

SUBSURFACE EXPLORATION AND GEOTECHNICAL ENGINEERING EVALUTION

DeKalb County Fire Station No. 7 Decatur, DeKalb County, Georgia November 23, 2016

Submitted to: DeKalb County Facilities Management Department DeKalb County, Georgia

> Submitted by: Willmer Engineering Inc. Project No. 71.4175

November 23, 2016

VIA EMAIL

Dulce M. Guzman Senior Project Manager Architectural & Engineering Services DeKalb County Facilities Management Department Clark W. Harrison Building 330 W. Ponce de Leon Avenue, 4th Floor Decatur, Georgia 30030

SUBJECT: Subsurface Exploration and Geotechnical Engineering Evaluation Fire Station No. 7 Decatur, DeKalb County, Georgia Willmer Project No. 71.4175

Dear Ms. Guzman:

Willmer Engineering Inc. (Willmer) is pleased to provide this report of subsurface exploration and geotechnical engineering evaluation for the proposed Fire Station No. 7 project located east of the intersection of Columbia Drive and Peachcrest Road in Decatur, DeKalb County, Georgia. This work was performed for DeKalb County under our Master Services Agreement in general accordance with our proposal dated October 6, 2016. The results of our evaluation and our recommendations are summarized in this report.

This engineering report is divided into five sections. Section 1 contains the project background information and a summary of the objectives and scope of our work. Summaries of the field exploration and laboratory testing programs are provided in Sections 2 and 3, respectively. Section 4 presents regional geologic conditions and subsurface conditions at the site, and the results of our geotechnical engineering evaluations and our recommendations are presented in Section 5.

We greatly appreciate the opportunity to be of service to you on this project. Please contact us if you have any questions concerning this report or require further assistance.

Sincerely,

WILLMER ENGINEERING INC.

Joseph Sura, PE Project Geotechnical Engineer Sujit K. Bhowmik, PhD, PE Chief Engineer

James L. Willmer, PE Executive Vice President/Principal Consultant

JMS/SKB/JLW:jms P:\4175 DeKalb County Fire Station No. 7\Reports\01 - 4175 DeKalb County Fire Station.docx

Geotechnical Engineering	Environmental Engineering	Construction Services
3772 Pleasantdale Road, Su Atlanta, GA 30340	ite 165	P: 770.939.0089 F: 770.939.4299
	www.willmerengineering.com	

TABLE OF CONTENTS

<u>PAGE</u>

Execu	utive S	ummary1
1.0	Intro	duction
	1.1 1.2	Project Description and Site Location 2 Objectives and Scope of Present Work 2
2.0	Field	Exploration Program
	2.1 2.2 2.3 2.4	General.3Standard Penetration Test Borings.3Soil Sampling3Groundwater Level Measurement.4
3.0	Labo	ratory Testing
	3.1 3.2 3.3	General5Standard Proctor Compaction and CBR Tests5Consolidation Test5
4.0	Area	Geology and Subsurface Conditions
	4.1 4.2	Area Geology.6Subsurface Conditions74.2.1Topsoil74.2.2Residuum74.2.3Partially Weathered Rock74.2.4Auger Refusal Material.74.2.5Groundwater Table.8
5.0	Geot	echnical Engineering Evaluations and Recommendations9
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8	General9Site and Subgrade Preparation9Excavation Methods10Drainage and Groundwater Management11Foundation Recommendations11Seismic Site Classification11Pavement Design12Geotechnical Engineering Oversight during Construction13

TABLE OF CONTENTS (cont'd)

Tables

Table 1	Summary of Subsurface Conditions
Table 2	Summary of Standard Proctor and CBR Test Results

Figures

Figure 1	Project Location Map
Figure 2	Boring Location Plan
Figure 3	Subsurface Profile A–A'
Figure 4	Subsurface Profile B–B'
Figure 5	Subsurface Profile C–C'
Figure 6	Design Spectrum Response Curve

Appendices

Appendix I	Boring Records Legend
	Unified Soil Classification System Reference Sheet
	Individual Soil Boring Logs
Appendix II	Representative Site Photos
Appendix III	Laboratory Test Results

Executive Summary

The following summary highlights significant aspects of the project and our conclusions and recommendations. The reader is referred to the report text for detailed descriptions of our geotechnical investigation, analyses, and recommendations.

- The purpose of this project is to build a new Fire Station and associated parking lot areas and driveways in an existing wooded area located east of the intersection of Columbia Drive and Peachcrest Road in Decatur, DeKalb County, Georgia.
- The geotechnical exploration for this project consisted of 10 Standard Penetration Test (SPT) borings, soil sampling, and laboratory tests.
- The subsurface profile at the site generally consists of residuum underlain by partially weathered rock (PWR) and parent bedrock. Auger refusal was encountered at two locations at depths of 11.5 and 40 feet below the existing ground surface. Groundwater was not encountered within the exploration depths of the boreholes during drilling.
- The fire station building can be supported by a system of shallow foundations consisting of spread and strip footings, bearing on existing residuum. An allowable bearing pressure of 3,000 psf is recommended for design.
- In accordance with the procedures and site class definitions described in IBC 2012, the seismic site class for proposed office building is Site Class D, defined as "Stiff Soil".
- We recommend that a CBR of 4 and subgrade reaction modulus value of 190 pci be used for design of pavement.
- We recommend that Willmer Engineering Inc. be retained to provide geotechnical engineering oversight, construction materials testing, and special inspections for the County during construction of the facilities to confirm that the subsurface conditions encountered during construction are consistent with our interpretation based on the results of our geotechnical investigation and that the recommendations provided herein are properly interpreted and implemented.

1.0 Introduction

1.1 Project Description and Site Location

DeKalb County plans to build a new fire station on an undeveloped property east of the intersection of Columbia Drive and Peachcrest Road in Decatur, Georgia. Based on discussions with DeKalb County, the development will include a typical fire station building and associated parking lot areas and driveways; however, a specific building plan has not yet been established. A map showing the location of the site is presented in Figure 1.

1.2 Objectives and Scope of Present Work

The primary objectives of the study reported herein were to obtain geotechnical information and provide recommendations for evaluation of foundation types, assessment of shallow foundations, and pavement subgrade for parking areas and driveways. To achieve these objectives, Willmer performed the following major tasks:

- Review of available topographic maps, aerial photographs, and geologic literature pertaining to the subject site.
- Planning and performance of a field exploration program consisting of: (i) visual inspection of the site to document existing topography and land use, above-ground utilities, accessibility for drilling equipment, and other features relevant to the field exploration work, (ii) coordination with Georgia Utilities Protection Center and a private utility locator for subsurface utility clearance at boring locations, (iii) site clearing for drilling access, (iv) drilling 10 Standard Penetration Test (SPT) borings within the construction limits of the project, (v) undisturbed and bulk sampling from selected soil layers for use in laboratory testing, and (vi) groundwater level measurements at the boring locations.
- Performance of a laboratory testing program consisting of classification and engineering property tests on representative soil samples.
- Compilation and evaluation of the collected field and laboratory test data and selection of engineering properties for use in geotechnical analyses.
- Performance of geotechnical analyses including determination of pavement and foundation design parameters with allowable bearing pressures.
- Preparation of this report summarizing all relevant field and laboratory test data, the results of our analyses and evaluation, and our recommendations for design.

2.0 Field Exploration Program

2.1 General

A field exploration program was conducted by Willmer to determine the type, strength, and deformation characteristics of *in situ* soils and to assess the groundwater conditions at the site of the proposed development. The field exploration consisted of SPT borings, bulk soil sampling, undisturbed soil sampling, and groundwater table measurements.

The boring locations and termination depths were selected by Willmer based on a template of typical fire station design provided by DeKalb County. A path to the borings was cleared using a D650 bulldozer. The borings were located in the field by Willmer using a handheld GPS device with an accuracy of +/- 10 feet. Existing ground elevations were estimated from Google Earth and should be considered approximate. Subsurface utility clearance at the boring locations was provided by the subscribers of Georgia Utilities Protection Center and a private utility locator. Upon completion of drilling and groundwater depth measurements, the boreholes were backfilled using soil cuttings from the drilling operation.

2.2 Standard Penetration Test Borings

The field exploration program consisted of drilling 10 SPT borings (S-1 through S-5 and D-1 through D-5) to depths below ground surface ranging from 10 feet to 40 feet. The locations of the SPT borings are shown in Figure 2.

The borings were drilled using an ATV-mounted rotary drill rig to advance continuous hollow-stem augers. All work was performed under the observation of our geotechnical engineer. The SPT borings were performed in general accordance with ASTM Standard D 1586. The Standard Penetration Test is a widely accepted method for *in situ* testing of soils. A 2-foot long, 2-inch outside-diameter split-barrel sampler attached to the end of a string of drilling rods is driven 18 inches into the ground by successive blows of a 140-pound hammer freely dropping 30 inches. The number of blows needed for each 6 inches of penetration is recorded. The blows required for the first 6 inches of penetration are allowed for seating the sampler into any loose cuttings, and the sum of the blows required for penetration of the second and third 6-inch increments constitutes the penetration resistance or N-value. After the test, the sampler is extracted from the ground and opened to allow visual examination and classification of the retained soil sample. The N-value has been empirically correlated with various soil properties including consistency, relative density, strength, compressibility, and potential for difficult excavation. Correlations between the N-value and the relative density of cohesionless soils (sands) and consistency of cohesive soils (clays/silts) are included in Appendix II.

Results of the SPT borings are summarized in Table 1, and presented in the form of individual boring logs in Appendix I along with a list of the legends used in the boring logs, and a reference sheet describing the Unified Soil Classification System.

2.3 Soil Sampling

Soil samples (split-spoon, bulk, and undisturbed samples) obtained during the field exploration program were classified by our geotechnical engineer. The split-spoon samples were obtained from all borings

and collected in plastic bags. Bulk samples were collected in plastic bags from boring S-2 and a location approximately 10 feet north of boring S-4 from depths ranging from 0 to 10 feet. Two undisturbed Shelby tube samples were recovered from borings D-4 and S-2 for possible use in laboratory consolidation testing. Locations of the undisturbed samples are shown on the individual boring logs in Appendix I. The samples were returned to our laboratory for further classification and characterization. Soil classification was performed in general accordance with ASTM D 2487 / D 2488 classification system.

2.4 Groundwater Level Measurement

Groundwater was not encountered in any of the boreholes during drilling. However, it should be noted that groundwater levels fluctuate due to climactic and seasonal variations, and may be encountered during construction. Groundwater fluctuations as much as 15 feet have been observed in the Atlanta area.

3.0 Laboratory Testing

3.1 General

A laboratory testing program was conducted to determine the engineering properties of soils for use in our analyses and recommendations for the proposed facilities. The laboratory testing program consisted of: (i) a consolidation test on a selected undisturbed soil sample, and (ii) Standard Proctor compaction, natural moisture content, and California Bearing Ratio (CBR) tests on remolded bulk soil samples, and (iii) United Soil Classifications Tests including sieve tests and Atterberg Limits tests on two selected soil samples. All laboratory tests were performed in general accordance with appropriate ASTM standards.

3.2 Standard Proctor Compaction and CBR Tests

The bulk samples obtained from ten feet north of S-4 and boring S-2 (referred to as bulk samples 1 and 2, respectively) were used to perform Standard Proctor compaction tests to determine the compaction characteristics of these soils. Results of these tests are summarized in Table 2. The Standard Proctor maximum dry density values were 98.7 and 110.3 pcf, for bulk samples 1 and 2, respectively. The optimum moisture contents were 17.1% and 15.6%, for bulk samples 1 and 2, respectively. The natural moisture content values of the bulk samples were 6.5% and 7.4%, about 10.6% and 8.2% drier than the optimum values for bulk samples 1 and 2, respectively.

CBR tests were performed on the samples selected for compaction testing to determine the subgradesupport characteristics of these soils. The CBR tests were performed on specimens molded to about 95 percent of the Standard Proctor maximum dry density at a moisture content approximately equal to the optimum moisture content. The resulting CBR values are summarized in Table 2. As shown in Table 2, the CBR values were reported to be 4.3 and 13.2, for bulk samples 1 and 2, respectively. It is noted that the CBR value of 13.2 reported for bulk sample 2 was probably exaggerated due to the presence of rock fragments within the residuum soil.

3.3 Consolidation Test

One consolidation test was performed on an undisturbed soil sample obtained from boring D-4 at a depth of 20 to 22 feet to evaluate the consolidation characteristics of the existing residuum soil. The laboratory data is presented in the form of void ratio and percent strain, and coefficient of consolidation versus effective vertical stress plots in Appendix III. The compression index of the tested soil sample was 0.4; the recompression index was 0.03; and the pre-consolidation pressure was approximately 2.5 kips per square foot (ksf). The coefficient of consolidation for the applicable stress range is about 1.6 ft²/day.

4.0 Area Geology and Subsurface Conditions

4.1 Area Geology

Based on the USGS Database for the 'Geologic Units of Georgia', the project site is underlain by Biotitic Gneiss / Mica Schist/ Amphibolite formation, located within the Southern Piedmont Physiographic Province of Georgia.

The Piedmont is composed of metamorphic rocks with localized igneous intrusions. The residual overburden soils encountered in the Piedmont are the product of in-situ chemical and physical weathering of the underlying parent rock. Typically, weathering is most advanced near the surface and decreases with depth. Below the residual soils, partially weathered rock is usually encountered as a transition zone to the underlying bedrock. Partially weathered rock (PWR) is locally defined as a material with a Standard Penetration Resistance in excess of 50 blows per 6 inches of penetration.

An important aspect of the Piedmont subsurface profile is that highly variable conditions may exist over relatively short horizontal distances. This is caused by variation in mineral composition of the parent rock and the intensity of fractures and joints within the rock. Zones of partially weathered rock may be encountered within residual soils, and lenses of soil may occur in the rock mass. The subsurface profile may be altered by excavating or filling, or by effects of water through the process of erosion or alluvial deposition. Typical schematic profiles of Piedmont metamorphic rocks and intrusive igneous rocks are depicted in the figure below.

4.2 Subsurface Conditions

Results of the SPT borings are presented in the form of individual boring logs in Appendix I, a summary of the boring records is presented in Table 1, and subsurface profiles obtained from the boring logs are presented in Figure 3, 4, and 5. The stratification lines shown on the boring logs represent our interpretation of the field logs and laboratory test results, in accordance with generally accepted geotechnical engineering practice. The stratification lines represent approximate boundaries between soil types; actual transitions between soil types are expected to be gradual. Although individual test borings are representative of the subsurface conditions at the precise boring locations on the dates shown, they are not necessarily indicative of the subsurface conditions at other locations or at other times. Also, in the absence of foreign substances, it is difficult to distinguish between virgin (undisturbed) residual soils and clean soil fill. However, based on historical USGS topographic maps dating back to 1954, the property appears to be undeveloped. Based on visual classification and historical records, the soil has been characterized to be virgin residual soils.

The subsurface profile at the site can be generally characterized as a natural soil profile consisting of residual soils underlain by partially weathered rock (PWR) then parent bedrock. A generalized discussion of the soil types encountered at the site is presented in the following paragraphs. For the purpose of this discussion, partially weathered rock (PWR) is characterized for engineering purposes as residual soils exhibiting N-values in excess of 50 blows for 6 inches of penetration. Auger refusal is considered indicative of the top of parent bedrock.

4.2.1 Topsoil

Topsoils were encountered at borings D-2, D-3, D-5, S-2, S-3, and S-4 and consisted of brown and black sandy silts with organics. The maximum thickness of topsoil was approximately 1 foot in boring S-3.

4.2.2 Residuum

Residual soils were encountered at all borings and consisted of stiff to very hard sandy silts, medium dense to very dense silty sands, and stiff to very hard sandy fat clay. The maximum thickness of residual soils encountered in the borings was 33.5 feet in boring D-4. The relative density of residual soils varied with SPT N-values ranging from 11 to 66 blows per foot.

4.2.3 Partially Weathered Rock

Partially weathered rock (PWR) was encountered in borings D-1, D-2 and D-4 at depths of 11.5 feet, 29 feet and 33.5 feet, respectively. Lenses of PWR were encountered in borings D-4, S-1, S-2, and S-4, however these blow counts may be exaggerated by rock fragments.

4.2.4 Auger Refusal Material

Two borings were extended to auger refusal. Auger refusal is generally indicative of the top of bedrock. The depth to auger refusal was 40 feet in boring D-4, corresponding to an elevation of approximately 963 feet. Auger refusal was also encountered in boring D-1 at a depth of 11.5 feet, corresponding to an elevation of approximately 989.5 feet.

4.2.5 Groundwater Table

Groundwater was not encountered in any of the boreholes during drilling. However, it should be noted that groundwater levels fluctuate due to climactic and seasonal variations, and may be encountered during construction. Groundwater fluctuations as much as 15 feet have been observed in the Atlanta area.

5.0 Geotechnical Engineering Evaluations and Recommendations

5.1 General

The geotechnical engineering evaluations and recommendations presented herein are based on the soil boring and laboratory test data gathered during this investigation, our understanding of the proposed design and construction, and our experience with similar site and subsurface conditions. These recommendations were prepared in accordance with generally accepted geotechnical engineering practice for the exclusive use of DeKalb County and their designated consultants for use in the design of the proposed Fire Station No. 7. No other warranty, expressed or implied, is made.

We request that we be advised of any significant changes in the proposed development from that described in this report so that we may amend our recommendations accordingly. In addition, we request the opportunity to review the portions of the project specifications that relate to geotechnical engineering to ensure that our recommendations are properly incorporated.

5.2 Site and Subgrade Preparation

Site and subgrade preparation should begin with the removal of any trees, surface vegetation, organicladen soil, topsoil, and any other deleterious materials within the proposed construction area. Following the site preparation and excavation to grade for foundations and pavements, the newly exposed subgrade should be evaluated by the project geotechnical engineer. During this evaluation, we recommend that all areas at subgrade level and areas that are to receive structural fill be proof-rolled using a fully loaded tandem axle dump truck (20-ton minimum) or similar rubber-tired vehicle. If soils exhibit excessive deflections or pumping when proof-rolled, an appropriate remedial measure would be recommended by the project geotechnical engineer at that time. Typically, any areas which pump or rut excessively and cannot be densified by continued rolling should be undercut to more stable soils, replaced with new compacted fill, or stabilized using geotextiles or admixtures, if feasible.

If localized undercutting and backfilling becomes necessary during construction, structural fill must be used for backfilling. The structural fill should be free of significant organic matter or debris, have a low to moderate plasticity, uniform composition, and be free of rock fragments greater than three inches in diameter. Soils selected for use as structural fill material should also have a Plasticity Index (PI) less than 30 percent and a Standard Proctor (ASTM D 698) maximum dry density of at least 95 pounds per cubic foot (pcf). Based on the results of our field exploration, it appears that existing residual soils consisting of silty sands and sandy silts are suitable for use as structural fill.

Structural fill, if needed, must be brought to the proposed subgrade elevation by placing and compacting approved fill materials upon a subgrade approved by the geotechnical engineer. Compaction of engineered fill must be accomplished by placing the fill material in vertical lifts of eight inches maximum loose thickness and compacting each lift with a vibratory compactor to a dry density that corresponds to at least 95 percent of the Standard Proctor (ASTM D 698) maximum dry density of the fill soil. The upper 12 inches of structural fill beneath slabs, building footings, pavement and retaining wall foundations should be compacted to 98 percent of this maximum dry density.

In confined areas, such as utility trenches where large compaction equipment cannot be used, portable compaction equipment and the use of a thinner lift (i.e., 4 inches of loose thickness) may be necessary to achieve the specified level of compaction. In addition to the requirement for dry density, the engineered fill must be placed at a moisture content ± 3 percent of the optimum moisture content, as determined by the Standard Proctor compaction test.

Care must be exercised during grading and fill placement operations. The combination of heavy construction equipment traffic and excess surface moisture can cause pumping and deterioration of the near-surface silty soils. Once wet, these soils hold moisture and are difficult to dry. The severity of this potential problem depends to a great extent on the weather conditions prevailing during construction. The contractor must exercise discretion when selecting equipment sizes and make a concerted effort to control surface water while the subgrade soils are exposed. If such problems do arise, the operations in the affected area must be halted and the geotechnical engineer contacted to evaluate the condition.

5.3 Excavation Methods

No proposed grading plan was available at the time of preparation of this report, however, it is possible that cut and fill may be required for construction. Based on the boring data, site grading in cut areas will mostly require excavation of sandy silt, silty sand, and fat clay. These soils can be excavated with conventional earth-moving equipment.

PWR was encountered in the borings at both shallow (e.g., 4 feet in D-4) and deep (e.g., 29 feet in D-2) depths. If PWR needs to be removed to reach the design grades, PWR and fractured/weathered rock would likely be rippable with equipment such as a D-8 dozer with single ripper claw attachment, or a CAT 330 or equivalent trackhoe. Material that cannot be removed with such equipment may have to be removed with a hydraulic jack hammer attached to a trackhoe.

Auger refusal material (indicative of top of bedrock) was encountered at boring D-4 at a depth of 40 feet below the existing ground surface and at boring D-1 at a depth of 11.5 feet below the existing ground surface. We do not anticipate foundation installation or building construction requiring excavation to auger refusal depth or below. The following definitions can be used to clarify material classification, excavation techniques and required equipment capabilities:

- 1) Rip Rock: Any material that cannot be moved by scrapers, loaders, pans, or graders and that requires the use of a single-tooth ripper mounted on a crawler tractor having a minimum draw bar pull rated at not less than 56,000 pounds.
- 2) Blast Rock (General Excavation): Any material which cannot be excavated with a single-tooth ripper mounted on a crawler tractor having a minimum draw bar pull rated at not less than 56,000 pounds (Caterpillar D-8K or equivalent) or by a Caterpillar 977 front-end loader or equivalent, and occupying an original volume of at least one cubic yard.
- 3) Blast Rock (Trench Excavation): Any material which cannot be excavated with a backhoe having a bucket curling force rated at not less than 25,700 pounds (Caterpillar Model 225 or equivalent), and occupying an original volume of at least one half cubic yard.

In evaluating site grading and excavation requirements, it must be noted that subsurface conditions, particularly the location and elevation of rock, whether in boulders or massive form, can vary erratically in the Piedmont Physiographic Province in which this site is located. Therefore, there is always a possibility that rock may be encountered at shallower depths in unexplored areas. If large boulders or massive rocks are encountered during the grading operations, blasting may be necessary to facilitate removal.

5.4 Drainage and Groundwater Management

The proposed construction areas must be provided with adequate drainage measures to maintain the integrity of the silty subgrade soils, especially during wet-weather conditions. When free water is allowed to stand on a stable subgrade, the soils can absorb water, soften, swell and experience a reduction in their support capability. Without adequate drainage provisions, site preparation activities during wet-weather periods may result in subgrade conditions that will necessitate undercutting or other subgrade stabilization measures. Therefore, we recommend that the site be graded to provide positive drainage away from the proposed pavement and foundation subgrade areas, and toward suitable drainage handling areas.

Proper drainage of the finished pavements and ground surfaces is also important to maintain the integrity of the subgrade soils after construction is completed. When free water is allowed to infiltrate into a stable subgrade, the soils will absorb water, swell, and experience a reduction in their support capability. Therefore, all finished grades must be sloped to prevent any ponding of surface water adjacent to structures and pavements.

It should be noted that groundwater elevations fluctuate with seasonal and climatic variations and may be different at different times. Groundwater was not encountered in the borings which extended from 10 to 40 feet; however, groundwater level variations as much as 15 feet have been observed in DeKalb County. While no serious dewatering problems are anticipated, some seepage into excavations may be experienced during foundation construction, depending on the seasonal conditions. It is anticipated that this seepage can be handled by pumping from sumps. Groundwater should be maintained at least 2 feet below the bearing level of all footings until concrete is placed.

5.5 Foundation Recommendations

Based on information provided to us by DeKalb County, the structure will be a one or two floor fire station. No design loads were available at this time, however, based on the Standard Penetration resistances, a bearing pressure of 3,000 psf is recommended for footing design for footings bearing on properly compacted fill or residual soil.

5.6 Seismic Site Classification

The seismic site class for the proposed structures was determined in accordance with the procedures outlined in Section 1613 of the 2012 International Building Code (IBC). According to the IBC, fire stations are designated as "essential facilities" and are classified in Risk Category IV. The seismic site class is based on soil/rock properties within the top 100 feet below the proposed final grade at the site. The soil/rock properties that can be used in this classification are SPT N-value, shear wave velocity, and/or

undrained shear strength. For this project, the method based on SPT N-value was used in the seismic site classification.

The weighted average N-value within the top 100 feet of the subsurface profile was calculated in accordance with the procedures outlined in Section 20 of ASCE 7-10. Rock was encountered within the top 100 feet at boring D-4 (at 40 feet) and in accordance with ASCE 7-10 guidelines, materials below this depth were assigned an SPT N-value of 100 blows/foot.

In accordance with the site class definitions outlined in Table 20.3-1 of ASCE 7-10, the proposed site was classified as Site Class 'D', defined as "Stiff Soil", based on boring D-4.

As outlined in Section 1613.3 of IBC, the design spectral response acceleration parameters for 0.2-second period and 1-second period were determined based on the site classes described above, the contour maps of maximum considered earthquake ground motion in Figures 1613.3.1(1) and 1613.3.1(2), and the procedures outlined in Sections 1613.3.3 and 1613.3.4 of IBC. The spectral response acceleration parameters along with other seismic design parameters are provided below:

Seismic Design Parameters								
Parameter	Value							
Risk Category	IV							
Seismic Importance Factor (I _e)	1.50							
Mapped Spectral Response Acceleration Parameter – 0.2 second Period (S _s)	0.183							
Mapped Spectral Response Acceleration Parameter – 1 second Period (S ₁)	0.089							
Long-Period Transition Period (T _L)	12 seconds							
Site Class	D							
Design Spectral Response Acceleration Parameter – 0.2 second Period (S _{DS})	0.195							
Design Spectral Response Acceleration Parameter – 1 second Period (S _{D1})	0.143							
Seismic Design Category	D							

A design response spectrum curve constructed using the above acceleration value is presented in Figure 5 for use in seismic design of the proposed fire station structure.

5.7 Pavement Design

The soils encountered at the boring locations are suitable for use as pavement subgrade. The subgrade should be prepared in accordance with the 'Site and Subgrade Preparation' section of this report. If rock is encountered at or above the bottom of the pavement section, 6 inches of rock below the pavement should be over-excavated and replaced with compacted graded aggregate base (GAB).

The design of a pavement is dependent on the traffic volumes and weights of cars and trucks, and the soil strength which can be related to the Soil Support Value (determined using CBR tests). The CBR values for soil samples compacted to about 95 percent of the Standard Proctor maximum dry density were reported to be 4.3 and 13.2. As mentioned before, the reported CBR value of 13.2 is probably exaggerated due to rock fragments. Based on a database created by the Georgia Department of Transportation (GDOT), the default CBR value for DeKalb County is approximately 3.5. Considering the laboratory test results and the GDOT-established default values, we recommend that a CBR value of 4 and a corresponding subgrade reaction modulus of 190 pci be used for pavement design for this project.

It should be noted that if offsite borrow soils are used for fill, Standard Proctor compaction and classification tests should be performed on the borrow material to ensure that the above design parameters can be achieved.

5.8 Geotechnical Engineering Oversight during Construction

The recommendations provided herein are based on the geotechnical information gathered for the site, our interpretation of the available data, and our experience with similar soils and similar projects in the DeKalb County area. Geotechnical recommendations cannot be considered complete until the geotechnical engineer has the opportunity to confirm the subsurface conditions by performing actual field observations during construction. It is critical that our engineering staff provide inspection during proof-rolling and foundation installations. It is recommended that Willmer be retained to provide geotechnical engineering oversight, construction materials testing, and special inspections during construction to confirm that the recommendations provided herein are properly interpreted and implemented.

TABLES

Table 1Summary of Subsurface ConditionsDeKalb County Fire Station No. 7Decatur, DeKalb County, GeorgiaWillmer Engineering Project No. 71.4175

	Approximate		Dept	h to Top of I	Layer and Co	rresponding	g Elevations	(feet)		Terminat	ion Depth
Boring Number	Surface Elevation	Тор	osoil	Resi	duum	P۱	NR	Auger	Refusal	and Eleva	tion (feet)
	(feet) ¹	Depth	Elevation	Depth	Elevation	Depth	Elevation	Depth	Elevation	Depth	Elevation
D-1	1001			0	1001	4	997	11.5	989.5		
D-2	1000	0	1000	0.5	1000	29	971			29.5	970.5
D-3	1004	0	1004	0.5	1003.5					30	974
D-4	1003			0	1003.0	33.5	969.5	40	963		
D-5	1000	0	1000	0.5	999.5					30	970
S-1	1001			0	1001					10	991
S-2	1000	0	1000	0.5	999.5					30	970
S-3	1001	0	1001	1	1001					10	991
S-4	1001	0	1001	0.5	1000.5					10	991
S-5	1000			0	1000					10	990

Notes:

1. Surface elevations were estimated with a handheld GPS and Google Earth.

2. PWR - Partially Weathered Rock

3. Lenses of PWR (encountered in D-4, S-1, S-2, and S-4) are not included in this table.

Table 2 Summary of Standard Proctor Compaction and CBR Test Results DeKalb Fire Station No. 7 Decatur, DeKalb County, Georgia Willmer Project No. 71.4175

	Sample		Natural	Standard Compact	l Proctor tion Test	CBR Test	Results
Location	Depth (feet)	Soil Description	Moisture Content (%)	Maximum Dry Density (pcf)	Optimum Moisture Content (%)	Compaction (%)	CBR Value (%)
Bulk-1	0-3'	Residuum: Red sandy fat CLAY with organics	6.5	98.7	17.1	94.9	4.3
Bulk-2	0-10'	Residuum: Brown medium to fine sandy SILT with organics and rock fragments	7.4	110.3	15.6	95.0	13.2 ²

Notes:

1. CBR = California Bearing Ratio

2. This CBR value may be exaggerated due to the presence of rock fragments within the fill.

FIGURES

V4175 DeKalb County Fire Station No. 7/CADD/Figure 1 Project Location Map/Figure 1 Project Location Map.dwg à

P:\4175 DeKalb County Fire Station No. 7\CADD\Figure 5 Seismic Design\FIGURE 5 - SEISMIC DESIGN 4175.dwg

APPENDIX I

BORING RECORD LEGEND

SM, CL, etc: - GROUP SYMBOL based on Unified Soil Classification System. (Refer to ASTM D-2488 and Table 1 of D-2487)

N-VALUE: BLOWS PER FOOT- Standard Penetration Resistance (SPT) blow count , the sum of the second and third 6-inch increments of the SPT test. (Refer to ASTM D-1586)

CONSISTENCY / RELATIVE DENSITY Correlated with SPT Blow Count, N:

	SILTS AN	ID CLAYS		SAN	<u>DS</u>	
<u>(blov</u>	N <u>vs per foot)</u> 0 - 2	<u>Consistency</u> Very Soft	Ĺ	N <u>blows per foot</u>) 0 - 4	<u>Relative</u> <u>Density</u> Very Loose	
	3 - 4	Soft		5 - 10	Loose	
	5 - 8	Firm		11 - 30	Medium De	ense
	9 - 15	Stiff		31 - 50	Dense	
	16 - 30	Very Stiff		> 50	Very Dense	Э
	31 - 50	Hard				
	> 50	Very Hard				
<u>NOTE</u> Grour	<u>S:</u> ndwater Meas	surements:	Water le	evel at 24 hours	6	
		$\overline{\Delta}$	Water le	evel at time of b	ooring	
		題	Caved le	evel at 24 hour	S	
ASPHALT		$E \begin{array}{c} \text{TOPSOIL} \\ \hline \underbrace{ $	FILL	GW	GP	GM
GC	SW	SP	SM	SC	SANDY SILT	SANDY CLAY
ML	MH	CL-ML	CL	CH	OL	OH
PEAT	PWR	ROCK		SHALE	SANDSTONE	

Willmer Engineering Inc. 3772 Pleasantdale Road, Suite 165 Atlanta, Georgia 30340

UNIFIED SOIL CLASSIFICATION SYSTEM REFERENCE SHEET

I	MAJOR DIVISIONS		LETTER SYMBOL	TYPICAL DESCRIPTIONS
	GRAVEL AND	GRAVEL CLEAN (AND GRAVELS		WELL-GRADED GRAVELS, GRAVEL-SAND MIXTURES, LITTLE OR NO FINES
	GRAVELLY SOILS	LITTLE OR NO FINES	(GP)	POORLY GRADED GRAVELS, GRAVEL-SAND MIXTURES, LITTLE OR NO FINES
COARSE	MORE THAN 50% OF COARSE FRACTION	GRAVELS WITH FINES	(GM)	SILTY GRAVELS and GRAVEL-SAND-SILT MIXTURES
SOILS	<u>RETAINED</u> #4 SIEVE	APPRECIABLE AMOUNT OF FINES	(GC)	CLAYEY GRAVELS and GRAVEL-SAND-CLAY MIXTURES
MORE THAN 50% OF MATERIAL IS	SAND	CLEAN SAND	(SW)	WELL GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES
LARGER THAN #200 SIEVE SIZE	AND SANDY SOILS	LITTLE OR NO FINES	(SP)	POORLY GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES
	MORE THAN 50% OF COARSE FRACTION	SANDS WITH FINES	(SM)	SILTY SANDS and SAND-SILT MIXTURES
	#4 SIEVE	APPRECIABLE AMOUNT OF FINES	(SC)	CLAYEY SANDS and SAND-CLAY MIXTURES
	SILT	S	(ML)	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR VERY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY
FINE GRAINED		YS	(CL)	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS
30123	LIQUD LESS TH	AN 50	(OL)	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY
MORE THAN 50% OF	SILT	S	(MH)	INORGANIC ELASTIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SANDY OR SILTY SOILS
MATERIAL IS <u>SMALLER</u> THAN #200 SIEVE SIZE	ANI CLA` LIQUID	D YS LIMIT	(CH)	INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS
	<u>GREATER</u>	THAN 50	(OH)	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS
HIGH	ILY ORGANIC SO	NLS	(PT)	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS

Proj	ject:	D	eKa	b C	oun	ty Fire Station No. 7							HOI		lo.	D -'	1	
Loc	ation:	D	ecat	ur, I	Deka	alb County, Georgia							S	heet	1 of	1		
Proj	ject N	lumbe	er:	71	.417	5					Lo	cation:	SEE	FIG	URE	2		
Azir	nuth:			A	ngle f	from Horizontal: 90 S	urface Elevation (f	ft): 10	01.00	Station:	N/A							
Drill	ling E	quipr	nent:	D	-50	Complex			/lethod		- IVIAN	IUAL	HAIVI			. 1	1 5	
	e Box	es:				Samples: 4	Overburden (π):	IN/A	llodi					otal De	eptn (n):	1.5	
LUg		уу.	<u>ы</u>						lieu.	7								
VERTICAL DEPTH (ft)	GRAPHIC	FOG	SAMPLE TYP	REC%	RQD %	MATERIAL DI	ESCRIPTION			ELEVATION (feet)	STAN	DARD 5 1	PENE (blov 0 2 <mark>0</mark>	TRATIC vs/foot	DN TES) 40 6	ST DA	ATA 8 ₀ 0	N-VALUE
	 	Ň	SS			RESIDUUM: Very hard t fine sandy SILT with rock fragments	orown medium organics and	i to	ML	1001.0-								66
5			SS SS			PARTIALLY WEATHER Sampled as very ha	ED ROCK: rd red and bro	F	WR	995						╎╙━		• 50/4"
10-			SS			Sampled as very dense fine SAND with rock	grey medium t fragments	to F	WR									50/1"
-						Auger refusal was encou below the existing gr	untered at 11.5 ound surface.	5 feet		990								
15-	-					Groundwater was not er time of boring comp	countered at t letion.	he		985-								-
20-	-									- 980 —								-
-	-									975								
30-										970-								-
35-	-									- - - 965								_
-	-									-								
40-										960-								
- 45 - 45 - 11/53/10										- - 955							+	-
- FS 7.GPJ										-								
B COUNTY										950 — - -								
55 -																		
SPTN 41751 SS SC ON ON	- Spl - Sh - Ro	lit Spo elby T	oon Tube ore, 1-	S / 7/8"	MPL	ER TYPE NX - Rock Core, 2-1/8" CU - Cuttings CT - Continuous Tube	HSA - Hollow S CFA - Continue DC - Driving (נ Stem Aug ous Fligh Casino	DRILLI ger nt Auge	NG METHO	RW · RC ·	- Rotary - Rock	y Wash Core		Hole	No. D-	-1	

Proj	ject: D	eKa	lb C	oun	y Fire Station No. 7		HOLE No. S-5
Loc	ation: D	ecat	tur,	Deka	Ib County, Georgia		Sheet 1 of 1
Proj	ject Numb	er:	71	.417	5		Location: SEE FIGURE 2
Azir	nuth:		A	Angle 1	rom Horizontal: 90 Surface Elevation (ft): 1000.00 Stati	ation: N	1/A
Drill	ling Equip	ment:	D	-50	Drilling Method: H	ISA - N	
Cor	e Boxes:	N/A			Samples: 4 Overburden (ft): N/A Rock ((ft): N /	A Total Depth (ft): 10.0
Log	ged By:	JS			Date Drilled: 10/2	/24/16	
VERTICAL DEPTH (ft)	GRAPHIC LOG	SAMPLE TYPE	REC%	RQD %		(feet)	STANDARD PENETRATION TEST DATA (blows/foot) 5 10 20 40 60 80
-		SS			RESIDUUM: Very stiff to very hard reddish CH brown medium to fine sandy fat CLAY with organics		30
5		-ss-			Very hard to stiff reddish brown medium CH 90 to fine sandy fat CLAY (micaceous)	995	61
-		SS					42
10-					Boring was terminated at 10 feet below the existing ground surface.	990	
15-	-				Groundwater was not encountered at the time of boring completion. 98	985	
						-	
20					98	980	
25-					97	975	
	-					-	
30-					97	970	
35-					96	965	
	-					-	
40-					96	960	
45					99	955	
						-	
2 50 - -					99	950	
55 - 55 -					94	945	
SS NQ	- Split Sp - Shelby - Rock C	oon Tube ore, 1	S/ -7/8"	AMPL	Image: Strain of the	IETHOD R R	W - Rotary Wash C - Rock Core S-5

APPENDIX II

Representative Site Photographs DeKalb County Fire Station No. 7 Decatur, DeKalb County, Georgia Willmer Project No. 71.4175 Sheet 1 of 4

Completed Borehole and Surrounding Area, Boring Location S-1

Drill Rig Set-up, Boring Location S-2

Representative Site Photographs DeKalb County Fire Station No. 7 Decatur, DeKalb County, Georgia Willmer Project No. 71.4175 Sheet 2 of 4

Completed Borehole and Surrounding Area, Boring Location S-3

Close-up of Completed Borehole, Boring Location S-3

Representative Site Photographs DeKalb County Fire Station No. 7 Decatur, DeKalb County, Georgia Willmer Project No. 71.4175 Sheet 3 of 4

Completed Borehole and Surrounding Area, Boring Locations S-4 and Bulk-1

Completed Borehole and Surrounding Area, Boring Location D-1

Representative Site Photographs DeKalb County Fire Station No. 7 Decatur, DeKalb County, Georgia Willmer Project No. 71.4175 Sheet 4 of 4

Close-up of Completed Borehole, Boring Location D-3

Completed Borehole and Surrounding Area, Boring Location D-4

Representative Site Photographs DeKalb Fire Station No. 7 Willmer Project No. 71.4175 Sheet 1 of 4

Drill Rig Set-up, Location S-2

Representative Site Photographs DeKalb Fire Station No. 7 Willmer Project No. 71.4175 Sheet 2 of 4

Undisturbed Sampling, Location S-2

Representative Site Photographs DeKalb Fire Station No. 7 Willmer Project No. 71.4175 Sheet 3 of 4

Completed Borehole and Surrounding Area, Location D-5

Representative Site Photographs DeKalb Fire Station No. 7 Willmer Project No. 71.4175 Sheet 4 of 4

Close-up of Completed Borehole, Location D-5

APPENDIX III

Engline Engline Ph: 770-338-8233 SOLL Tested By Web: wax LessLis.com Tested By Decked By RI 103/176 Client Pr. # Project Name Deckalb Fire Station No.7 I.ab. PR. # Deckalb Fire Station No.7 I.ab. PR. # Deckalb Fire Station No.7 1692-20-1 I.ab. PR. # Deckalb Fire Station No.7 Sample ID 22766/D-4 I.ab. PR. # Deckalb Fire Station No.7 I.ab. PR. # Deckalb Fire Station No.7 1692-20-1 Sample ID 22766/D-4 I.ab. PR. # Deckalb Fire Station No.7 Sample Data Initial Final Mass of Wet Sample, an Ring, g I.ab. PR. # Deckalb Fire Station No.7 I.ab. PR. # Deckelb Fire No.7 I.ab. PR. # Deckelb Fire No.7 Mass of Wet Sample, in Danate of Sample, in Specific Gravity (Assumed) I.ab. 97.2 I.ab. 97.2 I.ab. 97.2 Volume of Sample, in Durate of Sample I.ab. 1 I.ab. PR. I.ab. 1		MELY	1874 Forge St	treet Tucker, G	A 30084			
SOIL TESTS, LLC Fac: 770-923-8973 Date T031/16 Client Pr, r Project Name Sample 10 22766D-4 1892-20.1 Checked By Image: Checked By Image	TE ST EN	GINEERING	Ph: 770-938-8	233	1.		Tested By	RI
TESTS, I.I.C Web: www.tast.lic.com Checked By Client Pr. # 71.4175 La. PR. # 1082.20-1 Snyple ID 22756/D-4 Ad. Info - Location - - - Ad. Info - - - Standard Test Method for One-Dimensional Consolidation Properties of Solis (Method B) - - Sample Data Initial Final Initial Seating Pressure, Ib/ft ² 00 Mass of Wet Sample, g 98.225 102.9 - - - Mass of Wet Sample, g 81.40 81.40 Consolidometer Ring ID Number 1 - Height of Sample, in ² 4.91 4.91 Consolidometer Ring ID Number 1 - - Volume of Sample, in ³ 4.90 4.34 - - - 6677 Volume of Sample, in ³ 4.90 4.34 - - - - Volume of Sample, in ³ 4.90 4.34 - - - - Volume of Sample, in ³ <td>So So</td> <td>IL</td> <td>Fax: 770-923-</td> <td>8973</td> <td>ASHTO RID</td> <td></td> <td>Date</td> <td>10/31/16</td>	So So	IL	Fax: 770-923-	8973	ASHTO RID		Date	10/31/16
Client Pr. # 71.4175 Lab. PR. # 1682-20-1 7. Project Name DeKalb Fire Station No.7 S. Type UD Sample ID 227560-4 Add. Info - ASTM 22435 Standard Test Method for One-Dimensional Consolidation Properties of Solis (Method B) - Mass of Wet Sample and Ring. g 194.73 194.73 Additional Vertical Pressure, Ib/ft ² 0 Mass of Wet Sample, g 81.40 81.40 Consolidometer Ring ID Number 1 - Height of Sample, in 0.3970 0.8832 Consolidometer Ring ID Number 1 - Volume of Sample, in 2.501 2.501 Prame ID Number 1 - Up you Kivelight, pcf 63.3 7.1.5 Frame ID Number 66 - Volume of Sample, in ² 0.3745 0.3745 Dial Gauge Reading, 10 ⁴ in 1 Pup Vink Weight, pcf 63.3 7.1.5 Final Dial Gauge Reading, 10 ⁴ in 1 Pup Vink Weight, pcf 0.3245 0.5087 DESCRIPTION 1138 Use K fore Value, in volume ino		STS, LLC	Web: www.tes	st-llc.com			Checked By	18
Project Name Dekalb Fire Station No.7 S. Type UD Sample ID 22756/D-4 207.22 Add. Info 207.22 ASTM D2435 Standard Test Method for One-Dimensional Consolidation Properties of Soils (Method B) 100 100 Sample Data Initial Final Initial Seating Pressure, Ib//ft ² 100 Mass of Wet Sample and Ring, g 194.73 194.73 Additional Vertical Pressure, Ib//ft ² 100 Mass of Wet Sample, g 181.40 81.40 Consolidometer Ring ID Number 1 Height of Sample, in 2.501 2.501 Frame ID Number 1 Diameter of Sample, in ² 4.91 4.91 Dial Gage ID Number 1 Diameter of Sample, in ² 0.9070 0.832 Consolidometer ID Number 1 Volume of Sample, in ² 2.501 Frame ID Number 1 1138 Volume of Sample, in ² 0.9070 0.8225 0.5067 DESCRIPTION Vet Unit Weight, pcf 63.3 71.5 Final Dial Gauge Reading, 10 ⁴ in 1138 Height of Volds, in	Client Pr. #	71.4175		Lab. PR. #		1692-20)-1	-0
Sample ID 2278/0-4 Depth/files 20-22 Location - Add. Info - ASTM D2435 Standard Test Method for One-Dimensional Consolidation Properties of Soils (Method B) Sample Data Mass of Ring, g Initial Final Additional Vertical Pressure, Ib/ft ² 100 Mass of Wet Sample and Ring, g 293.98 297.72 Total Seating Pressure, Ib/ft ² 0 Mass of Wet Sample, g 99.25 102.99 STATION # 2 Dameter of Sample, in 2.5011 2.5011 Consolidometer ID Number 1 Diameter of Sample, in ² 4.91 4.91 Consolidometer ID Number 66 Dry Unit Weight, pcf 63.3 71.5 Dial Gauge Reading, 10 ⁴ in 0 Vult Nit Weight, pcf 0.32745 0.32745 DESCRIPTION 1138 Height of Voids, in 0.6225 0.5087 DESCRIPTION 1138 Location of Test: USCS (ASTM D2497:2498) NA 2 1. Damp porous stones wit filter paper used. NA	Project Name DeKalb I	Fire Station No.7		S. Type		UD		
Note the project of the projection of the project	Sample ID 2	2756/D-4 -		Depth/Elev.		- 20-22		
Nation 22/33 Standard Test Method for One-Dimensional Consolidation Properties of Soils (Method B) Sample Data Initial Final Initial Seating Pressure, 10//1 ² 100 Mass of Ring, g 194.73 194.73 194.73 194.73 100 Mass of Wet Sample and Ring, g 194.73 194.73 100 Mass of Wet Sample and Ring, g 194.73 102.99 STATION # 2 Mass of Dy Sample, g 81.4.0 81.4.0 100 Diameter of Sample, in ³ 4.90 4.34 Stant Do Number 6 One Sample, in ³ 4.90 4.34 Stant Do Number 6 6777 Volume of Sample, in ³ 4.90 4.34 Stant Do Number 1 Dial Gauge Reading, 10				Add. IIIIO				
Sample Data Mass of Ring, g Initial Final Initial Seating Pressure, Ib/ft ² 100 Mass of Wet Sample and Ring, g 99.25 102.99 STATION # 2 Mass of Wet Sample, g 99.25 102.99 STATION # 2 Mass of Wet Sample, g 99.25 102.99 STATION # 2 Mass of Sample, in 2.501 2.501 Consolidometer Ring ID Number 1 Diameter of Sample, in ³ 4.91 4.91 Dial Gage ID Number 66 Specific Gravity (Assumed) 2.700 103 677 Volume of Sample, in ³ 4.90 4.34 101 61 Specific Gravity (Assumed) 2.700 1138 1138 Portion of Sample, in ³ 6.33 71.5 Final Dial Gauge Reading, 10 ⁴ in 0 Specific Gravity (Assumed) 0.2216 0.2882 Disson DESCRIPTION Height of Solids, in 0.2216 0.2882 Disson DESCRIPTION 1138 1.00 1.662 1.359 Disson of Tossolidometer to provent sample from drying. Na	Standard Test Metho	d for One-Dimens	sional Conso	lidation Prop	erties of Soils	s (Method B)		
Initial Final Initial Final Initial Seating Pressure, Ib/R ² 100 Mass of Nig, g 194.73 194.73 194.73 Additional Vertical Pressure, Ib/R ² 0 Mass of Wet Sample and Ring, g 293.98 297.72 Total Seating Pressure, Ib/R ² 100 Mass of Wet Sample, g 81.40 81.40 Consolidometer Ring ID Number 1 Height of Sample, in 0.9970 0.8832 Consolidometer ID Number 1 Diameter of Sample, in ² 4.91 4.91 Prame ID Number 66 Area of Sample, in ³ 4.90 4.34 Specific Gravity 677 Volume of Sample, pd 0.3745 0.3745 0.3745 0.3745 Bright of Voids, in 0.6225 0.5087 DESCRIPTION 1138 Height of Voids, in 0.6225 0.5087 DESCRIPTION 1138 1.662 1.359 Desc (ASTM D2487;2488) 1.04 1138 1.0amp porous stones wit filter paper used. NA NA 2.10 NA 2. Moist paper towel was pla	Sample D	ata						
Mass of Ring, g 194.73 194.73 194.73 Additional Vertical Pressure, lb/ft ² 0 Mass of Wet Sample and Ring, g 293.98 297.72 Total Seating Pressure, lb/ft ² 100 Mass of Wet Sample, g 99.25 102.99 STATION # 2 Mass of Wet Sample, g 81.40 81.40 Consolidometer Ring ID Number 1 Diameter of Sample, in 2.501 2.501 Frame ID Number 66 Area of Sample, in ³ 4.90 4.34 Specific Gravity (Assumed) 2.700 Volume of Sample, in ³ 4.90 4.34 Specific Gravity (Assumed) 0 1138 Puy Unit Weight, pcf 77.2 90.4 Initial Dial Gauge Reading, 10 ⁴ in 0 1138 Height of Solids, in 0.3745 0.3745 0.5087 DESCRIPTION 0 Height of Voids, in 0.6225 0.5087 DESCRIPTION 0 1138 Portion of Test: USCS (ASTM D2487:2486) NA 1. 2. NA 2. 1. Damp porous stones wth filter paper used. NA NA 2. NA 2. <		Initial	Final	Initial Sea	ating Pressure	, lbf/ft ²	100	
Mass of Wet Sample and Ring, g 293.98 297.72 Total Seating Pressure, lb//ft ² 100 Mass of Wet Sample, g 99.25 102.99 STATION # 2 Mass of Dry Sample, g 81.40 81.40 Consolidometer Ring ID Number 1 Height of Sample, in 0.9970 0.8832 Consolidometer ID Number 1 Diameter of Sample, in ² 4.91 4.91 Frame ID Number 66 Volume of Sample, in ³ 4.90 4.34 Dial Gage ID Number 677 Volume of Sample, in ³ 4.90 4.34 Specific Gravity (Assumed) 2.700 Volume of Sample, inf 0.3745 0.3745 138 677 138 Put Unit Weight, pcf 63.3 71.5 Final Dial Gauge Reading, 10 ⁻⁴ in 1138 Height of Voids, in 0.6225 0.5087 DESCRIPTION 1138 Void Ratio 1.662 1.359 DESCRIPTION 12 I. Damp porous stones wit filter paper used. NA NA 2 Moisture Content Moisture Content NA NA 2 Mass of Wet Sample and Tare, g	Mass of Ring, g	194.73	194.73	Additiona	I Vertical Pres	sure, lbf/ft ²	0	
Mass of Wet Sample, g 99.25 102.99 STATION # 2 Mass of Dry Sample, g 81.40 81.40 81.40 Consolidometer Ring ID Number 1 Height of Sample, in 0.9970 0.8832 Consolidometer Ring ID Number 1 Diameter of Sample, in ² 4.91 4.91 Jail Gage ID Number 66 Yolume of Sample, in ² 4.91 4.91 Dial Gage ID Number 67 Yolume of Sample, in ³ 4.90 4.31 Dial Gage ID Number 67 Yolume of Sample, in ³ 4.90 4.31 Frame ID Number 67 Yolume of Sample, in ³ 4.90 4.31 Frame ID Number 67 Yolume of Sample, in ³ 4.90 4.31 Frame ID Number 67 Yolume of Sample, in ³ 0.3745 5.7 Initial Dial Gauge Reading, 10 ⁴ in 1138 Height of Yolds, in 0.6225 0.5087 DESCRIPTION NA 12 Loid Ratio 1.662 1.359 NA 12 138 Pogree of Saturation, % 35.6 52.7 NA 23 23 NA 23	Mass of Wet Sample and Ring, g	293.98	297.72	Total Sea	ting Pressure,	lbf/ft ²	100	
Mass of Dry Sample, g 81.40 81.40 Consolidometer Ring ID Number 1 Height of Sample, in 2.501 2.501 Frame ID Number 66 Area of Sample, in ² 4.91 4.91 Dial Gage ID Number 677 Volume of Sample, in ³ 2.90 4.34 500 677 Specific Gravity (Assumed) 2.700 2.700 677 Volume of Sample, pd 77.2 90.4 Initial Dial Gauge Reading, 10 ⁻⁴ in 0 Put Unit Weight, pd 63.3 71.5 Final Dial Gauge Reading, 10 ⁻⁴ in 1138 Height of Solids, in 0.3745 0.3745 0.5087 DESCRIPTION Height of Voids, in 0.6225 0.5087 DESCRIPTION NA Void Ratio 1.662 1.359 Degree of Saturation, % 35.6 52.7 1. Damp porous stones w/t filter paper used. INTA NA INTA Secore the bottom of testing was located 7 ⁺ above the bottom of testing was located 7 ⁺ above the bottom of testing was located 7 ⁺ above the bottom of testing was located 7 ⁺ above the bottom of testing was located 7 ⁺ above the bottom of testing was located 7 ⁺ above the bottom of testing was located 7 ⁺ above the bottom of testing was located 7 ⁺ above the bottom of	Mass of Wet Sample, g	99.25	102.99			STATION #	2	
Height of Sample, in 0.9970 0.8832 Consolidometer ID Number 1 Diameter of Sample, in ² 4.91 2.501 2.501 66 Area of Sample, in ³ 4.90 4.34 677 677 Volume of Sample, in ³ 4.90 4.34 677 677 Specific Gravity (Assumed) 2.700 2.700 677 Wet Unit Weight, pof 77.2 90.4 Initial Dial Gauge Reading, 10 ⁴ in 0 Dry Unit Weight, pof 63.3 71.5 Final Dial Gauge Reading, 10 ⁴ in 1138 Height of Voids, in 0.6225 0.5087 DESCRIPTION 1138 Height of Water, in 0.2218 0.2682 NA Void Ratio 1.662 1.359 Degree of Saturation, % 35.6 52.7 USCS (ASTM D2487;2488) 1. 1. 1. Damp porous stones w/t filter paper used. NA NA NA NA NA 2. Moist paper towel was placed on top of consolidometer to prevent sample from drying. REMARKS Portion of sample used for testing was located 7 ⁺ above the bottom of the shelty tube. - Mass of Wet Sample and Tare, g 4	Mass of Dry Sample, g	81.40	81.40	Consolido	ometer Ring ID	Number	1	
Diameter of Sample, in 2.501 2.501 2.501 66 Area of Sample, in ² 4.91 4.91 91 01 Gage ID Number 66 Volume of Sample, in ³ 4.90 4.34 90 63.3 71.5 Dial Gage ID Number 677 Wet Unit Weight, pcf 77.2 90.4 Initial Dial Gauge Reading, 10 ⁻⁴ in 0 1138 Height of Solids, in 0.3745 0.3745 Frame ID Number 0 1138 Height of Volts, in 0.6225 0.5087 DESCRIPTION 1138 Degree of Saturation, % 35.6 52.7 DESC (ASTM D2487:2488) NA 2. Moist paper towel was placed on top of consolidometer to prevent sample from drying. NA NA 2. Moist paper towel was placed on top of consolidometer to prevent sample from drying. REMARS Mass of Wet Sample and Tare, g 141.80 293.98 358.28 LL - Mass of Tare, g 94.80 194.73 255.31 PI - Moisture Content, % 20.5 21.9 26.5 page 1 of 5	Height of Sample, in	0.9970	0.8832	Consolido	ometer ID Num	nber	1	
Area of Sample, in ² 4.91 4.91 4.91 Dial Gage ID Number 677 Volume of Sample, in ³ 4.90 4.34 Initial Section of Sample, in ³ 677 Specific Gravity (Assumed) 2.700 2.700 Initial Dial Gauge Reading, 10 ⁴ in 0 Met Unit Weight, pcf 63.3 71.5 Initial Dial Gauge Reading, 10 ⁴ in 0 Pry Unit Weight, pcf 63.3 71.5 Initial Dial Gauge Reading, 10 ⁴ in 0 Height of Solids, in 0.3745 0.3745 Initial Dial Gauge Reading, 10 ⁴ in 0 Height of Voids, in 0.6225 0.5087 DESCRIPTION Initial Dial Gauge Reading, 10 ⁴ in 0 Height of Voids, in 0.2218 0.2682 Void Ratio Initial Dial Gauge Reading, 10 ⁴ in 0 Degree of Saturation, % 35.6 52.7 DESCRIPTION Initial Dial Gauge Reading, 10 ⁴ in NA 2. Moist paper towel was placed on top of consolidometer to prevent sample from drying. NA Initial Dial Gauge Reading, 10 ⁴ in Initial Single Sin	Diameter of Sample, in	2.501	2.501	Frame ID	Number		66	
Volume of Sample, in ³ 4.90 4.34 Specific Gravity (Assumed) 2.700 2.700 Wet Unit Weight, pcf 77.2 90.4 Initial Dial Gauge Reading, 10 ⁻⁴ in 0 Dry Unit Weight, pcf 63.3 71.5 Final Dial Gauge Reading, 10 ⁻⁴ in 0 Height of Solids, in 0.3745 0.3745 0.3745 DESCRIPTION Height of Voids, in 0.6225 0.5087 DESCRIPTION Height of Water, in 0.2218 0.2682 Void Ratio 1.662 1.359 Degree of Saturation, % 35.6 52.7 NA NA 2. Moist paper towel was placed on top of consolidometer to prevent sample from drying. NA NA 2. Moist paper towel was placed on top of consolidometer to prevent sample from drying. REMARKS Moisture Content Moisture Content Mass of Wet Sample and Tare, g 410.80 293.98 358.28 LL - Mass of Tare, g 94.80 194.73 255.31 PI - Moisture Content, % 20.5 21.9 26.5 prest lof 5	Area of Sample, in ²	4.91	4.91	Dial Gage	e ID Number		677	
Specific Gravity (Assumed) 2.700 2.700 Wet Unit Weight, pcf 77.2 90.4 Initial Dial Gauge Reading, 10 ⁻⁴ in 0 Dry Unit Weight, pcf 63.3 71.5 Initial Dial Gauge Reading, 10 ⁻⁴ in 0 Height of Solids, in 0.3745 0.3745 0.3745 1138 Height of Voids, in 0.6225 0.5087 DESCRIPTION 1138 Height of Water, in 0.2218 0.2682 0.0768 DESCRIPTION Obry Condition of Test: 0.2218 0.2682 0.0769 NA 1. Damp porous stones w/t filter paper used. Initial Dial Gauge Reading, 10 ⁻⁴ in 1138 2. Moist paper towel was placed on top of consolidometer to prevent sample from drying. NA Initial Dial Gauge Reading, 10 ⁻⁴ in	Volume of Sample, in ³	4.90	4.34					
Wet Unit Weight, pcf 77.2 90.4 Initial Dial Gauge Reading, 10 ⁻⁴ in 0 Dry Unit Weight, pcf 63.3 71.5 Final Dial Gauge Reading, 10 ⁻⁴ in 1138 Height of Solids, in 0.3745 0.3745 0.3745 DESCRIPTION Height of Voids, in 0.6225 0.5087 DESCRIPTION NA Void Ratio 1.662 1.359 Degree of Saturation, % S5.6 52.7 USCS (ASTM D2487;2488) 1. Damp porous stones w/t filter paper used. NA NA 2. Moist paper towel was placed on top of consolidometer to prevent sample from drying. REMARKS Portion of sample used for testing was located 7 ⁺ above the bottom of the shelby tube. Mass of Wet Sample and Tare, g 410.80 293.98 358.28 LL - Mass of Tare, g 94.80 194.73 255.31 PI - Mass of Tare, g 94.80 194.73 255.31 PI - Mass of Tare, g 94.80 194.73 255.31 PI -	Specific Gravity (Assumed)	2.700	2.700					_
Dry Unit Weight, pcf 63.3 71.5 Final Dial Gauge Reading, 10 ⁻⁴ in 1138 Height of Solids, in 0.3745 0.3745 0.3745 DESCRIPTION Height of Voids, in 0.6225 0.5087 DESCRIPTION NA Height of Water, in 0.2218 0.2682 NA NA Out of Ratio 1.662 1.359 DESCRIPTION NA Degree of Saturation, % 35.6 52.7 USCS (ASTM D2487;2488) 1. Damp porous stones w/t filter paper used. NA NA 2. Moist paper towel was placed on top of consolidometer to prevent sample from drying. REMARKS Portion of sample used for testing was located 7" above the bottom of the shelby tube. Portion of sample used for testing was located 7" above the bottom of the shelby tube. Mass of Wet Sample and Tare, g 410.80 293.98 358.28 LL - Mass of Tare, g 94.80 194.73 255.31 Pl - Mass of Tare, g 94.80 194.73 255.31 Pl - Moisture Content, % 20.5 21.9 26.5 pa	Wet Unit Weight, pcf	77.2	90.4	Initial Dia	I Gauge Readi	ing, 10 ⁻⁴ in	0	
Height of Solids, in 0.3745 0.3745 Height of Voids, in 0.6225 0.5087 Height of Water, in 0.2218 0.2682 Void Ratio 1.662 1.359 Degree of Saturation, % 35.6 52.7 USCS (ASTM D2487;2488) 1. Damp porous stones w/t filter paper used. NA 2. Moist paper towel was placed on top of consolidometer to prevent sample from drying. NA REMARKS Moisture Content Trimmings Initial Final Mass of Wet Sample and Tare, g 410.80 293.98 358.28 Mass of Tare, g 94.80 194.73 255.31 Moisture Content, % 20.5 21.9 26.5	Dry Unit Weight, pcf	63.3	71.5	Final Dial	Gauge Readi	ng, 10 ⁻⁴ in	1138	
Height of Voids, in 0.6225 0.5087 DESCRIPTION Height of Water, in 0.2218 0.2682 NA Void Ratio 1.662 1.359 Image: Condition of Test: USCS (ASTM D2487;2488) 1. Damp porous stones w/t filter paper used. NA NA 2. Moist paper towel was placed on top of consolidometer to prevent sample from drying. NA REMARKS Moisture Content Trimmings Initial Final Mass of Wet Sample and Tare, g 410.80 293.98 358.28 PL - Mass of Tare, g 94.80 194.73 255.31 PI - Moisture Content, % 20.5 21.9 26.5 page 1 of 5	Height of Solids, in	0.3745	0.3745					
Height of Water, in 0.2218 0.2682 Void Ratio 1.662 1.359 Degree of Saturation, % 35.6 52.7 USCS (ASTM D2487;2488) 1. Damp porous stones w/t filter paper used. NA 2. Moist paper towel was placed on top of consolidometer to prevent sample from drying. NA REMARKS Moisture Content Mass of Wet Sample and Tare, g 10.80 293.98 358.28 Mass of Tare, g 94.80 194.73 255.31 Moisture Content, % 20.5 21.9 26.5	Height of Voids, in	0.6225	0.5087			DESCRIPTION		
Void Ratio 1.662 1.359 Degree of Saturation, % 35.6 52.7 USCS (ASTM D2487;2488) 1. Damp porous stones w/t filter paper used. NA 2. Moist paper towel was placed on top of consolidometer to prevent sample from drying. NA REMARKS Moisture Content Moisture Content Mass of Wet Sample and Tare, g 410.80 293.98 358.28 Mass of Tare, g 94.80 194.73 255.31 PI - Moisture Content, % 20.5 21.9 26.5 page 1 of 5	Height of Water, in	0.2218	0.2682		NA			
Degree of Saturation, % 35.6 52.7 USCS (ASTM D2487;2488) 1. Damp porous stones w/t filter paper used. NA 2. Moist paper towel was placed on top of consolidometer to prevent sample from drying. NA REMARKS Moisture Content Moisture Content Mass of Wet Sample and Tare, g 410.80 293.98 358.28 LL - Mass of Dry Sample and Tare, g 94.80 194.73 255.31 PI - Moisture Content, % 20.5 21.9 26.5 page 1 of 5	Void Ratio	1.662	1.359					
Condition of Test: USCS (ASTM D2487;2488) 1. Damp porous stones w/t filter paper used. NA 2. Moist paper towel was placed on top of consolidometer to prevent sample from drying. REMARKS Portion of sample used for testing was located 7" above the bottom of the shelby tube. Moisture Content Mass of Wet Sample and Tare, g 410.80 293.98 358.28 LL - Mass of Dry Sample and Tare, g 94.80 194.73 255.31 PI - Moisture Content, % 20.5 21.9 26.5 page 1 of 5	Degree of Saturation, %	35.6	52.7					
1. Damp porous stones w/t filter paper used. NA 2. Moist paper towel was placed on top of consolidometer to prevent sample from drying. REMARKS Portion of sample used for testing was located 7" above the bottom of the shelby tube. Moisture Content Mass of Wet Sample and Tare, g 410.80 293.98 358.28 LL - Mass of Tare, g 94.80 194.73 255.31 PI - Moisture Content, % 20.5 21.9 26.5 page 1 of 5	Condition of Toots				USCS	S (ASTM D2487)	2488)	
2. Moist paper towel was placed on top of consolidometer to prevent sample from drying. 2. Moist paper towel was placed on top of consolidometer to prevent sample from drying. Portion of sample used for testing was located 7" above the bottom of the shelby tube. Moisture Content Mass of Wet Sample and Tare, g Mass of Dry Sample and Tare, g Mass of Tare, g Mass of Tare, g Moisture Content, % 20.5 21.9 26.5 Portion of sample used for testing was located 7" above the bottom of the shelby tube. LL - Page 1 of 5	1 Damp porous stopes w/t filter paper i	ised			0000	NA NA	2100)	
REMARKSREMARKSPortion of sample used for testing was located 7" above the bottom of the shelby tube.Moisture ContentTrimmingsInitialFinalMass of Wet Sample and Tare, g410.80293.98358.28LL-Mass of Dry Sample and Tare, g357.10276.13336.69PL-Mass of Tare, g94.80194.73255.31PI-Moisture Content, %20.521.926.5page 1 of 5	2. Moist paper towel was placed on top	of consolidometer	to prevent sa	mple from drv	ina.			
Noisture ContentPortion of sample used for testing was located 7" above the bottom of the shelby tube.Moisture ContentInitialFinalMass of Wet Sample and Tare, g410.80293.98358.28Mass of Dry Sample and Tare, g357.10276.13336.69Mass of Tare, g94.80194.73255.31Moisture Content, %20.521.926.5						REMARKS		
Moisture Content Trimmings Initial Final Mass of Wet Sample and Tare, g 410.80 293.98 358.28 LL - Mass of Dry Sample and Tare, g 357.10 276.13 336.69 PL - Mass of Tare, g 94.80 194.73 255.31 PI - Moisture Content, % 20.5 21.9 26.5 page 1 of 5					Portion of sample	e used for testing wa	is located 7"	
Moisture Content Trimmings Initial Final Mass of Wet Sample and Tare, g 410.80 293.98 358.28 LL - Mass of Dry Sample and Tare, g 357.10 276.13 336.69 PL - Mass of Tare, g 94.80 194.73 255.31 PI - Moisture Content, % 20.5 21.9 26.5 page 1 of 5					above the bottom	T OF THE SHEIDY TUDE.		
Trimmings Initial Final Mass of Wet Sample and Tare, g 410.80 293.98 358.28 Mass of Dry Sample and Tare, g 357.10 276.13 336.69 Mass of Tare, g 94.80 194.73 255.31 Moisture Content, % 20.5 21.9 26.5	Moistu	ire Content						
Mass of Wet Sample and Tare, g 410.80 293.98 358.28 LL - Mass of Dry Sample and Tare, g 357.10 276.13 336.69 PL - Mass of Tare, g 94.80 194.73 255.31 PI - Moisture Content, % 20.5 21.9 26.5 page 1 of 5		Trimmings	Initial	Final				
Mass of Dry Sample and Tare, g 357.10 276.13 336.69 PL - Mass of Tare, g 94.80 194.73 255.31 PI - Moisture Content, % 20.5 21.9 26.5 page 1 of 5	Mass of Wet Sample and Tare, g	410.80	293.98	358.28		LL	-	
Mass of Tare, g 94.80 194.73 255.31 PI - Moisture Content, % 20.5 21.9 26.5 page 1 of 5 page 1 of 5	Mass of Dry Sample and Tare, g	357.10	276.13	336.69		PL	-	
Moisture Content, % 20.5 21.9 26.5 page 1 of 5	Mass of Tare, g	94.80	194.73	255.31		PI	-	
	Moisture Content, %	20.5	21.9	26.5				page 1 of 5

Clier Project San Lo	nt Pr. # Name nple ID ocation		TE.	<u>s</u> r.	TIME ENGI SOIL TEST 74 DeKalb Fin 227	ELY NEER S, LLC 1.4175 re Statior 756/D-4 - Test Ma	ING	1874 Fo Ph: 770- Fax: 770 Web: <u>wv</u>	rge Stree 938-8233 0-923-897 vw.test-lk ASTM ensional	t Tucker 3 73 <u>2.com</u> 102435		4 Lab Pr. # S. Type oth/Elev. Add. Info	f Soils (N	Vethod	 	169 (20	2-20-1 JD)-22' -	Te: Chec	sted By Date ked By	RI 10/31/16
					Void	Patio S	train Info	rmation	and Co	officier	t of Cons	olidatio	n Calcu	lation						
Press	sure	Uncorre Read	Void Ratio, Strain Information and Coefficient of Cor Uncorrected Dial Reading, in Apparatus Correction, in Corrected Dial Reading, in Change in specimen height, in Sample Height, in Height of Voids, in d ₁₀₀ d ₅₀ S D H ₁₀₀ S D H ₅₀ H ₁₀₀ H ₅₀ Hyl ¹⁰⁰ , in				Height of Voids, in	Void	Ratio	Strai	in, %	Fitting m	Time, in	Hd ₅₀ , in	Coeffic Conso	cient of idation				
lbf/ft ²	Ksf	d ₁₀₀	d ₅₀		d ₁₀₀	d ₅₀	S D H 100	S D H ₅₀	H ₁₀₀	H ₅₀	Hv ¹⁰⁰ ,in	e ₁₀₀	e ₅₀	e ₁₀₀	e ₅₀	t ₉₀	t ₅₀		in²/min	ft²/day
100	0.1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.9970	0.9970	0.6225	1.662	1.662	0.00	0.00	-	-	0.4985	-	-
250	0.25	0.0052	0.0049	0.0000	0.0052	0.0049	0.0052	0.0049	0.9918	0.9921	0.6173	1.648	1.649	0.53	0.49	0.81	0.19	0.4960	0.26	2.58
500	0.5	0.0136	0.0130	0.0000	0.0136	0.0130	0.0136	0.0130	0.9834	0.9840	0.6089	1.626	1.628	1.36	1.30	0.90	0.21	0.4920	0.23	2.27
1000	1	0.0255	0.0245	0.0000	0.0255	0.0245	0.0255	0.0245	0.9715	0.9725	0.5970	1.594	1.597	2.56	2.46	0.64	0.15	0.4862	0.31	3.13
2000	2	0.0421	0.0414	0.0000	0.0421	0.0414	0.0421	0.0414	0.9549	0.9556	0.5804	1.550	1.552	4.22	4.16	1.21	0.28	0.4778	0.16	1.60
500	0.5	0.0360	0.0362	0.0000	0.0360	0.0362	0.0360	0.0362	0.9610	0.9608	0.5866	1.566	1.566	3.61	3.63	0.64	0.15	0.4804	0.31	3.06
2000	1	0.0377	0.0376	0.0000	0.0377	0.0376	0.0377	0.0376	0.9593	0.9594	0.5848	1.562	1.562	3.79	3.77	0.36	0.08	0.4797	0.54	5.42
2000	2	0.0436	0.0435	0.0000	0.0438	0.0435	0.0438	0.0435	0.9532	0.9535	0.5767	1.040	1.540	4.39 6.70	4.30	1.60	0.19	0.4766	0.24	2.30
8000	4	0.0077	0.0000	0.0000	0.0077	0.0000	0.1138	0.0000	0.9293	0.8862	0.5088	1.402	1.405	11 /1	11 11	2.80	0.59	0.4032	0.06	0.58
0000	Ū	0.1100	0.1100	0.0000	0.1100	0.1100	0.1100	0.1100	0.0002	0.0002	0.0000	1.000	1.007	11.41		2.00	0.07	0.4401	0.00	0.00

 d_{100} = Dial gauge reading at 100% primary consolidation, in

Note:

 d_{50} = Dial gauge reading at 50% primary consolidation, in

 H_{100} = Specimen height at 100% primary consolidation, in

 H_{50} = Specimen height at 50% primary consolidation, in

 Hd_{50} = Length of the drainage path at 50% consolidation, in

 e_{100} = Void ratio at 100% primary consolidation

 e_{50} = Void ratio at 50% primary consolidation

				TIMELY			1	874 Fo	rge St	reet T	ucker	, GA 3	0084									
			TEL ST.	ENGINE	ERI	NG	F	Ph: 770-	938-8	233		Л	1.	8				Т	ested	Ву	R	
				Soil			F	ax: 770)-923-8	8973		4							D	ate	10/2	8/16
			\square	Tests L	LC			Nob: wa	MW too	t-llc co	m	AAGHTO	2 819					Che	ockod	By	1	-
Client Pr. #			71 4175	1 1010, 1				ah PR	<i>ww.tes</i>	1-110.00	<u></u>				1692	-20-1	1	One		Dy		2
Project Name		De	Kalb Fire Station N	0.7				S. Ty	/pe						U	ID	•					
Sample ID			22756/D-4				D	epth/El	ev.						20-	-22'						
Location			-					Add. I	nfo							-						
	Sta	ndard Test Met	hod for One-Dimens	ional Consolid	lation	Prop	erties o	of Soils	, AST	M D24	435 (N	letho	d B)/ A	ASE	ΙТΟ	T 21	6					
			STEP #	2																		
#	Square Root	Dial Gauge	Press	ure* on																		
Time, min	of Lime,	Reading,	Specim	en, lbf/ft ²				T	ime-[Defor	mati	on C	urve Mo	Fron	n Sc	quare	e Ro	ot o	of Tin	ne		
	min 0	0	2	50									we	nou								
2 0.1	0.32	48																				
3 0.25	0.50	50	Selection	4			0 0	P :::::					1111									1
4 0.5	0.71	51	m ₁	7.62																		
5 1	1.00	52	m ₂	6.62			40															
6 2	1.41	53			-		10															
7 4	2.00	54			1			•			••••••		••••••							·	••••	
8 0 9 15	2.03	58		45.80			20															
10 30	5.48	60	1	52.42		Ē		<u> </u>														
11					u	0 ^{- 4} i	30															
12					a	g,1	50															
13				45.8		din															+++++++++++++++++++++++++++++++++++++++	
14			d ₉₀	52		rea	40													+++		
15			d ₁₀₀	52		ial																
16			a_{50}	49			50															
17			sq.10011 ₉₀	0.9			00															
18			r_{90} , min	0.81								J			\rightarrow							
19			t_{50} , min	0.43			60													-•		
20			d-dial gauge re	eading 10^{-4} in	1												.					
22			Note: * - Reported P	ressure is not			70							N								1
23			including seating pres and possible additi	sure of 100 psf				0	-	1		2		3		4	4		5		(3
24			pressure applied to sa	mple to prevent							:	Squa	re roo	ot of	time	e, mir	n½			y = 6	.62x + 45	.80
25			swell. If swell was observer is rep	erved additional		y = 7.61 R ² =	5x + 45.800 = 0.950	J				•				,				,	0	-
26			of repor	t.																		

			Тімі	ELY		18	74 Forge	e Stre	et Tu	cker, (GA 30	084							
			ENG		G	Dh	. 770-03	8-823	13			8				Тс	stad By		
					a	' '	1. 110-35	0-020	5	_		1				10	Sieu Dy		
				I		Fa	ix: 770-9	23-89	73	-	AVENTO P	10					Date	10/3	28/16
			L– Test	TS, LLC		W	eb: <u>www</u> .	test-l	lc.com	<u>l</u>						Che	cked By		18
Client Pr. #			71.4175			La	ab. PR. #						16	92-20-	·1			1	
Project Name		De	Kalb Fire Station No.7				S. Type							UD					
Sample ID			22756/D-4			De	pth/Elev.						2	20-22'					
Location			-				Add. Info							-					
	Star	ndard Test Met	hod for One-Dimensional Co	nsolidation P	roper	ties of	Soils, A	STM	D243	5 (M	ethod	B)/AA	SHT	O T 21	16				
	5.00				Topor		50115,11		2210					· · ·					
	Causara Daat	Dial Caura																	
# Time min	of Time	Dial Gauge Reading	Pressure* on				Tim		form		n C		om	Sauce			Time		
	min ^{$1/2$}	10^{-4} in	Specimen, lbf/ft	2			1 11 11	e-De		Iatio		Moth		Squai	erc	501 0	Time		
	0	60	500									Meth	ou						
2 0.1	0.32	128																	
3 0.25	0.50	131	Selection 4			60 ●													
4 0.5	0.71	133	m ₁ 12.7	3															
5 1	1.00	134	m ₂ 11.0	7		70 -													_
6 2	1.41	137				·													
7 4	2.00	137				80 +													-
8 8	2.83	138	XY					•••••					.						
9 15	3.87	140	0 124.3	20		90 +	N i i i												-
10 30	5.48	141	1 135.3	27	4 in	00													
11					, ,	00 T													
12			d. 124	2	ີ່ຍີ່ 1	10													
14			d_0 124	2	adii														
14			d_{90} 130		ë ₁	20 -													_
15			$d_{100} = 130$		Dial														
16				5	1	30 +													-
17			59.10011_{90} 0.9				· · · · · · · · · · · · · · · · · · ·												
18			$t_{90}, thin 0.9$	0	1	40 -			Ň					-				•	-
19			$\frac{59.70011_{50}}{10011_{50}}$ 0.4	0															
20			$t_{50}, mm = 0.2$	1	1	50 +													-
21			d=dial gauge reading, 10 Note: * - Reported Pressure is	not	٨	60													
22			including seating pressure of 10	D psf	- T	00 + ∩		1		2)		3		4		5		6
23			and possible additional vertic	al		0				-	-			-	т • 1/		U		5
25			swell. If swell was observed addi	tional	y =	12.726x + R ² = 0 0	124.205 78			S	quare	root	of tir	ne, mi	in ⁷ 2				
26			vertical pressure is reported on p	age 1		A = 0.5											y = 11.0	7x + 124.2	20
			of report.																

				•	TIMELY				1874	Forge	e Stre	et Tu	ucker,	GA	3008	84								
				TE	इने 📘	ENGINE	ERII	NG	Ph: 7	70-93	8-823	33		A		(8)					Τe	ested	Bv	RI
					<u></u>	SOU			 	770.0	00.00	170		4	2	7							-,	40/20/40
						T			Fax:	770-9.	23-85	173		MANT	DIR OF							D	ale	10/28/16
						I ESTS, L	LC		Web:	<u>www</u> .	test-l	lc.cor	<u>n</u>								Che	cked	Ву	18
(Client Pr. #			71.41	175				Lab.	PR. #							16	592-2	<u>20-1</u>					
Pro	oject Name		De	eKalb Fire S	Station No	.7			S.	Туре	-)					
	Sample ID			22756	5/D-4				Depth Ad	/Elev.								20-2	.2					
	Location			-					Au	J. 1110								-						
		Star	ndard Test Met	hod for One	e-Dimensi	onal Consolid	lation	Properties	of So	oils, A	STM	[D24	35 (N	leth o	od B)/AA	SH	го т	216					
				S	STEP #	4	Г																	
#		Square Root	Dial Gauge		Pressu	re* on																		
T	Time, min	of Time,	Reading,		Specime	n. lbf/ft ²				Tim	e-De	eforr	natio	on C	urv	e Fr	om	Sqı	Jare	Ro	ot of	i Tin	ne	
ă,	0	min"*	10 ⁺ in	4	10	00									IV	leth	od							
1	0	0 32	243		10	00																		
3	0.25	0.50	249	Se	election	4		240																
4	0.5	0.71	253		m₁	25.45	1	240																
5	1	1.00	254		m ₂	22.13				6														
6	2	1.41	255		_	-																		
7	4	2.00	257	-					-+	·•										~~~~				
8	8	2.83	258		Х	Y																		
9	15	3.87	261		0	235.41		250		9														
10	30	5.48	262		1	257.54		Ë 700																
11								-0-		X														
13					d _o	235.4	1	ng,																
14					d_{00}	253		adi				T		1										
15					d 400	255		ē			H													
16					d 100	245		D 260	_								\mathbf{N}			Щ				
17				sa	~ 50	0.8																		
18						0.64																		
19				sa	1.root t =0	0.39																		
20					₅₀ , min	0.15															·····	 -	····	
21				d=di	ial gauge rea	ading 10^{-4} in																·····		
22				Note: * - F	Reported Pre	essure is not		270	-															
23				including se	ncluding seating pressure of 100 psf and possible additional vertical			0		1			2		3	3		4			5		6	
24				pressure ap	pressure applied to sample to prevent							9	Sana	ire r	oot	of ti	ime.	min ³	1/2					
25				swell. If swe	swell. If swell was observed additional $y = 25.4$ vertical pressure is reported on page 1			y = 25.451x + 235 R ² = 0.978	.410 v - 22	13x ± 23	5 41													
26				ventical pres	of report.																			

			•	TIMELY			1874 Forge	Street Tu	icker, G	A 30084					
			The sh	Enginei	ERINO	T.	Ph: 770-03	8-8233			8		Τo	stad By	RI
				Sou		~							10		
				SOIL			Fax: 770-92	23-8973		AGHTO RIG	1			Date	10/28/16
				Tests, l	LC		Web: <u>www.</u>	test-llc.com	<u>n</u>				Cheo	cked By	18
Client Pr. #			71.4175				Lab. PR. #				169	92-20-1			
Project Name		De	eKalb Fire Station No	o.7			S. Type					UD			
Sample ID			22756/D-4				Depth/Elev.				2	0-22'			
Location			-				Add. Info					-			
	Star	ndard Test Met	hod for One-Dimensi	onal Consolid	lation Pr	operties	of Soils, A	STM D243	35 (Me	thod B)/A	ASHT	O T 216			
			STEP #	5											
	Square Root	Dial Gauge	1												
Time, min	of Time,	Reading,	Pressu	ure* on			Tim	e-Deforn	nation	Curve	From S	Square	Root of	f Time	
Poi	min ^{1/2}	10 ⁻⁴ in	Specime	en, Ibf/ft⁻						Met	hod	•			
1 0	0	262	20	00											
2 0.1	0.32	411													
3 0.25	0.50	415	Selection	5	L I	410									
4 0.5	0.71	417	m ₁	12.61											
5 1	1.00	420	m ₂	10.97			· · · · · · · · · · · · · · · · · · ·								
6 2	1.41	422				445	<u>N</u>								
7 4	2.00	423			a	415									
8 8	2.83	425	X	¥ 407.70			\								
9 15 10 30	5.48	427	1	407.79		c		N							
11	0.10	120		110.10	1	.= ₹_ 420									
12						,10									
13			<i>d</i> ₀	407.8		ing									
14			d ₉₀	420		ead			T.						
15			d ₁₀₀	421		<u>425</u>		+		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
16			d 50	414		Di			X						
17			sq.root t ₉₀	1.1											
18			t ₉₀ , min	1.21		420									••••••
19			sq.root t ₅₀	0.53		430									
20			t ₅₀ , min	0.28											
21			d=dial gauge re	ading. 10 ⁻⁴ in					X	Ň					
22			Note: * - Reported Pr	essure is not		435									
23			including seating press and possible addition	sure of 100 psf			0	1	2		3	4		5	6
24			pressure applied to sar	pressure applied to sample to prevent			4x + 407.793	3	Sa	uare roo	t of tin	ne. min ³	/2		
25			swell. If swell was observer in the	well. If swell was observed additional			= 0.961		~4				2	y = 10.97x	+ 407.79
26			of report												

				TIMELY			1874 Forge	Street Tuck	er, GA 300)84			
			TÊ ST	ENGINE	ERING		Ph: 770-938	3-8233		8		Tested By	RI
				SOIL			Fax: 770-92	2-8973	ÆP			Date	10/28/16
				TESTS I	IC	,	1 a		AAGHTO R	10			10/20/10
				1 ESTS, L	LU		Web: <u>www.t</u>	test-llc.com				Checked By	10
Client Pr. #		De	/1.41/5 Kalb Fire Station N	0.7			Lab. PR. #			165	02-20-1		
Sample ID			22756/D-4	0.7			Depth/Elev.			2	0-22'		
Location			-				Add. Info				-		
	Star	ndard Test Met	hod for One-Dimens	sional Consolid	lation Pro	perties	of Soils, AS	STM D2435	(Method	B)/AASHT	O T 216		
			STEP #	6		F			(
	Square Root	Dial Gauge	1 _										
± <u>±</u> Time, min	of Time,	Reading,	Press	sure* on			Time	e-Deforma	tion Cur	ve From S	Square R	oot of Time	
Ро	min ^{1/2}	10 ⁻⁴ in	Specim	en, ibt/ft						Method	-		
1 0	0	429	5	500									
2 0.1	0.32	362	Selection	1		240							
4 0.5	0.71	360	m ₁	-5.11		340							
5 1	1.00	360	m ₂	-4.44									
6 2	1.41	359			<u> </u>								
7 4	2.00	359	- 		_		• • • • • • • • • • • • • • • • • • • •						
8 8	2.83	359	X	Y									
9 15	3.87	357	0	363.60		-							
10 30	5.40	337		309.10		•							
12					Č	2							
13			<i>d</i> ₀	363.6		360	+		- T				
14			d ₉₀	360		202							
15			d ₁₀₀	360		3	1						
16			d ₅₀	362		ē							
17			sq.root t ₉₀	0.8									
18			t ₉₀ , min	0.64									
19			sq.root t ₅₀	0.39									
20			<i>t</i> ₅₀ , mm	0.15									
21			u=dial gauge r Note: * - Reported F	ressure is not		380							
23			including seating pres	ssure of 100 psf		000	0	1	2	3	4	5,	6
24			pressure applied to sa	ional vertical ample to prevent		y = -5.11 R² :	1x + 363.595 = 0.999		Square	root of tin	ne. min½	y = -4.44X	
25			swell. If swell was obs	erved additional					equalo		,		
26			of repo	t.									

				t	Timely			1874 Forge	e Street	Tucke	er, GA	3008	4					
				TÊ. ST.	ENGINE	ERING		Ph: 770-93	8-8233		Л		8			-	Tested By	/ RI
					SOIL			Fax: 770-92	23-897:	3	A						Date	10/28/16
				\square	TESTS L	LC	,		tost-llc	com	Net	no kiu				Ch	ecked B	10
	Client Pr #			71 4175	- 2010, 2			lah PR #		<u>.com</u>				1692	-20-1	01		-0
F	Project Name		De	Kalb Fire Station	No.7			S. Type						U	D			
	Sample ID			22756/D-4				Depth/Elev.						20-	-22'			
	Location			-				Add. Info							-			
		Star	ndard Test Met	hod for One-Dime	ensional Consolid	lation Pro	perties	of Soils, A	STM I	02435	(Meth	od B)	/AAS	HTO	T 216			
				STEP #	ŧ 7													
#		Square Root	Dial Gauge	Pre	ssure* on													
oint	Time, min	of Time,	Reading,	Spec	imen. lbf/ft ²			Tim	e-Def	ormat	tion (Curve	e Fro	m Sc	quare	Root	of Time	
۲ ۲	0	min ^{1/2}	10 ⁻ in		1000	ı						M	etho	d				
1	01	0 32	357	- L	1000													
3	0.25	0.50	377	Selection	n 3		355											
4	0.5	0.71	377	m ₁	5.44		000									+		
5	1	1.00	377	m ₂	4.73			1										
6	2	1.41	377		•	Ш												
7	4	2.00	377			a	360	-										
8	8	2.83	377	X	Y			\										
9 10	15 30	3.87 5.48	378	0	374.28		-	•								••••••		
11	00	0.10	0/0	<u> </u>	070.01	4	365	-										
12																		
13				<i>d</i> ₀	374.3													
14				d ₉₀	377		B 070							·····				
15				d ₁₀₀	377		370											
16				d ₅₀	376		ر											
17				sq.root t	90 0.6													
18				t ₉₀ , mir	0.36		375	\mathbb{N}										
19				sq.root t	₅₀ 0.29													
20				t ₅₀ , mi	⁷ 0.08						Ť				~ • -			•
21				d=dial gauge Note: * - Reported	e reading, 10 in d Pressure is not		380		N					••••••••				
22				including seating p	cluding seating pressure of 100 psf		000	0	1		2		3		4		5	6
24				and possible ad pressure applied to	and possible additional vertical essure applied to sample to prevent						Sau	are r		time	min ¹	2		
25				swell. If swell was o	well. If swell was observed additional			+ 374.279 .000			Uqu		501 0	unie	,		y = 4	73x + 374.28
26				vertical pressure is of re	reported on page 1 port.													

				TIMELY			1874 Forg	ge Stre	et Tuc	ker, G	GA 300)84							
			TEST	Enginei	ERING		Ph: 770-9	38-823	33			8				Т	estec	BV	RI
				SOU				000.00	170	A	P	7				-	Г		10/28/16
				Thoma I			rax. 770-:	923-08	113		VANTO R	IC.							10/26/16
	T			I ESTS, L	LC	1	Web: <u>www</u>	w.test-l	lc.com							Che	eckec	Ву	18
Client Pr. a	#		71.4175	- 7			Lab. PR.	#					16	92-20	-1				
Project Name Sample II	e	De	22756/D-4	10.7			S. Typ)enth/Elev	e /						0D 20-22'					
Location	n		-				Add. Inf	v. o					2	-					
	Star	ndard Tast Mat	had for One Dimon	sional Cancalid	ation Pron	ortios	of Soils	ASTM	[D2/3	5 (Ma	thod	B)/A A	сит	ОТ)	16				
	Sta	nuaru rest met			ation Frop	erties	01 30118, 2	ASTN	D245	5 (IVIE	liiou	D <i>]</i> /AA	5111	012	10				
	Squara Poot	Dial Cauga	SIEP#	8															
# Time min	of Time.	Reading.	Press	sure* on			Tin	ne-De	form	atior	n Cur	ve Fr	om	Suna	re R	oot o	f Tir	ne	
DOI:	min ^{1/2}	10 ⁻⁴ in	Specim	en, lbf/ft ²			•••			anoi	l Cul	Meth	od	oquu					
1 0	0	378	2	000															
2 0.1	0.32	434	Colection	4															
3 0.25	0.50	435	Selection m.	4	1	370													
4 0.0 5 1	1.00	437		6.71			_												
	1.00	438		0.71			I												
7 4	2.00	439			_		+												
8 8	2.83	440	X	Y		390													
9 15	3.87	441	0	431.41				••••••											
10 30	5.46	442	┤ ╙────	430.13	1 ⁴ 7														
12					.10														
13			<i>d</i> ₀	431.4	ling	410								_					
14			d ₉₀	437	reac														
15			d ₁₀₀	438	ial														
16			d ₅₀	435															
17			sq.root t ₉₀	0.9		430													
18			1 ₉₀ , 11111	0.81															
20	-		t_{50} , min	0.43						T P									
20	-		d=dial gauge r	reading 10 ⁻⁴ in															
22			Note: * - Reported F	Pressure is not		450													
23			and possible addit	and possible additional vertical			0	1		2		3	3		4		5		6
24	┨		pressure applied to sa	sure applied to sample to prevent			31.415			Sc	quare	root	of tir	ne, m	in ^½			/=6.71×	+ 431.41
25	+		vertical pressure is rep	served additional ported on page 1	y =	R ² = 0.97	76										(- 0.7 1X 1	
20	1		of repo	rt.															

				TIMELY			1874 Forge	Street 7	Tucker, G	A 30084				
			TE ST	Enginei	ERING		Ph: 770-93	8-8233		8			Fested Bv	RI
				Sou			Eax: 770.0	02 0072	A				Data	10/20/16
				Trana I	I.G.		rax. 110-92	23-09/3	_	BIR OTHER			Dale	10/20/10
				I ESTS, L	LC		Web: <u>www</u> .	test-llc.co	<u>om</u>			Ch	ecked By	18
Client Pr. #			71.4175	1. 7			Lab. PR. #				1692-20	D-1		
Project Name Sample ID		De	22756/D-4	NO.7			S. Type Senth/Elev				20-22) ¹		
Location			-				Add. Info				-	•		
	Stor	ndand Tast Mat	had far Ona Dimar	cional Concolid	ation Dror	ontion	of Soila A	STM D2	125 (Mat	had D)/A		216		
	Sta	liuaru rest met			auon riop	Jeities	of Solis, A	51111 D2	435 (Wiel			210		
	Squara Poot	Dial Cauga	SIEP#	9										
* そ Time min	of Time.	Reading.	Pres	sure* on			Tim	e-Defoi	mation	Curve F	rom Sau	are Root	of Time	
Poir	min ^{1/2}	10 ⁻⁴ in	Specin	nen, lbf/ft ²				C Deloi	mation	Meth	od od			
1 0	0	442	4	1000										
2 0.1	0.32	659												
3 0.25	0.50	664	Selection	5		650				for a la second				
4 0.5	0.71	668	m ₁	18.71			4							
5 1	1.00	672	111 ₂	16.27										
6 <u>2</u>	1.41	676				660	N .							
8 8	2.00	680		V I			•							
9 15	3.87	685		653.95										
10 30	5.48	688	1	670.22	<u> </u>	670								
11 640	25.30	698			. 4 4									
12			·											
13				653.9	din	680								
14				675	rea									
15			<i>a</i> ₁₀₀	677	Dial	600								
16				666		090								
17			$sq.root t_{90}$	1.3				-						
18			l ₉₀ , mm	1.69		700								
19			t_{-1} min	0.63		700								
20				0.39			\ \					·		
21			Note: * - Reported	Pressure is not		710								
23			including seating pre	essure of 100 psf		110	0	4	8	12	16	20	24	28
24			and possible add pressure applied to s	and possible additional vertical essure applied to sample to prevent					94		of time n	nin½		
25			swell. If swell was ob	served additional	y = 18.7 R ²	12x + 653.9 = 0.975	46		Sq		or unite, I		y = 16.27x +	653.95
26			vertical pressure is re of repo	ported on page 1 ort.	L									

			TIMELY	7	1874 Forge Street Tucker, GA 30084
			TE ST ENGINE	ERING	Ph: 770-938-8233
					Fax: 770-923-8973 Date 10/29/16
			TESTS, I	LLC	Web: www.test-llc.com Checked By
Client Pr. #			71.4175		Lab. PR. # 1692-20-1
Project Name		De	eKalb Fire Station No.7		S. Type UD
Sample ID			22756/D-4		Depth/Elev. 20-22'
Location			-		Add. Info
	Sta	ndard Test Met	hod for One-Dimensional Consoli	dation Propertie	es of Soils, ASTM D2435 (Method B)/AASHTO T 216
			STEP # 10		
#	Square Root	Dial Gauge	Pressure* on	-	
E Time, min	of Time,	Reading,	Specimen lbf/ft ²		Time-Deformation Curve From Square Root of Time
а́	min ^{1/2}	10 ⁻⁴ in	Specifien, ibi/it	,	Method
1 0	0	699	8000	J	
2 0.1	0.32	1065	Selection 6	1 4040	
4 0.5	0.30	1105	m ₄ 36.41	1040	
5 1	1.00	1116	m ₂ 31.66		
6 2	1 41	1127		<u> </u>	
7 4	2.00	1136	4		
8 8	2.83	1144		1080	
9 15	3.87	1150	0 1077.73		
10 30	5.48	1158	1 1109.39	<u> </u>	
11 60	7.75	1164	4	0-4	
12 120	10.95	1176	d. 1077.7		
13 240	13.49 53.13	1108	$d_0 = \frac{1132}{1077.7}$		
14 2023	55.15	1190	d 1132	Ĕ	
15			d_{100} 1138		
17			sq root too 1 7		
18			t_{00} , min 2.80	1160	
19			s_{g_0} , $m_{t_{ro}}$ 0.82	1	
20			$t_{50}, min = 0.67$	1180	
21			d=dial gauge reading 10 ⁻⁴ in	<u> </u>	
22			Note: * - Reported Pressure is not	1200	
23			including seating pressure of 100 psf		0 5 10 15 20 25 30 35 40 45 50
24			pressure applied to sample to prevent		Square root of time $\min^{1/2}$
25			swell. If swell was observed additional		y = 36.409x + 1077.728 oquare root of time, finite $y = 31.66x + 1077.73R^2 = 0.963$
26			of report.		