0.26 0.22 0.2 (S) C) 0.16 0.14 0.12 0.08 0.06 0.04 0.02 9 Page 98 of 1177 13 14 Time (hrs)


Hyd. No. 23

Hyd. No. 24

Hydrology Studio v 3.0.0.16 11-12-2020

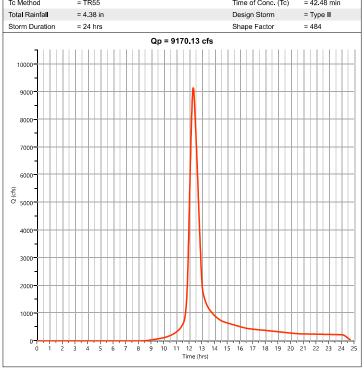
Pre South-90% condition



Post South Study Point

Hydrograph Report

Hydrograph Type	= NRCS Runoff	Peak Flow	= 0.036 cfs
Storm Frequency	= 5-yr	Time to Peak	= 11.97 hrs
Time Interval	= 1 min	Runoff Volume	= 75.8 cuft
Drainage Area	= 0.02 ac	Curve Number	= 61
Tc Method	= User	Time of Conc. (Tc)	= 5.0 min
Total Rainfall	= 4.38 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484


Hydrograph Report

Pre Downstream with site

Hydrology Studio v 3.0.0.16 11-12-2020

Hyd. No. 26

Hydrograph Type	= NRCS Runoff	Peak Flow	= 9170.1 cfs
Storm Frequency	= 5-yr	Time to Peak	= 12.33 hrs
Time Interval	= 1 min	Runoff Volume	= 46,883,410 cuft
Drainage Area	= 5500.0 ac	Curve Number	= 80
Tc Method	= TR55	Time of Conc. (Tc)	= 42.48 min
Total Rainfall	= 4.38 in	Design Storm	= Type II
			71.

Hydrograph Report

= NRCS Runoff

= 5-yr

Hydrology Studio v 3.0.0.16 11-12-2020

Peak Flow

Time to Peak

Downstream w/o site Hydrograph Type

Storm Frequency

Hyd. No. 27 = 9152.7 cfs

= 12.33 hrs

Drainage Area	= 5489.57 ac	Curve Number	= 80
Tc Method	= TR55	Time of Conc. (Tc)	= 42.48 min
Total Rainfall	= 4.38 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484
	Qp = 9152.75 c	fs	
]			
10000			
1			
9000			
1			
8000			
-			
7000			
6000			
(§)			
© 5000			
4			
4000			
4			
3000			
1			
2000			
	111111111111111111111111111111111111111		
1000	<u> </u>		
1000			
.]			+++++
0 1 2	3 4 5 6 7 8 9 10 11 12 13 Time (hrs	14Prage 99 of 1972	21 22 23 24
	Time (hrs)	

Hydrograph Type

Hyd. No. 1

Hydrograph Report 11-12-2020 Hydrology Studio v 3.0.0.16 11-12-2020

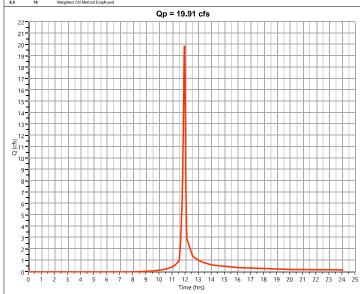
Post Downstream with site

= Junction

Hyd. No. 28

= 9164.0 cfs

Peak Flow


Storm Frequency	= 5-yr	Time to Peak	= 12.33 hrs
Time Interval	= 1 min	Hydrograph Volume	= 46,898,740 cuft
Inflow Hydrographs	= 16, 20, 27	Total Contrib. Area	= 5490.39 ac
	Qp = 9164.03 cfs		
10000			
9000			
8000-			
7000			
6000- (£) 0 5000-			
-			
4000			
2000			
4			
1000			

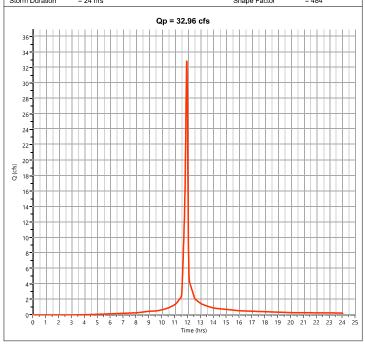
Pre East Onsite Ex Pond

Hydrograph Type	= NRCS Runoff	Peak Flow	= 19.91 cfs
Storm Frequency	= 10-yr	Time to Peak	= 11.97 hrs
Time Interval	= 1 min	Runoff Volume	= 40,477 cuft
Drainage Area	= 4.0 ac	Curve Number	= 78*
Tc Method	= User	Time of Conc. (Tc)	= 5.0 min
Total Rainfall	= 4.99 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484

* Composite CN Worksheet

AREA (ac)	CN	DESCRIPTIO
2.02	98	Impervious
1.08	61	Landscape

Hydrograph Report


Hydrology Studio v 3.0.0.16

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Time (hrs)

11-12-2020

Pre East Offsite Hyd. No. 2

Hydrograph Type	= NRCS Runoff	Peak Flow	= 32.96 cfs
Storm Frequency	= 10-yr	Time to Peak	= 11.95 hrs
Time Interval	= 1 min	Runoff Volume	= 72,845 cuft
Drainage Area	= 4.77 ac	Curve Number	= 92
Tc Method	= User	Time of Conc. (Tc)	= 5.0 min
Total Rainfall	= 4.99 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484

Hydrograph Report

= Junction

Hydrology Studio v 3.0.0.16 11-12-2020

Peak Flow

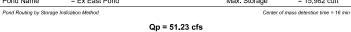
Time to Deal.

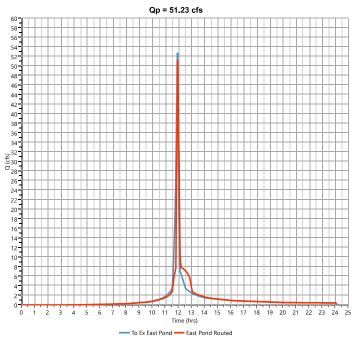
Pre To Ex East Pond Hydrograph Type

Hyd. No. 3 = 52.80 cfs

Storm Frequency	= 10 - yr		Time to Peak	= 11.95 hrs
Time Interval	= 1 min		Hydrograph Volume	= 113,322 cuft
Inflow Hydrographs	= 1, 2		Total Contrib. Area	= 8.77 ac
		Qp = 52.80 cfs		
60				
58				
56				
54				
52				
50				
48				
46				
44				
42				
40				
38-				
36				
34				
£30				
28				
26				
4				
22 -				
18				
16-1				
14-1				
12				
10				
8				
6				
4 -				
2				
2	╎╎╎╎╎╎┼┼┼┼ ┿			
0 1 2 3	4 5 6 7 8	9 10 11 12 13 14 15 Time (hrs)	5 16 17 18 19 20	21 22 23 24
	_	Ex Pond — East Offsite Pa	ae 100 of 177	
	East Onsite	Ex Pond — East Offsite 🛏 🗖	Bellet East-Predicted in 1	

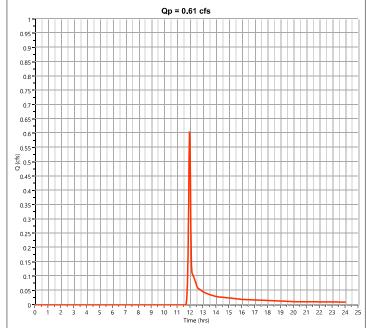
Hyd. No. 5


11-12-2020


Hydrograph Report

Pre East Pond Routed

Hyd. No. 4



Pre East Bypass

Hydrograph Type	= NRCS Runoff	Peak Flow	= 0.608 cfs
Storm Frequency	= 10-yr	Time to Peak	= 11.97 hrs
Time Interval	= 1 min	Runoff Volume	= 1,350 cuft
Drainage Area	= 0.37 ac	Curve Number	= 55
Tc Method	= User	Time of Conc. (Tc)	= 5.0 min
Total Rainfall	= 4.99 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484

Hydrograph Report

= Junction

= 10-yr

Hydrograph Type

Storm Frequency

Hydrology Studio v 3.0.0.16 11-12-2020

Pre East Study Pt - Ex Hyd. No. 6

Peak Flow

Time to Peak

= 51.84 cfs

= 11.97 hrs

Qp = 51.84 cfs 58	Time Interval	= 1 min	Hydrograph Volume	= 114,672 cuft
56 54 52 55 56 56 56 56 56 56	nflow Hydrographs	= 4, 5	Total Contrib. Area	= 0.37 ac
10-	18 18 18 18 18 18 18 18	= 4, 5	Hydrograph Volume Total Contrib, Area	
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 2	10 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	4 5 6 7 8 9 10 11 12 13 14	15 16 17 18 19 20	21 22 23 24 25
Time (hrs) East Pond Routed — East Bypass — East Study Pt - Ex		Time (hrs)		

Hydrograph Report

Hydrology Studio v 3.0.0.16 11-12-2020

Peak Flow

Time to Peak

Runoff Volume

Pre East -90% condition

= NRCS Runoff

= 10-yr

= 1 min

Hydrograph Type

Storm Frequency Time Interval

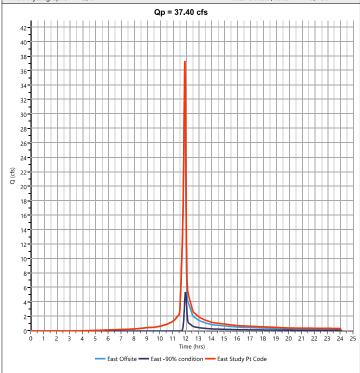
Hyd. No. 8 = 5.416 cfs

= 12.00 hrs

= 13,909 cuft

		Curve Number	= 55
Tc Method	= User	Time of Conc. (Tc)	= 10.0 min
Total Rainfall	= 4.99 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484
67	Qp = 5.42 cfs		
4			
5			
4			
4			
_{\$\overline{\pi}\$}			
(f) 3			
-			
1			
2			
1			
1-			
1			
			++++
0 1 2 3	4 5 6 7 8 9 10 11 12 13 14 Time (hrs)	Pasge-101 of 1977	21 22 23 24 25

11-12-2020

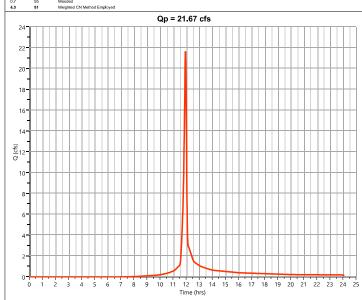

Hydrograph Report

Hydrology Studio v 3.0.0.16 11-12-2020

Pre East Study Pt Code

Hyd. No. 9

Hydrograph Type	= Junction	Peak Flow	= 37.40 cfs
Storm Frequency	= 10-yr	Time to Peak	= 11.97 hrs
Time Interval	= 1 min	Hydrograph Volume	= 86,754 cuft
Inflow Hydrographs	= 2, 8	Total Contrib. Area	= 8.7 ac



Post East Onsite to Pond

Hydrograph Type	= NRCS Runoff	Peak Flow	= 21.67 cfs
Storm Frequency	= 10-yr	Time to Peak	= 11.97 hrs
Time Interval	= 1 min	Runoff Volume	= 44,569 cuft
Drainage Area	= 4.0 ac	Curve Number	= 81*
Tc Method	= User	Time of Conc. (Tc)	= 5.0 min
Total Rainfall	= 4.99 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484

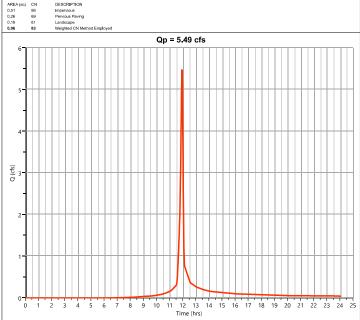
* Compo	site CN	Worksheet
APEA (on)	CN	DESCRIB

AREA (ac)	CN	DESCRIPTION
2.3	98	Impervious
1.0	61	Landscaped

Hydrograph Report

Hydrology Studio v 3.0.0.16

11-12-2020

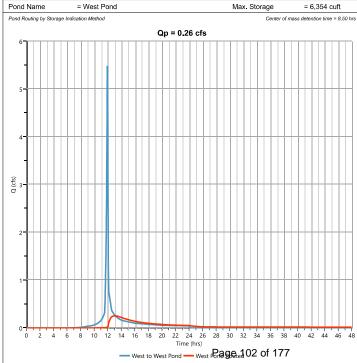

Hydrology Studio v 3.0.0.16

Post West to West Pond

Hyd.	No.	12
------	-----	----

Hydrograph Type	= NRCS Runoff	Peak Flow	= 5.489 cfs
Storm Frequency	= 10-yr	Time to Peak	= 11.95 hrs
Time Interval	= 1 min	Runoff Volume	= 11,374 cuft
Drainage Area	= 0.96 ac	Curve Number	= 83*
Tc Method	= User	Time of Conc. (Tc)	= 5.0 min
Total Rainfall	= 4.99 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484

* Composite CN Worksheet

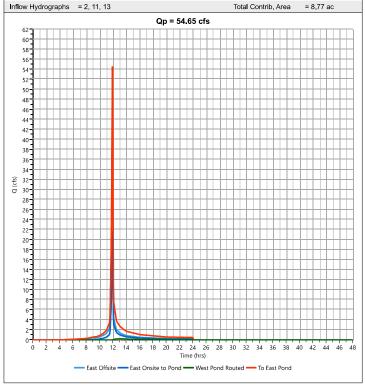

Post West Pond Routed

Hydrograph Report

Hyd. No. 13

11-12-2020

Hydrograph Type	= Pond Route	Peak Flow	= 0.259 cfs
Storm Frequency	= 10-yr	Time to Peak	= 13.05 hrs
Time Interval	= 1 min	Hydrograph Volume	= 7,441 cuft
Inflow Hydrograph	= 12 - West to West Pond	Max. Elevation	= 950.27 ft
Pond Name	= West Pond	Max. Storage	= 6,354 cuft


Project Name: 11-12-2020

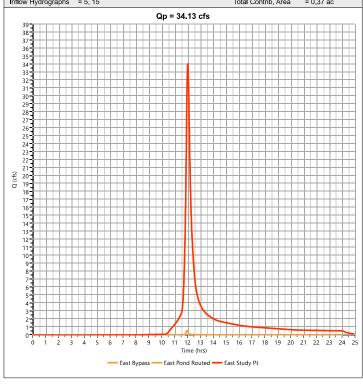
Hydrograph Report

Hydrology Studio v 3.0.0.16 11-12-2020

Post To East Pond Hyd. No. 14

Post East Pond Routed

Hydrograph Type	= Pond Route	Peak Flow	= 33.70 cfs
Storm Frequency	= 10-yr	Time to Peak	= 12.03 hrs
Time Interval	= 1 min	Hydrograph Volume	= 122,207 cuft
Inflow Hydrograph	= 14 - To East Pond	Max. Elevation	= 922.91 ft
Pond Name	= New East Pond	Max. Storage	= 31,794 cuft

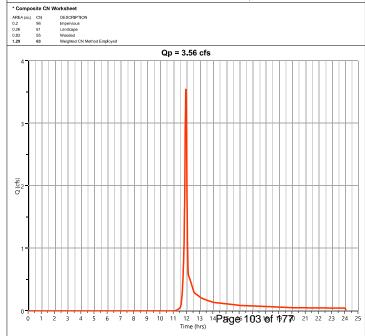

Pond Name	= New East Pond	Max. Storage	= 31,794 cuft
Pond Routing by Storage	e Indication Method	Ce	enter of mass detention time = 43 i
	Qp = 33.7	0 cfs	
62			
60			
58			
56			
54			
52			
50			
48			
46			
44			
42			
40			
38			
36			
34			
€ 32 Ø 30			
28			
26			
24			
22			
20			
18			
16			
14			
12			
10-			
8-7		1	
6			
4-			
2			
<u> </u>			
0 1 2	3 4 5 6 7 8 9 10 11 12	13 14 15 16 17 18	19 20 21 22 23 24
	Time	e (hrs)	
	— To East Pond — E	ast Pond Routed	

Hydrograph Report

Hydrology Studio v 3.0.0.16 11-12-2020

Post East Study Pt Hyd. No. 16

Hydrograph Type	= Junction	Peak Flow	= 34.13 cfs
Storm Frequency	= 10-yr	Time to Peak	= 12.03 hrs
Time Interval	= 1 min	Hydrograph Volume	= 123,557 cuft
Inflow Hydrographs	= 5, 15	Total Contrib. Area	= 0.37 ac



Hydrograph Report

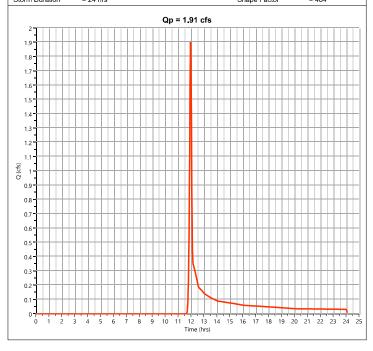
Hydrology Studio v 3.0.0.16 11-12-2020

Pre West - actual Hyd. No. 18

Hydrograph Type	= NRCS Runoff	Peak Flow	= 3.557 cfs
Storm Frequency	= 10-yr	Time to Peak	= 11.97 hrs
Time Interval	= 1 min	Runoff Volume	= 7,256 cuft
Drainage Area	= 1.29 ac	Curve Number	= 63*
Tc Method	= User	Time of Conc. (Tc)	= 5.0 min
Total Rainfall	= 4.99 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484
* Composite CN Workshe	et		

Project Name: 11-12-2020

⊓у


Hydrograph Report Project Name:
Hydrology Studio v 3.00.16

11-12-2020

Pre West - 90% condition

Hyd. No. 19

Hydrograph Type	= NRCS Runoff	Peak Flow	= 1.905 cfs
Storm Frequency	= 10-yr	Time to Peak	= 11.97 hrs
Time Interval	= 1 min	Runoff Volume	= 4,234 cuft
Drainage Area	= 1.16 ac	Curve Number	= 55
Tc Method	= User	Time of Conc. (Tc)	= 5.0 min
Total Rainfall	= 4.99 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shane Factor	= 484

Post West Study Point

Hydrograph Type	= NRCS Runoff	Peak Flow	= 0.862 cfs
Storm Frequency	= 10-yr	Time to Peak	= 11.97 hrs
Time Interval	= 1 min	Runoff Volume	= 1,852 cuft
Drainage Area	= 0.45 ac	Curve Number	= 57*
Tc Method	= TR55	Time of Conc. (Tc)	= 5.13 min
Total Rainfall	= 4.99 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484

* Composite CN Worksheet

15 61	Landscaped
3 55 45 57	Wooded Weighted CN Method Employed
	Qp = 0.86 cfs
17	
0.95	
0.9	
0.85	
0.8	
0.75	
0.7	
0.65	
0.6	
0.55	
0.45	
0.4	
0.35	
0.3	
0.25	
0.2	
0.15	
0.1	

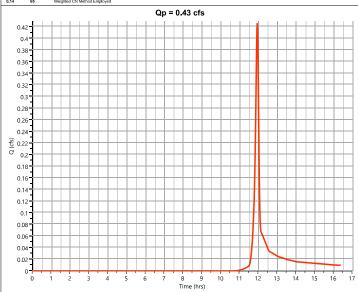
Hydrograph Report

Hydrology Studio v 3.0.0.16 11-12-2020

d Na 22

2		

Hydrology Studio v 3.0.0.16 11-12-2020

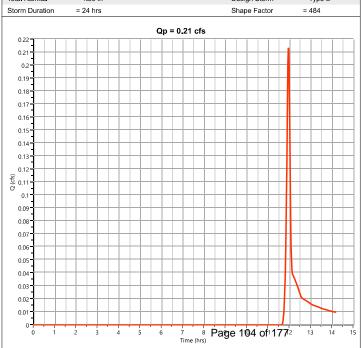

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Time (hrs)

Pre South - actual Hyd. No. 22

Storm Duration	= 24 hrs	Shape Factor	= 484
Total Rainfall	= 4.99 in	Design Storm	= Type II
Tc Method	= User	Time of Conc. (Tc)	= 5.0 min
Drainage Area	= 0.14 ac	Curve Number	= 65*
Time Interval	= 1 min	Runoff Volume	= 863 cuft
Storm Frequency	= 10-yr	Time to Peak	= 11.97 hrs
Hydrograph Type	= NRCS Runoff	Peak Flow	= 0.426 cfs

* Composite CN Worksheet

0.03	98	Impervious
0.02	61	Landscape
0.09	55	Wooded
0.14	65	Weighted CN Method Employer



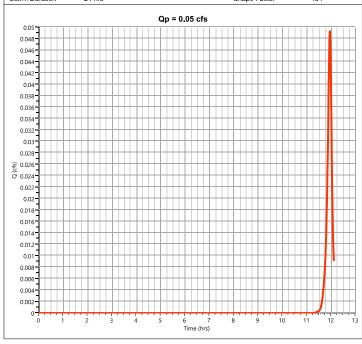
Pre South-90% condition

Hydrograph Report

Hvd.	No.	23

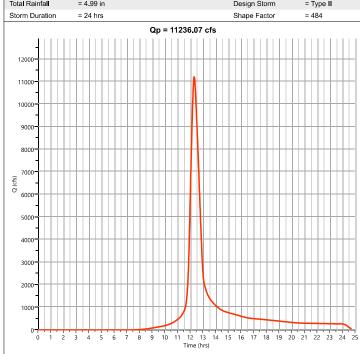
Hydrograph Type	= NRCS Runoff	Peak Flow	= 0.213 cfs
Storm Frequency	= 10-yr	Time to Peak	= 11.97 hrs
Time Interval	= 1 min	Runoff Volume	= 474 cuft
Drainage Area	= 0.13 ac	Curve Number	= 55
Tc Method	= User	Time of Conc. (Tc)	= 5.0 min
Total Rainfall	= 4.99 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484

11-12-2020


Hydrograph Report

Hydrology Studio v 3.0.0.16 11-12-2020

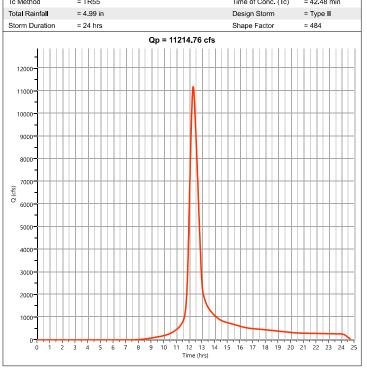
Post South Study Point


Hyd. No. 24

Hydrograph Type	= NRCS Runoff	Peak Flow	= 0.049 cfs
Storm Frequency	= 10 - yr	Time to Peak	= 11.97 hrs
Time Interval	= 1 min	Runoff Volume	= 102 cuft
Drainage Area	= 0.02 ac	Curve Number	= 61
Tc Method	= User	Time of Conc. (Tc)	= 5.0 min
Total Rainfall	= 4.99 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484

Pre Downstream with site

Hydrograph Type	= NRCS Runoff	Peak Flow	= 11236.1 cfs
Storm Frequency	= 10-yr	Time to Peak	= 12.32 hrs
Time Interval	= 1 min	Runoff Volume	= 57,304,950 cuft
Drainage Area	= 5500.0 ac	Curve Number	= 80
Tc Method	= TR55	Time of Conc. (Tc)	= 42.48 min
Total Rainfall	= 4.99 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484


Hydrograph Report

Downstream w/o site

Hydrology Studio v 3.0.0.16 11-12-2020

Hyd. No. 27

Hydrograph Type	= NRCS Runoff	Peak Flow	= 11214.8 cfs
Storm Frequency	= 10-yr	Time to Peak	= 12.32 hrs
Time Interval	= 1 min	Runoff Volume	= 57,196,260 cuft
Drainage Area	= 5489.57 ac	Curve Number	= 80
Tc Method	= TR55	Time of Conc. (Tc)	= 42.48 min
Total Rainfall	= 4.99 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484

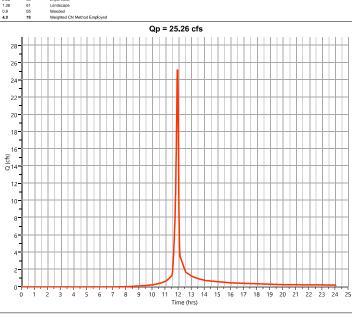
Hydrograph Report

Hydrology Studio v 3.0.0.16 11-12-2020

Post Downstream with site

Hyd. No. 28 = 11229.0 cfs

Hydrograph Type	= Junction	Peak Flow	= 11229.0 cfs	
Storm Frequency	= 10-yr Time to Peak		= 12.32 hrs	
Time Interval	= 1 min	Hydrograph Volume	= 57,321,870 cu	
Inflow Hydrographs	= 16, 20, 27	Total Contrib. Area	= 5490.39 ac	
	Qp = 11228.9	i cfs		
111111				
1				
12000				
1				
11000				
1				
10000				
1				
9000				
1				
8000				
1				
7000				
Q (cfs)				
6000				
1				
5000				
1				
4000				
1				
3000				
1	1 1 1 1 1 1 1 1 1 1	.		
2000		\		
1	1 1 1 1 1 1 1 1 1 1			
1000	 			
1				
0 1 2	3 4 5 6 7 8 9 10 11 12	13 14 15 16 17 18 19 20	21 22 23 24	
	Time (hrs)		
_	East Study Pt — West Study Point — Downsti	eam Rage 105, of a1777th s	ite	

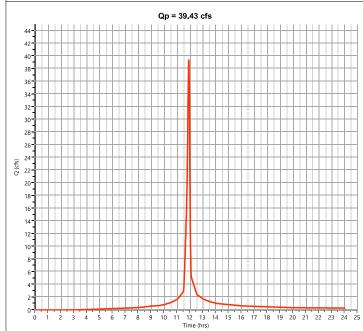

Hydrology Studio v 3.0.0.16 11-12-2020

Pre East Onsite Ex Pond Hyd. No. 1

Hydrograph Type	= NRCS Runoff	Peak Flow	= 25.26 cfs
Storm Frequency	= 25-yr	Time to Peak	= 11.97 hrs
Time Interval	= 1 min	Runoff Volume	= 51,874 cuft
Drainage Area	= 4.0 ac	Curve Number	= 78*
Tc Method	= User	Time of Conc. (Tc)	= 5.0 min
Total Rainfall	= 5.87 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484

* Composite CN Worksheet AREA (ac) CN DESCRIPTIO

AREA (ac)	CN	DESCRIPTION		
2.02	98	Impervious		
1.08	61	Landscape		



Pre East Offsite

Hydrograph Type = NRCS Runoff Peak Flow = 39.43 cfs Storm Frequency = 25-yr Time to Peak = 11.95 hrs Time Interval = 1 min Runoff Volume = 88.240 cuft Drainage Area = 4.77 ac Curve Number = 92 = 5.0 min Tc Method = User Time of Conc. (Tc)

 Total Rainfall
 = 5.87 in
 Design Storm
 = Type II

 Storm Duration
 = 24 hrs
 Shape Factor
 = 484

Hydrograph Report

= Junction

= 25-yr

Hydrograph Type

Storm Frequency

Hydrology Studio v 3.0.0.16

Pre To Ex East Pond Hyd. No. 3

Peak Flow

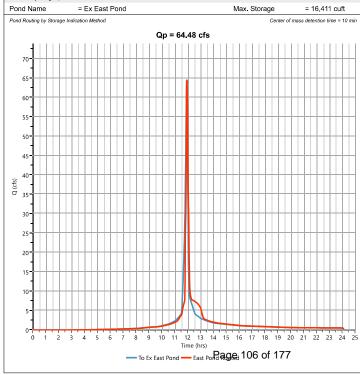
Time to Peak

Time Interval	= 1 min		Hydrograph Volume	
Inflow Hydrograph:	s = 1, 2		Total Contrib. Area	= 8.77 ac
		Qp = 64.68 cfs		
74				
72 -				
68				
66				
64				
62				
60 - 58 -				
56				
54				
52				
50				
48 46				
44				
42				
40				
€ 38 Ø 36				
O 36				
32				
30				
28				
26				
24 7				
20				
18				
16				
14 -				
10				
8				
6				
4				
2				
0 1 2	3 4 5 6 7	8 9 10 11 12 13 14	15 16 17 18 19 20	21 22 23 24
		Time (hrs)		
	East C	nsite Ex Pond — East Offsite —	To Ex East Pond	

Hydrograph Report

11-12-2020

= 64.68 cfs


= 11.95 hrs

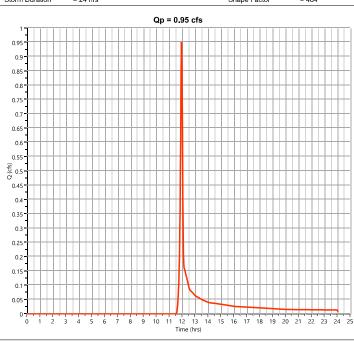
Hydrology Studio v 3.0.0.16 11-12-2020

Pre East Pond Routed

Hyd. No. 4

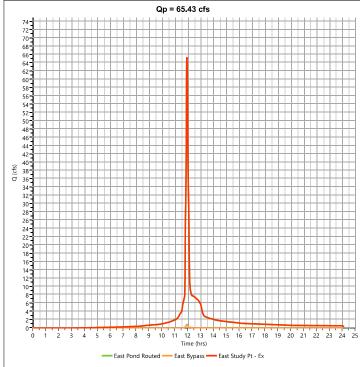
Hydrograph Type	= Pond Route	Peak Flow	= 64.48 cfs
Storm Frequency	= 25-yr	Time to Peak	= 11.97 hrs
Time Interval	= 1 min	Hydrograph Volume	= 140,113 cuft
Inflow Hydrograph	= 3 - To Ex East Pond	Max. Elevation	= 924.31 ft
Pond Name	= Ex East Pond	Max. Storage	= 16,411 cuft

Hyd. No. 6


Hydrology Studio v 3.0.0.16 11-12-2020

Pre East Bypass

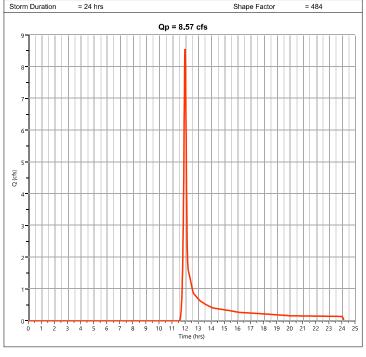
Hydrology Studio v 3.0.0.16


Hyd. No. 5

Hydrograph Type	= NRCS Runoff	Peak Flow	= 0.952 cfs
Storm Frequency	= 25-yr	Time to Peak	= 11.97 hrs
Time Interval	= 1 min	Runoff Volume	= 2,000 cuft
Drainage Area	= 0.37 ac	Curve Number	= 55
Tc Method	= User	Time of Conc. (Tc)	= 5.0 min
Total Rainfall	= 5.87 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484

Pre East Study Pt - Ex

Hydrograph Type	= Junction	Peak Flow	= 65.43 cfs
Storm Frequency	= 25-yr	Time to Peak	= 11.97 hrs
Time Interval	= 1 min	Hydrograph Volume	= 142,113 cuft
Inflow Hydrographs	= 4, 5	Total Contrib. Area	= 0.37 ac



Hydrograph Report

Hydrology Studio v 3.0.0.16 11-12-2020 8

Pre East -90% condition	Hyd. No.
-------------------------	----------

Hydrograph Type	= NRCS Runoff	Peak Flow	= 8.574 cfs
Storm Frequency	= 25-yr	Time to Peak	= 12.00 hrs
Time Interval	= 1 min	Runoff Volume	= 20,595 cuft
Drainage Area	= 3.93 ac	Curve Number	= 55
Tc Method	= User	Time of Conc. (Tc)	= 10.0 min
Total Rainfall	= 5.87 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484

Hydrograph Report

Hydrology Studio v 3.0.0.16 11-12-2020

Peak Flow

Time to Deal.

Pre East Study Pt Code

= Junction

Hydrograph Type

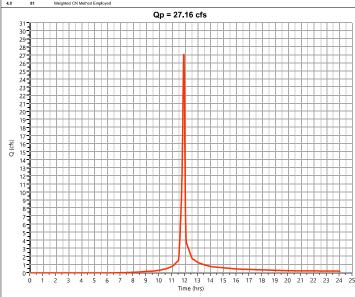
Hyd. No. 9 = 46.82 cfs

Storm Frequency	= 25-yr		Time to P		= 11.97 hrs	
Time Interval	= 1 min		Hydrogra	ph Volume	= 108,835 c	cuft
Inflow Hydrographs	= 2, 8		Total Con	trib. Area	= 8.7 ac	
		Qp = 46.82 c	fs			
es						П
52						П
50						\Box
48				+++++		Ħ
46				+++++		Н
44-						Н
42						Н
40						Н
38				\square		Ш
36						Ш
4						Ш
34						П
32						\Box
30				+++++		Ħ
€ 28						Н
(\$4) O 26						Н
24		 				Н
22						Н
20				\square		Ш
18						Ш
4						Ш
16-						Ш
14						П
12-						П
10						Ħ
8-				+++++		H
6			+++++++++++++++++++++++++++++++++++++++	+++++		Н
4		 				H
2						H
<u>, </u>				1 1 1 1 1 1	1,1,1,1,1	Ц
0 1 2 3	4 5 6 7		14 15 16 17	18 19 20	21 22 23 2	24
		Time (hr	s) Dogo 107 :	of 177		
	East Offsi	te — East -90% condition	- Fallengh Mcol	//الإو		
	East Offsi	te — East -90% condition				_

11-12-2020

Hydrology Studio v 3.0.0.16

Hyd. No. 12

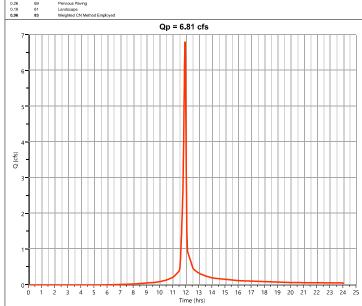

11-12-2020

Post East Onsite to Pond Hyd. No. 11

Hydrograph Type	= NRCS Runoff	Peak Flow	= 27.16 cfs
Storm Frequency	= 25-yr	Time to Peak	= 11.95 hrs
Time Interval	= 1 min	Runoff Volume	= 56,383 cuft
Drainage Area	= 4.0 ac	Curve Number	= 81*
Tc Method	= User	Time of Conc. (Tc)	= 5.0 min
Total Rainfall	= 5.87 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484

* Composite CN Worksheet

AREA (80)	CN	DESCRIPTION
2.3	98	Impervious
1.0	61	Landscaped



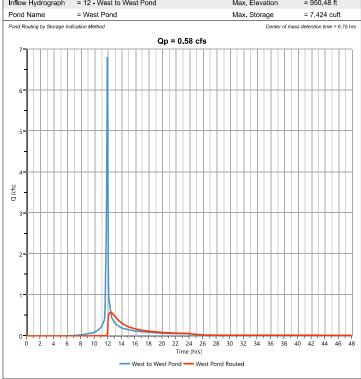
Post West to West Pond

Hydrograph Report

Hydrograph Type = NRCS Runoff Peak Flow = 6.814 cfs Storm Frequency Time to Peak = 11.95 hrs = 25-yr Time Interval = 1 min Runoff Volume = 14.270 cuft Drainage Area = 0.96 ac Curve Number = 83* = 5.0 min Tc Method = User Time of Conc. (Tc) Total Rainfall = 5.87 in Design Storm = Type II Storm Duration = 24 hrs Shape Factor = 484

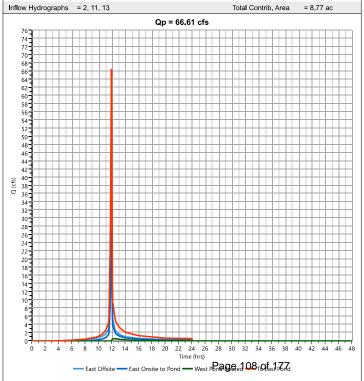
* Composite CN Worksheet

Hydrograph Report


Hydrology Studio v 3.0.0.16 11-12-2020

Hydrograph Report Hydrology Studio v 3.0.0.16

11-12-2020

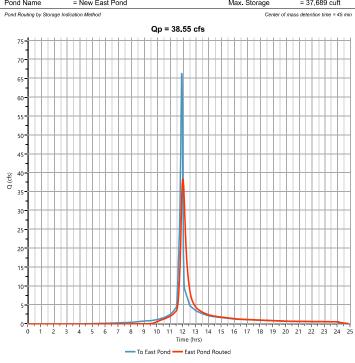

Post West Pond Routed Hyd. No. 13

Hydrograph Type	= Pond Route	Peak Flow	= 0.585 cfs
Storm Frequency	= 25 - yr	Time to Peak	= 12.45 hrs
Time Interval	= 1 min	Hydrograph Volume	= 10,250 cuft
Inflow Hydrograph	= 12 - West to West Pond	Max. Elevation	= 950.48 ft
Pond Name	= West Pond	Max. Storage	= 7.424 cuft

Post To East Pond

Inflow Hydrographs	= 2, 11, 13	Total Contrib. Area	= 8.77 ac
Time Interval	= 1 min	Hydrograph Volume	= 154,874 cuft
Storm Frequency	= 25-yr	Time to Peak	= 11.95 hrs
Hydrograph Type	= Junction	Peak Flow	= 66.61 cfs

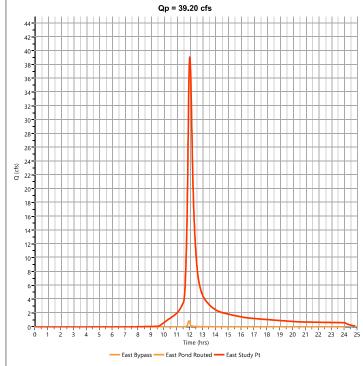
11-12-2020


Hyd. No. 15

Hydrograph Report

11-12-2020

Post East Pond Routed

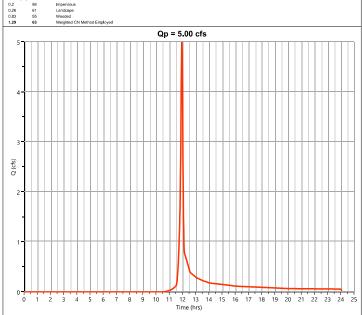

Hydrograph Type	= Pond Route	Peak Flow	= 38.55 cfs
Storm Frequency	= 25-yr	Time to Peak	= 12.03 hrs
Time Interval	= 1 min	Hydrograph Volume	= 152,215 cuft
Inflow Hydrograph	= 14 - To East Pond	Max. Elevation	= 923.75 ft
Pond Name	= New East Pond	Max. Storage	= 37,689 cuft

Post East Study Pt

Hydrology Studio v 3.0.0.16

Hydrograph Type	= Junction	Peak Flow	= 39.20 cfs
Storm Frequency	= 25-yr	Time to Peak	= 12.03 hrs
Time Interval	= 1 min	Hydrograph Volume	= 154,214 cuft
Inflow Hydrographs	= 5, 15	Total Contrib. Area	= 0.37 ac

Hydrograph Report


Hydrology Studio v 3.0.0.16 11-12-2020

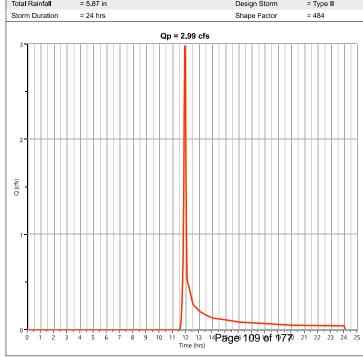
Pre West - actual Hyd. No. 18

Storm Duration	= 24 hrs	Shape Factor	= 484
Total Rainfall	= 5.87 in	Design Storm	= Type II
Tc Method	= User	Time of Conc. (Tc)	= 5.0 min
Drainage Area	= 1.29 ac	Curve Number	= 63*
Time Interval	= 1 min	Runoff Volume	= 10,074 cuft
Storm Frequency	= 25-yr	Time to Peak	= 11.97 hrs
Hydrograph Type	= NRCS Runoff	Peak Flow	= 4.999 cfs

* Compo	site CN	Worksheet
ADEA ()	CNI	DECCRIPT

AREA (80)	CN	DESCRIPTION
0.2	98	Impervious
0.26	61	Landcape
0.83	55	Wooded

Pre West - 90% condition


Hydrology Studio v 3.0.0.16

Hydrograph Report

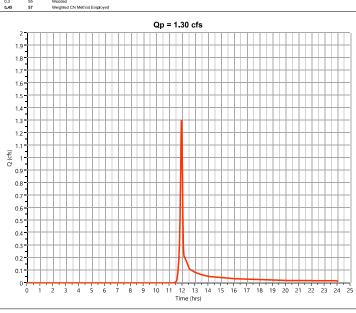
Hyd. No. 19

11-12-2020

Hydrograph Type	= NRCS Runott	Peak Flow	= 2.986 cts
Storm Frequency	= 25-yr	Time to Peak	= 11.97 hrs
Time Interval	= 1 min	Runoff Volume	= 6,269 cuft
Drainage Area	= 1.16 ac	Curve Number	= 55
Tc Method	= User	Time of Conc. (Tc)	= 5.0 min
Total Rainfall	= 5.87 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484

Hyd. No. 22

11-12-2020


Hydrology Studio v 3.0.0.16

Post West Study Point Hyd. No. 20

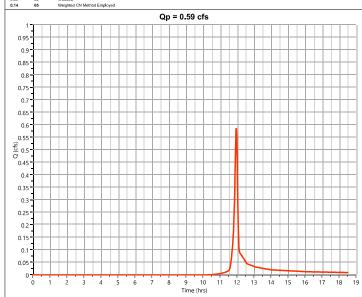
Hydrograph Type	= NRCS Runoff	Peak Flow	= 1.303 cfs
Storm Frequency	= 25-yr	Time to Peak	= 11.97 hrs
Time Interval	= 1 min	Runoff Volume	= 2,691 cuft
Drainage Area	= 0.45 ac	Curve Number	= 57*
Tc Method	= TR55	Time of Conc. (Tc)	= 5.13 min
Total Rainfall	= 5.87 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484

* Composite CN Worksheet

AREA (80)	CN	DESCRIPTION
0.15	61	Landscaped
0.3	55	Wooded

Pre South - actual

Hydrograph Report

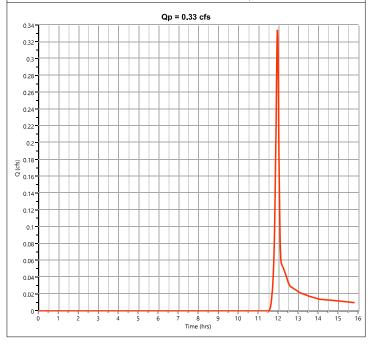

Hydrograph Type	= NRCS Runoff	Peak Flow	= 0.589 cfs
Storm Frequency	= 25-yr	Time to Peak	= 11.97 hrs
Time Interval	= 1 min	Runoff Volume	= 1,183 cuft
Drainage Area	= 0.14 ac	Curve Number	= 65*
Tc Method	= User	Time of Conc. (Tc)	= 5.0 min
Total Rainfall	= 5.87 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484

* Composite CN Worksheet

AREA (ac)	CN	DESCRIPTIO
0.03	98	Impervious
0.02	61	Landscape

0.02	61	Landscape
0.09	55	Wooded

0.09	55	Wooded
0.14	C.S.	Weighted CN Method Employed

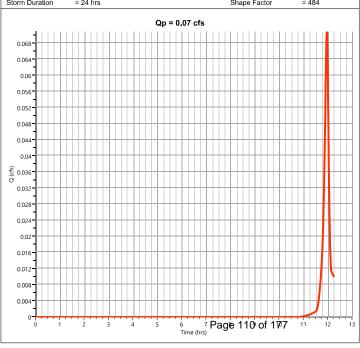


Hydrograph Report

Hydrology Studio v 3.0.0.16 11-12-2020

Pre South-90% condition Hyd. No. 23

Hydrograph Type	= NRCS Runoff	Peak Flow	= 0.335 cfs
Storm Frequency	= 25-yr	Time to Peak	= 11.97 hrs
Time Interval	= 1 min	Runoff Volume	= 703 cuft
Drainage Area	= 0.13 ac	Curve Number	= 55
Tc Method	= User	Time of Conc. (Tc)	= 5.0 min
Total Rainfall	= 5.87 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484



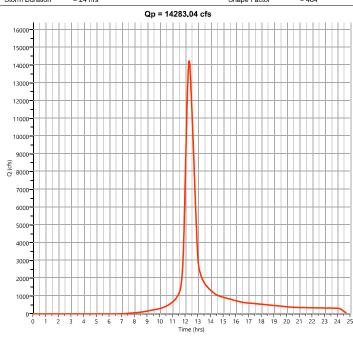
Hydrograph Report

Hydrology Studio v 3.0.0.16 11-12-2020

Post South Study Point

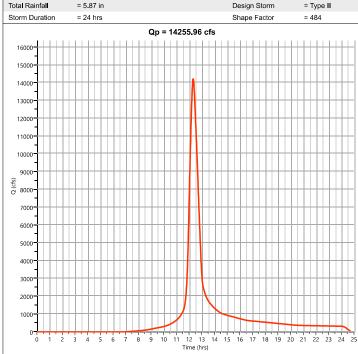
Hydrograph Type	= NRCS Runoff	Peak Flow	= 0.071 cfs
Storm Frequency	= 25-yr	Time to Peak	= 11.97 hrs
Time Interval	= 1 min	Runoff Volume	= 144 cuft
Drainage Area	= 0.02 ac	Curve Number	= 61
Tc Method	= User	Time of Conc. (Tc)	= 5.0 min
Total Rainfall	= 5.87 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484

11-12-2020


Hydrograph Report

Hydrology Studio v 3.0.0.16 11-12-2020

Pre Downstream with site


Hyd. No. 26

Hydrograph Type	= NRCS Runoff	Peak Flow	= 14283.0 cfs
Storm Frequency	= 25-yr	Time to Peak	= 12.32 hrs
Time Interval	= 1 min	Runoff Volume	= 72,803,180 cuft
Drainage Area	= 5500.0 ac	Curve Number	= 80
Tc Method	= TR55	Time of Conc. (Tc)	= 42.48 min
Total Rainfall	= 5.87 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484

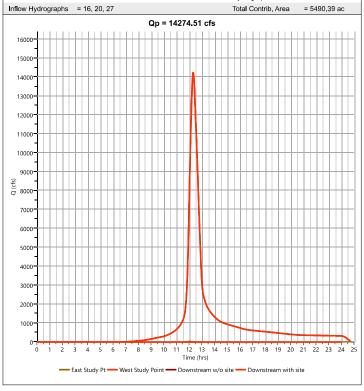
Downstream w/o site

Hydrograph Type	= NRCS Runoff	Peak Flow	= 14256.0 cfs
Storm Frequency	= 25-yr	Time to Peak	= 12.32 hrs
Time Interval	= 1 min	Runoff Volume	= 72,665,090 cuft
Drainage Area	= 5489.57 ac	Curve Number	= 80
Tc Method	= TR55	Time of Conc. (Tc)	= 42.48 min
Total Rainfall	= 5.87 in	Design Storm	= Type II

Hydrograph Report

Hydrology Studio v 3.0.0.16

11-12-2020

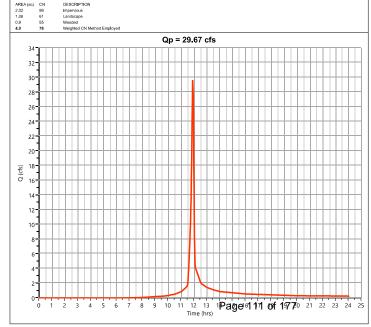

Hydrograph Report Hydrology Studio v 3.0.0.16

11-12-2020

Hyd. No. 27

Post Downstream with site Hyd. No. 28

Hydrograph Type	= Junction	Peak Flow	= 14274.5 cfs
Storm Frequency	= 25-yr	Time to Peak	= 12.32 hrs
Time Interval	= 1 min	Hydrograph Volume	= 72,822,790 cuft
Inflow Hydrographs	= 16, 20, 27	Total Contrib, Area	= 5490.39 ac

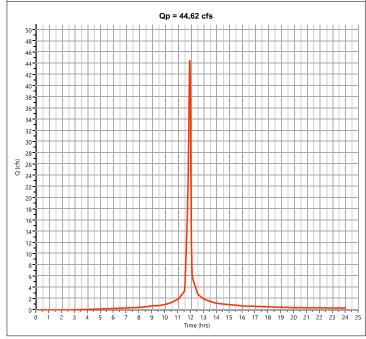


Pre East Onsite Ex Pond

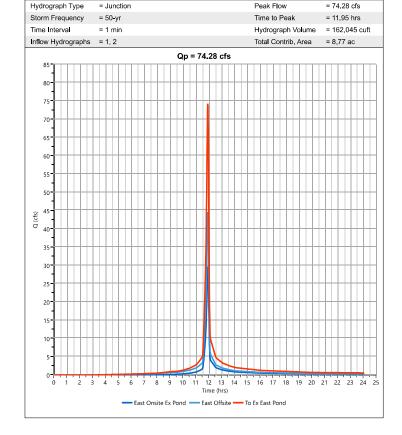
Hyd. No. 1

Storm Duration	= 24 hrs	Shape Factor	= 484
Total Rainfall	= 6.58 in	Design Storm	= Type II
Tc Method	= User	Time of Conc. (Tc)	= 5.0 min
Drainage Area	= 4.0 ac	Curve Number	= 78*
Time Interval	= 1 min	Runoff Volume	= 61,328 cuft
Storm Frequency	= 50-yr	Time to Peak	= 11.95 hrs
Hydrograph Type	= NRCS Runoff	Peak Flow	= 29.67 cfs

* Composite CN Worksheet


11-12-2020

Hydrograph Report Hydrology Studio v 3.0.0.16 11-12-2020


Pre East Offsite

Hyd. No. 2

Hydrograph Type	= NRCS Runoff	Peak Flow	= 44.62 cfs
Storm Frequency	= 50-yr	Time to Peak	= 11.95 hrs
Time Interval	= 1 min	Runoff Volume	= 100,717 cuft
Drainage Area	= 4.77 ac	Curve Number	= 92
Tc Method	= User	Time of Conc. (Tc)	= 5.0 min
Total Rainfall	= 6.58 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484

Pre To Ex East Pond Hyd. No. 3

Hydrograph Report

= Pond Route

Hydrograph Type

Hydrology Studio v 3.0.0.16

Pre East Pond Routed Hyd. No. 4

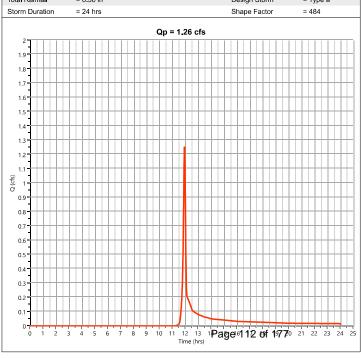
Peak Flow

Time to Deal.

Storm Frequency	= 50-yr	Time to Peak	= 11.97 hrs
Time Interval	= 1 min	Hydrograph Volume	= 162,044 cuft
Inflow Hydrograph	= 3 - To Ex East Pond	Max. Elevation	= 924.38 ft
Pond Name	= Ex East Pond	Max. Storage	= 16,683 cuft
Pond Routing by Storage I	ndication Method	Center of m	ass detention time = 9 min
	Qp = 74.02 cfs		
85			
80			
75			
" -			
70			
65			
60			
4			
55			
50			
⊕ 45			
5 -			
40			
35-			
30			
25			
20			
15			
4			
10			
5-			
0 1	 		
0 1 2	3 4 5 6 7 8 9 10 11 12 13 14	15 16 17 18 19 20	21 22 23 24 2
	Time (nrs)		
	To Ex East Pond East Pond	Routed	

Hydrograph Report

11-12-2020


= 74.02 cfs

- 11 07 bro

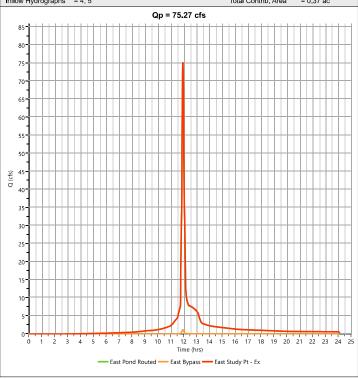
Hydrology Studio v 3.0.0.16 11-12-2020

Pre East Bypass Hyd. No. 5

Storm Duration	= 24 hrs	Shape Factor	= 484
		Design Storm	= Type II
Total Rainfall	= 6.58 in	Danisa Ctores	- T II
Tc Method	= User	Time of Conc. (Tc)	= 5.0 min
Drainage Area	= 0.37 ac	Curve Number	= 55
Time Interval	= 1 min	Runoff Volume	= 2,579 cuft
Storm Frequency	= 50-yr	Time to Peak	= 11.97 hrs
Hydrograph Type	= NRCS Runoff	Peak Flow	= 1.255 cfs

11-12-2020

Hydrograph Report


Hydrology Studio v 3.0.0.16 11-12-2020

Pre East Study Pt - Ex

Hydrology Studio v 3.0.0.16

Hyd. No. 6

Hydrograph Type	= Junction	Peak Flow	= 75.27 cfs
Storm Frequency	= 50-yr	Time to Peak	= 11.97 hrs
Time Interval	= 1 min	Hydrograph Volume	= 164,623 cuft
Inflow Hydrographs	= 4, 5	Total Contrib, Area	= 0.37 ac

Pre East -90% condition

Hyd.	No.	8
------	-----	---

Hydrograph Type	= NRCS Runoff	Peak Flow	= 11.35 cfs
Storm Frequency	= 50-yr	Time to Peak	= 12.00 hrs
Time Interval	= 1 min	Runoff Volume	= 26,563 cuft
Drainage Area	= 3.93 ac	Curve Number	= 55
Tc Method	= User	Time of Conc. (Tc)	= 10.0 min
Total Rainfall	= 6.58 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484

Hydrograph Report

= Junction

= 50-yr

Hydrograph Type

Storm Frequency

Project Name: Hydrology Studio v 3.0.0.16

11-12-2020

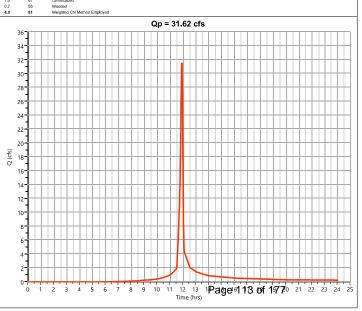
= 54.63 cfs

= 11.97 hrs

Pre East Study Pt Code Hyd. No. 9

Peak Flow

Time to Peak


Time Interval	= 1 min	Hydrograph Volume	= 127,280 cuft
Inflow Hydrographs	= 2, 8	Total Contrib. Area	= 8.7 ac
	Qp = 54.6	3 cfs	
62			
60-			
58-			
56 - 54 -			
52			
50			
48			
46			
44			
42			
40			
38			
36			
34			
(£) 32 0 30 0 30 0 30 0 0 0 0 0 0 0 0 0 0 0			
28-			
24			
22			
20			
18			
16			
14-			
12-			
10			
8-			
67			
4-			
2			
0 1 2 3	4 5 6 7 8 9 10 11 12	13 14 15 16 17 18 19 20	21 22 23 24 2
		e (hrs)	
	East Offsite East -90% cond	lition — East Study Pt Code	

Hydrograph Report

Hydrology Studio v 3.0.0.16 11-12-2020

Post East Onsite to Pond

Hydrograph Type	= NRCS Runoff	Peak Flow	= 31.62 cfs
Storm Frequency	= 50-yr	Time to Peak	= 11.95 hrs
Time Interval	= 1 min	Runoff Volume	= 66,122 cuft
Drainage Area	= 4.0 ac	Curve Number	= 81*
Tc Method	= User	Time of Conc. (Tc)	= 5.0 min
Total Rainfall	= 6.58 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484
	us		
34			
32 - 30 -			
28-			

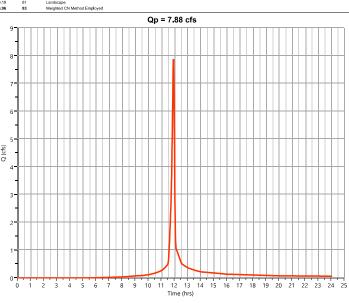
11-12-2020

Hydrograph Report

Hydrology Studio v 3.0.0.16

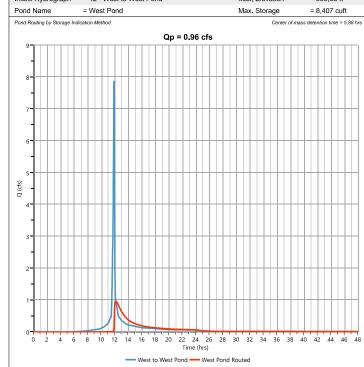
Hyd. No. 13

11-12-2020


Post West to West Pond

Hyd. No. 12

Hydrograph Type	= NRCS Runoff	Peak Flow	= 7.884 cfs
Storm Frequency	= 50-yr	Time to Peak	= 11.95 hrs
Time Interval	= 1 min	Runoff Volume	= 16,648 cuft
Drainage Area	= 0.96 ac	Curve Number	= 83*
Tc Method	= User	Time of Conc. (Tc)	= 5.0 min
Total Rainfall	= 6.58 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484



AREA (ac)	CN	DESCRIPTION
0.51	98	Impervious
0.26	69	Pervious Paving

Post West Pond Routed

Hydrograph Type	= Pond Route	Peak Flow	= 0.957 cfs
Storm Frequency	= 50-yr	Time to Peak	= 12.22 hrs
Time Interval	= 1 min	Hydrograph Volume	= 12,571 cuft
Inflow Hydrograph	= 12 - West to West Pond	Max. Elevation	= 950.68 ft
Pond Name	= West Pond	May Storage	= 8.407 cuft

Hydrograph Report

Post To East Pond

Hydrograph Type

Storm Frequency

Hydrology Studio v 3.0.0.16

= Junction

= 50**-**yr

Project Name: 11-12-2020

= 76.41 cfs

= 11.95 hrs

Hyd. No. 14

Peak Flow

Time to Peak

Time Interval	= 1 min	Hydrograph Volume	= 179,409 cuft
nflow Hydrograph:		Total Contrib. Area	= 8.77 ac
	Qp = 76.41 cfs		
85			
80			
4			
75			
70			
65			
60			
-			
55			
50			
€ 45			
ö 🕇 📗 📗			
40			
35			
30			
25			
4			
20			
15			
10			
4	<mark> </mark>		
5			
0 2 4	6 8 10 12 14 16 18 20 22 24 26	28 30 32 34 36 38 4	10 42 44 46 4
0 2 4	Time (hrs)	20 30 32 34 30 30 4	·· · 44 40 4
	- East Offsite - East Onsite to Pond - West P	ond Routed — To East Pond	

Hydrograph Report

Hydrology Studio v 3.0.0.16

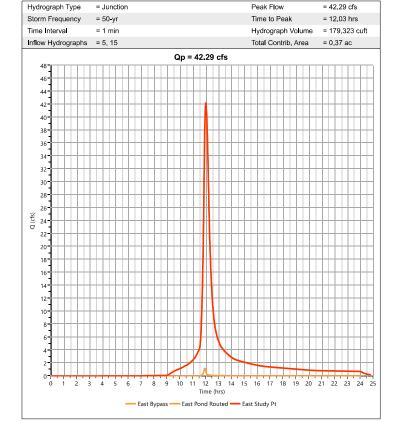
11-12-2020

Project Name:

Post East Pond Routed

Hydrograph Type	= Pond Route	Peak Flow	= 41.45 cfs	
Storm Frequency	= 50-yr	Time to Peak	= 12.03 hrs	
Time Interval	= 1 min	Hydrograph Volume	= 176,744 cuft	
Inflow Hydrograph	= 14 - To East Pond	Max. Elevation	= 924.45 ft	
Pond Name	= New East Pond	Max. Storage	= 42,971 cuft	
Pond Routing by Storage Inc	dication Method	Center of ma	ss detention time = 46 n	
	Qp = 41.45 cfs			
85-				
4				
80				
75				
70				
,,, ,				
65				
60				
55				
50				
€ 45				
ă -				
40				
35				
30				
25				
20-				
15				
10				
5				
0 1 2		15 16 17 18 19 20	21 22 23 24	
	Time (hrs)	444 477		
	— To East Pond — East Pond R	age 114 Of 1//		

11-12-2020


Hydrograph Type

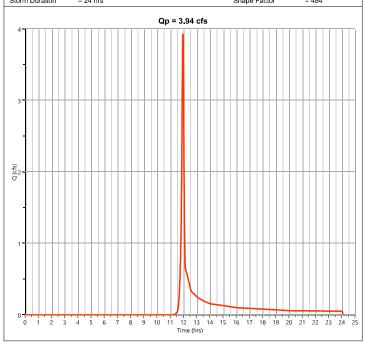
Hydrograph Report Hydrology Studio v 3.0.0.16 11-12-2020

= NRCS Runoff

Post East Study Pt Hyd. No. 16

Pre West - actual Hyd. No. 18

Peak Flow


riyarograpir rype	- MNG3 Kulloli	reakriow	- 0.220 CIS
Storm Frequency	= 50-yr	Time to Peak	= 11.97 hrs
Time Interval	= 1 min	Runoff Volume	= 12,510 cuft
Drainage Area	= 1.29 ac	Curve Number	= 63*
Tc Method	= User	Time of Conc. (To	e) = 5.0 min
Total Rainfall	= 6.58 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484
* Composite CN Worksheet	ı		
AREA (ac) CN DESCRIF 0.2 98 Imperviou 0.26 61 Landcape 0.83 55 Wooded 1.29 63 Weighted	us e i CN Method Employed		
7	Qp	= 6.23 cfs	
-			
6-			
5-			
4- C (cg)			
3-			
2-			
1-			
0 1 2 3	4 5 6 7 8 9 10 1	11 12 13 14 15 16 17 18 19 2 Time (hrs)	20 21 22 23 24

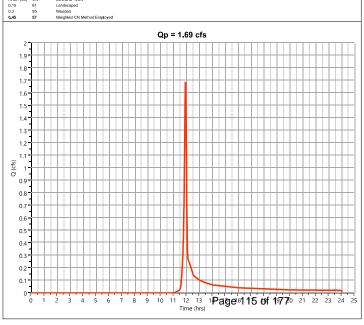
Hydrograph Report

Hydrology Studio v 3.0.0.16 11-12-2020

Pre West - 90% condition Hyd. No. 19

Storm Duration	= 24 hrs	Shape Factor	= 484
Total Rainfall	= 6.58 in	Design Storm	= Type II
Tc Method	= User	Time of Conc. (Tc)	= 5.0 min
Drainage Area	= 1.16 ac	Curve Number	= 55
Time Interval	= 1 min	Runoff Volume	= 8,086 cuft
Storm Frequency	= 50-yr	Time to Peak	= 11.97 hrs
Hydrograph Type	= NRCS Runoff	Peak Flow	= 3.936 cfs

Hydrograph Report


Hydrology Studio v 3.0.0.16 11-12-2020

Post West Study Point

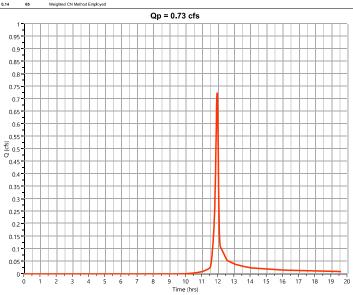
Hyd. No. 20

= 6.228 cfs

Hydrograph Type	= NRCS Runoff	Peak Flow	= 1.688 cfs
Storm Frequency	= 50-yr	Time to Peak	= 11.97 hrs
Time Interval	= 1 min	Runoff Volume	= 3,434 cuft
Drainage Area	= 0.45 ac	Curve Number	= 57*
Tc Method	= TR55	Time of Conc. (Tc)	= 5.13 min
Total Rainfall	= 6.58 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484
* C			

Hyd. No. 23

Hydrograph Report Hydrology Studio v 3.0.0.16 11-12-2020

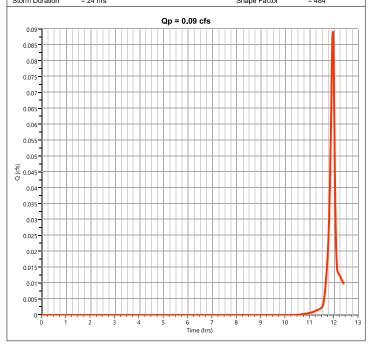

Pre South - actual Hyd. No. 22

Hydrograph Type	= NRCS Runoff	Peak Flow	= 0.726 cfs
Storm Frequency	= 50-yr	Time to Peak	= 11.97 hrs
Time Interval	= 1 min	Runoff Volume	= 1,458 cuft
Drainage Area	= 0.14 ac	Curve Number	= 65*
Tc Method	= User	Time of Conc. (Tc)	= 5.0 min
Total Rainfall	= 6.58 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484

AREA (ac)	CN	DESCRIPTION
0.03	98	Impervious
0.02	61	Landscape

Pre South-90% condition

Hydrograph Type = NRCS Runoff Peak Flow = 0.441 cfs Storm Frequency = 50**-**yr Time to Peak = 11.97 hrs Time Interval = 1 min Runoff Volume = 906 cuft Drainage Area = 0.13 ac Curve Number = 55 = 5.0 min Tc Method = User Time of Conc. (Tc) Total Rainfall = 6.58 in Design Storm = Type II

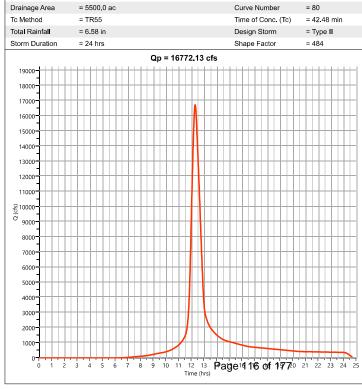

Hydrograph Report

Hydrology Studio v 3.0.0.16

11-12-2020

Post South Study Point Hyd. No. 24

Hydrograph Type	= NRCS Runoff	Peak Flow	= 0.089 cfs
Storm Frequency	= 50-yr	Time to Peak	= 11.97 hrs
Time Interval	= 1 min	Runoff Volume	= 180 cuft
Drainage Area	= 0.02 ac	Curve Number	= 61
Tc Method	= User	Time of Conc. (Tc)	= 5.0 min
Total Rainfall	= 6.58 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484

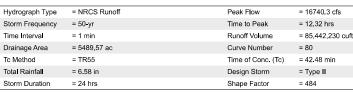

Hydrograph Report

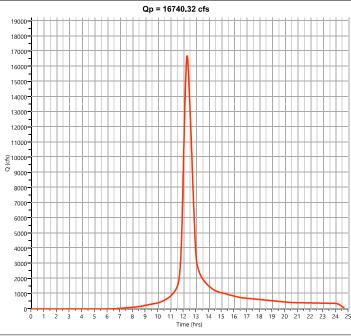
Hydrology Studio v 3.0.0.16

11-12-2020

Pre Downstream with site

Hydrograph Type	= NRCS Runoff	Peak Flow	= 16772.1 cfs
Storm Frequency	= 50-yr	Time to Peak	= 12.32 hrs
Time Interval	= 1 min	Runoff Volume	= 85,604,490 cuft
Drainage Area	= 5500.0 ac	Curve Number	= 80
Tc Method	= TR55	Time of Conc. (Tc)	= 42.48 min
Total Rainfall	= 6.58 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484

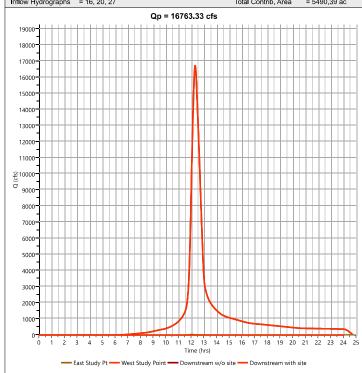



11-12-2020

Hydrograph Report

Hydrology Studio v 3.0.0.16 11-12-2020

Downstream w/o site Hyd. No. 27



Hydrograph Type	= Junction	Peak Flow	= 16763.3 cfs
Storm Frequency	= 50-yr	Time to Peak	= 12.32 hrs
Time Interval	= 1 min	Hydrograph Volume	= 85,625,520 cuft
Inflow Hydrographs	= 16, 20, 27	Total Contrib. Area	= 5490.39 ac

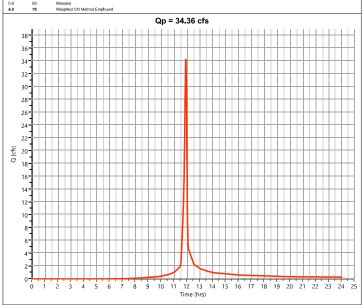
Hyd. No. 28

11-12-2020

Hydrograph Report

Hydrology Studio v 3.0.0.16

11-12-2020

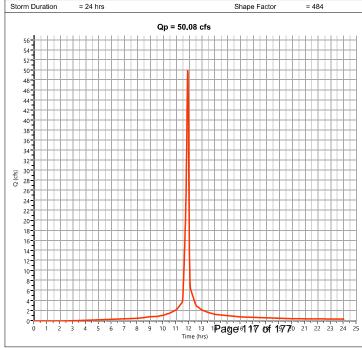

Hyd. No. 1

Pre East Onsite Ex Pond

Hydrograph Type	= NRCS Runoff	Peak Flow	= 34.36 cfs
Storm Frequency	= 100-yr	Time to Peak	= 11.95 hrs
Time Interval	= 1 min	Runoff Volume	= 71,503 cuft
Drainage Area	= 4.0 ac	Curve Number	= 78*
Tc Method	= User	Time of Conc. (Tc)	= 5.0 min
Total Rainfall	= 7.33 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484

* Composite CN Worksheet

AREA (ac)	CN	DESCRIPTION
2.02	98	Impervious
1.08	61	Landscape
0.9	55	Wooded

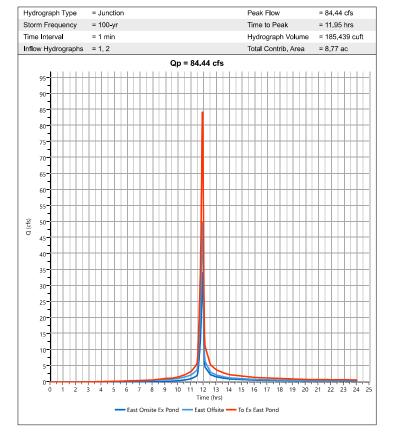


Hydrology Studio v 3.0.0.16 Pre

Hydrograph Report

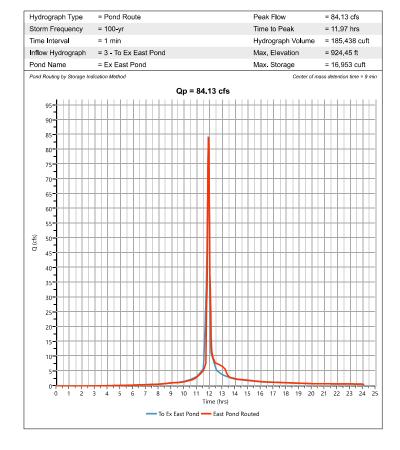
e East Offsite	Hvd. No. 2

Hydrograph Type	= NRCS Runoff	Peak Flow	= 50.08 cfs
Storm Frequency	= 100-yr	Time to Peak	= 11.95 hrs
Time Interval	= 1 min	Runoff Volume	= 113,936 cuft
Drainage Area	= 4.77 ac	Curve Number	= 92
Tc Method	= User	Time of Conc. (Tc)	= 5.0 min
Total Rainfall	= 7.33 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484


Project Name:

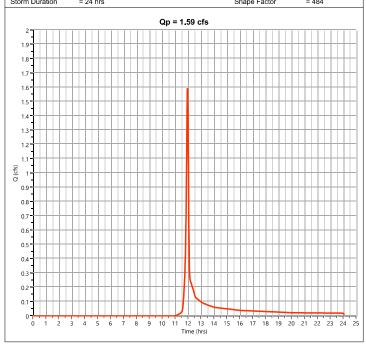
Project Name: 11-12-2020

11-12-2020


Hydrograph Report
Hydrology Studio v 3.00.16

Pre To Ex East Pond Hyd. No. 3

11-12-2020



Hydrograph Report

Hydrology Studio v 3.0.0.16

Pre East Bypass Hyd. No. 5

Hydrograph Type	= NRCS Runoff	Peak Flow	= 1.595 cfs
Storm Frequency	= 100-yr	Time to Peak	= 11.97 hrs
Time Interval	= 1 min	Runoff Volume	= 3,236 cuft
Drainage Area	= 0.37 ac	Curve Number	= 55
Tc Method	= User	Time of Conc. (Tc)	= 5.0 min
Total Rainfall	= 7.33 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484

Hydrograph Report

= Junction

Hydrograph Type

Hydrology Studio v 3.0.0.16 11-12-2020

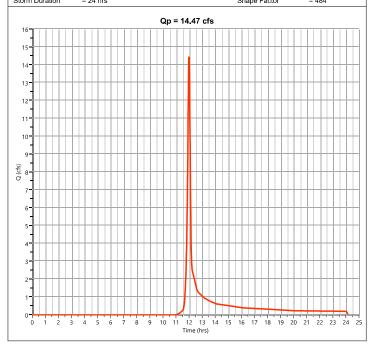
Pre East Study Pt - Ex Hyd. No. 6

Peak Flow

= 85.72 cfs

Time to Peak Storm Frequency = 100-yr = 11.97 hrs Hydrograph Volume Time Interval = 1 min = 188.675 cuft Inflow Hydrographs = 4, 5 Total Contrib. Area = 0.37 ac Qp = 85.72 cfs 85 80-75-70 50 45-40 30 25 10-12 13 14 15 16 17 18 19 20 21 22 23 24 25 Time (hrs) — East Pond Routed — East Bypass — Page of 1,8 pof 177

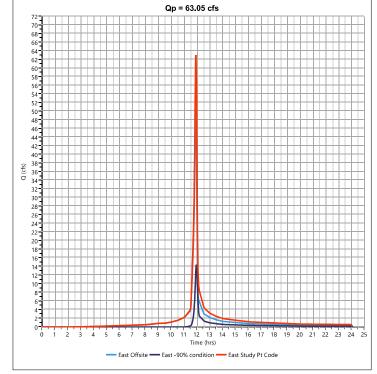
11-12-2020


Hydrograph Report

Hydrology Studio v 3.0.0.16 11-12-2020

Pre East -90% condition

Hyd. No. 8


Hydrograph Type	= NRCS Runoff	Peak Flow	= 14.47 cfs
Storm Frequency	= 100-yr	Time to Peak	= 12.00 hrs
Time Interval	= 1 min	Runoff Volume	= 33,330 cuft
Drainage Area	= 3.93 ac	Curve Number	= 55
Tc Method	= User	Time of Conc. (Tc)	= 10.0 min
Total Rainfall	= 7.33 in	Design Storm	= Type II
Storm Duration	- 24 hrs	Shana Easter	- 494

Pre East Study Pt Code

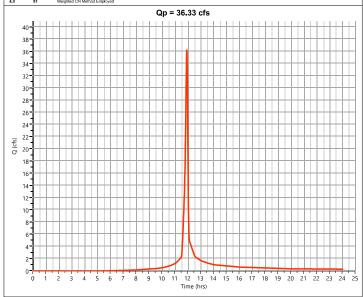
	Hyd. No. 9
k F l ow	= 63.05 cfs

Hydrograph Type	= Junction	Peak Flow	= 63.05 cfs
Storm Frequency	= 100-yr	Time to Peak	= 11.97 hrs
Time Interval	= 1 min	Hydrograph Volume	= 147,265 cuft
Inflow Hydrographs	= 2, 8	Total Contrib. Area	= 8.7 ac

Hydrograph Report

Hydrology Studio v 3.0.0.16 11-12-2020

11-12-2020

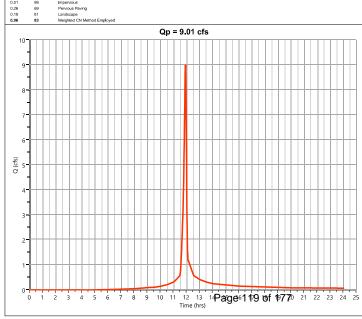

Post East Onsite to Pond Hyd. No. 11

Storm Duration	= 24 hrs	Shape Factor	= 484
Total Rainfall	= 7.33 in	Design Storm	= Type II
Tc Method	= User	Time of Conc. (Tc)	= 5.0 min
Drainage Area	= 4.0 ac	Curve Number	= 81*
Time Interval	= 1 min	Runoff Volume	= 76,558 cuft
Storm Frequency	= 100-yr	Time to Peak	= 11.95 hrs
Hydrograph Type	= NRCS Runoff	Peak Flow	= 36.33 cfs

* Composite CN Worksheet

AREA (ac)	CN	DESCRIPTION
2.3	98	Impervious
1.0	61	Landscaped

4.0 81 Weighted CN Method Employed	0.7	55	Wooded
	4.0	81	Weighted CN Method Employed



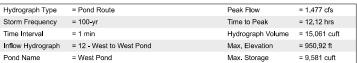
Hydrograph Report Hydrology Studio v 3.0.0.16

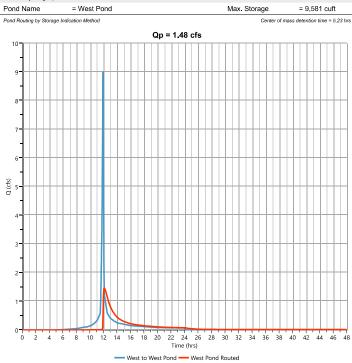
Post West to West Pond

Hydrograph Type	= NRCS Runoff	Peak Flow	= 9.015 cfs
Storm Frequency	= 100-yr	Time to Peak	= 11.95 hrs
Time Interval	= 1 min	Runoff Volume	= 19,190 cuft
Drainage Area	= 0.96 ac	Curve Number	= 83*
Tc Method	= User	Time of Conc. (Tc)	= 5.0 min
Total Rainfall	= 7.33 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484
t Commente ON Workship			

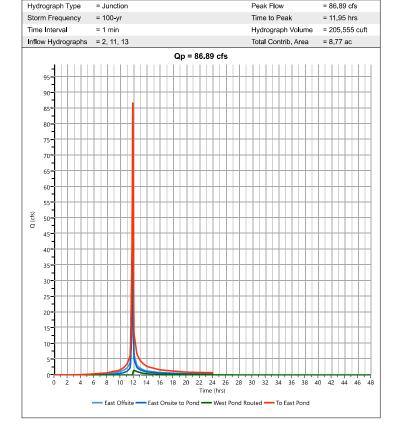
AREA (ac)	CN	DESCRIPTION
0.51	98	Impervious
0.26	69	Pervious Pavir

Hydrology Studio v 3.0.0.16


11-12-2020


Hydrograph Report

Hydrology Studio v 3.0.0.16 11-12-2020


Post West Pond Routed

Hyd. No. 13

Post To East Pond

Hydrograph Report

11-12-2020

Hydrology Studio v 3.0.0.16

Project Name: 11-12-2020

Hyd. No. 14

Post East Pond Routed

Post East Pond Routed			Hyd. No. 15
Hydrograph Type	= Pond Route	Peak Flow	= 45.28 cfs

Hydrograph Type	= Pond Route	Peak Flow	= 45.28 cfs
Storm Frequency	= 100-yr	Time to Peak	= 12.05 hrs
Time Interval	= 1 min	Hydrograph Volume	= 202,883 cuft
Inflow Hydrograph	= 14 - To East Pond	Max. Elevation	= 925.18 ft
Pond Name	= New East Pond	Max. Storage	= 48,872 cuft

Pond Routing by Storage Indication Method Center of mass detention time = 48 min Qp = 45.28 cfs 70-65 60 50 45 30-25 20-15-10-10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Time (hrs) — To East Pond — East Pond Routed

Hydrograph Report

= Junction

= 100-yr

Hydrology Studio v 3.0.0.16

= 46.28 cfs

= 12.03 hrs

Post East Study Pt Hydrograph Type

Storm Frequency

Hyd. No. 16

Peak Flow

Time to Peak

		Unidea area la Malicia a	= 206,118 cuft
= 5, 15		Total Contrib. Area	= 0.37 ac
	Qp = 46.28 cfs		
			
			
			
 	0 0 10 11 12 12 14	15 16 17 10 10 20	21 22 22 24
3 4 3 0 /		10 17 10 19 20	21 22 23 24
		= 1 min = 5, 15 Qp = 46.28 cfs Qp = 46.28 cfs	= 1 min

Hydrograph Type

Storm Frequency

= NRCS Runoff

= 100-yr

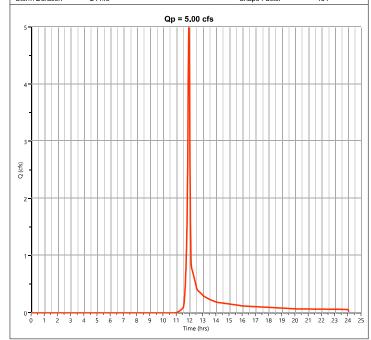
= 7.573 cfs

= 11.97 hrs

11-12-2020

11-12-2020

Hydrology Studio v 3.0.0.16 11-12-2020


Pre West - 90% condition

Hydrology Studio v 3.0.0.16

Hydrograph Report

Hyd. No. 19

Hydrograph Type	= NRCS Runoff	Peak Flow	= 5.000 cfs
Storm Frequency	= 100-yr	Time to Peak	= 11.97 hrs
Time Interval	= 1 min	Runoff Volume	= 10,145 cuft
Drainage Area	= 1.16 ac	Curve Number	= 55
Tc Method	= User	Time of Conc. (Tc)	= 5.0 min
Total Rainfall	= 7.33 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484

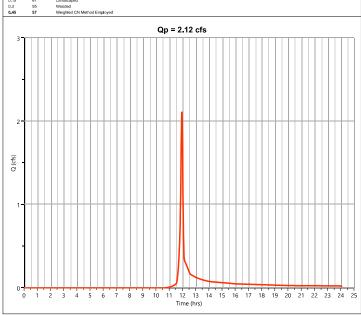
Pre West - actual Hyd. No. 18

Peak Flow

Time to Peak

Time Interval	= 1 min	Runoff Volume	= 15,211 cuft
Drainage Area	= 1.29 ac	Curve Number	= 63*
Tc Method	= User	Time of Conc. (Tc)	= 5.0 min
Total Rainfall	= 7.33 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484
0.2 98 Impervi 0.26 61 Landca 0.83 55 Woode	RIPTION ridus spec de de de de do		
0-	Qp = 7.57 cfs		
7			
6			
5-			
- 4 (cls)			
-			
3			
-			
1			

Hydrograph Report


Hydrology Studio v 3.0.0.16 11-12-2020

Post West Study Point Hyd. No. 20

Hydrograph Type	= NRCS Runoff	Peak Flow	= 2.117 cfs
Storm Frequency	= 100-yr	Time to Peak	= 11.97 hrs
Time Interval	= 1 min	Runoff Volume	= 4,271 cuft
Drainage Area	= 0.45 ac	Curve Number	= 57*
Tc Method	= TR55	Time of Conc. (Tc)	= 5.13 min
Total Rainfall	= 7.33 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484

* Composite CN Worksheet

0.15	61	Landscaped
n 3	55	Wonderl

Hydrograph Report

Hydrology Studio v 3.0.0.16

Pre South - actual Hyd. No. 22

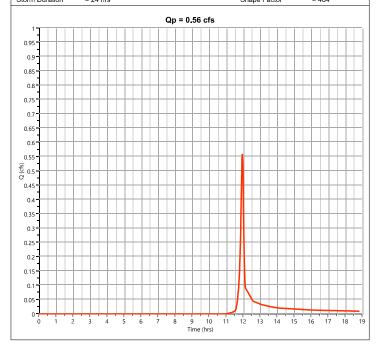
Hydrograph Type	= NRCS Runoff	Peak Flow	= 0.875 cfs
Storm Frequency	= 100-yr	Time to Peak	= 11.97 hrs
Time Interval	= 1 min	Runoff Volume	= 1,761 cuft
Drainage Area	= 0.14 ac	Curve Number	= 65*
Tc Method	= User	Time of Conc. (Tc)	= 5.0 min
Total Rainfall	= 7.33 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484

* Composite CN Worksheet AREA (ac) CN

0.03	98	Impervious
0.02	61	Landscape
0.00	66	Woodod

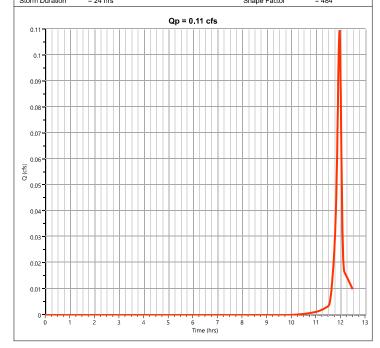
Qp = 0.88 cfs 0.95 0.9 0.85 8.0 0.75 0.7 0.65 0.55 (S) 0.5 · 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 10 11 12 Page 15 216 of 71 787 19 20 21 22 23 Time (hrs)

Hyd. No. 24


11-12-2020

Pre South-90% condition

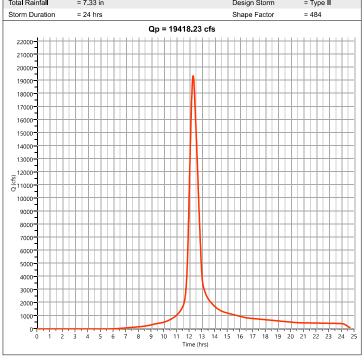
Hydrology Studio v 3.0.0.16


Hyd. No. 23

Hydrograph Type	= NRCS Runoff	Peak Flow	= 0.560 cfs
Storm Frequency	= 100-yr	Time to Peak	= 11.97 hrs
Time Interval	= 1 min	Runoff Volume	= 1,137 cuft
Drainage Area	= 0.13 ac	Curve Number	= 55
Tc Method	= User	Time of Conc. (Tc)	= 5.0 min
Total Rainfall	= 7.33 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484

Post South Study Point

Hydrograph Type	= NRCS Runoff	Peak Flow	= 0.110 cfs
Storm Frequency	= 100-yr	Time to Peak	= 11.97 hrs
Time Interval	= 1 min	Runoff Volume	= 220 cuft
Drainage Area	= 0.02 ac	Curve Number	= 61
Tc Method	= User	Time of Conc. (Tc)	= 5.0 min
Total Rainfall	= 7.33 in	Design Storm	= Type II
Storm Duration	- 24 hra	Shana Factor	- 494


Hydrograph Report

Hydrology Studio v 3.0.0.16

11-12-2020

Pre Downstream with site Hyd. No. 26

Hydrograph Type	= NRCS Runoff	Peak Flow	= 19418.2 cfs
Storm Frequency	= 100-yr	Time to Peak	= 12.32 hrs
Time Interval	= 1 min	Runoff Volume	= 99,342,720 cuft
Drainage Area	= 5500.0 ac	Curve Number	= 80
Tc Method	= TR55	Time of Conc. (Tc)	= 42.48 min
Total Rainfall	= 7.33 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484

Hydrograph Report

= NRCS Runoff

= 100-yr

Hydrology Studio v 3.0.0.16

Hydrograph Type

Storm Frequency

11-12-2020

= 12.32 hrs

Peak Flow

Time to Peak

Downstream w/o site

Hyd. No. 27

Time Interval	= 1 min		Runoff Volume	= 99,154,370 (
Drainage Area	= 5489.57 ac	Curve Number	= 80								
Tc Method	= TR55		Time of Conc. (Tc)	= 42.48 min							
Total Rainfall	= 7.33 in		Design Storm	= Type II							
Storm Duration	= 24 hrs	= 24 hrs Shape Factor									
	Qp = 19381	.41 cfs									
22000											
21000											
20000											
19000		 									
18000											
17000											
16000											
15000											
14000											
13000											
12000											
911000											
10000											
9000											
8000											
7000											
6000		+									
5000		+									
4000		+									
3000		+									
2000	<i>-</i>	+									
1000											

Project Name

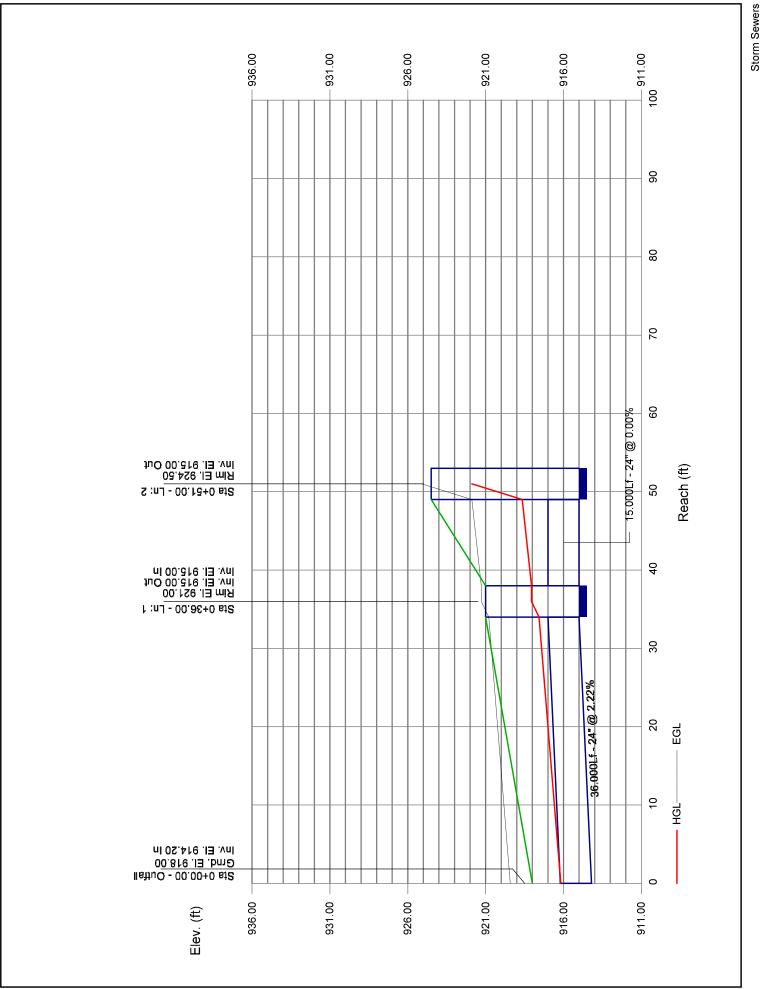
Hydrology Studio v 3.0.0.16 11-12-2020

Post Downstream with site

Hyd. No. 28

Hydrograph Type	= Junction		Peak Flow	= 19410.1 cfs	
Storm Frequency	= 100-yr		Time to Peak	= 12.32 hrs	
Time Interval	= 1 min		Hydrograph Volume	= 99,365,690 cuft	
Inflow Hydrographs	= 16, 20, 27		Total Contrib. Area	= 5490.39 ac	
	Q	p = 19410.06 cfs			
22000				 	
21000					
20000					
19000					
18000					
17000					
16000					
15000					
14000					
13000					
12000					
911000 -					
10000					
9000					
8000					
7000					
6000					
5000					
4000					
3000					
2000		 			
1000					
0 1 2	3 4 5 6 7 8 9		5 46 47 40 40 22	24 22 22 24 27	
0 1 2	3 4 5 6 / 8 9	10 11 12 13 14 1 Time (hrs)	20 פו או /ו סו כ	21 22 23 24 25	
_	East Study Pt — West Study P	oint — Downstream w/o s	ite — Downstream with si	te	

Appendix F Storm Sewer Computer Model Data

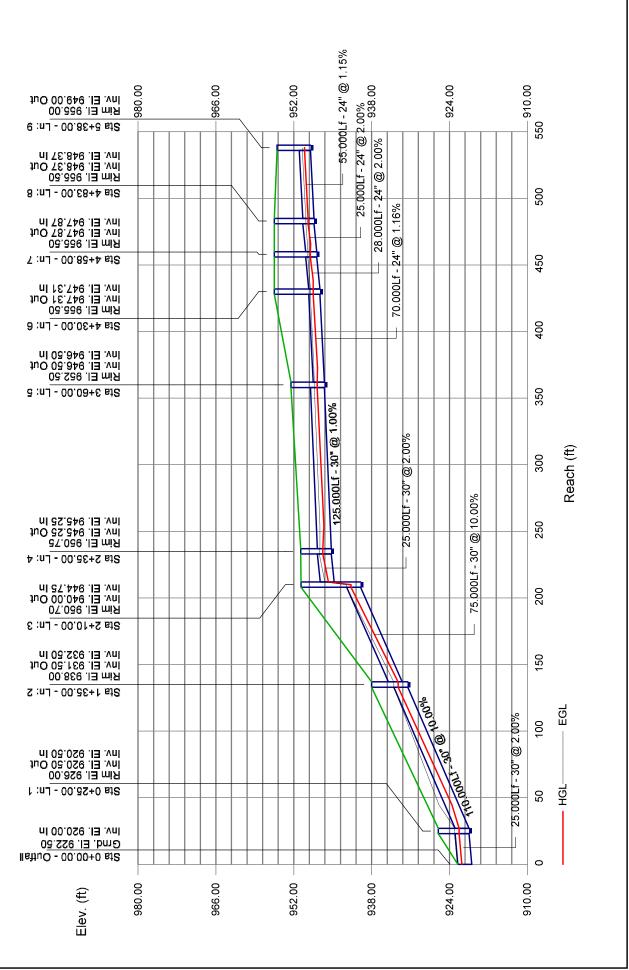

- Storm Sewer Computer Model Results
- Storm Sewer profiles
- Inlet Calculations
- Channel Calculations

Storm Sewer Tabulation

Line ID			EX-A1	A1-A2		2020
m Elev	ď	(#)	921.00	924.50		Run Date: 11/10/2020
Grnd / Rim Elev	n O	(#)	918.00	921.00		Run Dai
>	пр	(£)	917.57	918.65		
HGL Elev	Du	(£)	916.17	918.05		
A6	ф	(#)	915.00	915.00		Number of lines: 2
Invert Elev	Du	(#)	914.20	915.00		Number
	Slope	(%)	2.22	0.00		
Pipe	Size	(in)	24	24		
Nel		(ft/s)	14.44	14.41		
Cap	<u> </u>	(cfs)	33.72	00.00		
Total			45.28	45.28		
Rain		(in/hr) (cfs)	0.0	0.0		
	Syst	(min)	0.0	0.0		
2	Inlet	(min)	0.0	0.0		
U	Total		0.00	0.00		
Area x C	Incr		0.00	0.00		
Rnoff	5	(2)	00.00	00:00		
rea	Total	(ac)	0.00	0.00		
Drng Area	Incr	(ac)	0.00	0.00		stm
Len		£)	36.000	15.000		Project File: LINE A.stm
	To Line		End	_		ct File:
Station	Line		~	7	Page 125 of 17	Proje

NOTES:Intensity = 61.16 / (Inlet time + 5.60) ^ 0.70; Return period = Yrs. 100; c = cir e = ellip b = box

Storm Sewers v12.00

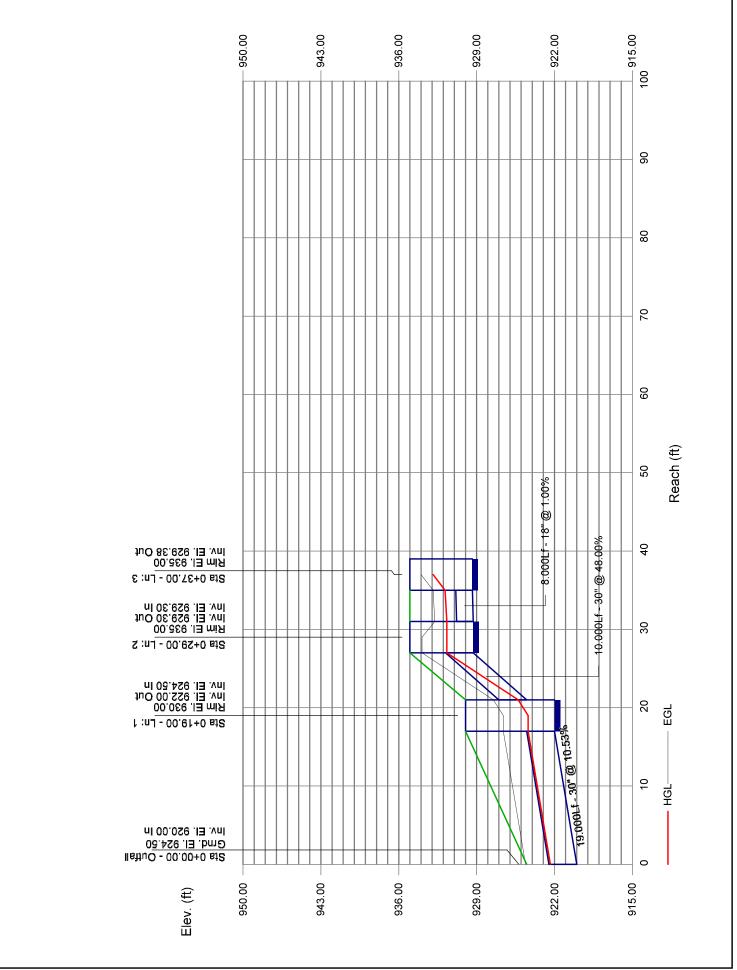


Storm Sewer Tabulation

Elev Line ID	ďD	(ft)	926.00 B1-B2	938.00 B2-B3	950.70 B3-B4	950.75 B4-B5	952.50 B5-B6	955.50 B6-B7	955.50 B7-B8	955.50 B8-B9	955.00 B9-B10	
Grnd / Rim Elev	Du	(ft) (922.50	926.00	938.00	950.70	950.75	952.50	955.50	955.50	955.50	
	d d	(ft)	922.28	933.22	941.72	946.77	947.79	948.51	949.05	949.42	950.05	
HGL Elev	Du	(ft)	921.78	922.28	933.25	945.77	946.77	947.79	948.51	949.02	949.42	
۸.	dΩ	(ft)	920.50	931.50	940.00	945.25	946.50	947.31	947.87	948.37	949.00	
Invert Elev	Du	(ft)	920.00	920.50	932.50	944.75	945.25	946.50	947.31	947.87	948.37	
	Slope	(%)	2.00	10.00	10.00	2.00	1.00	1.16	2.00	2.00	1.15	
Pipe	Size	(in)	30	30	30	30	30	24	24	24	24	
Ne Ve		(ft/s)	7.28	6.97	13.82	8.60	5.22	5.48	5.40	4.93	5.21	
Cap	3	(cfs)	58.00	129.7	129.7	58.00	41.01	24.33	31.99	31.99	24.21	
Total	<u> </u>	(cfs)	27.15	25.56	25.65	20.18	14.71	11.26	10.39	8.72	8.72	
Rain		(in/hr) (cfs)	10.9	1.1	11.1	11.2	11.5	11.6	11.7	0.0	0.0	
	Syst	(min)	6.1	5.8	5.7	5.7	5.3	5.1	5.0	0.2	0.0	
ე <u></u>	Inlet	(min)	5.0	0.0	5.0	5.0	5.0	5.0	5.0	0.0	0.0	
ပ	Total		1.69	1.52	1.52	1.03	0.52	0.22	0.14	0.00	0.00	
Area x C	Incr		0.17	0.00	0.49	0.50	0:30	0.08	0.14	0.00	0.00	
Rnoff	- - - -	(C)	06:0	0.00	0.95	0.95	0.95	0.95	0.95	0.00	0.00	
ırea	Total	(ac)	1.79	1.60	1.60	1.08	0.55	0.23	0.15	0.00	0.00	
Drng Area	Incr	(ac)	0.19	00:00	0.52	0.53	0.32	0.08	0.15	0.00	0.00	
Len		(ft)	25.000	110.000 0.00	75.000	25.000	125.000 0.32	70.000	28.000	25.000	55.000	
пc	To Line]	End	_	7	ო	4	2	9	2	ω	
Station	Line		_	7	ო	4	2	9	7	∞	თ	

NOTES:Intensity = 64.60 / (Inlet time + 5.80) ^ 0.72; Return period = Yrs. 100 ; c = cir e = ellip b = box

Storm Sewers v12.00


Storm Sewers

Storm Sewer Tabulation

Line ID			C1-C2	C2-C3	C3-C4		2020
m Elev	dn	(ft)	930.00	935.00	935.00		Run Date: 11/10/2020
Grnd / Rim Elev	둅	(ft)	924.50	930.00	935.00		Run Da
>	dn	(ft)	924.38	931.68	931.83		
HGL Elev	Du	(ft)	922.38	925.26	931.68		
>	ηD	(ft)	922.00	929.30	929.38		Number of lines: 3
Invert Elev	Du	(ft)	920.00	924.50	929.30		Number
	Slope	(%)	10.53	48.00	1.00		
Pipe	Size	(in)	30	30	18		
Vel		(ft/s)	11.97	28.67	8.35		
Cap	<u> </u>	(cfs)	133.1	284.1	10.50		
Total			57.69	57.72	14.75		
Rain		(in/hr) (cfs)	11.7	11.7	11.7		
	Syst	(min)	5.0	5.0	5.0		
ဥ	Inlet	(min)	0.0	5.0	5.0		
U	Total		4.95	4.95	1.26		
Area x C	Incr		00:0	3.69	1.26		
Rnoff	coeff	(c)	00:00	0.95	0.95		
rea	Total	(ac)	5.21	5.21	1.33		
Drng Area	lncr	(ac)	00:00	3.88	1.33		:stm
Len		(ft)	19.000	10.000	8.000		Project File: LINE C.stm
	0 <u>T</u>		End	~	0		ect File:
Station	Line		1	7	က	Page 129 of 17	77 17

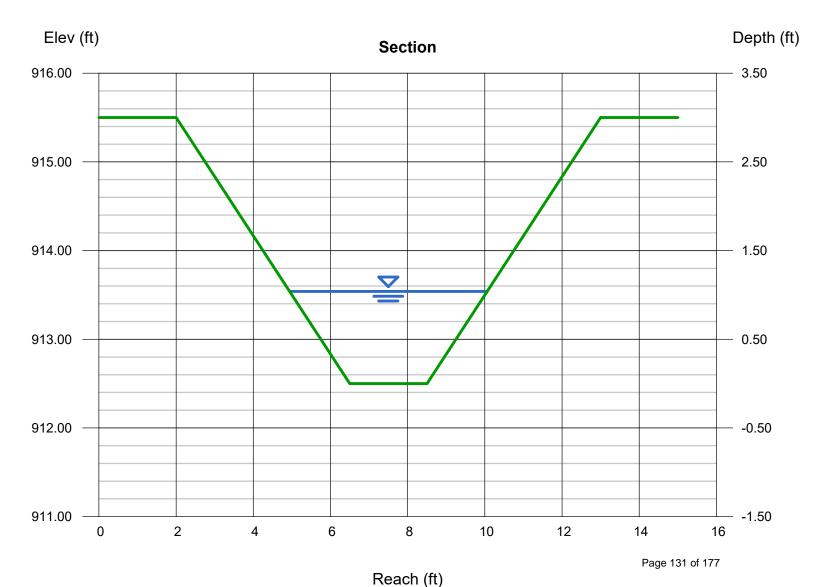
NOTES:Intensity = 61.16 / (Inlet time + 5.60) ^ 0.70; Return period = Yrs. 100; c = cir e = ellip b = box

Storm Sewers v12.00

Storm Sewers

Compute by: Known Q (cfs)

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.


Thursday, Nov 12 2020

Downstream Channel 65 ft north of detention pond

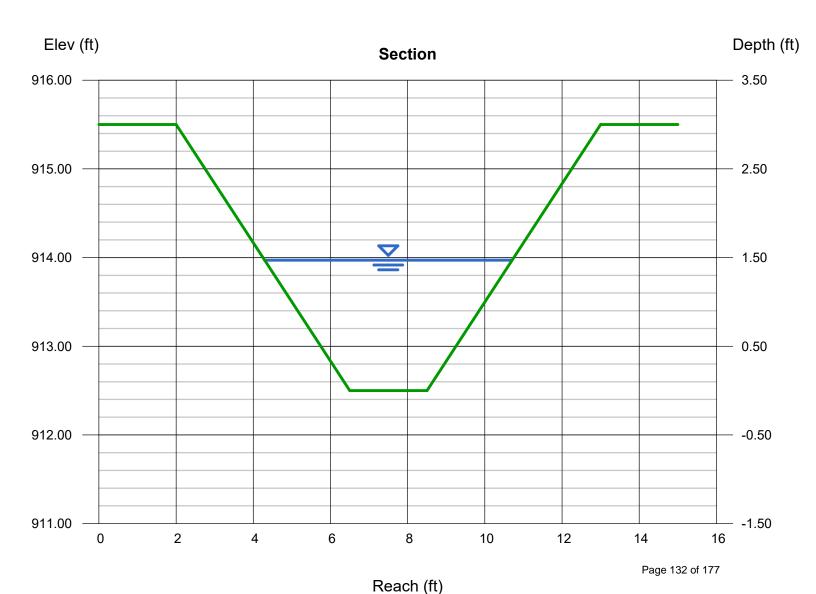
Known Q

= 25.65

Trapezoidal		Highlighted	
Bottom Width (ft)	= 2.00	Depth (ft)	= 1.04
Side Slopes (z:1)	= 1.50, 1.50	Q (cfs)	= 25.65
Total Depth (ft)	= 3.00	Area (sqft)	= 3.70
Invert Elev (ft)	= 912.50	Velocity (ft/s)	= 6.93
Slope (%)	= 2.50	Wetted Perim (ft)	= 5.75
N-Value	= 0.025	Crit Depth, Yc (ft)	= 1.27
		Top Width (ft)	= 5.12
Calculations		EGL (ft)	= 1.79

Compute by: Known Q (cfs)

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.


Thursday, Nov 12 2020

Downstream Channel 65 ft north of detention pond

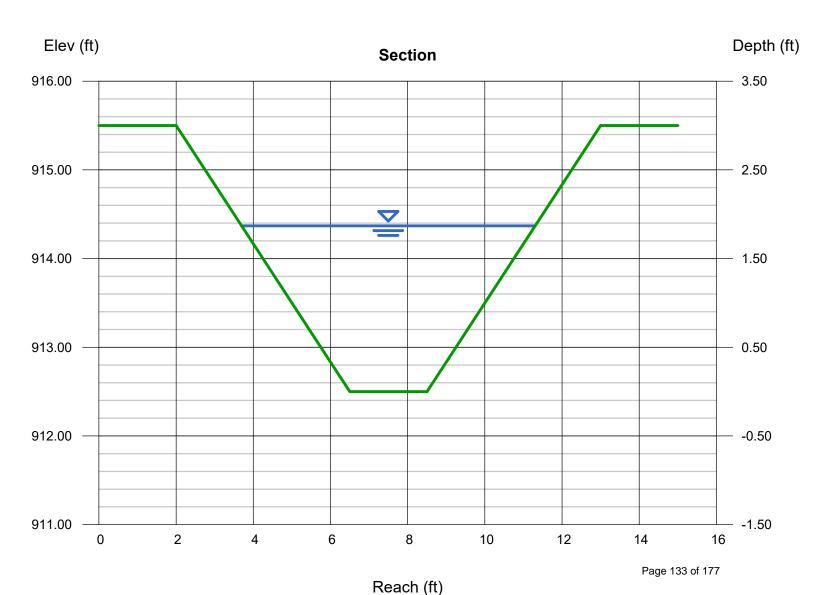
Known Q

= 51.84

Trapezoidal		Highlighted	
Bottom Width (ft)	= 2.00	Depth (ft)	= 1.47
Side Slopes (z:1)	= 1.50, 1.50	Q (cfs)	= 51.84
Total Depth (ft)	= 3.00	Area (sqft)	= 6.18
Invert Elev (ft)	= 912.50	Velocity (ft/s)	= 8.39
Slope (%)	= 2.50	Wetted Perim (ft)	= 7.30
N-Value	= 0.025	Crit Depth, Yc (ft)	= 1.81
		Top Width (ft)	= 6.41
Calculations		EGL (ft)	= 2.56

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Thursday, Nov 12 2020


= 1.87 = 85.72 = 8.99 = 9.54 = 8.74 = 2.32 = 7.61

= 3.28

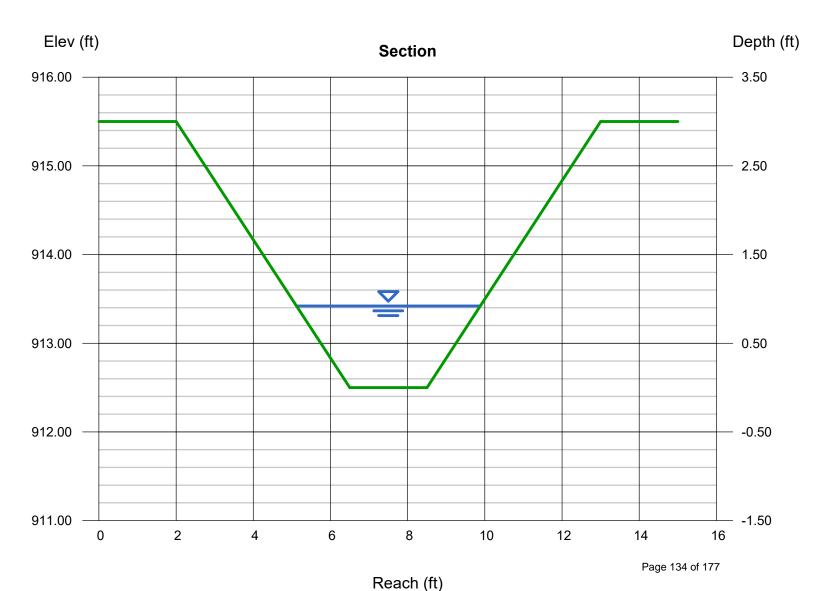
Downstream Channel 65 ft north of detention pond

Trapezoidal		Highlighted
Bottom Width (ft)	= 2.00	Depth (ft)
Side Slopes (z:1)	= 1.50, 1.50	Q (cfs)
Total Depth (ft)	= 3.00	Area (sqft)
Invert Elev (ft)	= 912.50	Velocity (ft/s)
Slope (%)	= 2.50	Wetted Perim (ft)
N-Value	= 0.025	Crit Depth, Yc (ft)
		Top Width (ft)
Calculations		EGL (ft)

Compute by: Known Q Known Q (cfs) = 85.72

Compute by: Known Q (cfs)

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.


Thursday, Nov 12 2020

Downstream Channel 65 ft north of detention pond

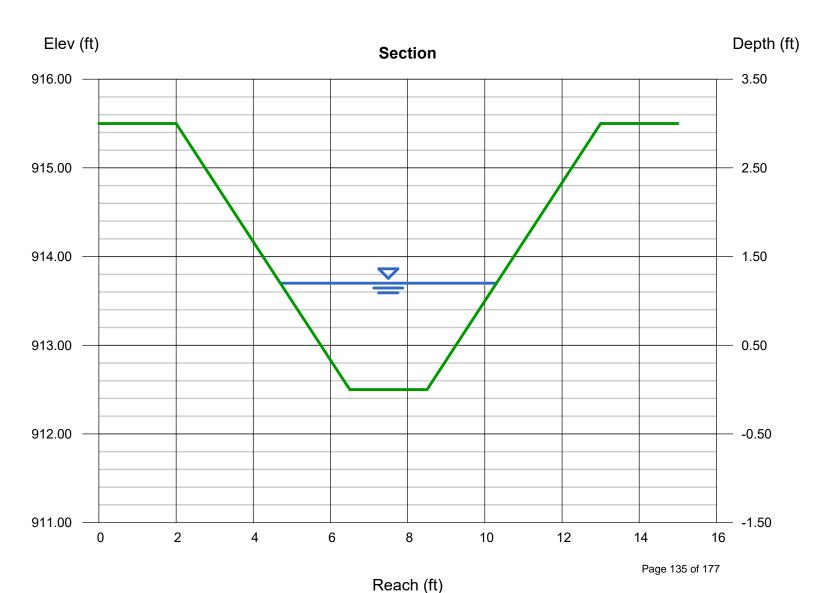
Known Q

= 20.08

Trapezoidal		Highlighted	
Bottom Width (ft)	= 2.00	Depth (ft)	= 0.92
Side Slopes (z:1)	= 1.50, 1.50	Q (cfs)	= 20.08
Total Depth (ft)	= 3.00	Area (sqft)	= 3.11
Invert Elev (ft)	= 912.50	Velocity (ft/s)	= 6.46
Slope (%)	= 2.50	Wetted Perim (ft)	= 5.32
N-Value	= 0.025	Crit Depth, Yc (ft)	= 1.11
		Top Width (ft)	= 4.76
Calculations		EGL (ft)	= 1.57

Compute by: Known Q (cfs)

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

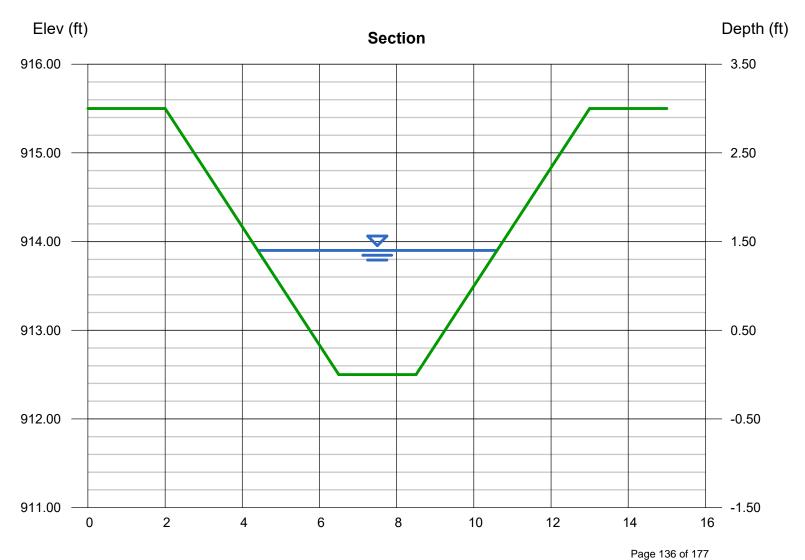

Thursday, Nov 12 2020

Downstream Channel 65 ft north of detention pond

Known Q

= 34.13

Trapezoidal		Highlighted	
Bottom Width (ft)	= 2.00	Depth (ft)	= 1.20
Side Slopes (z:1)	= 1.50, 1.50	Q (cfs)	= 34.13
Total Depth (ft)	= 3.00	Area (sqft)	= 4.56
Invert Elev (ft)	= 912.50	Velocity (ft/s)	= 7.48
Slope (%)	= 2.50	Wetted Perim (ft)	= 6.33
N-Value	= 0.025	Crit Depth, Yc (ft)	= 1.47
		Top Width (ft)	= 5.60
Calculations		EGL (ft)	= 2.07

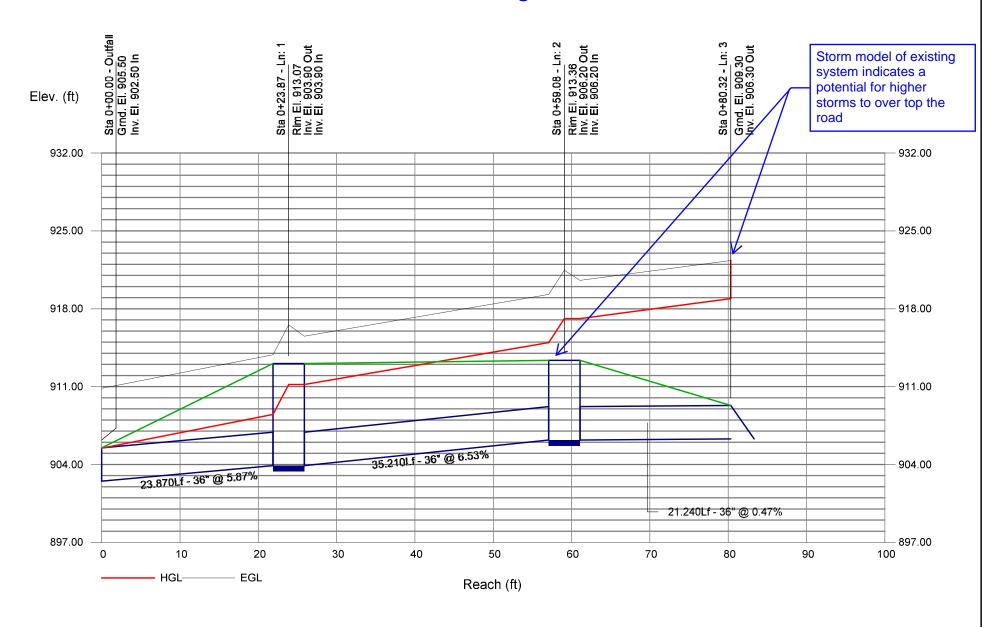

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Thursday, Nov 12 2020

Downstream Channel 65 ft north of detention pond

Trapezoidal		Highlighted	
Bottom Width (ft)	= 2.00	Depth (ft)	= 1.40
Side Slopes (z:1)	= 1.50, 1.50	Q (cfs)	= 46.82
Total Depth (ft)	= 3.00	Area (sqft)	= 5.74
Invert Elev (ft)	= 912.50	Velocity (ft/s)	= 8.16
Slope (%)	= 2.50	Wetted Perim (ft)	= 7.05
N-Value	= 0.025	Crit Depth, Yc (ft)	= 1.72
		Top Width (ft)	= 6.20
Calculations		EGL (ft)	= 2.43

Compute by: Known Q Known Q (cfs) = 46.82



Reach (ft)

Storm Sewer Tabulation

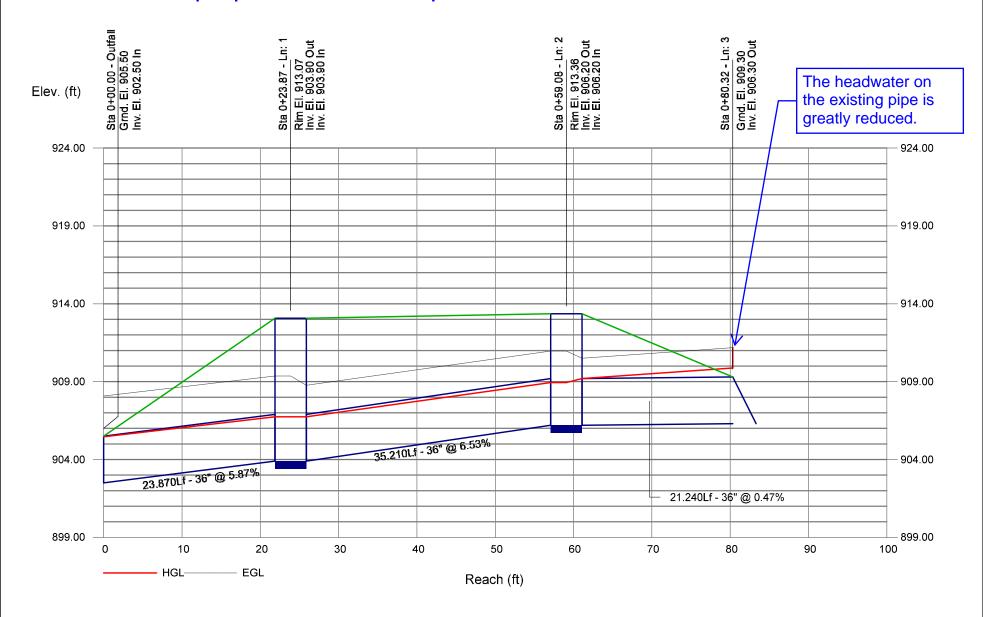
tatio	n	Len	Drng A	rea	Rnoff	Area x	C	Тс		Rain	Total	Сар	Vel	Pipe		Invert Elev		HGL Ele	v	Grnd / Rim Elev		Line ID
ine	То		Incr	Total	coeff	Incr	Total	Inlet	Syst	(I)	flow	full		Size	Slope	Dn	Up	Dn	Up	Dn	Up	
	Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
1	End	23.870	1.54	6.60	0.71	1.09	3.75	5.0	5.1	12.1	131.3	87.49	18.60	36	5.87	902.50	903.90	905.46	908.51	905.50	913.07	Z1-Z2
2	1	35.210	1.78	5.06	0.61	1.09	2.66	5.0	5.0	12.2	118.1	92.33	16.71	36	6.53	903.90	906.20	911.19	914.95	913.07	913.36	Z2-Z3
3	2	21.240	3.28	3.28	0.48	1.57	1.57	5.0	5.0	12.2	104.9	24.78	14.84	36	0.47	906.20	906.30	917.12	918.92	913.36	909.30	Z3-Z4
							w capa									levatio o culve						
		_		i ndit orm			r mo) ode	l of	exi	 stin	l g d	 <mark>ow</mark> r	nstr	∣ ean	n sto	orm s	sewe	ı er lin	ie		
 Proje	ct File:	Existing	Z Line	- pre.stm	า า											Numbe	r of lines: 3	3		Run Da	 te: 11/12/2	2020

Existing Conditions: 100 Year storm sewer model of existing downstream storm sewer line

Page 138 of 177

Storm Sewer Tabulation

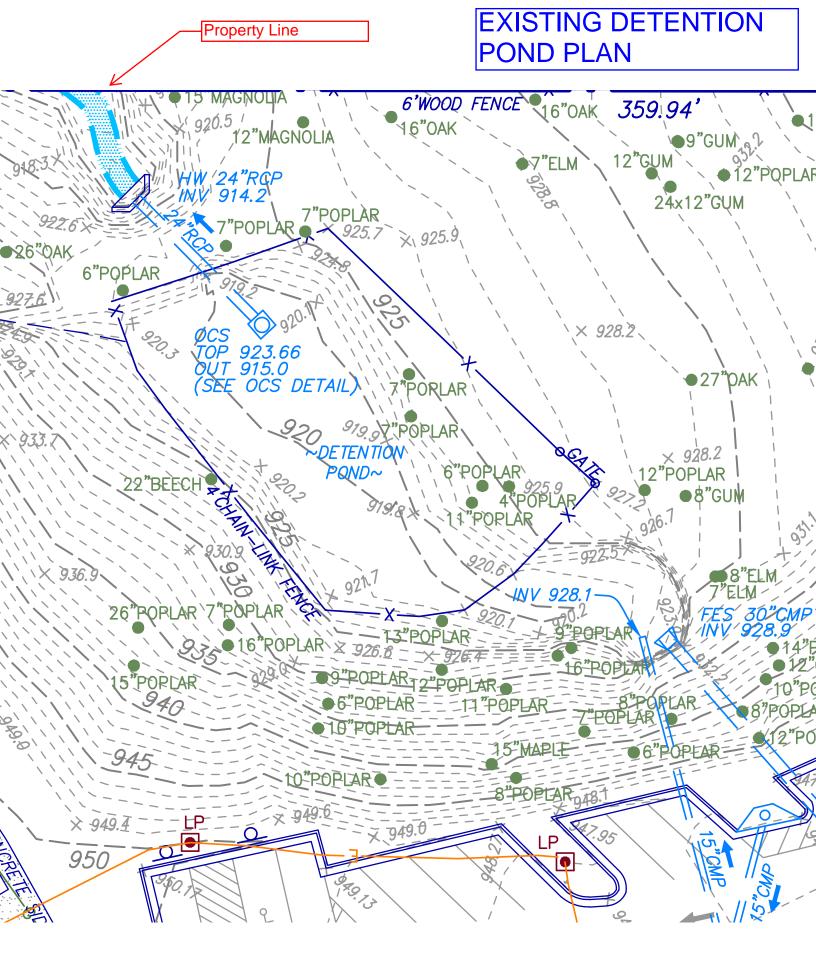
Statio	n	Len	Drng A	rea	Rnoff coeff	Area x	C	Тс		Rain	Total flow	Cap full	Vel	Pipe		Invert Ele	ev	HGL Ele	ev	Grnd / Rim Elev		Line ID
_ine	То		Incr	Total	coen	Incr	Total	Inlet	Syst	 (1)	llow	luli		Size Slope		Dn Up		Dn	Up	Dn	Up	
	Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
1	End	23.870	1.54	6.60	0.71	1.09	3.75	5.0	5.1	11.6	89.84	87.49	12.85	36	5.87	902.50	903.90	905.46	906.74	905.50	913.07	Z1-Z2
2	1	35.210	1.78	5.06	0.61	1.09	2.66	5.0	5.0	11.6	77.25	92.33	11.28	36	6.53	903.90	906.20	906.74	908.94	913.07	913.36	Z2-Z3
3	2	21.240	3.28	3.28	0.48	1.57	1.57	5.0	5.0	11.7	64.66	24.78	9.15	36	0.47	906.20	906.30	909.20	909.88	913.36	909.30	Z3-Z4
							ow cap w slop							_		ter elevance to o		/ / [
10	00	Yea	ar s		n se	ewe	er m					ng d			 rea	n st	orm	sew	er li	ne		


Project File: Existing Z Line.stm

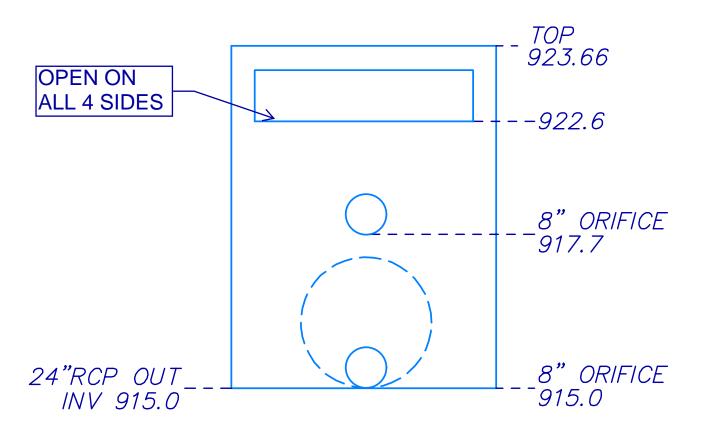
Number of lines: 3

Run Date: 11/12/2020

Proposed Conditions:

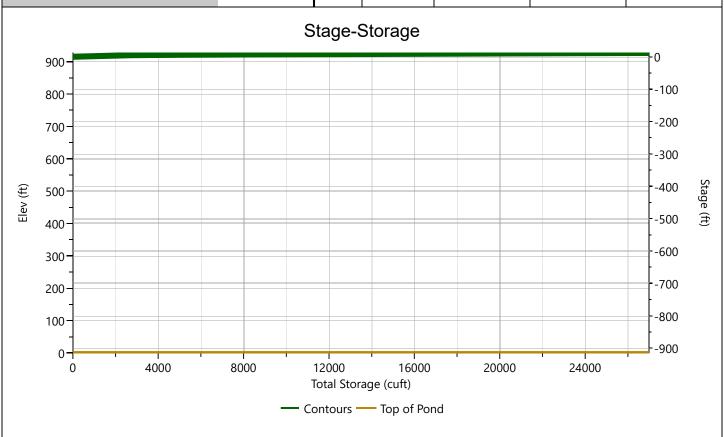

100 Year storm sewer model of existing downstream storm sewer line with the proposed detention pond modifications

Page 140 of 177


Appendix G Outlet Control Structure Information

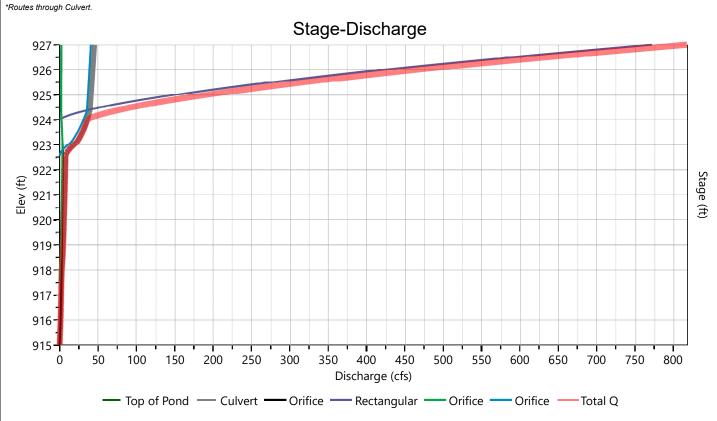
- Pond Model
- OCS Detail
- Water Quality BMP Detail
- Pond Plan

Existing East Detention Pond


OCS DETAIL

Ex East Pond

Stage-Storage

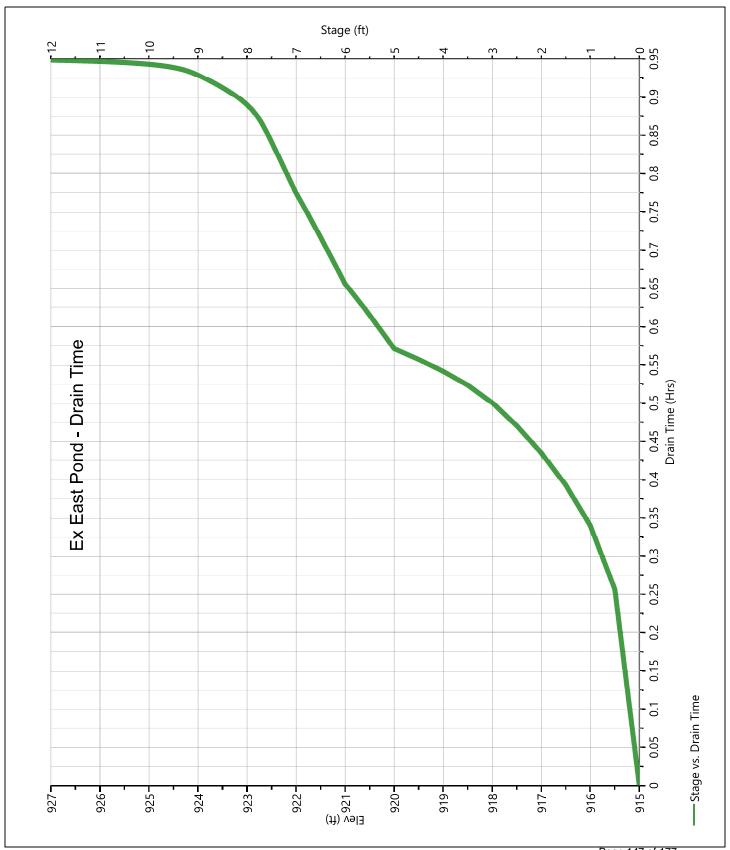

User Defined Conto	urs			Stage / Stora	ge Table		
Description	Input	Stage (ft)	Elevation (ft)	Contour Area (sqft)	Incr. Storage (cuft)	Total Storage (cuft)	
Bottom Elevation, ft	915.00	0.00	915.00	1	0.000	0.000	
Voids (%)	100.00	5.00	920.00	1,105	2,765	2,765	
Volume Calc	Ave End Area	6.00	921.00	2,648	1,877	4,642	
Volume Calc	Ave Liiu Alea	7.00	922.00	3,349	2,999	7,640	
		8.00	923.00	3,926	3,638	11,278	
		9.00	924.00	3,927	3,927	15,204	
		10.00	925.00	3,928	3,928	19,132	
		11.00	926.00	3,929	3,929	23,060	
		12.00	927.00	3,930	3,930	26,990	

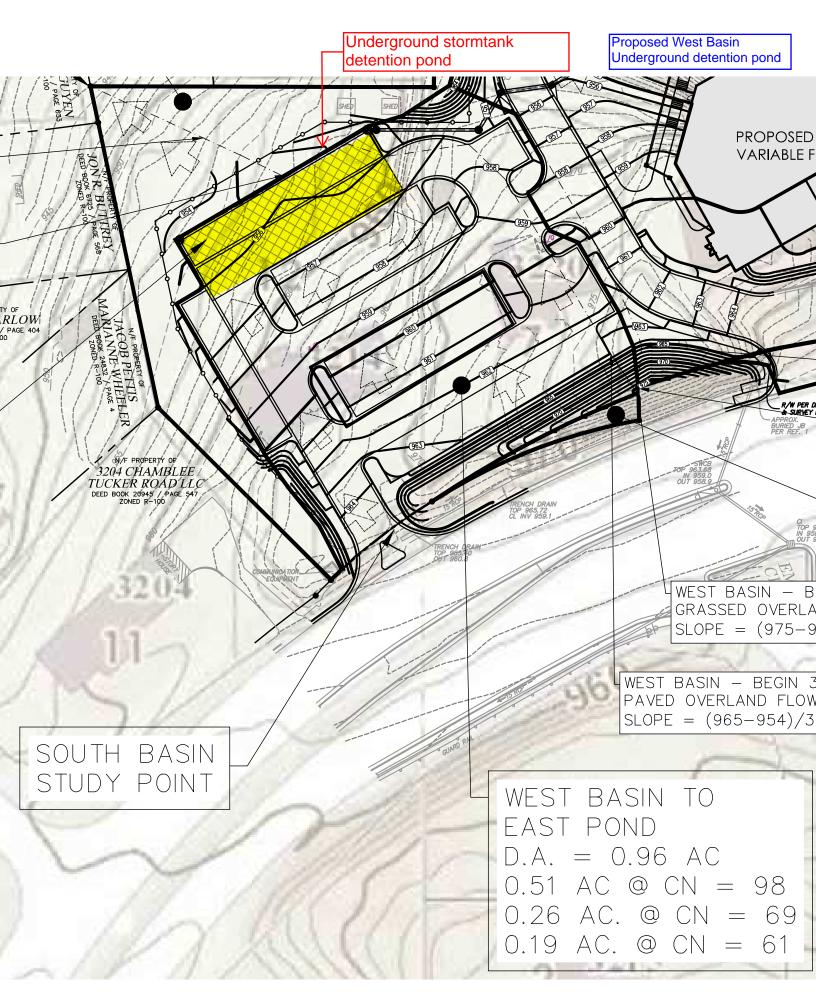
Ex East Pond

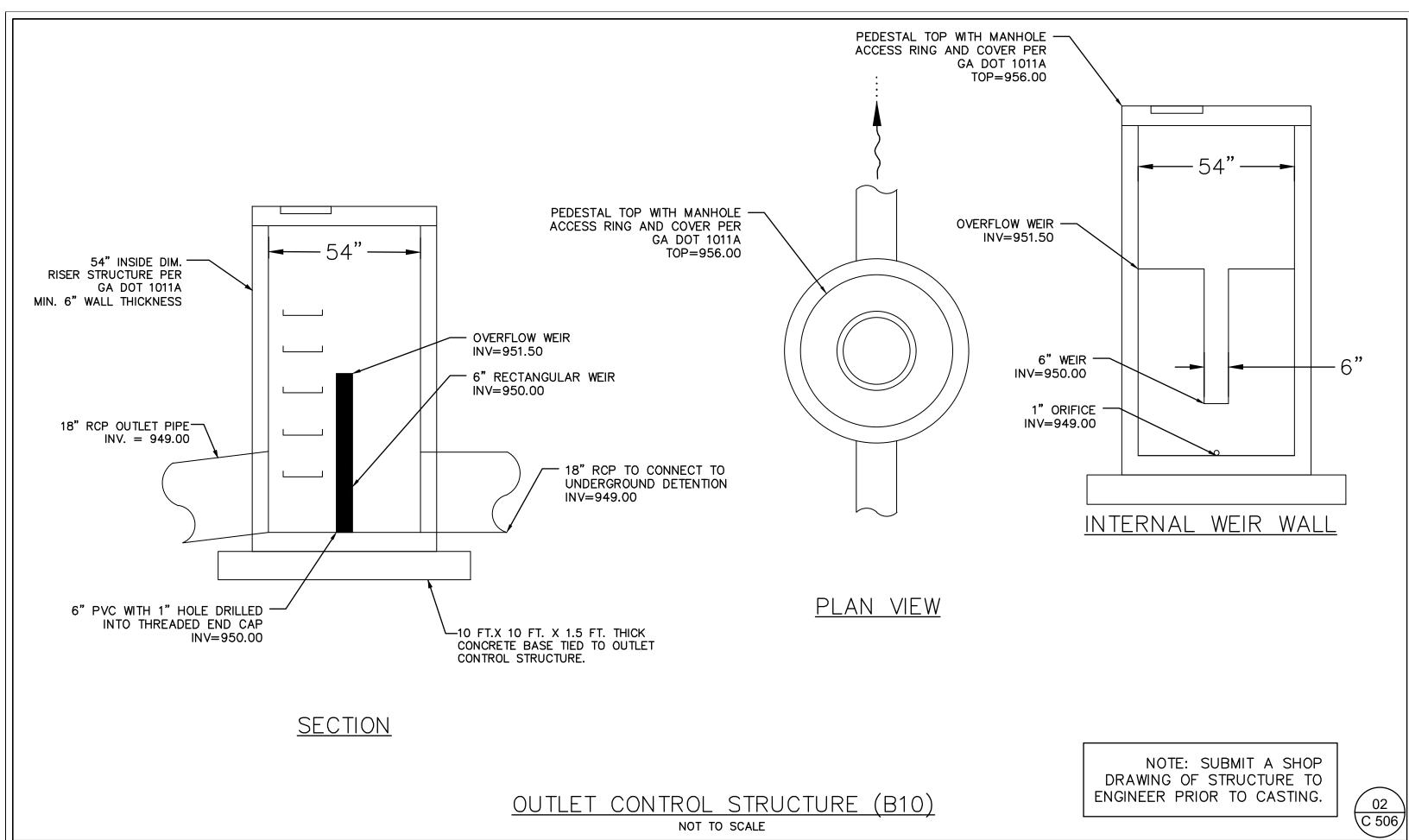
Stage-Discharge

Culvert / Orifices	Culvert		Orifices		Perforated Riser
Culvert / Orinices	Cuivert	1*	2*	3*	Perioraled Riser
Rise, in	24	8	8	6	Hole Diameter, in
Span, in	24	8	8	36	No. holes
No. Barrels	1	1	1	4	Invert Elevation, ft
Invert Elevation, ft	915.00	915.00	917.70	922.60	Height, ft
Orifice Coefficient, Co	0.60	0.60	0.60	0.60	Orifice Coefficient, Co
Length, ft	34				
Barrel Slope, %	2.3				
N-Value, n	0.013				
Weirs	Riser*		Weirs		Anoillanu
vveirs	Kisei	1	2	3	Ancillary
Shape / Type	Circular	Rectangular			Exfiltration, in/hr
Crest Elevation, ft		924			Tailwater Elevation, ft
Crest Length, ft		45			
Angle, deg					
Weir Coefficient, Cw		3.3			

Ex East Pond

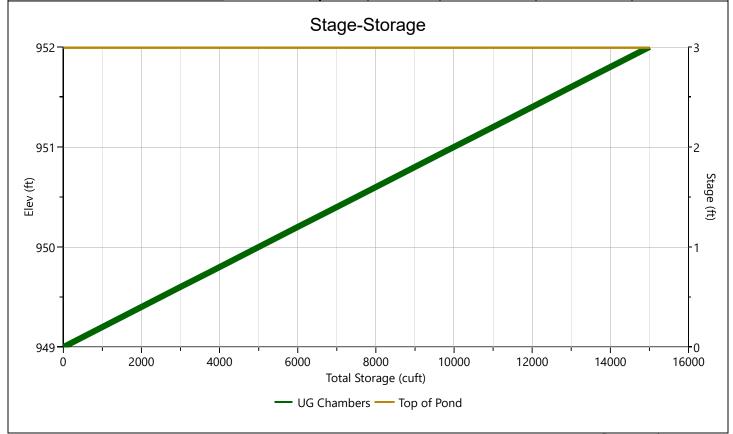

Stage-Storage-Discharge Summary


Stage	Elev.	Storage	Culvert	C	Orifices, cf	s	Riser		Weirs, cfs		Pf Riser	Exfil	User	Total
(ft)	(ft)	(cuft)	(cfs)	1	2	3	(cfs)	1	2	3	(cfs)	(cfs)	(cfs)	(cfs)
0.00	915.00	0.000	0.000	0.000	0.000	0.000		0.000						0.000
5.00	920.00	2,765	5.705 ic	3.348	2.357	0.000		0.000						5.705
6.00	921.00	4,642	6.605 ic	3.710	2.895	0.000		0.000						6.605
7.00	922.00	7,640	7.393 ic	4.046	3.347	0.000		0.000						7.393
8.00	923.00	11,278	18.05 ic	3.968	3.745	10.34		0.000						18.05
9.00	924.00	15,204	36.09 ic	2.553	2.553	30.98		0.000						36.09
10.00	925.00	19,132	41.08 ic	2.141	2.141	36.80		148.5						189.6
11.00	926.00	23,060	43.30 ic	2.256	2.256	38.79		420.0						463.3
12.00	927.00	26,990	45.42 ic	2.367	2.367	40.68		771.6						817.0
	l	1	l	l	l	l	l	l	l		l	L	1 1C of 177	


Page 146 of 177

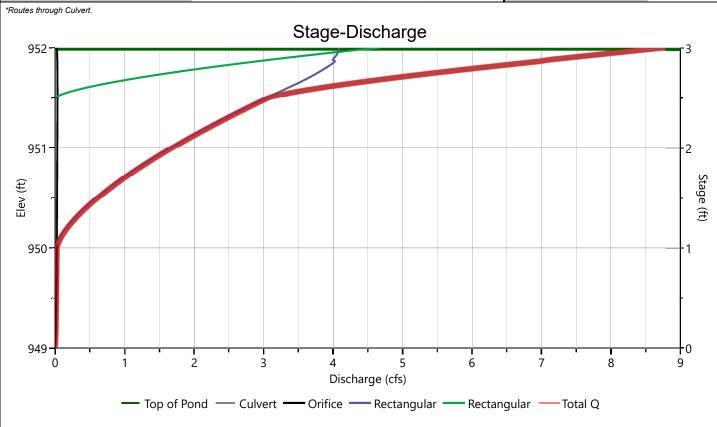
Ex East Pond

Pond Drawdown



West Pond

Stage-Storage

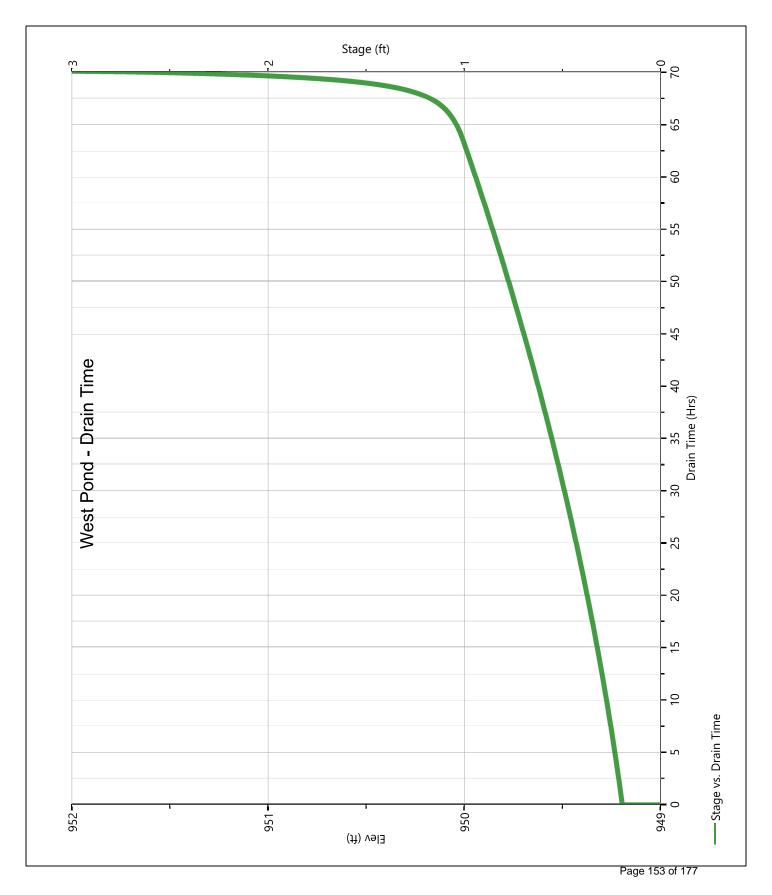

Underground Chamb	ers			Stage / Stora	ge Table		
Description	Input	Stage (ft)	Elevation (ft)	Contour Area (sqft)	Incr. Storage (cuft)	Total Storage (cuft)	
Invert Elev Down, ft	949.00				0.000	` ,	
Chamber Rise, ft	3.00	0.00 0.15	949.00 949.15	n/a n/a	0.000 750	0.000 750	
			949.15	n/a n/a	750 750		
Chamber Shape	Box	0.30		-		1,500	
Chamber Span, ft	50.00	0.45	949.45	n/a	750	2,250	
Ghamber Opan, it	00.00	0.60	949.60	n/a	750	3,001	
Barrel Length, ft	100.00	0.75	949.75	n/a	750	3,751	
No. Barrels	1	0.90	949.90	n/a	750	4,501	
NO. Darreis	l l	1.05	950.05	n/a	750	5,251	
Barrel Slope, %	0.00	1.20	950.20	n/a	750	6,001	
	. .	1.35	950.35	n/a	750	6,751	
Headers, y/n	No	1.50	950.50	n/a	750	7,501	
Stone Encasement, y/n	No	1.65	950.65	n/a	750	8,252	
- ID # FI # #	0.00	1.80	950.80	n/a	750	9,002	
Encasement Bottom Elevation, ft	0.00	1.95	950.95	n/a	750	9,752	
Encasement Width per Chamber, ft	1.00	2.10	951.10	n/a	750	10,502	
•		2.25	951.25	n/a	750	11,252	
Encasement Depth, ft	0.00	2.40	951.40	n/a	750	12,002	
Encasement Voids, %	40.00	2.55	951.55	n/a	750	12,753	
		2.70	951.70	n/a	750	13,503	
		2.85	951.85	n/a	750	14,253	
		3.00	952.00	n/a	750	15,003	

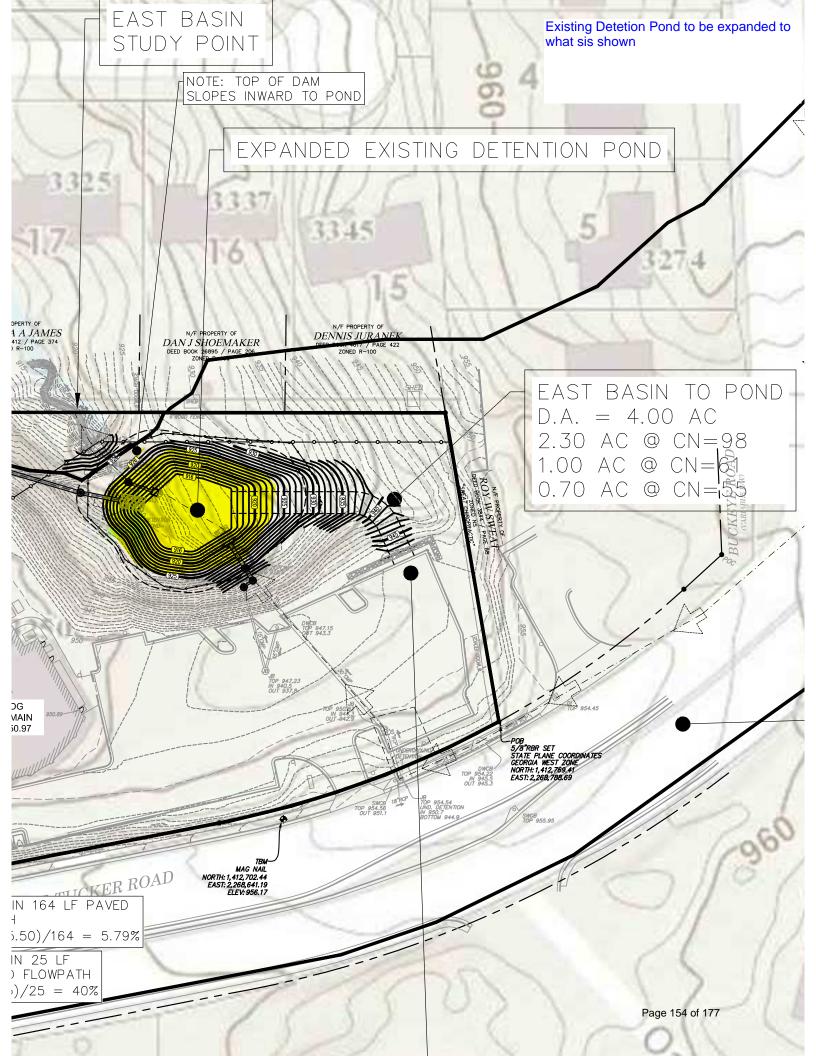
West Pond

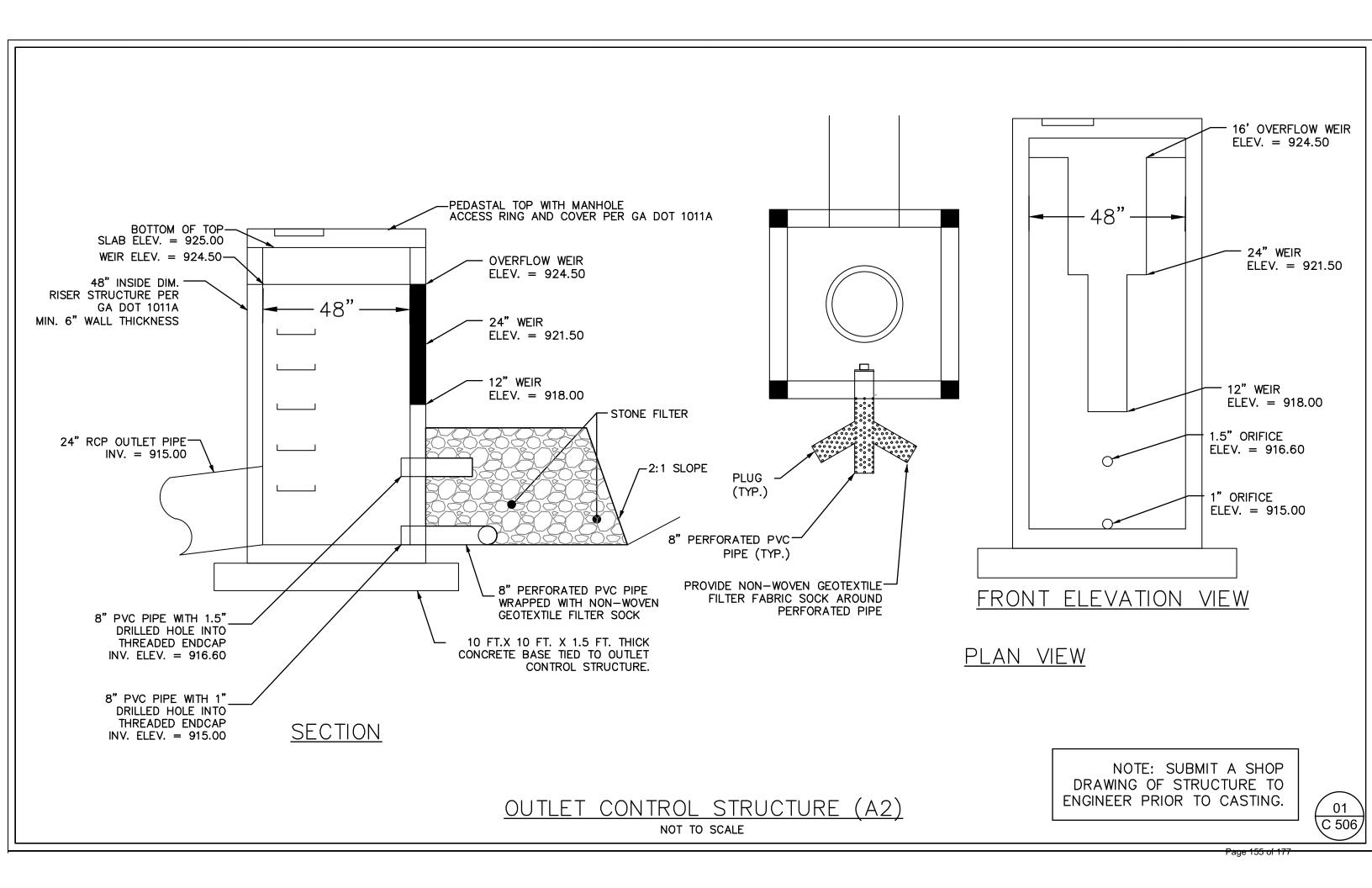
Stage-Discharge

Out out / Outland	Ordbroad		Orifices		Perforated Riser		
Culvert / Orifices	Culvert	1*	2	3	Perioraleu Riser		
Rise, in	18	1			Hole Diameter, in		
Span, in	18	1			No. holes		
No. Barrels	1	1			Invert Elevation, ft		
Invert Elevation, ft	949.00	949.01			Height, ft		
Orifice Coefficient, Co	0.60	0.60			Orifice Coefficient, Co		
Length, ft	63						
Barrel Slope, %	1						
N-Value, n	0.013						
Weirs	Riser*		Weirs		Anoillon		
vveirs	Riser	1*	2*	3	Ancillary		
Shape / Type		Rectangular	Rectangular		Exfiltration, in/hr		
Crest Elevation, ft		950	951.5		Tailwater Elevation, ft		
Crest Length, ft		.5	4				
Angle, deg							
Weir Coefficient, Cw		3.3	3.3				

West Pond

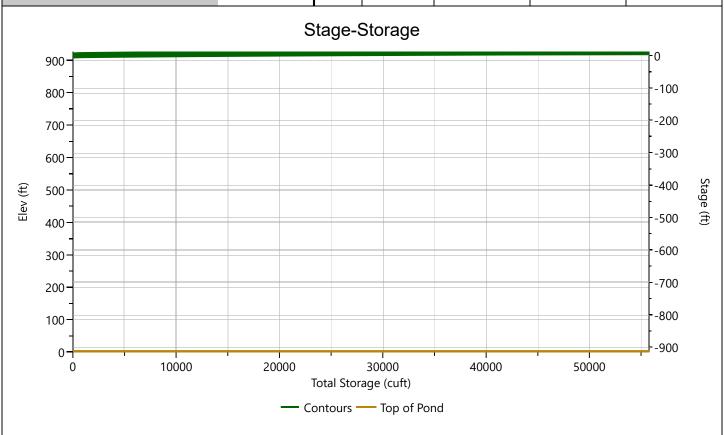

Stage-Storage-Discharge Summary


Stage	Elev.	Storage	Culvert	(Orifices, cf	s	Riser	Weirs, cfs			Pf Riser	Exfil	User	Total
(ft)	(ft)	(cuft)	(cfs)	1	2	3	(cfs)	1	2	3	(cfs)	(cfs)	(cfs)	(cfs)
0.00	949.00	0.000	0.000	0.000				0.000	0.000					0.000
0.15	949.15	750	0.008 ic	0.008				0.000	0.000					0.008
0.30	949.30	1,500	0.013 ic	0.013				0.000	0.000					0.013
0.45	949.45	2,250	0.017 ic	0.017				0.000	0.000					0.017
0.60	949.60	3,001	0.019 ic	0.019				0.000	0.000					0.019
0.75	949.75	3,751	0.022 ic	0.022				0.000	0.000					0.022
0.90	949.90	4,501	0.024 ic	0.024				0.000	0.000					0.024
1.05	950.05	5,251	0.044 ic	0.026				0.018	0.000					0.044
1.20	950.20	6,001	0.174 ic	0.027				0.148	0.000					0.174
1.35	950.35	6,751	0.369 ic	0.027				0.342	0.000					0.369
1.50	950.50	7,501	0.612 ic	0.028				0.583	0.000					0.612
1.65	950.65	8,252	0.894 ic	0.029				0.865	0.000					0.894
1.80	950.80	9,002	1.211 ic	0.030				1.181	0.000					1.211
1.95	950.95	9,752	1.559 ic	0.031				1.528	0.000					1.559
2.10	951.10	10,502	1.935 ic	0.032				1.904	0.000					1.935
2.25	951.25	11,252	2.339 ic	0.033				2.306	0.000					2.339
2.40	951.40	12,002	2.767 ic	0.033				2.733	0.000					2.767
2.55	951.55	12,753	3.366 ic	0.034				3.184	0.148					3.366
2.70	951.70	13,503	4.857 ic	0.033				3.643 s	1.181					4.857
2.85	951.85	14,253	6.769 ic	0.032				4.004 s	2.733					6.769
3.00	952.00	15,003	8.779 oc	0.028				4.085 s	4.667					8.779


Page 152 of 177

West Pond

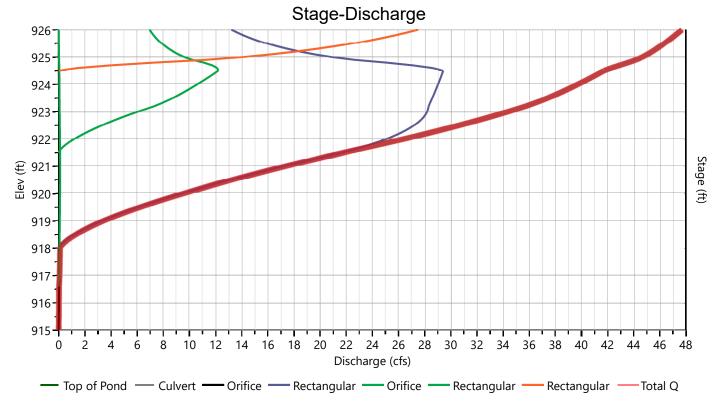
Pond Drawdown



New East Pond

Stage-Storage

User Defined Contou			Stage / Stora	ge Table		
Description	Input	Stage (ft)	Elevation (ft)	Contour Area (sqft)	Incr. Storage (cuft)	Total Storage (cuft)
Bottom Elevation, ft	915.00	0.00	915.00	1	0.000	0.000
Voids (%)	100.00	1.00	916.00	2,556	869	869
Volume Calc	Conic	2.00	917.00	3,045	2,797	3,666
volume Calc	Conic	3.00	918.00	3,566	3,302	6,967
		4.00	919.00	4,122	3,840	10,808
		5.00	920.00	4,730	4,422	15,230
		6.00	921.00	5,373	5,048	20,277
		7.00	922.00	6,055	5,710	25,987
		8.00	923.00	6,772	6,410	32,397
		9.00	924.00	7,528	7,146	39,543
		10.00	925.00	8,322	7,921	47,464
		11.00	926.00	8,325	8,323	55,786

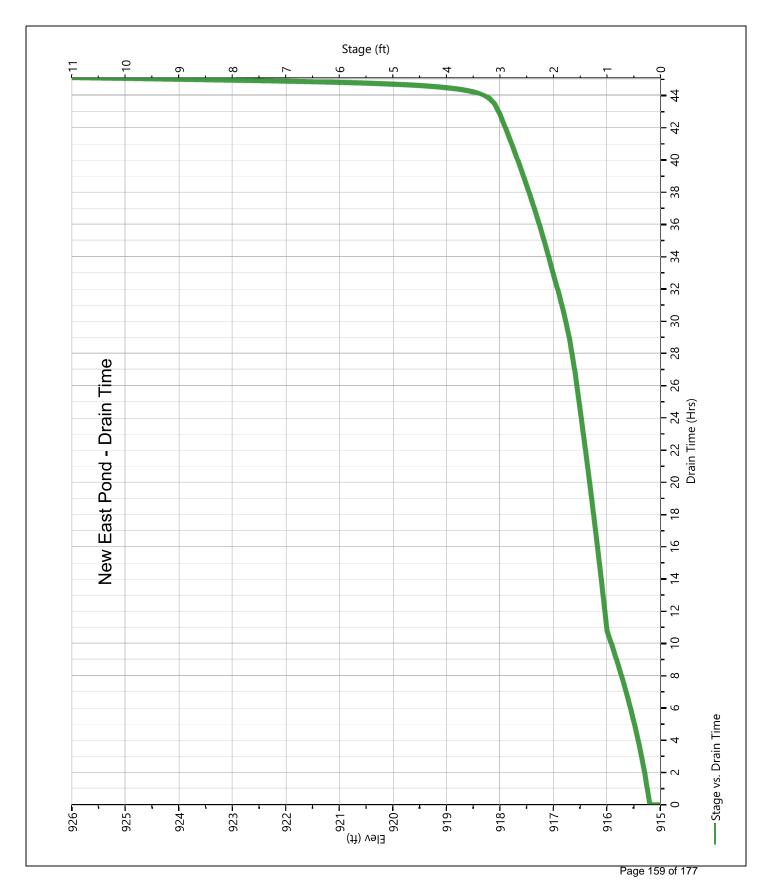


New East Pond

Stage-Discharge

Cultivant / Ouificas	Cultivant		Orifices		Dowforested Discon
Culvert / Orifices	Culvert	1*	2*	3	Perforated Riser
Rise, in	24	1	1.5		Hole Diameter, in
Span, in	24	1	1.5		No. holes
No. Barrels	1	1	1		Invert Elevation, ft
Invert Elevation, ft	915.00	915.00	916.60		Height, ft
Orifice Coefficient, Co	0.60	0.60	0.60		Orifice Coefficient, Co
Length, ft	34				
Barrel Slope, %	2.3				
N-Value, n	0.013				
Weirs	Riser*		Weirs		Anaillam
weirs	Riser	1*	2*	3*	Ancillary
Shape / Type		Rectangular	Rectangular	Rectangular	Exfiltration, in/hr
Crest Elevation, ft		918	921.5	924.5	Tailwater Elevation, ft
Crest Length, ft		1	1	13.5	
Angle, deg					
Weir Coefficient, Cw		3.3	3.3	3.3	

New East Pond


Stage-Storage-Discharge Summary

Stage	Elev.	Storage	Culvert	(Orifices, cf	s	Riser		Weirs, cfs	leirs, cfs		Exfil	User	Total
(ft)	(ft)	(cuft)	(cfs)	1	2	3	(cfs)	1	2	3	(cfs)	(cfs)	(cfs)	(cfs)
0.00	915.00	0.000	0.000	0.000	0.000			0.000	0.000	0.000				0.000
1.00	916.00	869	0.025 ic	0.025	0.000			0.000	0.000	0.000				0.025
2.00	917.00	3,666	0.070 ic	0.036	0.034			0.000	0.000	0.000				0.070
3.00	918.00	6,967	0.113 ic	0.044	0.068			0.000	0.000	0.000				0.113
4.00	919.00	10,808	3.437 ic	0.047	0.090			3.300	0.000	0.000				3.437
5.00	920.00	15,230	9.492 ic	0.050	0.108			9.334	0.000	0.000				9.492
6.00	921.00	20,277	17.31 ic	0.050	0.113			17.15	0.000	0.000				17.31
7.00	922.00	25,987	26.33 ic	0.045	0.102			25.01 s	1.167	0.000				26.33
8.00	923.00	32,397	34.37 ic	0.036	0.080			28.19 s	6.062	0.000				34.37
9.00	924.00	39,543	39.71 ic	0.028	0.062			29.02 s	10.60 s	0.000				39.71
10.00	925.00	47,464	44.63 ic	0.014	0.032			20.96 s	9.638 s	13.98 s				44.63
11.00	926.00	55,786	47.68 ic	0.006	0.014			13.21 s	6.952 s	27.50 s				47.68
													158 of 177	

Page 158 of 177

New East Pond

Pond Drawdown

Outlet Central Structure Stability Cheek					
Outlet Control Structure Stability Check					
Rectanglar OCS					
rectanglal 000					
Outlet Control Structure DATA					
Top Elevation=		925.5			
Weir Top Elevation =		924.5			
Weir Bottom Elevation =		918			
Bottom Elevation =		915			
Base Bottom Elevation =		915			
Budd Bottom Elevation		010			
Outside OCS Dim=		5			
OCS Wall thickness		0.5			
OCC WAII WHOMIOSC		0.0			
Additional Base Depth					
Additional Base Width					
Additional Base Length					
, additional bass congui	+				
1. Volume of Water Displaced	+				
V _{water}	+	=	HXLXW		
H=		3	,		
 L=		5			
 W=		5			
Vwater		75			
• 11445					
2. Weight of Water					
Wwater			62.4	LB/CF	
		Χ	V _{water}		
		=	4680	LBS	
3. Volume of Concrete Provided by OCS					
•		V _{base}	0		
	+	Vouter	75		
	-	Vinner	48		
	+	V_{top}	25		
	+	V _{base}	0		
	=	Vconcrete	52		
Weight of Concrete Provided					
Wconcrete			150	LB/CF	
		Χ	V_{concrete}		
		=	7800	LBS	
Comparison between weight of water					
desplacement and weight of concrete provided.					
Factor of safety		Wconcrete	7800		
	/	Wwater	4680		
		=	1.666667		
			NOTE: USE	1.5 OR G	REATER

Appendix H Operation & Maintenance Documents

Underground Detention

Underground detention is detention storage located in underground tanks or vaults designed to provide water quantity control through temporary storage of stormwater runoff. In addition they can improve water quality by removing heavy amounts of sediment.

There are some common problems to be aware of when maintaining an underground detention area. They include, but are not limited to, the following:

- Sediment build-up
- Clogging in the inlet and outlet structure
- Requirement to have Occupational Safety and Health Administration (OSHA) confined space entry training

Routine maintenance should be performed on the underground detention areas to ensure that the structure is properly functioning. Routine maintenance includes the removal of debris from inlet and outlet structures and cleaning sediment built up inside the structure. Because this is an underground system, inspection and maintenance may be difficult to conduct. Generally these underground systems can be inspected by looking in an access opening. Sometimes, however, maintenance requires an individual who is certified in OSHA confined space entry. Should there be a situation where a safety concern arises, the inspection should stop and the safety concern addressed. Once the concern is addressed, the inspection can continue.

Inspect the underground detention area after a large rainstorm. If the underground detention area is not draining properly, check the inlet and outlet structures to make sure they are not clogged.

Sediment should be removed from the practice by either a vacuum or boom. If the system is accepting water that flowed from a hazardous facility, the sediment may need to be disposed of by other means. Check with the local government to identify any additional constraints on the disposal of sediments excavated from underground detention.

The table on the following page shows a schedule for when different maintenance activities should be performed on a submerged gravel wetland.

Underground Detention Typical Routine Maintenance Activities and Schedule

Activity	Schedule
 Remove any trash/debris and sediment buildup in the underground trash racks, vaults or tanks. Check drainage areas for trash, erosion, and debris. Clean underground detention if hazardous or foreign substances are spilled in the contributing drainage area. Perform structural repairs to inlet and outlets. 	As needed
 Follow manufacturer's guidelines and develop/adjust plan for the underground detention. Clean out underground detentions with vacuum or boom trucks. Clean sediment or oil chambers 	Annually

Underground Detention						
		Condit				
Maintenance Item	Good Marginal Poor		N/A*	Comment		
G	eneral In	spection		<u> </u>		
Access to the site is adequately maintained for inspection and maintenance.						
Area is clean (trash, debris, grass clippings, etc. removed).						
Inlet Str	ucture an	d Pretreatm	nent	<u> </u>		
Drainage ways (overland flow or pipes) to the practice are free of trash, debris, large branches, etc. Inlet structure is in good condition. No signs						
of cracks or leaks.						
Diversion structure (high flow bypass structure or other) is free of trash, debris, or sediment. Comment on overall condition of diversion structure and list type.						
Inlet pipe fits tightly to the underground detention.						
Inlet has protection to prevent clogging with leaves or other debris and has fine mesh for mosquito control.						
	Main Tre	atment				
Main treatment area is free of trash, debris, and sediment.						
Structure seems to be working properly. No signs of settling, leaking, or cracking. Comment on overall condition of structure.						
Emergency Overflow and Outlet Structure						
Area is free of trash, debris, and sediment. Overflow valve appears to be in good condition and show no signs of leaking.						
	Resu	ılts				
Overall condition of Underground Detention:						
Ad	lditional (Comments				
Notes: *If a specific maintenance item was not	ahastis I			a tha a see		

This page intentionally left blank.

Stor	mwate	r Wetland	1			
		Conditi	on			
Maintenance Item	Good Marginal Po		Poor	N/A*	Comment	
(General In	spection				
Access to the site is adequately maintained for inspection and maintenance.						
Area is clean (trash, debris, grass clippings, etc. removed).						
	Inlet Str	ucture		<u> </u>		
Drainage ways (overland flow or pipes) to the practice are free of trash, debris, large branches, etc. Area around the inlet structure is mowed and grass clippings are removed. No evidence of gullies, rills, or excessive erosion around the inlet structure.						
Inlet pipe is in good condition, and water is going through the structure (i.e. no evidence of water going around the structure). Diversion structure (high flow bypass structure or other) is free of trash, debris, or sediment. Comment on overall condition of diversion structure and list type.						
	eatment	(choose one)	<u> </u>		
Forebay – area is free of trash, debris, and sediment. Sediment accumulation in forebay is less than 50% of the storage capacity. Filter Strip or Grass Channels – area is free of trash debris and sediment. Area has been mowed and grass clippings are removed. No evidence of erosion. Rock Lined Plunge Pools – area is free of trash debris and sediment. Rock thickness in pool is adequate.			,			
	Main Tre	atment		T T		
Main treatment area is free of trash, debris, and sediment. Erosion protection is present on site (i.e. turf reinforcement mats). Comment on types of erosion protection and evaluate condition. No algal growth along or within the wetland. Native plants were used in the practice according to the planting plan. No undesirable vegetation.						

Stor	mwate	r Wetland	ı		
		Conditi	on		
Maintenance Item	Good	Marginal	Poor	N/A*	Comment
Vegetation within and around practice is maintained per landscaping plan. Grass clippings are removed.					
Wetland seems to be working properly. No settling around the practice. Comment on overall condition.					
No significant sediment accumulation within the practice.					
No evidence of use of fertilizer on plants (fertilizer crusting on the surface of the soil, tips of leaves turning brown or yellow, blackened roots, etc.).					
Plants seem to be healthy and in good condition. Comment on condition of plants.					
En	nergency	Overflow			
Emergency overflow is free of trash, debris, and sediment.					
No evidence of erosion, scour, flooding, or animal activity around the structure. No evidence of seepage on the downstream face.					
No evidence of unwanted vegetation and vegetation is in good condition.					
	Outlet St	ructure		_	
Outlet structure is free of trash, debris, and sediment.					
No evidence of erosion, scour, or flooding around the structure.					
Outlet structure does not appear to be blocked.					
	Resu	ılts		_	
Overall condition of Stormwater Wetland:					
Ad	lditional (Comments			

Notes: * If a specific maintenance item was not checked, please check N/A and explain why in the appropriate comment box.

Submerged Gravel Wetlands

The submerged gravel wetland system is similar to a regular stormwater wetland; however, it is filled with crushed rock or gravel and designed to allow stormwater to flow through the root zone of the constructed wetland. The outlet from each cell is set at an elevation to keep the rock or gravel submerged. Wetland plants are rooted in the media, where they can directly take up pollutants. In addition, algae and microbes thrive on the surface area of the rocks. Mimicking the pollutant

removal ability of nature, this structural control relies on the pollutant-stripping ability of plants and soils to remove pollutants from runoff.

There are some common problems to be aware of when maintaining a submerged gravel wetland. They include, but are not limited to, the following:

- Sediment build-up
- Clogging in the inlet and outlet structure
- Establishing vegetation within the wetland area
- Maintaining the proper pH levels for plants
- Pruning and weeding to maintain appearance
- Mosquitoes breeding in the practice

Routine maintenance should be performed on the submerged gravel wetlands to ensure that the structure is properly functioning. Note that during the first year the submerged gravel wetland is built, maintenance may be required at a higher frequency to ensure the proper establishment of vegetation in the practice. For more information on vegetation in submerged gravel wetlands, see Appendix D: Planting and Soil Guidance. Regular inspection and maintenance is crucial to the success of the wetland as an effective stormwater management practice.

In addition to routine maintenance, submerged gravel wetlands have seasonal and intermittent maintenance requirements. During the winter months, the stormwater pond should be inspected after a snow event (this is specific to northern areas of Georgia) to make sure that the materials used to deice the surrounding areas stay out of the practice to avoid further pollution. In addition, planting material should be trimmed during the winter, when the plants are dormant.

Inspect the submerged gravel wetland after large rainstorm events. Keep drainage paths (both to and from the BMP) clean so that the water can properly flow into the submerged gravel wetland. If the submerged gravel wetland is not draining properly, check for clogging in the inflow and outflow

structures. If sediment buildup is preventing flow through the wetland, remove gravel and sediment from cell. Replace with clean gravel and replant vegetation.

If the forebay or submerged gravel wetland has received a significant amount of sediment over a period of time, then the sediment at the bottom of the forebay or gravel wetland may need to be removed. It is important to note that sediment excavated from submerged gravel wetlands that do not receive stormwater runoff from stormwater hotspots are typically not considered toxic and can be safely disposed through either land application or landfilling. Stormwater hotspots are areas that produce higher concentrations of metals, hydrocarbons, or other pollutants than normally found in urban runoff. Examples of operations performed in potential stormwater hotspots include vehicle maintenance and repair, vehicle washing, landscaping/grounds care, and outdoor material and product storage. Check with the local development review authority to identify any additional constraints on the disposal of sediments excavated from submerged gravel wetlands.

In order to keep the water that exits the submerged gravel wetland clean, fertilizers should be used sparingly during the establishment of the practice. Once the vegetation in the practice has been established, fertilizer should not be used. While vegetation in the submerged gravel wetland is important, the primary purpose of a submerged gravel wetland is to act as a water quantity and quality device and introducing fertilizers into the submerged gravel wetland introduces nutrients such as phosphorus and nitrogen that can pollute downstream waters. In addition, submerged gravel wetlands should already be a nutrient rich environment that does not require fertilization. To control animal nuisances and invasive species, pesticides (including herbicides, fungicides, insecticides, or nematode control agents) should be used sparingly and only if necessary.

It is important that the embankment of a submerged gravel wetland be inspected regularly for trees and animal activity. Trees growing on the top or sides of the embankment should be removed. The roots of trees grow into the embankment and will weaken the structure of the embankment by creating passage ways that allow water to flow through the embankment. Trees that are blown over or damaged by storms can loosen or remove soil which weakens the strength of the embankment. In the same way animals can burrow holes weakening the structure of the embankment. These holes act as a passage way for the water to travel through the embankment, increasing the potential for the embankment to fail.

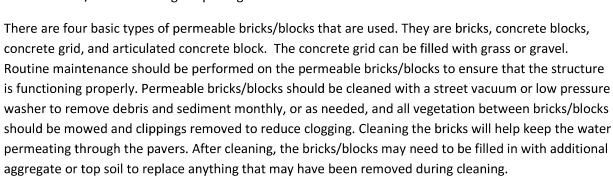
The table below shows a schedule for when different maintenance activities should be performed on a submerged gravel wetland.

Submerged Gravel Wetlands Typical Routine Maintenance Activities and Schedule

	Activity	Schedule
•	Ensure that inlets and outlets to each submerged gravel wetland cell are free from debris and not clogged. Remove any accumulated sediment and debris from inlet and outlet	Monthly
•	Remove any accumulated sediment and debris from inlet and outlet structures.	Worlding

Activity	Schedule
 Inspect wetland, side slopes and buffers for erosion. Replace vegetation in eroded areas. Inspect wetland, side slopes and buffers for dead or dying vegetation. Replace vegetation as needed. Inspect wetland, side slopes and buffers for invasive vegetation and remove as needed. 	Semi-Annually (Quarterly During First Year)
 Inspect for damage to the embankment and inlet/outlet structures Repair as necessary. Monitor for sediment accumulation in the facility. Examine to ensure that inlet and outlet devices are free of sediment and debris and operational. Inspect side slopes for erosion and undercutting and repair as needed. Check for signs of eutrophic conditions (e.g., excessive algal growth). Check for signs of hydrocarbon accumulation and remove appropriately Monitor sediment markers for sediment accumulation in forebays and permanent pools. Check all control gates, valves and other mechanical devices. 	Annually
 Water side slopes and buffers to promote plant growth and survival. Inspect wetland, side slopes, strucutres, and buffers following rainfall events. Plant replacement vegetation in any eroded areas. 	As Needed
Remove sediment, trash, and debris from inlets/forebay.	5 years or after 50% of the total forebay storage capacity has been lost
Monitor sediment accumulation in the wetland and remove sediment when the permanent pool volume has become reduced significantly, plants are "choked" with sediment, sediment buildup is preventing flow through the wetland, or the wetland becomes eutrophic. Replace with clean gravel and replant vegetation.	10 plus years or after 25% of the wetland storage volume has been lost

This page intentionally left blank.


Permeable Bricks/Blocks

Permeable bricks/blocks are pavers with void areas areas between the bricks or blocks that are generally filled with pervious materials such as small pieces of gravel, or top soil if a grid is used. Beneath the bricks/blocks is a base layer of aggregate that acts as a holding area for stormwater runoff while still providing structural support for the road. This practice provides enough structural support so that cars can drive over them or they can be used in parking lots. Permeable brick/blocks are not recommended in areas with high traffic volume or heavy trucks. These systems provide water quality benefits in addition to groundwater recharge and a reduction in stormwater volume.

There are some common problems to be aware of when maintaining permeable bricks/blocks. They include, but are not limited to, the following:

- Settling
- Bricks/blocks cracking or splitting

In addition to routine maintenance, permeable bricks/blocks have seasonal and intermittent maintenance requirements. In the winter months permeable bricks/blocks can be plowed similarly to any other unpaved road by lifting the blade a few inches above the road or by using a beveled plow. Deicing materials such as sand, ash, or salt should be avoided if possible. They can potentially harm the bricks/blocks and may cause clogging. Non-toxic, organic deicers are recommended.

Permeable bricks/blocks should be inspected after a large rainstorm. Keep drainage paths, both to and from the BMP, clean so that the water can properly infiltrate into the ground. Note that it might take longer for the water to permeate into the ground during the winter months and early spring.

If the permeable bricks/blocks are not draining properly, check for clogging between the bricks or blocks or at the upper layer of the aggregate, directly below the bricks/blocks. If clogging occurs, then the stones between the blocks/bricks should be replaced. In addition, the top layer of soil under the bricks/blocks may also need to be cleaned and replaced. Some areas of the blocks/bricks may need additional maintenance due to potential sources of clogging which include unstable soil upstream of the practice, leaves from trees, low points in blocks/bricks, trash, and debris from vehicle traffic. Another reason for the bricks/blocks not draining properly is settling. If major settling occurs, then the bricks/blocks should be removed, cleaned, and replaced.

Permeable bricks/blocks may also include an underdrain. If the practice includes an underdrain, additional maintenance will be required. Periodic testing will need to be done on the system to make sure that the underdrain is not clogged. This is done by pouring water into cleanout and observing how the water exits the practice. The observation well should be checked to make sure water is draining out of the practice.

The table below shows a schedule for when different maintenance activities should be performed on the permeable bricks/blocks.

Permeable Bricks/Blocks Typical Routine Maintenance Activities and Schedule

refineable blicks/ blocks Typical Routine Maintenance Activities and Schedule					
Activity	Schedule				
 Keep the permeable bricks/blocks free of trash, debris, and sediment. Make sure that there is no standing water in the bricks/blocks between storms. Remove weeds and grass growing between the bricks/blocks (unless concrete grid pavers are being used). Mow grass within the bricks/blocks (only for concrete grid with grass) Mow / trim grass or vegetation near the bricks/blocks and remove clippings from area. Visually inspect the bricks/blocks after large storms to ensure the overflow drainage system is working. Inspect the bricks/blocks for damage and repair. Vacuum sweep permeable brick/block surface to keep free of sediment. After cleaning, additional aggregate may need to be added between the pavers. Replace aggregate between pavers as necessary. 	Monthly during warm weather				
 Keep the contributing drainage area and surface of the bricks/blocks clear of debris, trash, and sediment. Ensure that the areas surrounding the practice are stabilized and 	As needed, based on inspection				
mowed, remove grass clippings.					

Activity	Schedule
 If the pavers are installed in an area that is subject to high amounts of sediment, leaves, or low point (i.e. large trucks traveling on the bricks/blocks daily) additional cleaning may be necessary. Replace any joint material that has eroded or washed away. Observe the system during a rain event. Areas should be routinely inspected for settling and loss of water flow through the system. 	Semi-annually in Spring and Fall
 Organic deicers may be used to melt ice and snow. Snow plows may be used when necessary under the following conditions: The edges of the plows are beveled. The blade of the snow plow is raised 1-2 inches. The snow plow is equipped with snow shoes which allow the blade to glide across uneven surfaces. 	As needed in winter
 Inspect the surface for deterioration or breaking into fragments. Flush the underdrain system to check for clogging (if applicable). 	Annually
Remove the permeable bricks/blocks; include the top and base layers of the practice. Clean bricks/blocks and base aggregate, and replace as needed.	Upon failure

This page intentionally left blank.

Maintenance Item Good Marginal Poor N/A Comment General Inspection Access to the site is adequately maintained for inspection and maintenance. Area is clean (trash, debris, grass clippings, leaves, etc. removed). Area around the practice is mowed and grass clippings are removed. No signs of bare or dead grass. No evidence of gullies, rills, or erosion around the practice. Water is permeating the bricks/blocks (i.e. no evidence of water going around the practice). Bricks/blocks are structurally sound. No signs of cracks or splitting. Agregate between the bricks/blocks is reasonable. No evidence of long-term ponding or standing water in the practice. Grass in the concrete grid is healthy, no dead grass or bare spots. Grass in the concrete grid is mowed and grass clippings are removed. Structure seems to be working properly. No signs of the bricks/blocks. Vegetation within and around practice is maintained. Grass clippings are removed. No exposed soil near the bricks/blocks that could cause sediment accumulation within the practice. Cleanout caps are present and not missing (if applicable). Results Overall condition of Permeable	Perme	eable B	ricks/Bloc	:ks							
Maintenance Item Good Marginal Poor N/A Comment General Inspection Access to the site is adequately maintained for inspection and maintenance. Area is clean (trash, debris, grass clippings, leaves, etc. removed). Area around the practice is mowed and grass clippings are removed. No signs of bare or dead grass. No evidence of guilles, rills, or erosion around the practice. Water is permeating the bricks/blocks (i.e. no evidence of water going around the practice). Bricks/blocks are structurally sound. No signs of tracks or splitting. Aggregate between the bricks/blocks is reasonable. No evidence of long-term ponding or standing water in the practice. Grass in the concrete grid is healthy, no dead grass or bare spots. Grass in the concrete grid is mowed and grass or bare spots. Grass in the concrete sprid is mowed and grass or bare spots. Grass in the concrete sprid is mowed and grass or bare spots. Grass in the concrete sprid is mowed and grass or bare spots. Grass in the concrete sprid is mowed and grass or bare spots. Grass in the concrete sprid is mowed and grass or bare spots. Grass in the concrete sprid is mowed and grass or bare spots. Grass in the concrete grid is mowed and grass or bare spots. Grass in the concrete grid is mowed and grass or bare spots. Grass in the concrete grid is mowed and grass or bare spots. Grass in the concrete grid is mowed and grass or bare spots. Grass in the concrete grid is mowed and grass or bare spots. Grass in the concrete grid is mowed and grass or bare spots. Grass in the concrete grid is mowed and grass or bare spots. Grass in the concrete grid is healthy, no dead grass or bare spots. Grass in the concrete grid is healthy, no dead grass or bare spots. Grass in the concrete grid is healthy, no dead grass or bare spots. Grass in the concrete grid is healthy, no dead grass or bare spots. Grass in the concrete grid is healthy, no dead grass or bare spots. Grass in the concrete grid is healthy, no dead grass or bare spots. Grass in the concret											
Access to the site is adequately maintained for inspection and maintenance. Area is clean (trash, debris, grass clippings, leaves, etc. removed). Area around the practice is mowed and grass clippings are removed. No signs of bare or dead grass. No evidence of gullies, rills, or erosion around the practice. Water is permeating the bricks/blocks (i.e. no evidence of water going around the practice). Bricks/blocks are structurally sound. No signs of cracks or splitting. Aggregate between the bricks/blocks is reasonable. No evidence of long-term ponding or standing water in the practice. Grass in the concrete grid is healthy, no dead grass or bare spots. Grass in the concrete grid is mowed and grass clippings are removed. Structure seems to be working properly. No signs of the bricks/blocks settling. Comment on overall condition of bricks/blocks. Vegetation within and around practice is maintained. Grass clippings are removed. No exposed soil near the bricks/blocks that could cause sediment accumulation within the practice. Cleanout caps are present and not missing (if applicable). Results Overall condition of Permeable	Maintenance Item	Good			N/A*	Comment					
Access to the site is adequately maintained for inspection and maintenance. Area is clean (trash, debris, grass clippings, leaves, etc. removed). Area around the practice is mowed and grass clippings are removed. No signs of bare or dead grass. No evidence of gullies, rills, or erosion around the practice. Water is permeating the bricks/blocks (i.e. no evidence of water going around the practice). Bricks/blocks are structurally sound. No signs of cracks or splitting. Aggregate between the bricks/blocks is reasonable. No evidence of long-term ponding or standing water in the practice. Grass in the concrete grid is healthy, no dead grass or bare spots. Grass in the concrete grid is mowed and grass clippings are removed. Structure seems to be working properly. No signs of the bricks/blocks settling. Comment on overall condition of bricks/blocks. Vegetation within and around practice is maintained. Grass clippings are removed. No exposed soil near the bricks/blocks that could cause sediment accumulation within the practice. Cleanout caps are present and not missing (if applicable). Results Overall condition of Permeable											
for inspection and maintenance. Area is clean (trash, debris, grass clippings, leaves, etc. removed). Area around the practice is mowed and grass clippings are removed. No signs of bare or dead grass. No evidence of gullies, rills, or erosion around the practice. Water is permeating the bricks/blocks (i.e. no evidence of water going around the practice). Bricks/blocks are structurally sound. No signs of cracks or splitting. Aggregate between the bricks/blocks is reasonable. No evidence of long-term ponding or standing water in the practice. Grass in the concrete grid is healthy, no dead grass or bare spots. Grass in the concrete grid is mowed and grass clippings are removed. Structure seems to be working properly. No signs of the bricks/blocks settling. Comment on overall condition of bricks/blocks. Vegetation within and around practice is maintained. Grass clippings are removed. No exposed soil near the bricks/blocks. Vegetation within and around practice is maintained. Grass clippings are removed. No exposed soil near the bricks/blocks that could cause sediment accumulation within the practice. Cleanout caps are present and not missing (if applicable). The underdrain system has been flushed properly and there is no sign of clogging (if applicable). Results Overall condition of Permeable			İ								
leaves, etc. removed). Area around the practice is mowed and grass clippings are removed. No signs of bare or dead grass. No evidence of gullies, rills, or erosion around the practice. Water is permeating the bricks/blocks (i.e. no evidence of water going around the practice). Bricks/blocks are structurally sound. No signs of cracks or splitting. Aggregate between the bricks/blocks is reasonable. No evidence of long-term ponding or standing water in the practice. Grass in the concrete grid is healthy, no dead grass or bare spots. Grass in the concrete grid is mowed and grass clippings are removed. Structure seems to be working properly. No signs of the bricks/blocks settling. Comment on overall condition of bricks/blocks. Vegetation within and around practice is maintained. Grass clippings are removed. No exposed soil near the bricks/blocks that could cause sediment accumulation within the practice. Cleanout caps are present and not missing (if applicable). Results Overall condition of Permeable											
leaves, etc. removed). Area around the practice is mowed and grass clippings are removed. No signs of bare or dead grass. No evidence of gullies, rills, or erosion around the practice. Water is permeating the bricks/blocks (i.e. no evidence of water going around the practice). Bricks/blocks are structurally sound. No signs of cracks or splitting. Aggregate between the bricks/blocks is reasonable. No evidence of long-term ponding or standing water in the practice. Grass in the concrete grid is healthy, no dead grass or bare spots. Grass in the concrete grid is mowed and grass clippings are removed. Structure seems to be working properly. No signs of the bricks/blocks settling. Comment on overall condition of bricks/blocks. Vegetation within and around practice is maintained. Grass clippings are removed. No exposed soil near the bricks/blocks that could cause sediment accumulation within the practice. Cleanout caps are present and not missing (if applicable). Results Overall condition of Permeable	Area is clean (trash, debris, grass clippings,										
grass clippings are removed. No signs of bare or dead grass. No evidence of gullies, rills, or erosion around the practice. Water is permeating the bricks/blocks (i.e. no evidence of water going around the practice). Bricks/blocks are structurally sound. No signs of cracks or splitting. Aggregate between the bricks/blocks is reasonable. No evidence of long-term ponding or standing water in the practice. Grass in the concrete grid is healthy, no dead grass or bare spots. Grass in the concrete grid is mowed and grass clippings are removed. Structure seems to be working properly. No signs of the bricks/blocks settling. Comment on overall condition of bricks/blocks. Vegetation within and around practice is maintained. Grass clippings are removed. No exposed soil near the bricks/blocks that could cause sediment accumulation within the practice. Cleanout caps are present and not missing (if applicable). Results Overall condition of Permeable	leaves, etc. removed).										
or dead grass. No evidence of gullies, rills, or erosion around the practice. Water is permeating the bricks/blocks (i.e. no evidence of water going around the practice). Bricks/blocks are structurally sound. No signs of cracks or splitting. Aggregate between the bricks/blocks is reasonable. No evidence of long-term ponding or standing water in the practice. Grass in the concrete grid is healthy, no dead grass or bare spots. Grass in the concrete grid is mowed and grass clippings are removed. Structure seems to be working properly. No signs of the bricks/blocks settling. Comment on overall condition of bricks/blocks. Vegetation within and around practice is maintained. Grass clippings are removed. No exposed soil near the bricks/blocks that could cause sediment accumulation within the practice. Cleanout caps are present and not missing (if applicable). Results Overall condition of Permeable	Area around the practice is mowed and										
No evidence of gullies, rills, or erosion around the practice. Water is permeating the bricks/blocks (i.e. no evidence of water going around the practice). Bricks/blocks are structurally sound. No signs of cracks or splitting. Aggregate between the bricks/blocks is reasonable. No evidence of long-term ponding or standing water in the practice. Grass in the concrete grid is healthy, no dead grass or bare spots. Grass in the concrete grid is mowed and grass clippings are removed. Structure seems to be working properly. No signs of the bricks/blocks settling. Comment on overall condition of bricks/blocks. Vegetation within and around practice is maintained. Grass clippings are removed. No exposed soil near the bricks/blocks that could cause sediment accumulation within the practice. Cleanout caps are present and not missing (if applicable). The underdrain system has been flushed properly and there is no sign of clogging (if applicable). Results Overall condition of Permeable	grass clippings are removed. No signs of bare										
around the practice. Water is permeating the bricks/blocks (i.e. no evidence of water going around the practice). Bricks/blocks are structurally sound. No signs of cracks or splitting. Aggregate between the bricks/blocks is reasonable. No evidence of long-term ponding or standing water in the practice. Grass in the concrete grid is healthy, no dead grass or bare spots. Grass in the concrete grid is mowed and grass clippings are removed. Structure seems to be working properly. No signs of the bricks/blocks settling. Comment on overall condition of bricks/blocks. Vegetation within and around practice is maintained. Grass clippings are removed. No exposed soil near the bricks/blocks that could cause sediment accumulation within the practice. Cleanout caps are present and not missing (if applicable). The underdrain system has been flushed properly and there is no sign of clogging (if applicable). Results Overall condition of Permeable	or dead grass.										
Water is permeating the bricks/blocks (i.e. no evidence of water going around the practice). Bricks/blocks are structurally sound. No signs of cracks or splitting. Aggregate between the bricks/blocks is reasonable. No evidence of long-term ponding or standing water in the practice. Grass in the concrete grid is healthy, no dead grass or bare spots. Grass in the concrete grid is mowed and grass clippings are removed. Structure seems to be working properly. No signs of the bricks/blocks settling. Comment on overall condition of bricks/blocks. Vegetation within and around practice is maintained. Grass clippings are removed. No exposed soil near the bricks/blocks that could cause sediment accumulation within the practice. Cleanout caps are present and not missing (if applicable). The underdrain system has been flushed properly and there is no sign of clogging (if applicable). Results Overall condition of Permeable	_										
no evidence of water going around the practice). Bricks/blocks are structurally sound. No signs of cracks or splitting. Aggregate between the bricks/blocks is reasonable. No evidence of long-term ponding or standing water in the practice. Grass in the concrete grid is healthy, no dead grass or bare spots. Grass in the concrete grid is mowed and grass clippings are removed. Structure seems to be working properly. No signs of the bricks/blocks settling. Comment on overall condition of bricks/blocks. Vegetation within and around practice is maintained. Grass clippings are removed. No exposed soil near the bricks/blocks that could cause sediment accumulation within the practice. Cleanout caps are present and not missing (if applicable). The underdrain system has been flushed properly and there is no sign of clogging (if applicable). Results Overall condition of Permeable	around the practice.										
practice). Bricks/blocks are structurally sound. No signs of cracks or splitting. Aggregate between the bricks/blocks is reasonable. No evidence of long-term ponding or standing water in the practice. Grass in the concrete grid is healthy, no dead grass or bare spots. Grass in the concrete grid is mowed and grass clippings are removed. Structure seems to be working properly. No signs of the bricks/blocks settling. Comment on overall condition of bricks/blocks. Vegetation within and around practice is maintained. Grass clippings are removed. No exposed soil near the bricks/blocks that could cause sediment accumulation within the practice. Cleanout caps are present and not missing (if applicable). Results Overall condition of Permeable	Water is permeating the bricks/blocks (i.e.										
Bricks/blocks are structurally sound. No signs of cracks or splitting. Aggregate between the bricks/blocks is reasonable. No evidence of long-term ponding or standing water in the practice. Grass in the concrete grid is healthy, no dead grass or bare spots. Grass in the concrete grid is mowed and grass clippings are removed. Structure seems to be working properly. No signs of the bricks/blocks settling. Comment on overall condition of bricks/blocks. Vegetation within and around practice is maintained. Grass clippings are removed. No exposed soil near the bricks/blocks that could cause sediment accumulation within the practice. Cleanout caps are present and not missing (if applicable). The underdrain system has been flushed properly and there is no sign of clogging (if applicable). Results Overall condition of Permeable	no evidence of water going around the										
signs of cracks or splitting. Aggregate between the bricks/blocks is reasonable. No evidence of long-term ponding or standing water in the practice. Grass in the concrete grid is healthy, no dead grass or bare spots. Grass in the concrete grid is mowed and grass clippings are removed. Structure seems to be working properly. No signs of the bricks/blocks settling. Comment on overall condition of bricks/blocks. Vegetation within and around practice is maintained. Grass clippings are removed. No exposed soil near the bricks/blocks that could cause sediment accumulation within the practice. Cleanout caps are present and not missing (if applicable). The underdrain system has been flushed properly and there is no sign of clogging (if applicable). Results Overall condition of Permeable											
Aggregate between the bricks/blocks is reasonable. No evidence of long-term ponding or standing water in the practice. Grass in the concrete grid is healthy, no dead grass or bare spots. Grass in the concrete grid is mowed and grass clippings are removed. Structure seems to be working properly. No signs of the bricks/blocks settling. Comment on overall condition of bricks/blocks. Vegetation within and around practice is maintained. Grass clippings are removed. No exposed soil near the bricks/blocks that could cause sediment accumulation within the practice. Cleanout caps are present and not missing (if applicable). The underdrain system has been flushed properly and there is no sign of clogging (if applicable). Results Overall condition of Permeable	•										
reasonable. No evidence of long-term ponding or standing water in the practice. Grass in the concrete grid is healthy, no dead grass or bare spots. Grass in the concrete grid is mowed and grass clippings are removed. Structure seems to be working properly. No signs of the bricks/blocks settling. Comment on overall condition of bricks/blocks. Vegetation within and around practice is maintained. Grass clippings are removed. No exposed soil near the bricks/blocks that could cause sediment accumulation within the practice. Cleanout caps are present and not missing (if applicable). The underdrain system has been flushed properly and there is no sign of clogging (if applicable). Results Overall condition of Permeable											
No evidence of long-term ponding or standing water in the practice. Grass in the concrete grid is healthy, no dead grass or bare spots. Grass in the concrete grid is mowed and grass clippings are removed. Structure seems to be working properly. No signs of the bricks/blocks settling. Comment on overall condition of bricks/blocks. Vegetation within and around practice is maintained. Grass clippings are removed. No exposed soil near the bricks/blocks that could cause sediment accumulation within the practice. Cleanout caps are present and not missing (if applicable). The underdrain system has been flushed properly and there is no sign of clogging (if applicable). Results Overall condition of Permeable											
standing water in the practice. Grass in the concrete grid is healthy, no dead grass or bare spots. Grass in the concrete grid is mowed and grass clippings are removed. Structure seems to be working properly. No signs of the bricks/blocks settling. Comment on overall condition of bricks/blocks. Vegetation within and around practice is maintained. Grass clippings are removed. No exposed soil near the bricks/blocks that could cause sediment accumulation within the practice. Cleanout caps are present and not missing (if applicable). The underdrain system has been flushed properly and there is no sign of clogging (if applicable). Results Overall condition of Permeable											
Grass in the concrete grid is healthy, no dead grass or bare spots. Grass in the concrete grid is mowed and grass clippings are removed. Structure seems to be working properly. No signs of the bricks/blocks settling. Comment on overall condition of bricks/blocks. Vegetation within and around practice is maintained. Grass clippings are removed. No exposed soil near the bricks/blocks that could cause sediment accumulation within the practice. Cleanout caps are present and not missing (if applicable). The underdrain system has been flushed properly and there is no sign of clogging (if applicable). Results Overall condition of Permeable											
grass or bare spots. Grass in the concrete grid is mowed and grass clippings are removed. Structure seems to be working properly. No signs of the bricks/blocks settling. Comment on overall condition of bricks/blocks. Vegetation within and around practice is maintained. Grass clippings are removed. No exposed soil near the bricks/blocks that could cause sediment accumulation within the practice. Cleanout caps are present and not missing (if applicable). The underdrain system has been flushed properly and there is no sign of clogging (if applicable). Results Overall condition of Permeable											
Grass in the concrete grid is mowed and grass clippings are removed. Structure seems to be working properly. No signs of the bricks/blocks settling. Comment on overall condition of bricks/blocks. Vegetation within and around practice is maintained. Grass clippings are removed. No exposed soil near the bricks/blocks that could cause sediment accumulation within the practice. Cleanout caps are present and not missing (if applicable). The underdrain system has been flushed properly and there is no sign of clogging (if applicable). Results Overall condition of Permeable											
grass clippings are removed. Structure seems to be working properly. No signs of the bricks/blocks settling. Comment on overall condition of bricks/blocks. Vegetation within and around practice is maintained. Grass clippings are removed. No exposed soil near the bricks/blocks that could cause sediment accumulation within the practice. Cleanout caps are present and not missing (if applicable). The underdrain system has been flushed properly and there is no sign of clogging (if applicable). Results Overall condition of Permeable											
Structure seems to be working properly. No signs of the bricks/blocks settling. Comment on overall condition of bricks/blocks. Vegetation within and around practice is maintained. Grass clippings are removed. No exposed soil near the bricks/blocks that could cause sediment accumulation within the practice. Cleanout caps are present and not missing (if applicable). The underdrain system has been flushed properly and there is no sign of clogging (if applicable). Results Overall condition of Permeable	_										
signs of the bricks/blocks settling. Comment on overall condition of bricks/blocks. Vegetation within and around practice is maintained. Grass clippings are removed. No exposed soil near the bricks/blocks that could cause sediment accumulation within the practice. Cleanout caps are present and not missing (if applicable). The underdrain system has been flushed properly and there is no sign of clogging (if applicable). Results Overall condition of Permeable											
Vegetation within and around practice is maintained. Grass clippings are removed. No exposed soil near the bricks/blocks that could cause sediment accumulation within the practice. Cleanout caps are present and not missing (if applicable). The underdrain system has been flushed properly and there is no sign of clogging (if applicable). Results Overall condition of Permeable											
maintained. Grass clippings are removed. No exposed soil near the bricks/blocks that could cause sediment accumulation within the practice. Cleanout caps are present and not missing (if applicable). The underdrain system has been flushed properly and there is no sign of clogging (if applicable). Results Overall condition of Permeable	on overall condition of bricks/blocks.										
No exposed soil near the bricks/blocks that could cause sediment accumulation within the practice. Cleanout caps are present and not missing (if applicable). The underdrain system has been flushed properly and there is no sign of clogging (if applicable). Results Overall condition of Permeable	Vegetation within and around practice is										
could cause sediment accumulation within the practice. Cleanout caps are present and not missing (if applicable). The underdrain system has been flushed properly and there is no sign of clogging (if applicable). Results Overall condition of Permeable	maintained. Grass clippings are removed.										
the practice. Cleanout caps are present and not missing (if applicable). The underdrain system has been flushed properly and there is no sign of clogging (if applicable). Results Overall condition of Permeable	No exposed soil near the bricks/blocks that										
Cleanout caps are present and not missing (if applicable). The underdrain system has been flushed properly and there is no sign of clogging (if applicable). Results Overall condition of Permeable											
applicable). The underdrain system has been flushed properly and there is no sign of clogging (if applicable). Results Overall condition of Permeable											
The underdrain system has been flushed properly and there is no sign of clogging (if applicable). Results Overall condition of Permeable											
properly and there is no sign of clogging (if applicable). Results Overall condition of Permeable											
Applicable). Results Overall condition of Permeable	•										
Overall condition of Permeable											
Overall condition of Permeable											
	Overall condition of Permeable	Nest									
	Bricks/Blocks:										

Permeable Bricks/Blocks								
Maintenance Item	Condition							
	Good	Marginal	Poor	N/A [*]	Comment			
Additional Comments								
•								
Notes : * If a specific maintenance item was no	t checked	, please che	ck N/A ar	nd explain v	vhy in the			
appropriate comment box.								