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Summary 
In 2012, DeKalb County contracted P. Barry Ryan, PhD, Emory University, to conduct a study of the 
impact of DeKalb Peachtree Airport on air pollution and noise on the community surrounding the 
airport. Guided by the contract and the goals described in it, Ryan developed a plan to monitor air and 
noise pollution at DeKalb Peachtree Airport (PDK) and in the surrounding neighborhoods. This document 
is a Summary of results associated with the study.  
 

Nitrogen dioxide and BTEX concentrations, while higher nearer the Airport, are not clinically significantly 

different than levels found anywhere else in the urban community of Atlanta. The concentrations of 

contaminants found both on the Airport grounds and in the surrounding community are consistent with 

those found in metropolitan Atlanta as a whole and in other metropolitan areas around the country. 

Health standards such as the National Ambient Air Quality Standards (NAAQS) offer a comparison 

measure. NAAQS exist for nitrogen dioxide and PM. In neither case are the levels measured at any 

location close to standard for nitrogen dioxide of 53 ppm.  Average concentrations for this contaminant 

are in the 10-20 ppm range, well below the annual average health standard, and show only weak 

association with the Airport. Particulate matter measurements show potential violations of the PM 

standard on the Airport grounds. These measures are consistent with other measures of PM throughout 

the Atlanta Metropolitan Area that suggest Atlanta is in violation of the new 12 µg/m3. 

 

One issue of potential concern is the concentration lead particulate matter on the Airport grounds.  The 

NAAQS for lead is 150 ng/m3 based on a three-month rolling average. The concentrations of lead on the 

Airport grounds are higher than in typical locations in the urban, metro Atlanta area and the West site is 

often above this value. It should be noted that no level is considered acceptable for children. PDK may 

well be a source of lead contamination, primarily in the nearby community, but also for the region as a 

whole. This observation should be put in context, however, by noting that the highest levels on the 

Airport ground may only just exceed the NAAQS standards at one location and that dispersion and 

dilution are significant even over 100-200 m downwind, but still on the Airport grounds. Further, the 

phase-out of leaded aviation fuel products planned by the FAA in the coming years will likely mitigate 

this problem. The Airport Director reports that since 2014 all of the Airport’s motorized vehicles (other 

than aircraft) now use unleaded fuel. 

 

Analysis of real-time air pollution data from the airport grounds indicates the black carbon particulate 

matter and total fine particulate counts are associated with Maximum Take Off Weight (MTOW) of 

aircraft, but in an opposite sense. For black carbon particulate data, higher MTOW aircraft, particularly 

those over 66,000 lbs MTOW, are more likely to produce a transient air pollution increase than lighter 

aircraft. For total fine particulate matter, smaller aircraft, those less than 25,000 lbs MTOW and those 

with UNKNOWN MTOW characteristics are more likely to produce and air pollution transient event. 

 

The Airport does contribute to the noise pollution levels in the surrounding community. There are a 

significant number of events for which Airport traffic results in noise level exceedances that most would 

find troublesome. There is an association with the noise levels of jet aircraft with MTOWs greater than 

25,000 lbs, above 66,000 lbs and those with MTOWs greater than 75,000 lbs at the fixed noise 

monitoring sites. Identification of these aircraft offers the potential for mitigating the noise effects on 

the surrounding community Additionally, specific aircraft were associated with multiple noise threshold 
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exceedances and often these tail numbers were not associated with the largest aircraft that used at 

PDK. 

 

Introduction 
Peachtree DeKalb Airport (PDK) located in DeKalb County is the second busiest airport in Georgia with 
PDK staff reporting as many as 150,000 and 200,000 airport operations per year.   Approximately 40% of 
the flight operations at the Airport (landings and takeoffs are separate flight events) are by general 
aviation, small, piston engine aircraft.  The other 60% of the operations at PDK are by business jets with 
the largest jet regularly using the Airport a Gulfstream V. 
 
The principal runway at PDK is 5001 feet in length, with an additional 1000 feet on one end to be used 
as a touchdown apron (known in Federal Aviation Administration – FAA- parlance as a “displaced 
threshold.”)  The principal runway handles all of the jet traffic due to it being longer than the other 
runways.  It runs nearly due N/S, and currently provides takeoff and landing for individual aircraft up to 
75,000 lbs, with heavier aircraft allowed with special permission. All agree that the current practice at 
PDK is to permit all aircraft up to 75,000 lbs. to use the facility without having to obtain permission to do 
so.  
 
DeKalb County and the organization Open DeKalb, Inc. (Open DeKalb) agreed on the need to study the 
impact of aircraft emissions and aircraft noise events with specific goals in mind. These goals are 
attached to the contract between the County and Ryan/Emory and provided below.   The goals may be 
summarized by stating that both groups are fundamentally interested in the public, the Airport, and 
DeKalb County government having information about the potential health impacts of aircraft operations 
at PDK on the surrounding community so they can make informed decisions regarding Airport 
operations and management.  
 
 
 

Goals*  

The goal of the study is to collect hard data on the impact of PDK aircraft operations on air quality and 
noise over the geographic area reasonably impacted by the Airport.  The study must to the greatest 
extent possible: 

1. Analyze the air and noise pollution impacts of three categories of  aircraft, (a) those with 
certified maximum takeoff weights of 66,000 pounds or less, (b) those with certified maximum 
takeoff weights in excess of 66,000 pounds but less than 75,000 pounds, and (c) those with 
certified maximum takeoff weights of 75,000 pounds or more; 
 

2. not include air and noise pollution impacts from major vehicular highways near the Airport;  
 

 
3. not include air and noise pollution impacts from air traffic in and out of Hartsfield-Jackson 

Airport; 
 

4. provide analysis of PDK’s relative impact on air quality in the area, so that PDK emissions can be 
understood as one contributor to the area’s air and noise pollution, rather than with static 
figures for PDK’s emissions without any qualifying context for the figures; and 
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5. provide comparative analysis of similar airport’s(s’) emissions.   
 
The intent is to provide the DeKalb County Board of Commissioners, DeKalb CEO’s Office and the Airport 
Staff, and the public with the ability to make informed decisions about Airport operations.  As the 
County moves toward a Master Plan for the airport, policymakers, those who execute policy and those 
persons regularly impacted by the Airport either due to the location of their homes, offices or other 
regular physical contact with the Airport’s operations, must be able to weigh costs and benefits of 
Airport operations intelligently.  
 
*Per contract provided by PDK Airport/DeKalb County, April 22, 2011 

Data Collection 
The data collection effort was developed to achieve Goals 1-4.  Data collection fell in two separate 
areas: air sampling and noise event monitoring. Prior to initial data collection, we undertook modeling 
exercises to determine the most appropriate locations for taking air samples and monitoring noise 
potentially associated with the PDK.  Data collection commenced in March 2013 and concluded October 
2014.  Additional noise data were provided by PDK administration from their own recording devices.  
Transponder ID’s and associated MTOW along with takeoff and landing times for aircraft were provided 
by PDK. 

 

Air Sampling 
Based on known emissions from aircraft, Emory researchers selected a number of air contaminants for 
collection. These contaminants were selected as contaminants of direct concern for environmental 
health and as overall markers of contamination associated with combustion such as that associated with 
aircraft fuels. Each air contaminant selected for analysis is described below. Air sampling was performed 
in the community to establish the impact that PDK may have on its neighbors. Prior to selecting 
locations for community-based sampling, we performed dispersion modeling using the modeling system 
AERMOD, developed by the United States Environmental Protection Agency (USEPA) using ten years 
(2003-2012) of meteorological data to locate the local areas most likely impacted by air pollution from 
PDK. These modeling results suggested that predominant wind directions for over the course of a year 
were from west to east during most of the year and from the south during the summer. This is 
consistent with the primary direction for the principal runways at PDK. With this knowledge, we sought 
community settings primarily to the east and north of the PDK, but placed several monitors in the 
upwind directions for comparison. 
 

Air Pollutants Measured 

Nitrogen Dioxide 
Nitrogen dioxide is produced whenever there is an ongoing high-temperature combustion process, such 
as the burning of fuels in internal combustion engines. From a health effects perspective, nitrogen 
dioxide is a lung irritant.  Aircraft produce nitrogen dioxide upon taxiing, take off, and landing. Vehicular 
traffic on the airport ground also produces this compound. In addition, typical vehicular traffic on roads, 
e.g., cars, trucks, busses, diesel trains, etc., also produce nitrogen dioxide. In addition to health 
implications, this compound was also studied because nitrogen dioxide acts as a general tracer for 
combustion-related processes, helping us determine the relative magnitude of sources of combustion-
related contamination in and around PDK. By noting the concentrations around PDK and in the high-
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traffic highways and surface streets nearby, one can determine the relative impact of the Airport as a 
source of nitrogen dioxide potentially impacting the surrounding community. 
 

Specific Volatile Organic Compounds (VOCs) 
Volatile organic compounds (VOCs) are produced by incomplete combustion of fuels and by evaporation 
of fuels from storage, for example, fuel tanks in cars and in aircraft. Emory researchers chose to monitor 
the so called “BTEX” compounds, benzene, toluene, ethyl benzene, o,p-xylene, and m-xylene because, in 
addition to being precursors of ozone pollution, for which Atlanta is often in violation of EPA standards 
during the summer, and a contributor to smog, they act as tracers for automotive emissions and for 
aircraft emissions. Further, other investigations have monitored for these compounds affording direct 
comparisons with other studies (Goal 5.) Benzene is an EPA-recognized carcinogen that used to be 
present in most fuels including automotive gasoline, general-aviation fuels (AVGAS), and jet fuel. It has 
largely been removed from these fuels, although trace levels remain. Toluene is a significant component 
of gasoline, while the other compounds, ethyl benzene, o,p-xylene, and m-xylene, are present in 
somewhat lower concentrations in these fuels. In much the same way that nitrogen dioxide is used as a 
tracer to try to differentiate aircraft emissions from car and truck emissions, these compounds are as 
well. Concentrations of these compounds have been collected in numerous other studies of both 
airport-related air pollution and urban background pollution. Knowledge of their concentrations affords 
us the opportunity to study the impact of PDK on the local community relative to other sources.  
 

Fine Particulate Matter 
Particulate matter (PM) is an important contaminant in the Atlanta metropolitan area, with violations of 
the EPA standards common during the winter months and present during summer months as well. Fine 
particles (FP), particles with aerodynamic diameter less than 2.5 µm (about 1/40th the diameter of a 
human hair), penetrate deeply into the lungs and can produce myriad health effects including 
respiratory, cardiovascular, and neurological effects. Epidemiology suggests that both acute and long-
term exposure to particles on the smaller end of this scale, less than 1.0 µm or even less than 0.2 µm 
may be principally responsible for the damage in the human body. Various measures of these particles 
are available and Emory researchers have selected from among them for this study. 
 

Fine Particulate Mass 

Some health outcomes are thought to relate to the total mass of FP inhaled by an individual. Towards 
this end, researchers have developed the so-called “pump and filter” method of FP collection. Using the 
physics of particle movement in an airstream, it is possible to collect particles that are in the FP size 
range by passing air scrubbed of larger particles through a filter to collect them. Sampling for a 24-hour 
period allows us to collect sufficient mass to determine mean concentrations for that day, but also to 
collect enough material to afford analysis of the samples for their speciated content, that is the content 
of certain metals, most notably lead, within the general particulate matter collected. We use this 
method to do both; 1) determine the concentration of FP in the air; and, 2) determine the concentration 
of fine particulate metals, e.g., lead, in the air. EPA regulates fine particle in the air due to perceived 
health effects associated with population exposures. Lead is regulated separately as it has multiple 
known health effects and no benefit to health. 

 

Particle Number 

As we have noted, very fine particles (less than 1.0 µm) are currently thought to be of concern in terms 
of health outcomes. Small particles contribute little to the mass, but, because of their small size, have a 
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substantial surface area and can adsorb materials onto the surface. For these particles, mass does not 
give us the total picture. We need to address the number of particles to ascertain likely health impact. 
Further, combustion-related PM starts off as very small particles that agglomerate to form larger ones. 
Identification of such particles can guide our thinking regarding potential health effects and to identify 
sources that are “new” in the sense that the very small particles have not yet had time to “grow” into 
larger particles. 

  

Black Carbon 

The combustion of certain types of fuels occurs with a substantial amount of unburned hydrocarbon 
emission. Diesel trucks are noted for this in that they emit black smoke, especially when under load. 
Less-efficient combustion in certain older aircraft also produce this “black carbon” emission. Such 
particles are very small, often in the less than 1.0 µm size range. Further, the emissions themselves, 
especially in the case of diesel exhaust, are identified as carcinogens. The so-called “black carbon” 
measurements identify these types of emissions and give a signal as the background concentrations in 
the urban area and the contribution made by PDK. 
 

Metals  

As noted under particle mass, a component of that measurement is metal concentrations. Lead, in 
particular, is regulated separately. Since the removal of lead anti-knock agents from gasoline in the 
1980s, few sources of lead emissions are left in the urban setting. However, AVGAS (used in small, 
general aviation aircraft) is one important remaining source. Lead, thus, may be used as a tracer for the 
emissions from General Aviation aircraft in settings like PDK. 
 

Sampling Methods 
Monitoring data were of five types: passive, time-integrated air pollution data taken in the community, 
active, real-time (one- and five minute averaged) particulate data taken on the airport grounds, 
integrated particulate data (24-hour data taken on a six-day cycle) taken on the airport grounds, fixed-
site noise data taken from existing stationary monitors operated by airport personnel, and mobile noise 
data taken at various sites in the community on a rotating schedule. 
 
Volunteers were solicited for community-based passive monitoring and portable noise monitoring. 
There were few requirements for the passive air pollution monitoring; samplers are small and are placed 
inside an aluminum paint can, which is then placed in an out-of-the-way location on the volunteer’s 
property where it is left for a two-week sampling period, then retrieved and replaced with new 
samplers. These monitors allowed us to assess the levels of nitrogen dioxide, a common air contaminant 
associated with combustion sources, using one type of monitor, and a set of volatile organic compounds 
(VOCs).  
 
Selection of real-time data sites was done with the need for secure locations, electrical power, and 
access for servicing technicians. Integrated particulate sampling also required electrical power and thus 
was done in the same location as the real-time particle sampling.  
 
Real-time data were collected at four locations on the airport grounds: at either end of the principal 
runway, and both east and west of the principal runway and the approximate mid-point. Two types of 
data were collected. With one monitor called a condensation particle counter, or CPC, we collected data 
on total particle count for fine particles- those thought to produce the majority of health effects. The 
other monitor, the microAeth, also looked at fine particulate matter, but focused on what is referred to 
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as “black carbon”, which is essentially unburned hydrocarbons associated with diesel exhaust and 
aviation fuel. These instruments collect data on a real-time basis and average over adjustable time 
period ranging from a few seconds to five minutes. 
 
In an effort to understand potential particulate metal contamination, we outfitted each of the airport 
sites with pump-and-filter monitors that drew air through a filter that collected particulate matter less 
than 2.5 µm in aerodynamic diameter. When breathed in, such particles penetrate deeply into the lung 
and present the greatest potential for produce adverse health effects. This monitoring protocol 
produces data for one 24-hour period during each monitoring phase; it is not a real-time monitor. 
However, it does collect enough material to afford analysis of the chemical content of the particulate 
matter, unlike the CPC or the mircoAeth. By weighing the filter both before and after placement, we can 
determine the mass of particulate matter collected. Further, by knowing the air flow rate during 
sampling, we can determine the mass concentration (mass collected divided by the volume of air passed 
through the filter). Finally, by extracting the filters and performing analysis in the laboratory, we can 
determine the total amount of metal collected and its concentration. Our focus in this study was on lead 
in that general aviation aircraft, and potentially vehicles used only on airport grounds, use leaded fuel 
and could be a source of contamination in the community. 
 

Passive, Time-integrated Air Pollution Sampling in the Community  
The community-based passive sampling program began on March 13, 2013 and continued through the 
end of the investigation with the final samplers being collected on October 16, 2014 covering 19 
months. There were 41 two-week monitoring periods. Samples were collected at 14 sites as depicted in 
Figure 1. 
 

Noise Monitoring 
Noise monitoring was effected using two different strategies: fixed-site stationary noise monitoring, and 
mobile portable noise monitoring. These two strategies offer differing strengths. Through discussions 
with PDK personnel as well as representatives of the community, noise monitoring was thought to be 
most important along the glide paths to the north and south of the Airport essentially along an 
extension of the principal runway as it is the only runway that can handle larger jets.   
 
Stationary, fixed-site noise monitors have been placed about the community by airport personnel to 
ascertain the noise levels experienced in the community that might be associated with aircraft. These 
monitors record information on a continuous basis. Data can be readily downloaded and reports are 
available if the noise level exceeds certain levels (e.g., 90 or 93 dBA depending upon the site), a level 
that is likely to be noticed by individuals in their homes. These devices are maintained by the airport, are 
regularly calibrated, and record data on events including time of the event, and information on aircraft 
in the vicinity at that time. In this investigation, we obtained data at noise levels of 60 dBA and above. 
 
Airport staff offered us the use of a portable noise monitor. As the name suggests, the monitor can be 
moved from location to location to ascertain noise levels, for example, in the community. The portable 
noise monitor required access to electricity and thus we were more limited in location than the passive 
air monitoring sites. Further, the noise and air pollution monitoring locations had differing 
requirements. Hence the sites for the two forms of community monitoring, air pollution and noise, were 
generally distinct, although two sites did monitor both. The portable noise monitor was rotated among 
the noise sites. The monitor stayed in one location for two weeks, then was moved to the next. Over the 
approximately one-and-a-half-year monitoring period, each of the noise monitoring sites was monitored 
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for three two-week periods. Please refer to Figure 1 for the locations of the Community Noise 
Monitoring Sites.  
 
In order to tie noise events and air samples to specific types of aircraft as anticipated by Goal 1, we 
identified aircraft using their transponder signals using FAA radar feed information.  That was possible 
for approximately 60% of the aircraft using the airport because they aircraft can be identified by tail 
number, and thus specific aircraft types, through their transponder signals. The remaining 40% of the 
aircraft do not send out unique transponder signals, but rather a general signal that precludes unique 
identification of the aircraft. For aircraft with unique, identifiable, transponder signals, we researched 
each aircraft to ascertain its certified maximum takeoff weight to attempt to achieve Goal 1 of the study 
(comparing three categories of aircraft grouped by weight/size).   For the remainder of the aircraft, 
specific identification of aircraft type was not possible. However, the vast majority of such aircraft have 
low MTOW, certainly less than 25,000 lbs. These can be categorized separately or, as decided, combined 
with aircraft in the <25,000 lb MTOW category..   
 
While the noise monitors may indeed note and a high noise event defined as a noise event exceeded a 
particular threshold (see analysis), the aircraft type, call letters and other identifiers are not registered. 
In the databases thus obtained, these aircraft are listed as UNKNOWN. High noise events produced by 
such aircraft are indistinguishable from other noise sources in the community setting, including motor 
vehicles, landscape maintenance equipment, and other noise-producing devise.  
 
Similarly, except under very unusual circumstances, Hartsfield-Jackson would not contribute to the noise 
burden in the community surround PDK and, again, are considered part of the urban background for this 
pollutant. 
 
In addition to the noise and air pollution monitoring, we undertook the task of identifying individual 
aircraft participating in airport operations at PDK. We were able to identify over 8,000 unique aircraft 
that took off and landed at PDK during the monitoring period and to associate with each one a 
maximum take-off weight. Coupling these data with information from the noise monitors allows us to 
assess the relationship between noise levels and the weight of the aircraft. In addition, coupling these 
data with the Flight Event Data supplied to us in early 2018 affords direct correlation between specific-
aircraft MTOW and flight event timing. 
 
The “fleet mix” defined as the ratio of aircraft types participating in airport operations at PDK has 
changed substantially over the years. In the past, as many as 250,000 airport operations occurred 
annually at PDK. At that time, the fleet mix was dominated by general aviation aircraft, consisting of 
primarily single engine small aircraft, generally privately owned. These aircraft comprised as much as 
80% of operations historically. These aircraft use aviation fuel (AVGAS), which is a leaded fuel specially 
formulated for such aircraft. Since the fuel is leaded, general aviation aircraft are a source of lead in the 
environment, similar to automobiles built prior to about 1980.  
 
Currently, the fleet mix has shifted substantially towards jet aircraft, which now comprise about 60% of 
airport operations. Further, total airport operations have decreased to about 110,000 during our one-
year monitoring period with the most recent calendar year increasing to almost 160,000 operations. Jet 
aircraft use unleaded fuel similar to kerosene and produce essentially no lead emissions. In contrast to 
the general aviation aircraft, essentially all jet aircraft, from the smallest to the largest are specifically 
identifiable. This affords analysis of aircraft-specific threshold violations as described above. 
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Figure 1- Sampling locations for PDK Noise and Air Pollution Study. 

 

Legend:   Yellow push pins are the monitoring locations for the real-time air particle monitors, 

integrated particle mass sampling, and lead (Pb) sampling. 

Pink balloons are the community air monitoring sites 

Green push pins are the stationary noise monitor sites. 

Purple balloons are the community noise monitoring sites.  

Note that Air Site 7 and Noise Site 2 are monitored for both air pollution and noise (See text) 

 

The map spans a radius of approximately five kilometers from the center of PDK in all directions. 
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Parameter Monitored Beginning Date End Date Notes 

Passive Nitrogen 

Dioxide- Community 

15 March 2013 15 October 

2014 

Approximately 95% Data Recovery 

Passive Volatile 

Organics- Community 

15 March 2013 15 October 

2014 

Greater than 95% Data Recovery 

Noise- Community 15 March 2013 25 October 

2014 

Approximately 80% Data Recovery1 

Real-Time Particles- 

Airport, Multiple Sites 

15 October 

2013 

15 October 

2014 

Approximately 80% Data Recovery2 

Real-Time Black 

Carbon- Airport, 

Multiple Sites 

15 October 

2013 

15 October 

2014 

Approximately 80% Data Recovery2 

Particle Mass- Airport, 

Multiple Sites 

15 October 

2013 

15 October 

2014 

Approximately 90% Data Recovery 

Airborne Metals- 

Airport, Multiple Sites 

15 October 

2013 

15 October 

2014 

Approximately 90% Data Recovery 

Noise- Airport Run3 15 March 2013 15 October 

2014 

Data Recovery Not Known 

 
Table 1.  Parameter Monitored, the Start Date, End Date, and any Notes including data recovery 
percentages. 

Parameter Monitored, the Start Date, End Date, and any Notes including data recovery percentages. 
 

1. Monitor failed in May 2014 and required recalibration twice 
2. Particle monitors required refurbishing during sampling periods 
3. The airport runs four monitoring sites in the vicinity of the airport which also provided data for 

this study 
 
 

Results 

Air Pollution  

Community Nitrogen Dioxide 
The National Ambient Air Quality Standard (NAAQS) for nitrogen dioxide is 53 ppb averaged over one 
year. This standard applies to any location within a metropolitan area; if a single location exceeds the 
NAAQS then the entire region is in violation. Since the NAAQS are themselves averages over time, we 
used these same time averages in our assessment. It is worthy of note that the NAAQS is designed to 
afford essentially a no-effect level for health effects. Observed values below this level are assumed to 
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have no adverse health effects. No site in this study exceeded this standard for an annual average, or 
even for a single monitoring period.  
 
For nitrogen dioxide, data recovery was excellent. Data from one two-week monitoring period in August 
2014 was lost. Other than this data loss, only a small number of individual samples were lost. Overall, 
97% data recovery was achieved.  Averaging all of the data for all 14 sites across the 40 available 
monitoring periods results in an average concentration of 13.7 ppb. Therefore, the average 
concentration is well below the standard, which is, again, designed to afford essentially a no-effect level 
for health effects.  
 
There is some variability from site to site and across sampling periods with the highest two week-
average concentration of 24.6 ppb with the lowest two-week average concentration at 5.4 ppb. Since 
the NAAQS specified an annual average, a comparison with the 53 ppb standard requires a similar 
averaging process.  We note that averaging over the entire time period Sites B and D displayed the 
highest overall average of 16.9 and 16.4 ppb respectively, well below the Standard. We note that Sites B 
and D are the closest to the Airport while Site C is the farthest away, near the intersection of I85/I285, 
called “Spaghetti Junction” by locals. The lowest site was Site C, which averaged just under 10 ppb.  
These observations may suggest that PDK is a distinct source of Nitrogen Dioxide.  However, this 
observation must be tempered by noting that Sites B and D (and also 7, the next highest site) are located 
in an industrial area. Site B, in particular, is an automotive repair facility that may be expected to have 
elevated combustion-related concentrations.   
 
We also noted seasonal variability in nitrogen dioxide concentrations with winter values being 
somewhat higher than summer values. Averaging over all Sites, we note that the sampling period ending 
on January 2, 2014 displayed the highest average concentration at 20.7 ppb while the sampling period 
ending on July 10, 2014 had the lowest average concentration across all Sites of 9.7 ppb. This trend of 
higher values in the winter and lower values in the summer is reflected in both sampling years. This 
observation is somewhat unusual as other, non-Atlanta locations typically see the reverse trend. 
However, this trend in Atlanta has been observed by other studies.  We should note that PDK operations 
are typically somewhat lower during the winter months when compared with summer months. 
 
Our general conclusion for nitrogen dioxide sampling is that PDK may be contributing to nitrogen 
dioxide exposure in the near-field vicinity of the Airport (Sites 7, B, and D), but that the contribution is 
small. Once removed from the Airport by a little as 500 m, the contribution is not detectable above the 
urban background. Further, the levels for this pollutant are low overall, with no expected adverse health 
outcomes. Finally, the variability across the community is low- only a few ppb.  
 
Industrial areas, including those near the airport, have higher levels of this pollutant as do residences 
near major roadways. However, Site C, near the intersection of two major highways, displays the lowest 
values. We note little evidence of PDK as a major source of this contaminant. 
 
Our general conclusion for nitrogen dioxide sampling is that the results are consistent with observations 
made in the Atlanta metro area for this time period. Concentrations for this contaminant are associated 
with vehicular traffic and this is reflected in our observations; sampling locations close to major 
roadways (within 50 m of a major road) display somewhat higher concentrations- perhaps 2-3 ppb, than 
those more removed or in residential, low-traffic settings. 



 
 

 
 
Figure 2 Community-based Nitrogen dioxide data. Note that the National Ambient Air Quality Standard (NAAQS) of 53 PPB can be seen as the 
horizontal line connecting the Site Number Legend at the Top of the Graph.
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Community Volatile Organic Compounds (VOCs) 
The results for passive VOC sampling for the BTEX compounds reflects those found for nitrogen dioxide 
with some important differences. Data recovery for all compounds, other than benzene, was excellent 
with only a small handful of missing samples, exceeding 95% for all and approaching 99% for toluene. 
However, there were contamination problems in the first batch of samplers analyzed causing us to 
consider data through sampling ending on May 9, 2013 to be suspect. If these samples are discarded, 
out data recovery drops to about 90%, still in excess of the 75% data recovery expected by USEPA. 
Further, it gives us 17 months of BTEX data from the study. Only a small number of samplers had 
benzene levels exceeding the limit of detection. These occurred primarily at the automotive repair site 
and only very occasionally elsewhere. This may be expected as benzene, now considered a carcinogen 
by EPA, has been removed from many products and is present only in very small quantities in 
automotive and aviation fuel. 
 
Typical concentrations for these compounds were as follows: Benzene < LOD (0.1 µg/m3); Toluene 1-3 

µg/m3; Ethyl benzene 0.1-0.5 µg/m3; m-/p-Xylene 0.5-1.5 µg/m3, and o-Xylene ~0.5 µg/m3 (See Figure 3.) 

There are no appropriate standards for these compounds; however, the values reported here are 

consistent with those found in other urban areas. The Sites associated with higher nitrogen dioxide 

concentrations tended to have higher concentrations of these compounds as well. Again, the 

automotive repair facility was notable in being the highest Site consistently. This is in line with the 

presence of gasoline fumes at the site as gasoline can still contain trace quantities of this known 

carcinogen. Nevertheless, the values reported here were only on the high end of a continuum in the 

ranges noted throughout the rest of the community; they were not outliers. Further, variability within 

Sites across time and variability between Sites for each monitoring period or in averages was only about 

50%. This is compared with the factor of roughly 2 variability for nitrogen dioxide.  

Seasonal patterns were less pronounced in these compounds, however, summer was higher than 

winter. This is consistent with expected volatilization of these compounds from gasoline and other fuels. 

The formulation of automotive fuels is modified in the summer to reduce the amount of very volatile 

compounds, but these compounds, e.g., butadiene, do not fit into that category and are not measured 

effectively by passive sampling. Nevertheless, elevated temperature results in greater volatilization of 

BTEX in the summer. Our observations are consistent with this fact. 

The Sites nearest the airport do display higher concentrations than those further away. This may be due 

to the airport being a local source or, as discussed under nitrogen dioxide results, may result from the 

industrial facilities that serve as the monitoring Sites. Regardless, the differences are small between 

these sites and more residential areas and, again, reflect the concentrations of these contaminants 

found in other studies of urban areas. 



 

 

 
 

 

Figure 3- Community-based Toluene Concentrations. There are no National Ambient Air Quality Standards for Toluene. 

Typical values found nationwide are in the 1-10 mg/m3 range across the United States.  

 

Similar figures for  Ethyl Benzene , o-Xylene, m,p-Xylene 



Integrated Lead and Particle Sampling  
Integrated lead and particle sampling occurred at each of the locations on the airport grounds on a six-

day cycle beginning October 10, 2013 and continuing through the end of the study data collection effort 

in October 2014. A total of 59 samples were taken at each site. Overall data recovery was 94%, but data 

from the North site was problematic due to pump flow difficulties. Several samples at that site had to be 

voided yielding at 83% recovery at that site alone. Data recovery at the remaining three sites exceeded 

97%. 

Particle Mass 

Mean particle concentration for the duration of sampling were 19.3, 11.8, 13.3, and 11.9 µg/m3 for the 
North, East, South, and West sites respectively. The North location displayed not only the highest 
concentration, but also substantially more variability than the other sites. We note that the NAAQS 
standard for this contaminant is 12 µg/m3 based on an annual average and that the Atlanta 
metropolitan area is in violation of this standard. PDK grounds show similar values to the rest of Atlanta 
(13-16 µg/m3 annual average depending on location within the Atlanta metro area) with the North 
monitoring station, closest to the industrial area discussed previously, showing the highest values. 
Seasonally, there was a slight tendency for particulate matter concentrations to be higher in the spring 
and summer months and lower in the fall and winter months. This observation is consistent with Atlanta 
as a whole, but also may represent an effect of increased Airport operations during the warmer months, 
relative to the colder months. However, this effect is not large with spring/summer values only 1-3 
µg/m3 higher during those months as compared with cooler seasons.  One can conclude that the Airport, 
or perhaps the nearby industrial areas, contribute to particulate matter concentrations and that these 
concentrations exceed the NAAQS of 12 µg/m3. It is noteworthy that the North and South sites exceed 
the standard while the East and West sites are slightly below the standard suggesting that Airport 
activity, with the major N/S runway, may be contributing to particulate matter concentrations in these 
directions. 

 

Lead Aerosol 

We have analyzed these samples for a series of metals typically found in both combustion-related 
aerosol concentration and in windblown dust. In this Report, we report only the results for lead (Pb). 
Only lead has an NAAQS health-based standard. This value is 150 ng/m3 = 0.150 µg/m3, based on a 
three-month rolling average. Measured values of lead concentration in the air ranged from below our 
detection limit to approximately 300 ng/m3. The North and South sites displayed somewhat lower 
concentrations centering on about 50 ng/m3. The East monitoring station averaged somewhat higher, 
nearing 100 ng/m3. The West monitoring station reported the highest average values with typical values 
ranging between 100 and 200 ng/m3 to as high as 300 ng/m3.This is consistent with our observation that 
general aviation aircraft, which use AVGAS, a leaded-fuel, are often parked, cleaned, and serviced 
around the West sampling location. Further, prevailing winds would tend to come from the west toward 
the east, transporting lead-containing aerosol from the western edge of the airport toward the east. 
Sampling locations at the ends of the principal runways would likely be lower in that aircraft spend less 
time at this location. There is seldom a queue for takeoff as there might be for larger airports, hence 
aircraft taxi to the end of the runway and leave shortly thereafter.   It is also relevant that no sampling 
site was near a common landing location resulting in dispersion of aerosol and concomitant reduction in 
concentrations at the North and South sampling locations. There is little vehicular traffic near the sites 
other than the West location, suggesting that ground transport vehicles have little impact on the 
community with regard to lead.  
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The values found at the Airport are higher than those generally found in metropolitan Atlanta. This 
suggests that PDK may be a source of lead contamination in the surrounding community. The local area 
around the West site may approach the 150 ng/m3 value on occasion. It is unlikely that the other sites 
approach this value in any three-month period and did not do so during our monitoring. More study is 
needed to evaluate the lead dispersion from the airport into the surrounding community. 
 

Real-time Particle Data 

Real-time sampling occurred only on the airport ground in four secure Sites located and the two ends of 
the principal runway and perpendicular to the principal runway and a distance of between 50m and 
100m from the centerline at roughly at its midpoint. Sampling began on beginning October 10, 2013 and 
continuing through the end of the study data collection effort in October 2014 (See Figure 1 for 
Locations.) 

Data recovery for the real-time monitors was good, exceeding 75% when the monitors were in place. 
Each of the monitors had to be taken offline for software updates, repairs, and maintenance. Typical 
updates, maintenance, and repairs required shipping the instruments back to the manufacturer with a 
loss of sample collection for roughly two weeks each time. For the black carbon instruments (the 
microAeth), we elected to purchase two additional devices to ensure that backups were available. This 
was not possible for the particle counting apparatus (CPC) as the cost for the instruments was 
prohibitive. When only three CPCs were available, we rotated them around the four Sites on the airport 
grounds so that all Sites received approximately the same number of days of monitoring. 

Data from the continuous monitoring does not lend itself well to summary presentation as the data 
collected are averaged of very short durations (30 seconds to 300 seconds) for an entire year. Most of 
the data are low and constant, reflecting urban background concentrations, as no sources are present. 
However, spikes in levels of particulate matter are associated with airport operations, whether a take-
off, landing, or running an aircraft engine for maintenance purposes. Further, we can correlate spikes 
occurring in the four instruments located at different locations around the airport to identify events 
unique to one location, or perhaps influenced by meteorology, i.e., affected by which way the wind is 
blowing.   Since all air data are time stamped, we can correlate individual events with specific aircraft by 
noting if an airport operation occurred at that time and, especially, if such events can also be correlated 
with a noise event in a time window of a few minutes. We have been less successful with this type of 
analysis to the present. See Appendix 2 for an example of data output from the real-time monitors. 
 

What they do give, however, is an indication of when an “event” occurs where we define an event as 
when particulate matter counts increase substantially or “spike.” Spikes can be associated with airport 
operations of aircraft, maintenance activities on aircraft, or other activities that produce a large number 
of small particles in the air. Further, we can correlate spikes occurring in the four instruments located at 
different locations around the airport to identify events unique to one location, or perhaps influence by 
meteorology, i.e., affected by which way the wind is blowing. Finally, and most usefully, since all data 
are time stamped, we can correlate individual events with specific aircraft by noting if an airport 
operations occurred at that time and, especially, if such events can also be correlated with a noise event 
in a time window of a few minutes. We will discuss this below in regard to noise monitoring. 

The time-resolved data do net lend themselves to assessing particulate impact on the surrounding 
community in the same way as other measures. For nitrogen dioxide and BTEX compounds, the 
compound does not change after emission.  This is not the case with particles. Aerosol particle-size 
distributions change with “aging” of the aerosol as smaller particles as measured by these devices 
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change into larger particles due to accumulation and aggregation. As discussed above, such data are 
useful in assessing the impact of specific aircraft on fine particle concentrations closest to the airport. In 
order to determine the impact of ultrafine particulate matter as measured by these two instruments, we 
must make assumptions about the composition of the aerosol and of the rate at which it accumulates 
and aggregates. The differences we see between the upwind (generally the west site) and the downwind 
site (generally the east site) allow us to say that the concentrations of these ultrafine particles 
diminishes as we go across the airport grounds. However, we can identify aircraft as they land through 
the short-duration (a few minutes) spikes seen at the monitors. 

Air pollution monitoring was designed to assess the impact of PDK on the local community keeping in 
mind Goals 2 and 3 that required removing the effect of both noise and air pollution associated with the 
surrounding highway system (Goal 2) and the impact of Hartsfield-Jackson Atlanta International Airport 
(Hartsfield-Jackson) (Goal 3).  Since the concentrations of the air pollutants we have measured show no 
relationship with highway proximity (indeed the community site in closest proximity to the Interstate 
highways shows low contaminant levels) our results suggest that the surrounding highway system, while 
contributing to the general background pollution levels, does not offer direct impact into the community 
surrounding PDK. 
 
With regard to Goal 3, modeling work showed that air pollution associated with Hartsfield -Jackson 
would not be distinguishable by any measures utilized but, rather, would be part of the metropolitan 
urban air pollution background.  
 

Analysis of Air Pollution Event Data Using Maximum Takeoff Weight (MTOW) Levels 
The community surrounding DeKalb Peachtree Airport (PDK) considers the potential for air pollution 
impact on the region to be one of the major problems associated with proximity to the airport. As part 
of their investigations, Open DeKalb, a citizen’s action group, has requested information regarding the 
association of air pollution levels with aircraft operations, particularly with larger aircraft. Earlier work 
on this study focused on air pollution data collected at various sites within the community. These 
community-based data, suggested that, with the possible exception of the location approximately 100 m 
north of the PDK grounds, pollutant concentrations indistinguishable from other regions about 
metropolitan Atlanta. However, these data could give no information on the impact of aircraft as a 
function of Maximum Takeoff Weight (MTOW) as they represented data integrated over a two-week 
period. This document describes approaches to assessing the differential impact of MTOW of aircraft on 
air pollution levels in the vicinity of the airport runways. 

Initial Analytical Attempts 

During the study design phase of this investigation, it was assumed that information was available that 
would specify the timing of airport operations, i.e., take offs and landings, with some precision. Emory 
researchers designed an investigation that would monitor in real-time, particulate matter 
concentrations at four locations on the airport grounds using sophisticated monitors that measure 
particulate matter concentration on a minute-by-minute basis. By design, these monitors were placed at 
either end of the principal north-south runway approximately 50 m past the north and south ends as 
well as approximately mid-runway, perpendicular and approximately 100 m east and west of the 
principal runway (See Figure 1.) Aircraft, identified by transponder signal would be identified and, using 
a database developed by Emory researchers, the MTOW of the aircraft assigned. These data would then 
be correlated with air pollution measurements taken by the instrumentation described above. 
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While this design would have yielded information appropriate to the goal of this investigation, the data 
initially made available were not what was originally envisioned. Aircraft transponder data, that is, the 
information needed to identify individual aircraft and thus their MTOW, were available to us from Noise 
Monitor data. Noise monitors are located 2-5 km from the airport, not on the airport grounds. The 
portable noise monitor, which also supplies similar information, was moved from location to location in 
the community and was at distances from about 100 m north of the airport, to distances up to 3 km 
away from the airport grounds (See Figure 1.) As these data were not optimum, modification of the 
original plan was necessary. 

In January 2018, some 18 months after completing analysis using the limited noise monitor data on 
aircraft, we were given data on airport operations- the original data we had expected that would have 
allowed the analysis originally proposed. However, by that point, we had fully developed algorithm 
based on the air pollutant data and elected to continue with that analysis rather than abandon that 
process and revert to the original algorithm. We were satisfied that the analysis done in this fashion 
would afford quality results equivalent to what we would have obtained from the original analysis. We 
report here on the implementation of the alternative algorithm using the full Flight Event List data for 
the monitoring period. 

For a discussion of data processing for Real-Time Particle Data See Appendix 2- Data Processing of Real-

Time Particle Measures- A Detailed Description of the Algorithm Used with Illustrative Example 

General Information for Particle Analysis 

Table AP-1 presents a summary of aircraft operations during the monitoring period parsed by MTOW. 
The are two points of note. First, we have combined Aircraft with known MTOW less than 25,000 lbs and 
those with UNKNOWN characteristics into a single Weight Class, i.e., Weight Class 1.. This is consistent 
with the information supplied by PDK staff that most such aircraft, perhaps 95%, are likely General 
Aviation aircraft that fit into to this weight classification. This classification includeds nearly 88% of all 
airport operations at PDK. The second point of note is that we identified 137 airport operations for non-
fixed wing aircraft. These included 135 helicopter operations and two blimp operations. These 
operations have not been included in these analyses. 

 

 

 

 

 

 
Weight 
Class 

Criteria Number 

of Events 

Percent Cumulative 

Frequency 

-1* Non-Fixed Wing     137   0.13        137 

 1 UNKNOWN and <25,000 lbs 89,749 87.76   89,886 

 2 25,000 – 66,000 lbs   9,645   9.43   99,531 
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 3 66,000 – 75,000 lbs   1,786    1.75 101,317 

 4 >75,000 lbs      948     0.93 102,265 

 
*Not Considered in further analyses 

Table AP- 1  Summary of Airport Operations during the monitoring period commencing on October 10, 
2013 and continuing through October 10, 2014. 

Data Analysis- microAeth Black Carbon Data 

In the data collected at PDK Airport we used two different real-time monitors that measured particulate 

matter in the air. The first of these is the Black Carbon Aethelomoter sold under the name micrAeth ® 

(we refer to these data as Black Carbon or BC) that measures fine particles focusing on the component 

of these fine particles that are made up of finely divided , primarily unburned, carbon, which is a 

material consisting of very fine particles, general < 1.0 µm in diameter. Further, these particles are 

typically associated with diesel exhaust, and exhaust from the burning of kerosene and similar 

compounds, associated with jet fuel. The physics of how these instruments work is covered in some 

detail in the report above. The second is the Condensation Particle Counter (CPC) measured particles in 

the respirable (<2.5 µm in diameter) range. It is particles of this size that are of importance in human 

health effects.  

For the Black Carbon data, and subsequent Condensation Particle Data, we collect information at each 

of our sites on a real-time basis and average the results over 60 seconds to give concentrations (for BC 

data) or particle counts (for CPC data). Please refer to Appendix 2 Data Processing of Real-Time Particle 

Measures- A Detailed Description of the Algorithm Used with Illustrative Example for the details of the 

algorithm used. In brief, much of time, these instruments are measuring background concentrations 

typical of the Atlanta urban environment. Intermittently, the monitors identify Transient Particle Peaks 

or TPPs during which time the particle concentration increases substantially above background. Because 

of the large number of data gathered, we use a statistical determination of a TPP to identify when as a 

change from the average Black Carbon is “significant” in some sense. The instruments used are 

“counting instruments” in that the attenuation of a light beam associated with the presence of colored 

particle (BC) or the count the number of particles procedure (CPC). Background, urban air pollution 

results in a variable signal for these instruments. This signal, on average, varies slowly with time, but 

displays very short term variability that is statistical in nature. TPPs are observed, then, reflect a sudden 

change in BC levels increasing 10- or even 100-fold above the background level. These changes are 

transient; they last for only a very short period of time, generally less than five minutes. The key is 

identifying such peaks in the large amount of data available thereby addressing the question: How do 

we distinguish events from naturally occurring background variability. Let us examine a particular TPP to 

illustrate the process.  

Our algorithm identifies peaks as observations that differ from background level in a statistical sense. As 

pointed out, the concentrations vary slowly over time, and typically fluctuate within a range of a few 

ng/m3. However, excursions from this occur. The slowly varying concentrations are characterized by a 

mean level, that is the average levels observed, and a variation from this level that we can assess in a 

statistical sense through the standard deviation, a measure of the variability in the concentration over 

time of the background levels. We use the following definition. We define a TPPx as occurring when we 
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identify a concentration that exceed the mean concentration by x standard deviations. A TPP1 event 

occurs when the measured concentration exceeds the mean value by one standard deviation. A TPP5 

event occurs when the measured concentration exceeds the mean level by five standard deviations. A 

TPP15 event occurs when the measured concentration exceeds the mean background level by 15 times 

the standard deviation, and so on. If we assume normally distributed data, a TPP1 event would occur 

about 16% of the time by chance. A TPP2 event would occur less than 5% of the time. A TPP3 event, 

would be an exceeding rare event not likely to be observed by random chance and likely represents a 

true source of pollution. Higher level TPPx events are even less likely to occur by chance. 

Our process involves identifying TPP events and assessing whether such events are more likely to occur 

when specific Weight Classes of aircraft are evident through airport operations via the Flight Event Data 

describing airport operations at PDK. We present two different analytical schemes referred to as 

Heuristic Analysis and Logistic Regression Analysis. We describe each below and discuss the results 

obtained from these analyses. 

Heuristic Analysis 

Our Heuristic Analysis proceeds as follows. If air pollution events were not associated with aircraft 
MTOW, we would expect to see TPP percentages in line with the percentage of aircraft taking part in 
airport operations that fit into that category. This is most easily seen by an example. Consider a case in 
which we had 100 airport operations and two classes of aircraft. Suppose that a record of airport 
operations indicates that 65 of the aircraft were of Class A and 35 of the aircraft were of Class B. We 
then monitor air pollution events, say by the mechanism of TPP indicators discussed above. If the Class 
of the aircraft were not associated with TPP, then we would expect that the fraction of air pollution 
events associated with Class A aircraft would be about 65% and the fraction air pollution events 
associated with Class B aircraft would be about 35%. This is a “null” result; there is no association 
between aircraft class and air pollution events and the preponderance of events “associated” with Class 
A aircraft simply reflects the fact that more of those aircraft are present. 

Imagine now that we measure air pollution events and note that 70% of the time they are associated 
with Class B aircraft. Since this is twice the expected frequency if there were no fundamental association 
of such events with aircraft class- we would expect 35%- then we assert that there is an association of 
aircraft class and air pollution levels. 

We note here that we have 34,536 15-minute Time Segments in our study BC study. Inspection of Table 

BC-1 indicates that no aircraft is present during 10,374 or approximately 30.34% of the Time Segments. 

This reflects reduced frequency of airport operations during, for example, night hours. We further note 

that smaller aircraft (<25,000 lbs MTOW) and UNKNOWN aircraft (combined to give Weight Classes 1) 

are operational during the largest fraction of Time Segments. Weight Class 1 Aircraft are evident in 

69.96% of the total number of Time Segments and 96.88% of the Time Segments for which an aircraft is 

present.  The other Weigh Classes follow on. We note that larger aircraft, Weight Classes 3 and 4 are 

present in smaller fractions of Time Segments. By way of explanation, the total number of Time 

Segments parsed by Weight Class exceeds the total number of Time Segments overall as multiple 

aircraft can be present in the same Time Segment. 

Weight Class Time Segments 

with Aircraft in 

Class 

Percent of Total 

Time Segments 

Percent of Time 

Segments with 

Aircraft Present 
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No Aircraft 10,374 30.34 - 

Weight Class 1 24,162 69.96 96.88 

Weight Class 2   7,566 21.91 30.34 

Weight Class 3   1,689   4.89   6.77 

Weight Class 4      918   2.66   3.68 

 

Table HBC-1- Time Segments with Aircraft with Specific Weight Class present. Black Carbon. 

During the Black Carbon monitoring period, there were 34,536 15-minute Time Segments monitored. 

During this period 24,162 of the Time Segments had one or more aircraft present, while 10,374 Time 

Segments had no aircraft present. 

Transient Level Number Percent 

TPP 1 6,860 27.73 

TPP 3 1,954   7.90 

TPP 4 1,390 5.62 

TPP 5 1,050   4.24 

TPP 10 452    1.83 

TPP 15   258    1.04 

TPP 20    160    0.65 

TPP 25    107    0.43 

 

Table HBC-2- Number of Transient BC Particle Events occurring when Aircraft is Present. There are 

24,742 Time Segments with aircraft present  out of  total of 35,040 time segments. The total number 

of Time Segments with TPP events with aircraft- perhaps from more than one Weight Class present- is 

6,860 or 27.73%. 

For Black Carbon (BC), TPP events do not occur in every Time Segment. Most Time segments are 

characterized by urban background levels with no transient peaks noted anywhere on the airport 

grounds. Using the loose criterion of a transient excursion of one standard deviation from the 

background (TPP1), only 27.73% of the Time Increments show any excursion. As we look at exclusions of 

larger magnitude (TPP3, TPP5, etc.), the percentage of Time Segments where such excursion occur 

diminish to less than 10%, less than 5%, and less for higher TPPx respectively; these events are unusual. 

Transient events occur  approximately 39.72% of the time when aircraft are present. 

As a comparison, we present data showing the number of TPP events occurring when no aircraft are 
present. Of the 10,374 Time Segments when no aircraft are present, 3,326 or 32.06% display transient 
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events with the distribution of TPP events across the three levels that is similar to those for which 
aircraft were present. 

Transient Level Number Percent 

TPP 1 2,088 20.13 

TPP 3    761   7.34 

TPP 5    477   4.60 

 

Table HBC-3- Number of Transient Particle Events occurring when no Aircraft is Present. There are 

10,374 Time Segments with no aircraft present  out of  total of 35,040 time segments. The total 

number of Time Segments with TPP events with no aircraft present is 3,326 or 32.06% 

We now examine the association of transient events with the weight class of the aircraft present during 
such an event. Tables BC-5a and BC-5b present these results. Note that the numbers on the Total row of 
BC-5a do not quite match the ones due to the presence of multiple aircraft of a given classification in the 
same Time Segment. The data are presented in numbers of such events in BC-5a and in percentage in 
BC-5b. 

 Aircraft TPP1 TPP3 TPP4 TPP5 TPP10 TPP15 TPP20 TPP25 

WC1 70.36% 61.90% 64.64% 66.04% 67.52% 68.81% 67.44% 63.75% 68.22% 

WC2 22.03% 27.64% 25.54% 23.74% 22.86% 21.46% 22.48% 23.75% 22.43% 

WC3 4.92% 6.21% 5.83% 5.97% 5.33% 5.53% 5.81% 6.88% 5.61% 

WC4 2.68% 4.11% 3.99% 4.24% 4.29% 4.20% 4.26% 5.63% 3.74% 

 

Table HBC-4- A Comparison of the fraction of aircraft by Weight Class contributing to Transient 
Particle Peaks at various levels. 

A number of features stand out in this analysis. First, going across the columns in Table BC-4, we note 
that the percent, the fraction of all TPP for a given Weight Class does not vary greatly. Further, Weight 
Class 1 (<25,000 lbs and UNKNOWN) dominate the various TPP values. Larger aircraft, Weight Classes 2, 
3, and 4 make up smaller percentages of the TPP values. However, one does note that the fraction of 
aircraft in Weight Class 1 is consistently lower for the various TPP levels when compared to the number 
of aircraft of that type observed. For example, only 61.90% of TPP1 events are associate with Weight 
Class 1 while 70.36% of the aircraft observed are in this category. The opposite is true of Weight Classes 
3 and 4; a larger percentage of all TPP level events are associated with these aircraft when compared 
with the fraction of aircraft in the fleet mix during this monitoring period. The trend is less clear for 
Weight Class 2 aircraft although most of the TPP event levels also exceed the expected levels, with the 
Exception of TPP10. A graphical depiction of these data can be found in Figure BC-1. Visually we note the 
same trends, and note that they are more clearly represented in this visual display. 
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Figure HBC-1- A comparison of the fraction of each Weight Class associated with BC TPP events. 

The results of this analysis is compelling. In each case, there is a suggestion that larger aircraft may be 
producing a disproportionate fraction of TPP events, and again by analogy, air pollution on the airport 
grounds. Specifically, this Heuristic Approach suggests that larger aircraft may be contributing more to 
TPP events and, by analogy, to particulate air pollution, than smaller aircraft. This suggest the need for 
more sophisticated and detailed analysis. 

Logistic Regression Approach 

Logistic regression is a statistical method that puts what we have done in the Heuristic Approach on a 
firm statistical footing. The methods asks the question: Is the outcome of interest more likely to occur in 
one class of a variable than in another? In our analysis, the outcome of interest is the occurrence of a 
TPP event. The class of variables in our analysis is the Weight Class of the aircraft. We ask a series of 
questions, again similar to what we did in the Heuristic Approach: Is there any difference among the 
Weight Classes with respect to the probability of seeing a TPP event? Is Weight Class = 1, different from 
Weight Class 2, or Weight Class 3, etc.? In particular, we are interested in the relationship between 
Weight Classes 3 and 4, and the other classes. We explore all of the possible interactions. Further, we 
explore them for TPP1, TPP3, TPP4, TPP-5, TPP10, TPP15, TPP20, and TPP25 to see if there is a 
magnitude dependence, i.e., are there differences for larger peaks that may not be evident for smaller 
peaks. 

The results will be presented separately for the eight levels of TPP. We will present this in a series of 
tables showing the statistical results., which I will explain in detail for the first set describing the 
outcome of analysis for TPP1. In all of these analyses, the outcome variable is the probability that a TPP 
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event occurs given knowledge of the Weight Class. Further, we present separate analyses for the 
microAeth Black Carbon data for the Condensation Particle Counter (CPC) data. 

TPP1 

Our discussion begins with TPP1, transient peaks identified as being one or more standard deviations 
above the mean background level. Table LRBC1-1 presents the overall statistical significance of the 
model. We ask the statistical question: “What is the probability that we would have achieved a results 
such as the one we saw had there been, in truth, no effect associated with Weight Class We use the 
common statistical criterion that the probability, listed as p-Value, must be less than 0.05 in order to 
interpret the results as statistically significant and not due to random chance. In this case, we see that 
there is only a 2.15% chance that we would have seen an effect relating Weight Class to the presence of 
a TPP at the TPP1 level had there been no such relationship. Since our observed value is less than 5%, 
we deem this a statistically significant effect; Weight Class is associated with TPP-1. 

 

 Analysis of Effects 

Effect p-Value  

wgtclass 0.0215 

 
Table LRBC1-1. The overall statistical significance of a the model relating TPP-1 at Weight Class. 
 
This is an important result, but one that should be viewed with some caution. Recall that the criterion 
for TPP-1 is that a peak is defined as being present if the BC concentration exceeds the mean by one 
standard deviation. This is a very loose criterion as , if the statistical variability in the background levels 
was normally distributed, 16% of the time such a peak would occur just due to normal statistical 
fluctuation of the background levels. Nevertheless, such a result is suggestive of moving forward with 
the analysis, so we continue onward. 

The next analysis we present is to compare the probability ratios between each of the Weight Classes 
with the highest Weight Class. Here we are looking at the probability of a TPP1 level peak occurring with 
air craft in, say, Weight Class 1 (< 25,000 lbs MTOW or UNKNOWN) with the probability of a TPP1 event 
occurring with aircraft in Weight Class 4 (MTOW > 75,000 lbs). The “Point Estimate” is the best “guess” 
for this ratio. A value of 1.000 would imply that there is equal probability of noting a TPP1 event in 
Weight Class 1 and in Weight Class 4. This is a null result; there is no difference. What we note in this 
table is that all of the Point Estimates are less than 1.000 indicating that it is less likely to see a TPP1 
event in Weight Class 1 than in Weight Class 4. But this is the “average” result. In looking at all of the 
data for the two weight classes, we can make further statements. This is expressed in the “95% 
Confidence Limits.” The data we have collected allow us to say with 95% confidence (we would be wring 
5% of the time) that the true ratio lies between the two values. For the comparison of Weight Class 1 
with Weight Class 4, we are 95% confidence that the true ratio lies between 0.728 and 0.972. It is 
important that this 95% confidence limit does not cover the null value of 1.00 as this implies that this, 
too, is a statistically significant result and adds credence to the overall significance displayed in  Table 
LRBC1-1.  

Examining the rest of Table LRBC1-2, we note that two of the three comparisons indicate differences 
between the lower Weight Classes and Weight Class 4, i.e., in particular, Weight Class 4 is more likely to 
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give rise to a TPP1 event than Weight Class 1, as we have said, but also Weight Class 3. On the other 
hand, from a statistical point of view, we cannot say that Weight Class 2 differs from Weight Class 4. 

Odds Ratio Estimates 

Effect Point Estimate 95%  
Confidence Limits 

wgtclass 1 vs 4 0.841 0.728 0.972 

wgtclass 2 vs 4 0.901 0.776 1.047 

wgtclass 3 vs 4 0.820 0.686 0.981 

 
Table LRBC1-2. A Comparison of Odds Ratios between each Weight Class with the Referent Weight 
Class, Weight Class 4. 
 
At this point, we have established that Weight Class 4 is more likely to give rise to a TPP1 event than 
some of the other classes. We would like to compare all of the weight classes to each other, and group 
them in an appropriate way. We do this by “contrasting” the Weight Classes and determining whether 
they differ from one another.  These data are presented in Table LRBC1-3. We note that for the pairwise 
comparisons only Weight Classes 1 and 3 differ, as well as the previous information noting a difference 
between With Classes 2 and 4. Using these data and the data from Table LRBC1-2, we can establish a 
hierarchy of pairs. While Weight Class 4 is most likely, relative to the number of aircraft in this category, 
to produce a TPP-1 event,  Weight Class 2 is next most likely, although is does not differ appreciably 
from Weight Class 1 or Weight Class 3. 
 
But this simply says they are different; it does not give an ordering. Combining data from the two tables 
allows us to infer that in terms of probability of a TPP-1 event occurring, we rank the weight Classes as 
Weight Class 4 > Weight Class 2 > Weight Class 1 > Weight Class 3 This non-monotonic behavior may be 
due to differs of the fleet mix between Weight Class in terms of aircraft age, etc., but also may be due, 
at least in part, to the loose criterion associated with TPP1 as we will discuss presently. 
 

Contrast Test Results 

Contrast p-Value 

WgtClass=1 vs WgtClass=2 0.0590 

WgtClass=1 vs WgtClass=3 0.0165 

WgtClass=2 vs WgtClass=3 0.0532 

WgtClass 1, 2, 3 0.0341 

 
Table LRBC1-3. A Comparison of paired and grouped analyses of Weight Classes Odds Ratios. 
 

 

 

TPP3 

As mentioned above, TPP1 is a very loose criterion for the establishment of a true peak. Because of this, 
we repeated analyses for several other criteria and present the data sequentially. As we increase the 
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magnitude of the peak, i.e., increase the value x in the TPPx definition, we have more confidence that 
these criteria would result in more meaningful associations as they provide a definition of a “peak” that 
is larger in magnitude and more likely to be impactful on the larger community. However, this is 
tempered by the fact that each time we make the criterion more stringent, we reduce the number of 
sample peaks we have to contribute to our statistical analyses. Note that any TPPx with a lower value for 
x must contain all of the peak at the higher values. For example, a peak identified as TPP5, would also be 
identified as TPP3 since it would also exceed the criterion for inclusion in that category. So as we 
increase the value of x in TPPx, we reduce, often substantially, the number of peaks identified. 

We now examine TPP3, i.e., using a definition of a “peak” that requires a deviation from the mean of 
three standard deviations. In Table LRBC3-1, we note that the p-value does not meet out statistical 
significance criterion. We would see an effect this large approximately 30% of the time if there was, 
indeed no effect present through statistical variability. 

Analysis of Effects 

Effect p-Value 

wgtclass 0.3066 

 
Table LRBC3-1. The overall statistical significance of a the model relating TPP-3 at Weight Class. 
 
The overall model results are borne out again by the results given in Table LRBC3-2. We note a series of 
comparisons results comparing Weight Class 4 with the other Weight Classes. While all of the estimates 
are less than 1 suggesting that Weight Class 4 is more likely than the other Weight Classes to produce a 
TPP3 event, in all of the cases, the confidence limits span the null value of 1.000. We cannot conclude 
that the effect is statistically significance. We are forced to conclude that there is no difference in the 
likelihood of producing a TPP3 event that can be attributed to Weight Class 
 

Odds Ratio Estimates 

Effect Point Estimate 95%  
Confidence Limits 

wgtclass 1 vs 4 0.944 0.743 1.199 

wgtclass 2 vs 4 0.875 0.682 1.123 

wgtclass 3 vs 4 0.828 0.613 1.118 

 
Table LRBC3-2. A Comparison of Odds Ratios between each Weight Class with the Referent Weight 
Class, Weight Class 4. 
 
The results given in Table LRBC3-2 are borne out by the Contrasts displayed in Table R3-3. We note here 
that no pairwise comparisons nor any of the group comparisons even approach statistical significance. 
Hence we cannot infer that any of the Weight Classes is more likely than the others to give rise to a TPP-
3 than any of the others; there is no effect of Weight Class on TPP-3 and thus no inference of higher 
Weight Classes producing more BC air pollution. 
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Contrast Test Results 

Contrast p-Value 

WgtClass=1 vs WgtClass=2 0.4322 

WgtClass=1 vs WgtClass=3 0.3384 

WgtClass=2 vs WgtClass=3 0.2150 

WgtClass 1, 2, 3 0.3073 

 
 
Table LRBC3-3. A Comparison of paired and grouped analyses of Weight Classes Odds Ratios for TPP-3. 
 

TPP4 

We now show results for TPP-4 for which the criterion for a peak is that it exceed the mean plus four 
standard deviations. Such peaks would almost never occur purely by chance and one is safe in assuming 
that such an event is a real example of a TPP. Further, we chose TPP4 analysis because there appeared 
to be a break in the descriptive power at this level. 

Table LRBC4-1 present the overall significance of the relationship of TPP4 probability of occurrence and 
Weight Class. The p-value is less than our criterion for statistical significance (p<0.05) indicting that there 
is an association between Weight Class and TPP-4probability. However, we must keep in mind that this 
does not give us information on the shape of that curve. It does not, for example, suggest that the 
probability of observing a TPP4 event increases steadily with Weight Class, as we shall see. 

 

Analysis of Effects 

Effect p-Value 

wgtclass 0.0347 

 
Table LRB4-1. The overall statistical significance of a the model relating TPP-5 at Weight Class. 
 

The overall model results presented in Table LRBC4-1  are not readily borne out by the ensuing Tables. In 
Table LRBC4-2, we note the somewhat familiar pattern of point estimates being less than 1.000 
suggesting that Weight Class 4 is more likely to result in a TPP4  event occurring than are the other 
Weight Classes. However, all of the confidence intervals span the null result of 1.000. But we do note 
that the upper confidence intervals are near the 1.000 value, particularly the comparison between 
Weight Classes 2 and 4. Had we chosen a 90% confidence interval (accepting a 10% chance of being 
wrong) we might well have reached significance. 

Odds Ratio Estimates 

Effect Point Estimate 95%  
Confidence Limits 

wgtclass 1 vs 4 0.906 0.690 1.189 

wgtclass 2 vs 4 0.761 0.572 1.014 

wgtclass 3 vs 4 0.798 0.566 1.126 
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Table LRBC4-2. A Comparison of Odds Ratios between each Weight Class with the Referent Weight 
Class, Weight Class 4. 
 

The other paired comparisons have probability values that also approach significant, especially the 
comparison between Weight Classes 2 and 3. All of these “near misses” together results in the model 
being overall significant. 

Contrast Test Results 

Contrast Pr > ChiSq 

WgtClass=1 vs WgtClass=2 0.1803 

WgtClass=1 vs WgtClass=3 0.2696 

WgtClass=2 vs WgtClass=3 0.0937 

WgtClass 1, 2, 3 0.1595 

 

 

TPP-5 

We now show results for TPP5 for which the criterion for a peak is that it exceed the mean plus five 
standard deviations. Such peaks would almost never occur purely by chance and one is safe in assuming 
that such an event is a real example of a TPP. 

Table LRBC5-1 present the overall significance of the relationship of TPP-5 probability of occurrence and 
Weight Class. The p-value is less than our criterion for statistical significance (p<0.05) indicting that there 
is an association between Weight Class and TPP-5 probability. However, we must keep in mind that this 
does not give us information on the shape of that curve. It does not, for example, suggest that the 
probability of observing a TPP-5 event increases steadily with Weight Class, as we shall see. 

 

Effect p-Value 

wgtclass 0.0056 

 
 
Table LRBC5-1. The overall statistical significance of a the model relating TPP-5 at Weight Class. 
 
 
In Table LRBC5-2, we report the comparisons of lower Weight Class probabilities and those of Weight 
Class 4. We notice a steadily decreasing point estimate that suggest that the probability of observing a 
TPP5 event in a given Weight Class, relative to Weight Class 4, decreases. This implies that Weight Class 
1 has a higher probability of producing a TPP5 than Weight Class 2, Weight Class 2 has a higher 
probability then Weight Class 3, etc., which may seem counterintuitive. However, we note that all of 
these estimates have 95% confidence limits that cross the null value of 1.00. We cannot say with 
confidence that any of these values are different from Weight Class 4. 
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Odds Ratio Estimates 

Effect Point Estimate 95% Wald 
Confidence Limits 

wgtclass 1 vs 4 0.919 0.675 1.252 

wgtclass 2 vs 4 0.728 0.525 1.008 

wgtclass 3 vs 4 0.705 0.472 1.053 

 
 
 
Table LRBC5-2. A Comparison of Odds Ratios between each Weight Class with the Referent Weight 
Class, Weight Class 4. 
 
Finally, we look at all of the paired and grouped comparisons for TPP5 (See Table R5-3). While none of 
the -values reach p<0.05, the comparison of Weight Class 2 and Weight Class 3 comes very close. 
Combining the results shown in Table LRBC5-2 and LRBC5-3 gives us confidence, despite the overall 
significance of the model, that there is not a monotonic increase in the probability of noting a TPP5 
event related to Weight Class. 
 

Contrast Test Results 

Contrast p-Value 

WgtClass=1 vs WgtClass=2 0.2018 

WgtClass=1 vs WgtClass=3 0.1978 

WgtClass=2 vs WgtClass=3 0.0502 

WgtClass 1, 2, 3 0.1206 

 

 

Table LRBC5-3. A Comparison of paired and grouped analyses of Weight Classes Odds Ratios for TPP-5. 
 

TPP10 

We now show results for TPP-10 for which the criterion for a peak is that it exceed the mean plus ten 
standard deviations. Such peaks would almost never occur purely by chance and one is safe in assuming 
that such an event is a real example of a TPP. 

Table LRBC10-1 present the overall significance of the relationship of TPP-10 probability of occurrence 
and Weight Class. The p-value is less than our criterion for statistical significance (p<0.05) indicting that 
there is an association between Weight Class and TPP-5 probability. However, we must keep in mind 
that this does not give us information on the shape of that curve. It does not, for example, suggest that 
the probability of observing a TPP-5 event increases steadily with Weight Class, as we shall see. Further, 
we see that the overall model probability is approaching the 0.05 cutoff for statistical significance. 
Extrapolating from the TPP3, TPP4, and TPP5 results, we might have expected the TPP10 results to be 
strongly significant. However, we now are beginning to lose statistical power as the total number of such 
events has dropped below 500. 
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Analysis of Effects 

Effect p-Value 

wgtclass 0.0460 

 
Table LRBC10-1. The overall statistical significance of a the model relating TPP-10 at Weight Class. 
 
In Table LEB10-2, we see a trend similar to that seen in the TPP5 results. We also not an expansion in the 
95% confidence limits consistent with the reduced sample size a concomitant increase in statistical 
noise. Yet we continue to note the observation presented in Table LRBC10-1 that the model does show a 
statistically significant overall result. 
 

Odds Ratio Estimates 

Effect Point Estimate 95%  
Confidence Limits 

wgtclass 1 vs 4 0.958 0.600 1.530 

wgtclass 2 vs 4 0.702 0.427 1.153 

wgtclass 3 vs 4 0.752 0.412 1.374 

 
Table LRBC10-2. A Comparison of Odds Ratios between each Weight Class with the Referent Weight 
Class, Weight Class 4. 
 
The results given in Table LRBC3-2 are borne out by the Contrasts displayed in Table R3-3. We note here 
that no pairwise comparisons nor any of the group comparisons even approach statistical significance. 
Hence we cannot infer that any of the Weight Classes is more likely than the others to give rise to a TPP-
3 than any of the others; there is no effect of Weight Class on TPP-3 and thus no inference of higher 
Weight Classes producing more BC air pollution. 
 
 

Contrast Test Results 

Contrast p-Value 

WgtClass=1 vs WgtClass=2 0.4322 

WgtClass=1 vs WgtClass=3 0.3384 

WgtClass=2 vs WgtClass=3 0.2150 

WgtClass 1, 2, 3 0.3073 

 
 
Table LRBC10-3. A Comparison of paired and grouped analyses of Weight Classes Odds Ratios for TPP-
10. 
 

TPP15 
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We now show results for TPP15 for which the criterion for a peak is that it exceed the mean plus fifteen 
standard deviations. Such peaks would almost never occur purely by chance and one is safe in assuming 
that such an event is a real example of a TPP. 

Table LRBC15-1 present the overall significance of the relationship of TPP15 probability of occurrence 
and Weight Class. The p-value is greater than our criterion for statistical significance (p<0.05) indicting 
that there is an association between Weight Class and TPP-5 probability. However, we must keep in 
mind that this does not give us information on the shape of that curve. It does not, for example, suggest 
that the probability of observing a TPP15 event increases steadily with Weight Class, as we shall see. We 
now begin to see steon effects of the reduction of sample size. We have cut the numberof TPP events by 
another factor of two below that observed in TPP10 events. The sample is now only 258 observations. It 
is unlikely that, given the statistical noise in these data, we would see an effect.  

Analysis of Effects 

Effect p-Value 

wgtclass 0.4055 

 
Table LRBC15-1. The overall statistical significance of a the model relating TPP-10 at Weight Class. 
 
Wile we still seem the same pattern of point estimates in Table LRBC15 as in the results for TPP5 and 
TPP10, the confidence limits expand further and span 1.000 calling into questions the effectiveness of 
the model. 
 

Odds Ratio Estimates 

Effect Point Estimate 95%  
Confidence Limits 

wgtclass 1 vs 4 0.926 0.502 1.709 

wgtclass 2 vs 4 0.727 0.380 1.390 

wgtclass 3 vs 4 0.782 0.357 1.709 

 
 
Table LRBC15-2. A Comparison of Odds Ratios between each Weight Class with the Referent Weight 
Class, Weight Class 4. 
 
The results given in Table LRBC15-2 are borne out by the Contrasts displayed in Table R3-3. We note 
here that no pairwise comparisons nor any of the group comparisons even approach statistical 
significance. Hence we cannot infer that any of the Weight Classes is more likely than the others to give 
rise to a TPP15 than any of the others; there is no effect of Weight Class on TPP15 and thus no inference 
of higher Weight Classes producing more BC air pollution. 
 
 
 

Contrast Test Results 

Contrast p-Value 

WgtClass=1 vs WgtClass=2 0.5263 
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Contrast Test Results 

Contrast p-Value 

WgtClass=1 vs WgtClass=3 0.6263 

WgtClass=2 vs WgtClass=3 0.4005 

WgtClass 1, 2, 3 0.5025 

 
 
Table LRBC10-3. A Comparison of paired and grouped analyses of Weight Classes Odds Ratios for TPP-
15. 
 

TPP20 
We now show results for TPP-20 for which the criterion for a peak is that it exceed the mean plus twenty 
standard deviations. Such peaks would almost never occur purely by chance and one is safe in assuming 
that such an event is a real example of a TPP. 

Table LRBC20-1 present the overall significance of the relationship of TPP20 probability of occurrence 
and Weight Class. The p-value is greater than our criterion for statistical significance (p<0.05) indicting 
that there is not an association between Weight Class and TPP20 probability. However, we must keep in 
mind that this does not give us information on the shape of that curve. It does not, for example, suggest 
that the probability of observing a TPP20 event increases steadily with Weight Class, as we shall see. 
Further, the small number of TPP20 events substantially diminishes the statistical power to assess this 
effect. 

We report the same Tables for TPP20 and TPP25 here for completeness, but the reduction in sample size 
for TPP20 (N=160) and TPP25(N=107) makes it difficult for any statistically valid modeling results of this 
type to be undertaken. 

Analysis of Effects 

Effect p-Value 

wgtclass 0.5347 

 
Table LRBC20-1. The overall statistical significance of a the model relating TPP-20 at Weight Class. 
 

Odds Ratio Estimates 

Effect Point Estimate 95%  
Confidence Limits 

wgtclass 1 vs 4 0.662 0.334 1.313 

wgtclass 2 vs 4 0.581 0.280 1.206 

wgtclass 3 vs 4 0.700 0.289 1.697 

 
 
Table LRBC20-2. A Comparison of Odds Ratios between each Weight Class with the Referent Weight 
Class, Weight Class 4. 
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Contrast Test Results 

Contrast p-Value 

WgtClass=1 vs WgtClass=2 0.1703 

WgtClass=1 vs WgtClass=3 0.2999 

WgtClass=2 vs WgtClass=3 0.2327 

WgtClass 1, 2, 3 0.2189 

 
 
 
Table LRBC20-3. A Comparison of paired and grouped analyses of Weight Classes Odds Ratios for TPP-
15. 
 

TPP-25 
We now show results for TPP-25 for which the criterion for a peak is that it exceed the mean plus 
twenty-five standard deviations. Such peaks would almost never occur purely by chance and one is safe 
in assuming that such an event is a real example of a TPP. 

Table LRBC25-1 present the overall significance of the relationship of TPP-25 probability of occurrence 
and Weight Class. The p-value is greater than our criterion for statistical significance (p<0.05) indicting 
that there is not an association between Weight Class and TPP-25 probability. However, we must keep in 
mind that this does not give us information on the shape of that curve. It does not, for example, suggest 
that the probability of observing a TPP25 event increases steadily with Weight Class, as we shall see. 
Further, the small number of TPP25 events substantially diminishes the statistical power to assess this 
effect. 

We report the same Tables for TPP20 and TPP25 here for completeness, but the reduction in sample size 
for TPP20 (N=160) and TPP25(N=107) makes it difficult for any statistically valid modeling results of this 
type to be undertaken. 

Analysis of Effects 

Effect p-Value 

wgtclass 0.7293 

 
Table LRBC25-1. The overall statistical significance of a the model relating TPP-10 at Weight Class. 
 

Odds Ratio Estimates 

Effect Point Estimate 95%  
Confidence Limits 

wgtclass 1 vs 4 1.070 0.390 2.933 

wgtclass 2 vs 4 0.829 0.287 2.395 

wgtclass 3 vs 4 0.862 0.243 3.061 

 
Table LRBC25-2. A Comparison of Odds Ratios between each Weight Class with the Referent Weight 
Class, Weight Class 4. 
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Contrast Test Results 

Contrast p-Value 

WgtClass=1 vs WgtClass=2 0.9070 

WgtClass=1 vs WgtClass=3 0.9402 

WgtClass=2 vs WgtClass=3 0.7601 

WgtClass 1, 2, 3 0.8643 

 
Table LRBC25-3. A Comparison of paired and grouped analyses of Weight Classes Odds Ratios for TPP-
25. 

Summary of Data Analytic Results for Black Carbon 

The remaining air pollution data gathered were through real-time particle analyzers collectively referred 

to as Black Carbon microAeth data. This report focuses on those data. Particulate measurements are 

taken on a minute-by-minute basis at four locations on the airport grounds. Analysis of these data 

indicates the presence of basic background particulate levels punctuated by peak concentrations lasting 

several minutes at levels as much as 100 times higher than background. These high concentrations 

advect and disperse back to background in time frames of a few minutes. Our goal in this phase of the 

investigation was to correlate air pollution measurements, as indicated by these peaks in concentration- 

referred to as an “Transient Particle Peak” or TPP, with aircraft operation and identify, if possible, 

associations between these TPPs and aircraft maximum takeoff weight (MTOW). 

Two algorithms were developed to assess these correlations, based upon the identification of a time-

specified TPP and the presence of an aircraft in the vicinity, as indicated by transponder signal from 

stationary and mobile noise monitor data. The first, referred to as a Heuristic Approach relied on 

assessing whether a larger percentage of aircraft in heavier weight classes produced a disproportionate 

fraction of TPPs when compared to the fraction of aircraft of that type using the airport during the time 

frame of interest. The second algorithm relied on a statistical approach using logistic regression and 

performed a statistically rigorous assessment of the probability of an aircraft falling into a range of 

MTOW producing an TPP. We performed analysis at eight different TPP levels to assess not only the 

effect of MTOW on BC production but also to evaluate whther this impact was different for larger 

magnitude TPP events. 

The results of the Heuristic Approach suggested that larger aircraft were more likely to results in BC TPP 

events than those of smaller aircraft. Quantitatively, such aircraft produced about twice the number of 

TPP5 events, for example, events than might be expected given their contribution based on the fleet mix 

at PDK. But the approach was heuristic and, while appealing, would be difficult to defend from both a 

scientific and statistical point of view as it depends on a subjective view of the results with little 

quantitative support.  

The lack of a firm basis for the Heuristic Approach led us to pursue logistic regression as powerful 

statistical tool to evaluate the impact of aircraft MTOW on particulate air pollution levels. We performed 

logistic regression using the same eight levels of TPP in an effort to explain effects. For the lowest level, 

we showed a strong dependence on MTOW. However, this was a very weak measure of effect that was 

barely measurable, yet was still evident from this type of statistical analysis. Using a more reasonable 

level from TPP, namely TPP3 gave results that showed no difference among the various Weight Classes 
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and no predictive power by introducing Weight Class as a variable. Using a more stringent criterion for 

the presence of a TPP gave an unusual result in that, overall, there was an association between Weight 

Class and the probability of the TPP but that the effect was not increasing with MTOW but rather was 

significant because Weight Class 2 and Weigh Class 3 differed from one another, but not from the 

others. These varying results suggest that any statistically significant difference is likely to be in the 

lower magnitude peaks and may reflect different ages of aircraft in the Different Weight Classes. Higher 

levels of TPP, e.g., TPP10, TPP15, TPP20, and TPP25 were suggestive of an MTOW dependence, but 

suffered from small sample size as the number of such events diminished rapidly with increasing TPP. In 

summary, the effect of MTOW on BC TPP events was not strongly established by this analsysi The 

Heuristic Analysis was suggestive of such an effect and the low and intermediate levels of TPPP were 

suggestive as well bu inconsistent results do not offer strong support to inferences regarding an 

association between MTOW and BC TPP events. 

Data Analysis- Condensation Particle Counter (Total Particles < 2.5 µm) Data 

Heuristic Analysis 

We note here that we have 34,403 15-minute Time Segments in our study BC study. Inspection of Table 

CPC-1 indicates that no aircraft is present during 9,962 or approximates 28.96% of the Time Segments. 

This reflects reduced frequency of airport operations during, for example, night hours. We further note 

that smaller aircraft  (<25,000 lbs MTOW) and UNKNOWN aircraft (Weight Classes 1) are operational 

during the largest fraction of Time Segments. Weight Class 1 Aircraft in 70.23% of the total number of 

Time Segments and 98.86% of the Time Segments for which an aircraft is present.  The other Weight 

Classes follow on. We note that larger aircraft, Weight Classes 3 and 4 are present in smaller fractions of 

Time Segments. By way of explanation, the total number of Time Segments parsed by Weight Class 

exceeds the total number of Time Segments overall as multiple aircraft can be present in the same Time 

Segment. 

Weight Class Time Segments 

with Aircraft in 

Class 

Percent of Total 

Time Segments 

Percent of Time 

Segments with 

Aircraft Present 

No Aircraft 9,962 28.96 - 

Weight Class 1 24,162 70.23 98.86 

Weight Class 2   7,386 21.47 30.22 

Weight Class 3   1,657   4.82   6.78 

Weight Class 4      894   2.60   3.66 

 

Table HCPC-1- Time Segments with Aircraft with Specific Weight Class present. Black Carbon. 

During the Black CPC monitoring period, there were 34,403 15-minute Time Segments monitored. 

During this period 24,441 of the Time Segments had  one or more aircraft present, 9,962 Time 

Segments had no aircraft present. 
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For CPC, TPP events do not occur in every Time Segment. Most Time segments are characterized by 

urban background levels with no transient peaks noted anywhere on the airport grounds. Using the 

loose criterion of a transient excursion of one standard deviation from the background (TPP1), only 

35.19% of the Time Increments show any excursion. As we look at exclusions of larger magnitude (TPP3, 

TPP5, TPP15), the percentage of Time Segments where such excursion occur diminish to less than 20%, 

less than 10%, and about 1% respectively; these events are unusual. Transient events occur  

approximately 39.72% of the time when aircraft are present. 

 

Transient Level Number Percent 

TPP1 8,600 35.19 

TPP3 4,214  17.24 

TPP4 3,170 12.97 

TPP 5 2,441   9.99 

TPP 10    750    3.07 

TPP 15     297    1.22 

TPP 20     161    0.25 

TPP 25     110    0.45 

 

Table HCPC-2- Number of Transient CPC Particle Events occurring when Aircraft is Present. There are 

24,441 Time Segments with aircraft present  out of  total of 34,403 time segments. The total number 

of Time Segments with TPP events with aircraft- perhaps from more than one Weight Class present- is 

8,660 or 35.19%. 

We now examine the association of transient events with the weight class of the aircraft present during 
such an event. Tables BC-5a and BC-5b present these results. Note that the numbers on the Total row of 
BC-5a do not quite match the ones due to the presence of multiple aircraft of a given classification in the 
same Time Segment. The data are presented in numbers of such events in BC-5a and in percentage in 
BC-5b. 

Weight 
Class Aircraft TPP1 TPP3 TPP4 TPP5 TPP10 TPP15 TPP20 TPP25 

WC1 63.17% 74.39% 76.22% 76.30% 76.66% 78.41% 78.61% 77.72% 75.00% 

WC2 26.65% 19.22% 17.76% 17.66% 17.54% 17.88% 17.22% 18.65% 19.70% 

WC3 6.43% 3.96% 3.65% 3.61% 3.36% 2.07% 1.94% 1.55% 2.27% 

WC4 3.75% 2.44% 2.38% 2.43% 2.44% 1.64% 2.22% 2.07% 3.03% 

 

Table HCPC-3- A Comparison of the fraction of aircraft by Weight Class contributing to Transient 
Particle Peaks at various levels for CPC data. 
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A number of features stand out in this analysis. First, going across the columns in Table CPC-3, we note 
that the percent, the fraction of all TPP for a given Weight Class does not vary greatly. Further, Weight 
Class 1 (<25,000 lbs and UNKNOWN) dominate the various TPP values. Larger aircraft, Weight Classes 2, 
3, and 4 make up smaller percentages of the TPP values. However, one does note that the fraction of 
aircraft in Weight Class 1 is consistently higher for the various TPP levels when compared to the number 
of aircraft of that type observed. For example, 74.39%% of TPP1 events are associated with Weight Class 
1 while only 63.17% of the aircraft observed are in this category. The opposite is true of the other; a 
smaller percentage of all TPP level events are associated with these aircraft when compared with the 
fraction of aircraft in the fleet mix during this monitoring period.  

A graphical depiction of these data can be found in Figure CPC-1. Visually we not the same trends, and 
note that they are more clearly represented in this visual display. WE note here that it is clearly evident 
that it is clearly evident that Weight Class 1 aircraft or overrepresented in TPP events for all categories 
relative to their presence in the mix of aircraft present overall (Note the hoeght of the Blue coponets of 
the bars on the TPP bars relative to the Aircraft bar. While there may be a downward trend n this 
observation for higher TPP categories, these categories are less stable as the number of events 
decreases substantially above TPP10. 

 

 

 

Figure HCPC-1- A comparison of the fraction of each Weight Class associated with CPC TPP events. 
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The results of Heuristic Analysis of CPC TPP events is compelling. In each case, there is a suggestion that 
smaller aircraft may be producing a disproportionate fraction of TPP events, and again by analogy, air 
pollution on the airport grounds. This suggest the need for more sophisticated and detailed analysis. 

Logistic Regression Analysis 

Table LGCPC1-1 presents the overall statistical significance of the model. We ask the statistical question: 
“What is the probability that we would have achieved a results such as the one we saw had there been, 
in truth, no effect associated with Weight Class We use the common statistical criterion that the 
probability, listed as p-Value, must be less than 0.05 in order to interpret the results as statistically 
significant ad not due to random chance. In this case, we see that there is less than 0.01 chance that we 
would have seen an effect relating Weight Class to the presence of a TPP at the TPP-1 level had there 
been no such relationship. Since our observed value is less than 5%, we deem this a statistically 
significant effect; Weight Class is associated with TPP-1. 

 

TPP1 

 Analysis of Effects 

Effect p-Value  

wgtclass <.0001 

 
Table LRCPC1-1. The overall statistical significance of a the model relating TPP-1 at Weight Class. 
 
This is an important result, but one that should be viewed with some caution. Recall that the criterion 
for TPP1 is that a peak is defined as being present if the CPC mean concentration exceeds the mean by 
one standard deviation. This is a very loose criterion as 16% of the time such a peak would occur just 
due to normal statistical fluctuation of the background levels. However, CPC data are very noisy when 
compared to Black Carbon data resulting in a larger standard deviation. Nevertheless, such a result is 
suggestive of moving forward with the analysis, so we continue onward. 

The next analysis we present is to compare the probability ratios between each of the Weight Classes 
with the highest Weight Class. Here we are looking at the probability of a TPP1 level peak occurring with 
air craft in, say, Weight Class 1 (MTOW < 25,000 or UNKNOWN) with the probability of a TPP1 event 
occurring with aircraft in Weight Class 4- (MTOW > 75,000 lbs). The “Point Estimate” is the best 
statistical “guess” for this ratio. A value of 1.000 would imply that there is equal probability of noting a 
TPP-1 event in Weight Class 0 and in Weight Class 4. This is a null result; there is no difference. What we 
note in this table is that all of the Point Estimates are less than 1.000 indicating that it is less likely to see 
a TPP-1 event in Wight Class 0 than in Weight Class 4. But this is the “average” result. In looking at all of 
the data for the two weight classes, we can make further statements. This is expressed in the “95% 
Confidence Limits.” The data we have collected allow us to say with 85% confidence (we would be 
wrong 5% of the time) that the true ratio lies between the two values. For the comparison of Weight 
Class 0 with Weight Class 4, we are 95% confidence that the true ratio lies between 1.675 and 2.352. It is 
important that this 95% confidence limit covers the null value of 1.00 as this implies that this, too, is a 
statistically significant result and adds credence to the overall significance displayed in  Table LRCPC1-1.  

Examining the rest of Table LRCPC1-2, we note that two of the four comparisons indicate differences 
between the lower Weight Classes and Weight Class 4, i.e., in particular, Weight Class 4 is less likely to 
give rise to a TPP1 event than Weight Class 0, as we have said, but also Weight Class 1. On the other 
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hand, from a statistical point of view, we cannot say that Weight Class 2 or Weight Class 3 differs from 
Weight Class 4. 

 

Odds Ratio Estimates 

Effect Point Estimate 95% Wald 
Confidence Limits 

wgtclass 1 vs 4 1.474 1.273 1.707 

wgtclass 2 vs 4 0.970 0.833 1.130 

wgtclass 3 vs 4 0.825 0.688 0.989 

 
Table LRCPC1-2. A Comparison of Odds Ratios between each Weight Class with the Referent Weight 
Class, Weight Class 4. 
 
At this point, we have established that Weight Class 4 is less likely to give rise to a TPP1 event than 
Weight Class 1 but more likely to give rise to  TPP1 event than Weight Class 3 as in both cases, the 85% 
confidence limites do not span 1.000. We would like to compare all of the weight classes to each other, 
and group them in an appropriate way. We do this by “contrasting” the Weight Classes and determining 
whether they differ from one another.  These data are presented in Table LRCPC1-3. We note that for 
the pairwise comparisons, only Weight Class 1 and 2 differ from one another in a statistical sense. 
Using these data and the data from Table LRCPC1-2, we can establish a hierarchy of pairs. While Weight 
Class 1 is most likely, relative to the number of aircraft in this category, to produce a TPP1 event,  
Weight Class 3, with Weight Classes 2 and 4 is resulting in approximately the same likelihood of 
producing a TPP1 event. 
 
But this simply says they are different; it does not give an ordering. Combining data from the two tables 
allows us to infer that in terms of probability of a TPP-1 event occurring, we rank the weight Classes as 
Weight Class 1 > Weight Class 3 > Weight Class 2 ~ Weight Class 4. This behavior may be due to 
differences of the fleet mix between Weight Class in terms of aircraft age, etc., but also may be due, at 
least in part, to the loose criterion associated with TPP1 as we will discuss presently. 
 

Contrast Test Results 

Contrast P_Value 

WgtClass=1 vs WgtClass=2 0.0167 

WgtClass=1 vs WgtClass=3 0.2154 

WgtClass=2 vs WgtClass=3 0.1600 

WgtClass 1, 2, 3 0.4713 

 
Table LRCPC1-3. A Comparison of paired and grouped analyses of Weight Classes Odds Ratios. 
 

TPP3 

As mentioned above, TPP1 is a very loose criterion for the establishment of a true peak. Because of this, 
we repeated analyses for other criteria, particularly defining a peak only if it exceeded three standard 
deviations from the mean (TPP3), and four standard deviations from the mean (TPP4), etc. We have 
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more confidence that these criteria would result in more meaningful associations as they provide a 
definition of a “peak” that is larger in magnitude and more likely to be impactful on the larger 
community. We first examine TPP3, i.e., using a definition of a “peak” that requires a deviation from the 
mean of three standard deviations. 

Analysis of Effects 

Effect p-Value 

wgtclass <0.0001 

 
Table LRCPC3-1. The overall statistical significance of a the model relating TPP3 at Weight Class. 
 
Table LRCPC3-1 presents the overall results for the associations of Weight Class with TPP-3. As in the 
case for TPP1, we immediately we note the p-Value exceeds is well below the cut off for statistical 
significance (0.05). This tells us that there is a statistically significant difference in TPP3 probability 
associated with Weight Class. For this case we note that Weight Class 1 has a higher probability of 
producing as TPP-3 than Weight Class 4 , while the other Weight Classes show a non-significant effect in 
that the confidence limits displayed in Table LRCPC3-2 span the null values of 1.000. The differences 
noted between Weight Class 4 and Weight Classes 1 is sufficient to results in the highly significant value 
for the entire model. 
 

Odds Ratio Estimates 

Effect Point Estimate 95% 
Confidence Limits 

wgtclass 1 vs 4 1.515 1.249 1.838 

wgtclass 2 vs 4 0.930 0.760 1.138 

wgtclass 3 vs 4 0.790 0.618 1.009 

 
Table LRCPC3-2. A Comparison of Odds Ratios between each Weight Class with the Referent Weight 
Class, Weight Class 4. 
 
The results given in Table LRCPC3-2 are borne out by the Contrasts displayed in Table LRCPC3-3. We 
note that, despite the strong statistical significance of the model overall, we see no statistically 
significant differences in the contrasts. The difference between Weight Class 1 and Weight Class 2 does 
approach statistical significance. 
 
 

Contrast Test Results 

Contrast p-Value 

WgtClass=1 vs WgtClass=2 0.0826 

WgtClass=1 vs WgtClass=3 0.3912 

WgtClass=2 vs WgtClass=3 0.1451 

WgtClass 1, 2, 3 0.7243 

 
Table LRCPC3-3. A Comparison of paired and grouped analyses of Weight Classes Odds Ratios for TPP-
3. 
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TPP4  

We now examine TPP4, i.e., using a definition of a “peak” that requires a deviation from the mean of 
four standard deviations. Table LRCPC4-1 indicates a strong statistical association for the model. 

 

 Analysis of Effects 

Effect DF p-Value 

wgtclass 3 <.0001 

 
Table LRCPC4-1. The overall statistical significance of a the model relating TPP3 at Weight Class. 
 
This results is borne out bey the point estimate evident for the difference in TPPP4 likelihood between 
Weight Class 1 and Weight Class 4 presented in Table LRCPC4-2. Note that this relations is statistically 
significant- the confidence limits do not span 1.000 and that we observe the consistent result that 
Weight Class 1 has a larger likelihood of producing a TPP1 event. 
 

Odds Ratio Estimates 

Effect Point Estimate 95% 
Confidence Limits 

wgtclass 1 vs 4 1.453 1.170 1.803 

wgtclass 2 vs 4 0.906 0.722 1.137 

wgtclass 3 vs 4 0.774 0.587 1.020 

 
Table LRCPC4-2. A Comparison of Odds Ratios between each Weight Class with the Referent Weight 
Class, Weight Class 4. 
 
Looking at the remining contrasts in Table LRCPC4-3, we note that none have a statically significant 
result suggesting that the difference between Weight CAlss 1 and Weight class 4 is the driving force for 
the significance of the model. 
 
 

Contrast Test Results 

Contrast p-Value 

WgtClass=1 vs WgtClass=2 0.2137 

WgtClass=1 vs WgtClass=3 0.6182 

WgtClass=2 vs WgtClass=3 0.1361 

WgtClass 1, 2, 3 0.9556 

Table LRCPC3-3. A Comparison of paired and grouped analyses of Weight Classes Odds Ratios for 
TPP4. 
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TPP5 

We now show results for TPP-5 for which the criterion for a peak is that it exceed the mean plus five 
standard deviations. Such peaks would almost never occur purely by chance and one is safe in assuming 
that such an event is a real example of a TPP. 

Table LRCPC5-1 present the overall significance of the relationship of TPP-5 probability of occurrence 
and Weight Class. The p-value is less than our criterion for statistical significance (p<0.05) indicating that 
there is an association between Weight Class and TPP5 probability. However, we must keep in mind that 
this does not give us information on the shape of that curve. It does not, for example, suggest that the 
probability of observing a TPP5 event increases steadily with Weight Class. 

Analysis of Effects 

Effect p-Value 

wgtclass <0.0001 

 
Table LRCPC5-1. The overall statistical significance of a the model relating TPP5 at Weight Class. 
 
In Table LRCPC5-2, we report the comparisons of lower Weight Class probabilities and those of Weight 
Class 4. We notice a steadily decreasing point estimate that suggest that the probability of observing a 
TPP5 event in a given Weight Class, relative to Weight Class 4, decreases. This implies that Weight Class 
1 has a higher probability of producing a TPP5 than Weight Class 2, Weight Class 2 has a higher 
probability then Weight Class 3, etc., which may seem counterintuitive. However, we note that, as for 
TPP1 and TPP3, these estimates have 95% confidence limits that cross the null value of 1.00. We cannot 
say with confidence that any of these values are different from Weight Class 4. 
 

Odds Ratio Estimates 

Effect Point Estimate 95% 
Confidence Limits 

wgtclass 1 vs 4 1.447 1.135 1.845 

wgtclass 2 vs 4 0.896 0.695 1.157 

wgtclass 3 vs 4 0.704 0.513 0.966 

 
Table LRCPC5-2. A Comparison of Odds Ratios between each Weight Class with the Referent Weight 
Class, Weight Class 4. 
 

Contrast Test Results 

Contrast p-Value 

WgtClass=1 vs WgtClass=2 0.2952 

WgtClass=1 vs WgtClass=3 0.9435 

WgtClass=2 vs WgtClass=3 0.0876 

WgtClass 1, 2, 3 0.8135 

 
Table LRCPC5-3. A Comparison of paired and grouped analyses of Weight Classes Odds Ratios for TPP-
5. 
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Looking at the remaining contrasts in Table LRCPC5-3, we note that none have a statically significant 
result suggesting that the difference between Weight Class 1 and Weight Class 4 is the driving force for 
the significance of the model. 
 
TPP10 
We now show results for TPP-10 for which the criterion for a peak is that it exceed the mean plus ten 
standard deviations. Such peaks would almost never occur purely by chance and one is safe in assuming 
that such an event is a real example of a TPP. 

Table LRCPC10-1 present the overall significance of the relationship of TPP10 probability of occurrence 
and Weight Class. The p-value is less than our criterion for statistical significance (p<0.05) indicating that 
there is an association between Weight Class and TPP10 probability. However, we must keep in mind 
that this does not give us information on the shape of that curve. It does not, for example, suggest that 
the probability of observing a TPP5 event increases steadily with Weight Class. 

 

Type 3 Analysis of Effects 

Effect DF p-Value 

wgtclass 3 <.0001 

 
Table LRCPC10-1. The overall statistical significance of a the model relating TPP5 at Weight Class. 
 
In Table LRCPC10-2, we report the comparisons of lower Weight Class probabilities and those of Weight 
Class 4. We notice a steadily decreasing point estimate that suggest that the probability of observing a 
TPP5 event in a given Weight Class, relative to Weight Class 4, decreases. This implies that Weight Class 
1 has a higher probability of producing a TPP5 than Weight Class 2, Weight Class 2 has a higher 
probability then Weight Class 3, etc., which may seem counterintuitive. However, we note that, as for 
the lower TPP levels, these estimates have 95% confidence limits that cross the null value of 1.00 for 
Weight Classes 2 and 3. We cannot say with confidence that any of these values are different from 
Weight Class 4. However, for Weight Class 1 we see a larger point estimate indicating a larger difference 
between Wight Class 1 and weight Class 4 than for lower TPP levels. Further, the confidence interval, 
which is beginning to expand as sample size is reduced, does not span the null value of 1.000. We are 
quite confident that Weight Class 1 does differ from Weight Class 4. 
 

Odds Ratio Estimates 

Effect Point Estimate 95% 
Confidence Limits 

wgtclass 1 vs 4 2.215 1.321 3.716 

wgtclass 2 vs 4 1.427 0.836 2.436 

wgtclass 3 vs 4 0.640 0.318 1.288 

 
Table LRCPC10-2. A Comparison of Odds Ratios between each Weight Class with the Referent Weight 
Class, Weight Class 4. 
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Looking at the remaining contrasts in Table LRCPC10-3, we note that none have a statically significant 
result suggesting that the difference between Weight Class 1 and Weight class 4 is the driving force for 
the significance of the model. 
 

Contrast Test Results 

Contrast p-Value 

WgtClass=1 vs WgtClass=2 0.0295 

WgtClass=1 vs WgtClass=3 0.5444 

WgtClass=2 vs WgtClass=3 0.8764 

WgtClass 1, 2, 3 0.3919 

 
Table LRCPC15-3. A Comparison of paired and grouped analyses of Weight Classes Odds Ratios for 
TPP15. 
 
 
TPP15 
We now show results for TPP15 for which the criterion for a peak is that it exceed the mean plus fifteen 
standard deviations. Such peaks would almost never occur purely by chance and one is safe in assuming 
that such an event is a real example of a TPP. We note that the significant levels has increased to 0.0001 
from <0.0001. While still highly significant, we begin to see the effects of reduced sample size on the 
statistical significance of results. 

Type 3 Analysis of Effects 

Effect DF p-Value 

wgtclass 3 0.0001 

 
Table LRCPC15-1. The overall statistical significance of a the model relating TPP5 at Weight Class. 
 
In Table LRCPC15-2, we report the comparisons of lower Weight Class probabilities and those of Weight 
Class 4. We notice a steadily decreasing point estimate that suggest that the probability of observing a 
TPP5 event in a given Weight Class, relative to Weight Class 4, decreases. This implies that Weight Class 
1 has a higher probability of producing a TPP5 than Weight Class 2, Weight Class 2 has a higher 
probability then Weight Class 3, etc., which may seem counterintuitive. However, we note that, as for 
the lower TPP levels, these estimates have 95% confidence limits that cross the null value of 1.00 for all 
compariosns. We cannot say with confidence that any of these values are different from Weight Class 4. 
However, for Weight Class 1 we see a larger point estimate indicating a larger difference between Wight 
Class 1 and weight Class 4 than for lower TPP levels.  
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Odds Ratio Estimates 

Effect Point Estimate 95% 
Confidence Limits 

wgtclass 1 vs 4 1.629 0.802 3.308 

wgtclass 2 vs 4 1.011 0.482 2.123 

wgtclass 3 vs 4 0.424 0.147 1.226 

 
Table LRCPC15-2. A Comparison of Odds Ratios between each Weight Class with the Referent Weight 
Class, Weight Class 4. 
 
Looking at the remaining contrasts in Table LRCPC10-3, we note that none has a statically significant 
result. While not statistically significant for any one point estimate, the monotonically decreasing values 
in the point estimates given in Table LRCPC15-1 apparently are the driving force for the significance of 
the model. 
 

Contrast Test Results 

Contrast p-Value 

WgtClass=1 vs WgtClass=2 0.4914 

WgtClass=1 vs WgtClass=3 0.6527 

WgtClass=2 vs WgtClass=3 0.3077 

WgtClass 1, 2, 3 0.7552 

 
Table LRCPC15-3. A Comparison of paired and grouped analyses of Weight Classes Odds Ratios for 
TPP-15. 

 

TPP20 

We now show results for TPP20 for which the criterion for a peak is that it exceed the mean plus twenty 
standard deviations. Such peaks would almost never occur purely by chance and one is safe in assuming 
that such an event is a real example of a TPP. We note that the significant levels has increased to 0.0177. 
While still highly significant, we continue to see the effects of reduced sample size on the statistical 
significance of results. 
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Type 3 Analysis of Effects 

Effect p-Value 

wgtclass 0.0177 

 
Table LRCPC20-1. The overall statistical significance of a the model relating TPP5 at Weight Class. 
 
In Table LRCPC20-2, we report the comparisons of lower Weight Class probabilities and those of Weight 
Class 4. We notice a steadily decreasing point estimate that suggest that the probability of observing a 
TPP5 event in a given Weight Class, relative to Weight Class 4, decreases. This implies that Weight Class 
1 has a higher probability of producing a TPP5 than Weight Class 2, Weight Class 2 has a higher 
probability then Weight Class 3, etc., which may seem counterintuitive. However, we note that, as for 
the lower TPP levels, these estimates have 95% confidence limits that cross the null value of 1.00 for all 
comparisons. We cannot say with confidence that any of these values are different from Weight Class 4. 
However, for Weight Class 1 we see a larger point estimate indicating a larger difference between Wight 
Class 1 and weight Class 4 than for lower TPP levels.  
 

Odds Ratio Estimates 

Effect Point Estimate 95% 
Confidence Limits 

wgtclass 1 vs 4 1.741 0.642 4.726 

wgtclass 2 vs 4 1.166 0.413 3.295 

wgtclass 3 vs 4 0.425 0.095 1.904 

 
Table LRCPC20-2. A Comparison of Odds Ratios between each Weight Class with the Referent Weight 
Class, Weight Class 4. 
 
Looking at the remaining contrasts in Table LRCPC20-3, we note that none has a statically significant 
result. While not statistically significant for any one point estimate, the monotonically decreasing values 
in the point estimates given in Table LRCPC20-1 apparently are the driving force for the significance of 
the model. We further note the mitigation of the p-Values due to reduced sample size. 
 

Contrast Test Results 

Contrast p-Value 

WgtClass=1 vs WgtClass=2 0.4878 

WgtClass=1 vs WgtClass=3 0.7955 

WgtClass=2 vs WgtClass=3 0.5487 

WgtClass 1, 2, 3 0.9279 

 
Table LRCPC20-3. A Comparison of paired and grouped analyses of Weight Classes Odds Ratios for 
TPP20. 
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TPP25 
 
We now show results for TPP25 for which the criterion for a peak is that it exceed the mean plus twenty-
five standard deviations. Such peaks would almost never occur purely by chance and one is safe in 
assuming that such an event is a real example of a TPP. We note that the significant levels has increased 
to 0.2199. This level is no longer statistically significant according to our criterion. This is a manifestation 
of the effects of reduced sample size on the statistical significance of results. 

 
 

Type 3 Analysis of Effects 

Effect DF p-Value 

wgtclass 3 0.2199 

Table LRCPC15-1. The overall statistical significance of a the model relating TPP5 at Weight Class. 
 
In Table LRCPC25-2, we report the comparisons of lower Weight Class probabilities and those of Weight 
Class 4. Despite tehlack of statistical significance for the overall model, or the lack of statsitcal 
significance for the compariososn displayed in Table LRCPC25-2, we still note a steadily decreasing point 
estimate that suggest that the probability of observing a TPP5 event in a given Weight Class, relative to 
Weight Class 4, decreases. This implies that Weight Class 1 has a higher probability of producing a TPP5 
than Weight Class 2, Weight Class 2 has a higher probability then Weight Class 3, etc. However, we note 
that, as for the lower TPP levels, these estimates have 95% confidence limits that cross the null value of 
1.00 for all comparisons. We cannot say with confidence that any of these values are different from 
Weight Class 4. However, for Weight Class 1 we see a larger point estimate indicating a larger difference 
between Wight Class 1 and Weight Class 4 than for lower TPP levels, yet the pattern remains.  
 

Odds Ratio Estimates 

Effect Point Estimate 95% 
Confidence Limits 

wgtclass 1 vs 4 1.143 0.418 3.129 

wgtclass 2 vs 4 0.822 0.285 2.375 

wgtclass 3 vs 4 0.425 0.095 1.905 

 
Table LRCPC20-2. A Comparison of Odds Ratios between each Weight Class with the Referent Weight 
Class, Weight Class 4. 
 
Looking at the remaining contrasts in Table LRCPC25-3, we note that none has a statically significant 
result.  
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Contrast Test Results 

Contrast p-Value 

WgtClass=1 vs WgtClass=2 0.9518 

WgtClass=1 vs WgtClass=3 0.5351 

WgtClass=2 vs WgtClass=3 0.3712 

WgtClass 1, 2, 3 0.5732 

 

Table LRCPC25-3. A Comparison of paired and grouped analyses of Weight Classes Odds Ratios for 
TPP20. 
 
 

Summary of Data Analytic Results for Condensation Particle Concentrations  

The remaining air pollution data gathered were through real-time particle analyzers collectively referred 
to as CPC/microAeth data. This report focuses on those data. Particulate measurements are taken on a 
minute-by-minute basis at four locations on the airport grounds. Analysis of these data indicates the 
presence of basic background particulate levels punctuated by peak concentrations lasting several 
minutes at levels as much as 100 times higher than background. These high concentrations advect and 
disperse back to background in periods of a few minutes. Our goal in this phase of the investigation was 
to correlate air pollution measurements, as indicated by these peaks in concentration- referred to as an 
“Transient Particle Peak” or TPP, with aircraft operation and identify, if possible, associations between 
these TPPs and aircraft maximum takeoff weight (MTOW). 

Two algorithms were developed to assess these correlations, based upon the identification of a time-
specified TPP and the presence of an aircraft in the vicinity, as indicated by transponder signal from 
stationary and mobile noise monitor data. The first, referred to as a Heuristic Approach relied on 
assessing whether a larger percentage of aircraft in heavier weight classes produced a disproportionate 
fraction of TPPs when compared to the fraction of aircraft of that type using the airport during the time 
frame of interest. The second algorithm relied on a statistical approach using logistic regression and 
performed a statistically rigorous assessment of the probability of an aircraft falling into a range of 
MTOW producing a TPP. 

The results of the Heuristic Approach suggested that larger aircraft were more likely to results in TPP 
events than those of smaller aircraft. Quantitatively, such aircraft produced about twice the number of 
TPP events than might be expected given their contribution based on the fleet mix at PDK. But the 
approach was heuristic and, while appealing, would be difficult to defend from both a scientific and 
statistical point of view as it depends on a subjective view of the results with little quantitative support.  

The lack of a firm basis for the Heuristic Approach led us to pursue logistic regression as powerful 
statistical tool to evaluate the impact of aircraft MTOW on particulate air pollution levels. We performed 
logistic regression analysis using three levels of TPP in an effort to explain effects. The results of the 
statistically powerful logistic regression analysis in many ways contradicts the details of the Heuristic 
approach, but does conclude that there is an effect of MTOW on the production of TPP events. In 
particular, the Logistic Regression approach suggest that the smaller aircraft, particularly those with 
UNKNOWN MTOW or MTOW < 25,000 lbs, are more likely t produce TPP events than larter aircraft. Th 
Heuristic Approach suggested the opposite focusing attention on the larger aircraft. While there does 
seem to be a contradiction, the Logistic Regression Approach is far more powerful and is not subject to 
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unconscious biases that may be event in the Heuristic approach. Further, the differences seen in the 
Heuristic Approach were small and relied on a comparison of the fraction of aircraft in a particular 
Weight Class as the primary measurement. In this sense, it was a low-level analysis. More sophisticated 
analysis suggest that smaller aircraft, and those without identified MTOW are more likely to produce a 
TPP even, at all levels, i.e., TPP1, TPP3, and TPP5, than are larger aircraft. 

Summary of Data Analytic Results for Black Carbon and CPC Data as a Whole 

The remaining air pollution data gathered were through real-time particle analyzers collectively referred 
to as CPC/microAeth data. This report focuses on those data. Particulate measurements are taken on a 
minute-by-minute basis at four locations on the airport grounds. Analysis of these data indicates the 
presence of basic background particulate levels punctuated by peak concentrations lasting several 
minutes at levels as much as 100 times higher than background. These high concentrations advect and 
disperse back to background in time frames of a few minutes. Our goal in this phase of the investigation 
was to correlate air pollution measurements, as indicated by these peaks in concentration- referred to 
as an “Transient Particle Peak” or TPP, with aircraft operation and identify, if possible, associations 
between these TPPs and aircraft maximum takeoff weight (MTOW). 

Two algorithms were developed to assess these correlations, based upon the identification of a time-
specified TPP and the presence of an aircraft in the vicinity, as indicated by transponder signal from 
stationary and mobile noise monitor data. The first, referred to as a Heuristic Approach relied on 
assessing whether a larger percentage of aircraft in heavier weight classes produced a disproportionate 
fraction of TPPs when compared to the fraction of aircraft of that type using the airport during the time 
frame of interest. The second algorithm relied on a statistical approach using logistic regression and 
performed a statistically rigorous assessment of the probability of an aircraft falling into a range of 
MTOW producing an TPP. 

The results of the Heuristic Approach suggested that larger aircraft were more likely to results in BC TPP 
events than those of smaller aircraft while the converse was true for CPC TPP events. Quantitatively, 
such aircraft produced about twice the number of TPP events than might be expected given their 
contribution based on the fleet mix at PDK. But the approach was heuristic and, while appealing, would 
be difficult to defend from both a scientific and statistical point of view as it depends on a subjective 
view of the results with little quantitative support.  

The lack of a firm basis for the Heuristic Approach led us to pursue logistic regression as powerful 
statistical tool to evaluate the impact of aircraft MTOW on particulate air pollution levels. We performed 
logistic regression using three levels of TPP in an effort to explain effects. For the lowest level, we 
showed a strong dependence on MTOW. However, this was a very weak measure of effect that was 
barely measurable, yet was still evident from this type of statistical analysis. Using a more reasonable 
level from TPP, namely TPP-3 gave results that showed no difference among the various Weight Classes 
and no predictive power by introducing Weight Class as a variable. Using a more stringent criterion for 
the presence of a TPP gave an unusual result in that, overall, there was an association between Weight 
Class and the probability of the TPP but that the effect was not increasing with MTOW but rather was 
significant because Weight Class 2 and Weigh Class 3 differed from one another, ut not from the others. 
These varying results suggest that any statistically significant difference is likely to be in the lower 
magnitude peaks and may reflect different ages of aircraft in the Different Weight Classes. 

 

 



 

 

51 

 

Noise Monitoring 

Data Analysis 

Preliminary Analysis of Fixed-Site Monitoring Data 

The surrounding community considers airport-related noise to be one of the major problems associated 
with DeKalb Peachtree Airport (PDK). As part of their investigations, Open DeKalb, a citizen’s action 
group, has requested information regarding the association of noise with larger aircraft. Earlier work on 
this study (Study of Air Pollution and Noise Impact on the Community Surrounding DeKalb Peachtree 
Airport, Chamblee Georgia. P. Barry Ryan October 2015) focused on data collected at fixed sight 
monitors calibrated to indicate Noise Events in which the noise level exceeded either 90 dBA (at site 
NMS2, NSM3, and NSM4) or 93 dBA at NSM1. Table S-1 repeats the results of those analyses here. 

Maximum Takeoff Weight Percent of Airport Operations Percent of Noise Events 

<25,000 lbs 86.45 74.03 

25,000 – 66,000 lbs  9.03 12.12 

66,000 – 75,000 lbs 3.47 12.55 

>75,000 lbs1 1.04 1.30 

1. Only 50 aircraft operations and 3 complaints noted. 

Table S-1. Comparison of aircraft fleet mix at PDK Airport and percentage of Noise Violations above 
from Fixed Site Monitors. Noise threshold violations occur when one or more fixed-site noise monitors 
measure more than 90 dBA. Total number of unique aircraft identified: 4783 unique identified aircraft.  
Total number of noise threshold violations: 231. 
 
In this Table, we present information on airport operations involving aircraft of different Maximum 
Takeoff Weights (MTOW). The first column classifies these weights into four categories The second 
column identifies the percentage of airport operations in each of these categories, while the third 
column identifies the percentage of Noise Events associated with each weight class. If there were no 
association of MTOW with Noise Events, then one would expect the percentage of Airport Operations 
and Noise Events to be the same. We note, however, that the percentage of Noise Events is lower than 
the percentage of Airport operations for the lowest MOTW weigh class The percentage of Noise Events 
for the higher weight classes, in particular those with MTOW greater than 66,000 lbs, suggest an 
increased likelihood of producing a “Noise Event” defined as an exceedance of the cutoff threshold 
defined above. We note that very few events were associated with the highest weight class (>75,000 
lbs) so those data should be viewed cautiously. On the other hand, there were numerous Noise Events 
associated with the 66,000 – 75,000 lbs class and the percentage of Noise Events exceeds the value 
expected given the fraction of Airport Operations in the weight class by a factor of nearly four. These 
results suggest a positive association of Noise Events with MTOW 

Open DeKalb was interested in these results, but was surprised by the small number of Noise Events 
identified. Discussion with PDK staff indicated that many more data were available for Noise Events at 
lower levels ranging as low as 60 dBA. They requested that further analysis look into differing thresholds 
for Noise Events. Emory researchers agreed to do so. The analysis is presented below 
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Full Analysis of Fixed-Site Monitoring Data 

In March 2016, we were supplied with a much richer dataset on Noise Events by staff at PDK comprised 
of all recorded data commencing on October 1, 2013 and continuing through September 30, 2014.   As 
was the case with the preliminary dataset, our analysis begins with the notion of categorizing an Noise 
Events of varying intensity with MTOW of aircraft. Table N1 defines the Weight Classes used in these 
analyses. These Weight Classes were selected based on both FAA classification and the requirements of 
the Contract  to understand the impact of classes of MTOW on noise levels. The weight classes are the 
same as those used in the previous analysis discussed above. Finer graduation analysis is possible but 
Open DeKalb expressed primary interest on the larger MTOW weight classes. 

We investigated all events recorded by fixed site noise monitors around the airport grounds during the 
monitoring period. There were 58,722 recorded noise events during this time. Of these 20,366 (38.39%) 
were General Aviation aircraft without transponders, precluding specific identification of the aircraft 
type. However, it should be noted that that aircraft not equipped with transponders are usually 
privately owned, smaller aircraft with MTOW typically under 10,000 lbs and often under 3,000 lbs 
MTOW. The remaining 32,121 Noise Events with identifiable aircraft included 6,462 were unique 
(different aircraft) with differing tail numbers. In this analysis, and subsequent analysis, we have 
combined all aircraft with identified MTOW < 25,000 lbs and those categorized as UNKNOWN, into a 
single weight class, Weight Class = 1 (See Table N1 below.)  Additionally, we have categorized aircraft 
into three additional Weight Classes with associated MTOW identified in N1. 

 

Weight Class MTOW (lbs) 

1 <25,000 + UNKNOWN 

2 25,001 – 66,000 

3 66,001 – 75,000 

4 >75,000 

 

Table N1- Weight Classifications for Aircraft Maximum Takeoff Weight 

In Table N2, we display a categorization of all noise events parsed by Weight Class. In excess of 89% of 
the noise events are associated with aircraft in Weight Class 1, consistent with the fraction of total Flight 
Events at PDK for this Weight Class. Further, we note the small percentage of Noise Events associated 
with the larger aircraft, but further note that there are still significant number of such events occurring 
for Weight Class 3, about three per day, and Weight Class 4, approximately two per day on average. The 
aircraft percentages for each weight class are consistent with he observed airport operations data. 

Weight Class Frequency Percent Cumulative 
Frequency 

Cumulative 
Percent 

1 52487 89.38 52487 89.38 

2 4537 7.73 57024 97.11 

3 1084 1.85 58108 98.95 

4 614 1.05 58722 100.00 
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Table N2. Noise Event frequency by MOTW Weight Class for the 58,722 identified events the 
monitoring period. 

The primary focus of this analysis is to identify whether there is an association between Noise Events, 
defined as an exceedance of some threshold noise level, with MTOW of aircraft. We have selected six 
Noise Event categories for analysis. These were selected based upon inspection of the new data 
supplied to us in March 2016 by PDK staff. The levels are presented in Table N3. The lowest level defined 
for Noise Events, < 70 dBA, represent a noise level that would be unlikely to interfere with any activities. 
Typical conversation is at about 60-65 dBA, for example. We then chose 5 dBA increments as these 
increments represent a noticeably different level of noise. We grouped all reported values above 90 dBA 
in one category at the top end for two reasons. First, any value in this range would results in disruption 
in enjoyment of the surroundings. Secondly, we wanted to ensure that there were sufficient numbers of 
Noise Events to allow assessment of associations as there are relatively few such events at these levels. 
AS an aside, it is important to note that the typical duration of these Noise Events at any particular 
location centers on 10-20 seconds. 

In an effort to understand the data we have presented the overall noise categorization both in tabular 
from (See Table N4) and in graphical form, Figure N5.   It is evident from both the Table and the figure, 
that Events in Category 6 (>90 dBA) are unusual, yet they occur on average once per day. The mode is in 
Category 2, which are events in the 70-74.9 dBA range. There are significant numbers of events in 
Categories 3 and 4, spanning the range of 75-85 dBA. 

Noise Event Category Noise Event Level 

1 <70 dBA 

2 70 – 74.9 dBA 

3 75 – 79.9 dBA 

4 80 – 84.9 dBA 

5 85-89.9 dBA 

6 ≥ 90 dBA 

 

Table N3- Noise Event Level Classifications 
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Noise Event Category Frequency Percent Cumulative 
Frequency 

Cumulative 
Percent 

< 70 dBA 13307 22.66 13307 22.66 

70 – 74.9 dBA 20564 35.02 33871 57.68 

75 – 79.9 dBA 10218 17.40 44089 75.08 

80 – 84.9 dBA 11308 19.26 55397 94.34 

85-89.9 dBA   2948 5.02 58345 99.36 

≥ 90 dBA     377 0.64 58722 100.00 

 

Table N4- Tabular depiction of Noise Events by Noise Category 

 

Figure N1- Graphical depiction of Frequency of Noise Events by Noise Category. 

 

Heuristic Analysis 

Table N2 presents the frequency of Noise Events associated with each weight class. We note that nearly 
90% of  aircraft operations during the monitoring period were attributable to Weight Class 1 aircraft 
(those with MTOW < 25,000 lbs or with UNKNOWN characteristics) while approximately 2.9% (162 
events) are associated with the largest aircraft, i.e., those over 75,000 lbs MTOW. Two-hundred sixty 
(6.24%) Noise Events were associated with larger aircraft, i.e., >66,000 lbs. As pointed out in the 
discussion of previous work, If Noise Events occurred randomly and were not associated with the size of 
the aircraft, one would expect to note approximately the same fraction of aircraft in the larger weight 
classes to be associated with each noise class. 
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Tables N4 a-f present such analysis of such data. In these tables, data are presented for each individual 
Noise Event Category for each weight class. Table 4a present data for Noise Category 1, Table 4b for 
Noise Category 2, and so on. 

Table N4a presents the MTOW breakdown for the lowest category of Noise Event, those registering < 70 
dBA on the monitors. The 13,307 such events represent approximately 22.7% of the total number of 
Noise Events recorded in during the monitoring period. Of these 13,307 events, 226 (1.70%) are from 
the larger aircraft, Weight Classes 3 and 4, somewhat below the expected 2.90% of aircraft associated 
with all Noise Events noted in Table XXX2. 

 

Noise Category=1 

WgtClass Frequency Percent Cumulative 
Frequency 

Cumulative 
Percent 

1 12433 93.43 12433 93.43 

2 648 4.87 13081 98.30 

3 170 1.28 13251 99.58 

4 56 0.42 13307 100.00 

 
Table N4a- Data presented for Noise Category 1, < 70 dBA 
 
Table N4b presents the MTOW breakdown for the second category of Noise Event, those registering 70 - 
75 dBA on the monitors. The 20,564 such events represent approximately 35.0% of the total number of 
Noise Events recorded during the monitoring period; this Noise Category has the largest fraction of 
Noise Events during this period. Of these 20,564 events, 254 (1.24%) are from the larger aircraft,  
Weight Classes 3 and 4, below the expected 2.90% of aircraft associated with all Noise Events noted in 
Table N2. 
 

Noise Category=2 

WgtClass Frequency Percent Cumulative 
Frequency 

Cumulative 
Percent 

1 19429 94.48 19429 94.48 

2 881 4.28 20310 98.76 

3 175 0.85 20485 99.62 

4 79 0.38 20564 100.00 

 
Table N4b- Data presented for Noise Category 2, 70-75 dBA 
 
 
Table N4c presents the MTOW breakdown for the third category of Noise Event, those registering 75 - 
80 dBA on the monitors. The 10,218 such events represent approximately 17.0% of the total number of 
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Noise Events recorded during the monitoring period. Of these 10,218 events, 315 (3.08%) are from the 
larger aircraft, Weight Classes 3 and 4,  similar to expected 2.90% of aircraft associated with all Noise 
Events noted in Table N2.  
 

Noise Category=3 

WgtClass Frequency Percent Cumulative 
Frequency 

Cumulative 
Percent 

1 8985 87.93 8985 87.93 

2 918 8.98 9903 96.92 

3 174 1.70 10077 98.62 

4 141 1.38 10218 100.00 

 
Table N4c- Data presented for Noise Category 3, 75 – 80 dBA 
 
Table 4d presents the MTOW breakdown for the fourth category of Noise Event, those registering 80 - 
85 dBA on the monitors. The 11,308 such events represent approximately 19.3% of the total number of 
Noise Events recorded during the monitoring period. Of these 11,308 events, 739 (6.54%) are from the 
larger aircraft, well above the expected 2.90% value given in Table N2.  
 

Noise Category=4 

WgtClass Frequency Percent Cumulative 
Frequency 

Cumulative 
Percent 

1 8950 79.15 8950 79.15 

2 1619 14.32 10569 93.46 

3 447 3.95 11016 97.42 

4 292 2.58 11308 100.00 

 
 
Table N4d- Data presented for Noise Category 4, 80-85 dBA 
 
Table 4e presents the MTOW breakdown for the fourth category of Noise Event, those registering 85 - 
90 dBA on the monitors. The 2,948 such events represent approximately 5.0% of the total number of 
Noise Events recorded during the monitoring period. Of these 2,948 events, 139 (4.72%) are from the 
larger aircraft, somewhat more than the expected 2.90% value given in Table N2.  
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Noise Category=5 

WgtClass Frequency Percent Cumulative 
Frequency 

Cumulative 
Percent 

1 2413 81.85 2413 81.85 

2 396 13.43 2809 95.28 

3 97 3.29 2906 98.58 

4 42 1.42 2948 100.00 

 
 
Table N4e- Data presented for Noise Category 5, 85-90 dBA 
 
 
Table 4f presents the MTOW breakdown for the sixth category of Noise Event, those registering >90 dBA 
on the monitors. The 377 such events represent approximately <1% of the total number of Noise Events 
recorded during the monitoring period. Of these 377 events, 25 (6.63%) are from the larger aircraft, a 
value larger than the expected 2.90% value given in Table N2.  
 
are from the larger aircraft. However, the number of Noise events of this type, i.e., >90 dBA, is 
comparable with the multi-month analysis presented in the October 2015 Report (Study of Air Pollution 
and Noise Impact on the Community Surrounding DeKalb Peachtree Airport, Chamblee Georgia. P. Barry 
Ryan October 2015), which covered an 18-month period.  
 
Figure N2 is a bar chart displaying the same data that was present in Table N2 and  Tables N4a-f and is a 
graphical presentation of the same data is given in Figure N2. The first bar on the left of the Figure N2 is 
the fraction of aircraft in each Weight Class noted in the Noise Monitoring data. The remaining six bars 
represent the fraction of observations for each of the Noise Categories labeled at the bottom. In each of 
the seven bars, the component of the bar representing Weight Class -1 has been truncated so that 
differences in the bars is more easily seen. Our Heuristic Analysis claims that, if there were no effect of 
MTOW on the likelihood of experiencing a Noise Event, then the bars, which are the fraction of aircraft 
of that Weight Class that were noted, should match the fraction of aircraft in that Weight Category. For 
example, if 15% of the aircraft were of Weight Class 3 and Weight Class was not predictive of Nosie 
Events, then 15% of Noise Events would be associated with Weight Class 3. A larger or smaller than 
expected value, would indicate an effect of Weight Class. 
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Noise Category=6 

WgtClass Frequency Percent Cumulative 
Frequency 

Cumulative 
Percent 

1 277 73.47 277 73.47 

2 75 19.89 352 93.37 

3 21 5.57 373 98.94 

4 4 1.06 377 100.00 

 

Table N4f- Data presented for Noise Category 6, >90 dBA 
 
The trends is more easily seen in this graphical representation. In the lower Weight Classes, the fraction 
of aircraft in Weight Class 1 that contribute to the Noise Category is higher than expected, while the 
fraction from the higher Weight Classes is less than expected.  In the upper Noise Category ranges, the 
fraction of aircraft from Weight Class 1 contributing to the Noise Category diminishes, while those of 
higher Weight Classes increases. This is particularly noteworthy for Weight Class 2 as one sees clearly 
that component of the stacked bar chart becomes larger as the categories increase in noise level. While 
somewhat less clearly depicted, but still evident, Weight Class 3 also displays the same behavior. There 
is a sense from this presentation that a similar trend may be evident for Weight Class 4, but the data are 
subject to more variability as the number of aircraft from Weight Class 4 is quite small in the higher 
Noise Categories. 
 
In summary, our Heuristic Analysis suggests that the likelihood of experiencing a Noise Event at a higher 
level increases with the MTOW of the aircraft and that smaller aircraft are associated with Noise Events 
at lower levels. Further, the data indicate that moderate Noise Events, those below 80 dBA are about 
three times more prevalent than those above that level (See Table N4 and Figure N1.) 
 
The result of this investigation contrast somewhat with those of the first investigation. However, they 
are not directly comparable, except for, perhaps Noise Category 6. This is because the Noise Events 
themselves are not the same. In the initial analysis, data were only available for the high-level Noise 
Events. This work looked at a number of different levels, which we now discuss. 
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Figure N2. - Graphical depiction of Frequency of Noise Events by Noise Category. 

 

Logistic Regression Analysis 

Logistic regression is a statistical method that puts what we have done in the Heuristic Approach on a 
firm statistical footing. The methods asks the question: is the outcome of interest more likely to occur in 
one class of a variable than in another? In this analysis, the outcome of interest is the occurrence of a 
Noise Event. The class of variables in our analysis is the Weight Class of the aircraft. We ask a series of 
questions, again similar to what we did in the Heuristic Approach: Is there any difference among the 
Weight Classes with respect to the probability of seeing a Noise Event? Is the probability of experiencing 
a Noise Event (of any particular magnitude) different if a Weight Class 1 aircraft is present from, say, a 
Weight Class 2 aircraft being present? In particular, we are interested in the relationship between 
Weight Classes 3 and 4, and the other classes, as these are the Weight Classes containing the higher 
MTOW aircraft. We explore all of the possible interactions. Further, we explore them for Noise Category 
1, Noise Category 2, etc., to evaluate whether there is a trend associated with aircraft MTOW and the 
magnitude of the Noise Event., and i.e., are there differences for higher noise levels that might not be 
present for lower noise levels. Evidence from our Heuristic Analysis suggests that there might be 
significant trends of this type. 

The results will be presented separately for the six Noise Categories. We will present this in a series of 
tables showing the statistical results., which will be explain in detail for the first set describing the 
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outcome of analysis for Noise Category 1. In all of these analyses, the outcome variable is the probability 
that a Noise Event occurs given knowledge of the Weight Class.  

 

Analysis for Noise Category 1 

 

To begin this analysis, through inspection of Figure N1, our Heuristic Analysis suggests that the fraction 
of aircraft associated with Category 1 Noise Events is higher than expected for Weight Class 1 aircraft 
and, perhaps lower, for the other Noise Categories. However, the logistic modeling system used 
evaluates all of the Weight Classes and determines whether any of the Weight Classes is different from 
the others. If this were the case, then the model would be “significant” as there would be a measurable 
improvement in prediction of a Noise Event by knowing the Weight Class of the aircraft. 

To begin this analysis, through inspection of Figure N1, our Heuristic Analysis suggests that the fraction 
of aircraft associated with Category 1 Noise Events is higher than expected for Weight Class 1 aircraft 
and, perhaps lower, for the other Noise Categories. 

Table N5 presents the overall model result for Category 1 Noise Events.  In this case, we see that the 
probability of seeing an effect as large as the one we say when there was no effect is very small, less 
than 1 in 10,000. Hence, we would accept the alternative hypothesis that there is a difference in the 
probability of a Noise Event at the Noise Category 1 level associated with MTOW. We now want to 
establish the direction of this effect: are higher MTOW aircraft more likely to see such a Noise Event?  

 

Analysis of Effects 

Effect p-Value 

WgtClass <.0001 

 
 

The next analysis we present is to compare the probability ratios between each of the Weight Classes 

with the highest Weight Class (See Table N6.) Here we are looking at the probability of a Category 1 Noise 

Event occurring with aircraft in, say, Weight Class 1 with the probability of a Category 1 Noise Event 

occurring with aircraft in Weight Class 4. The “Point Estimate” is the best “guess” for this ratio. A value 

of 1.000 would imply that there is equal probability of noting a Category 1 Noise Event in Weight Class 1 

and in Weight Class 4. We note that the Pont Estimate is 3.092 indicating that it is more than three times 

more likely that a Category 1 Noise Event would occur for Weight Class 1 aircraft than for Weight Class 4 

Aircraft. However, this is the “average” result. In looking at all of the data for the two weight classes, we 

can make further statements. This is expressed in the “95% Confidence Limits.” The data we have 

collected allow us to say with 95% confidence (we would be wrong 5% of the time) that the true ratio 

lies between the two values. For the comparison of Weight Class 1 with Weight Class 4, we are 95% 

confidence that the true ratio lies between 2.347 and 4.072. It is important that this 95% confidence 

limit does not cover the null value of 1.00 as this implies that this, too, is a statistically significant result 

and adds credence to the overall significance displayed in Table XXX2 and Figure .  
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Odds Ratio Estimates 

Effect Point Estimate 95%  
Confidence Limits 

WgtClass 1 vs 4 3.092 2.347 4.072 

WgtClass 2 vs 4 1.660 1.246 2.211 

WgtClass 3 vs 4 1.853 1.346 2.551 

 
 

Table N6. A Comparison of Odds Ratios between each Weight Class with the Referent Weight Class, 
Weight Class 4. 

 

At this point, we have established that Weight Class 1 is more likely to give rise to a Category 1 Noise 
Event than some of the other classes. We would like to compare all of the Weight Classes to one 
another, and group them in an appropriate way. We do this by “contrasting” the Weight Classes and 
determining whether they differ from one another.  These data are presented in Table Table N7.  
 
We note that for the pairwise comparisons, all pairs differ. But this simply says they are different; it does 
not give an ordering. Combining data from Table N6 and Table N7  and Figure N2 allows us to infer that 
Weight Class 1 is more likely than expected to produce a Noise Category 1 Noise Event than all other 
Weight Classes, but that all other Weight Classes are less likely than expected to produce a Category 1 
Noise Event. It is important to note that Category 1 Noise Events are at the low end of the noise scale 
producing noise levels that are only slightly above normal conversation levels. 
 
 

Contrast Test Results 

Contrast p-Value 

WgtClass=1 vs WgtClass=2 <.0001 

WgtClass=1 vs WgtClass=3 <.0001 

WgtClass=2 vs WgtClass=3 0.0001 

WgtClass 1, 2, 3 <.0001 

 

Table N7. A Comparison of paired and grouped analyses of Weight Classes Odds Ratios.  
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Analysis for Noise Category 2 

 

Noise Category 2 (75-80 dBA), displays many of the characteristics of the analysis done on Noise 
Category 1. Weight Class 1 is more likely to produce a a Category 2 Noise Event than the other Noise 
Categories while each of the other Noise Categories is less likely to produce a Noise Event at this level 
than would be expected if there were no effect of MTOW on the presence of a Noise Event. Results of 
the analyses on Noise Category 2 events is displayed in the tables labeled Table N8. The interpretation of all 

components is the same as was discussed under Analysis for Noise Category 1. 
 

Analysis of Effects 

Effect p-Value 

WgtClass <.0001 

 
 

Odds Ratio Estimates 

Effect Point Estimate 95% 
Confidence Limits 

WgtClass 1 vs 4 3.979 3.139 5.042 

WgtClass 2 vs 4 1.631 1.274 2.089 

WgtClass 3 vs 4 1.303 0.979 1.735 

 
 

Contrast Test Results 

Contrast p-Value 

WgtClass=1 vs WgtClass=2 <.0001 

WgtClass=1 vs WgtClass=3 <.0001 

WgtClass=2 vs WgtClass=3 0.0034 

WgtClass 1, 2, 3 <.0001 

 

Table N8. Logistic regression analysis results for Category 2 Noise Events with Weight Class.   
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Analysis for Noise Category 3 

 
Noise Category 3 includes measurements of noise levels between 75 and 80 dBA. At this level, noise 
would start to become bothersome and, perhaps, interfere with conversation and enjoyment of outdoor 
activities if it were to be continuous. Table N9 presents the results of the logistic analysis for this Noise 
Category. We note that the overall model is, itself, statistically significant indicating that there is an 
effect of Weight Class and, hence MTOW, on the likelihood of observing a noise event in this category. 
The Odds Ratio Estimates suggests that, unlike Noise Categories 1 and 2, for this Noise Category, Weight 
Class 1 aircraft are less likely to produce a noise event at this level than might be expected by the 
fraction of aircraft this Weight Class represents. Further, Weight Class 4 is more likely to produce such 
Noise Event that all other weight classes, although the comparison with Weight Class 2 does not reach 
statistical significance as the 95% confidence limit does span 1.000. The Contrast Test Results indicate 
that all classes are different from one another with respect to the relationship between observed and 
expected likelihood of a Noise Event of Category 3 occurring. Coupling this with the results presented in 
Figure N2 we can infer that all aircraft of Weight Class 2 and higher produce a higher than expected 
probability of association with this Noise Category. 
 

Analysis of Effects 

Effect p-Value 

WgtClass <.0001 

 
 

Odds Ratio Estimates 

Effect Point Estimate 95% 
Confidence Limits 

WgtClass 1 vs 4 0.693 0.573 0.837 

WgtClass 2 vs 4 0.851 0.695 1.041 

WgtClass 3 vs 4 0.641 0.500 0.822 

 
 

Contrast Test Results 

Contrast p-Value 

WgtClass=1 vs WgtClass=2 0.0069 

WgtClass=1 vs WgtClass=3 0.0001 

WgtClass=2 vs WgtClass=3 0.0043 

WgtClass 1, 2, 3 0.0013 

 

Table N9. Logistic regression analysis results for Category 3 Noise Events with Weight Class.   
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Analysis for Noise Category 4 

 
Noise Category 4 includes measurements of noise levels between 80 and 85 dBA. At this level, noise 
would likely be bothersome and, perhaps, interfere with conversation and enjoyment of outdoor 
activities if it were to be continuous. Table N10 presents the results of the logistic analysis for this Noise 
Category. We note that the overall model is, itself, statistically significant indicating that there is an 
effect of Weight Class and, hence MTOW, on the likelihood of observing a noise event in this category. 
The Odds Ratio Estimates, as was the case for Noise Category 3, Weight Class 1 aircraft are less likely to 
produce a noise event at this level than might be expected by the fraction of aircraft this Weight Class 
represents. Further, and similar to the Noise Category 3 analysis, Weight Class 4 is more likely to 
produce such Noise Event that all other weight classes and that this effect is more marked and is 
statistically significant for all Weight Classes comparisons with Weight Class 4. Weight Class 4 aircraft are 
significantly more likely to be associated with a Noise Category 4 event than all other classes of aircraft. 
The Contrast Test Results indicate that all classes are different from one another with respect to the 
relationship between observed and expected likelihood of a Noise Event of Category 4 occurring. 
Coupling this with the results presented in Figure N2 we can infer that all aircraft of Weight Class 2 and 
higher produce a higher than expected probability of association with this Noise Category and that this 
effect is stronger than was present for Noise Category 3 aircraft. 
 
 

Analysis of Effects 

Effect p-Value 

WgtClass <.0001 

 
 

Odds Ratio Estimates 

Effect Point Estimate 95% 
Confidence Limits 

WgtClass 1 vs 4 0.227 0.193 0.266 

WgtClass 2 vs 4 0.612 0.516 0.725 

WgtClass 3 vs 4 0.774 0.634 0.944 

 
 

Contrast Test Results 

Contrast p-Value 

WgtClass=1 vs WgtClass=2 <.0001 

WgtClass=1 vs WgtClass=3 <.0001 

WgtClass=2 vs WgtClass=3 <.0001 

WgtClass 1, 2, 3 <.0001 

 

Table N10. Logistic regression analysis results for Category 4 Noise Events with Weight Class.   



 

 

65 

 

 

Analysis of Noise Category 5 

 
 

Noise Category 5 includes measurements of noise levels between 85 and 90 dBA. At this level, noise 
would be bothersome and interfere with conversation and enjoyment of outdoor activities if it were to 
be continuous. Table N11 presents the results of the logistic analysis for this Noise Category. We note 
that the overall model is, itself, statistically significant indicating that there is an effect of Weight Class 
and, hence MTOW, on the likelihood of observing a noise event in this category. The Odds Ratio 
Estimates indicate that Weight Classes 1 and 4 differ from one another in their likelihood of producing a 
Noose Event at this level, but that other comparison with the highest Weight Class are not statistically 
significant. Similarly, the Contrast Test values do not indicate differences among Weight Classes 2 and 
higher. Coupling this with the results presented in Figure N2 and  Table N4 suggest a potential problem. 
Noise Category 5 events are less prevalent than Noise Events from lower Noise Categories representing 
only about 5% of all Noise Events. The loss of statistical power results in larger expected variability in 
any of these estimates. Combining our analyses together, there is still a sense that higher MTOW aircraft 
are more likely to produce Noise Events and this level, particularly with respect to Weight Class 1 
aircraft, but the variability intrinsic to these measurements  precludes giving an ordering beyond Weight 
Class 1 being less likely than Weight Class 4 to produce such an event. 
 

Analysis of Effects 

Effect p-Value 

WgtClass <.0001 

 
 

Odds Ratio Estimates 

Effect Point Estimate 95% 
Confidence Limits 

WgtClass 1 vs 4 0.656 0.478 0.900 

WgtClass 2 vs 4 1.302 0.937 1.811 

WgtClass 3 vs 4 1.339 0.919 1.950 

 
 

Contrast Test Results 

Contrast p-Value 

WgtClass=1 vs WgtClass=2 0.6289 

WgtClass=1 vs WgtClass=3 0.7012 

WgtClass=2 vs WgtClass=3 0.1031 

WgtClass 1, 2, 3 0.7853 

 

Table N11. Logistic regression analysis results for Category 5 Noise Events with Weight Class.   
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Noise Category 6 

 

Noise Category 5 includes measurements of noise levels between > 90 dBA. At this level, noise would 
certainly be bothersome and interfere with conversation and enjoyment of outdoor activities for the 
duration of the Noise Event. Table N12 presents the results of the logistic analysis for this Noise 
Category. In this analysis, we note that the overall model is statistically significant due to the significant 
difference between Weight Class 3 and Weight Class 4 and Weight Class 2 and 3. Figure N2 suggest that 
Weight Classes 2 and 3 are over-represented in the Noise Category, while Weight Class 1 is 
underrepresented.  We note that Weight Class 4 is at about the expected level. 
 
All of these observations must be tempered by the small number of Noise Events (377, See Table XXX4) 
occurring in this Noise Category. The wide confidence limits in the Odds Ratio Estimates reflect this 
small number. In all of these analyses, we count on the large number of observations to reduce the 
effect of statistical variability. For this Noise Category, we do not have that luxury. Any results obtained 
for this Category should be viewed cautiously. 
 

Analysis of Effects 

Effect p-Value 

WgtClass <.0001 

 
 

Odds Ratio Estimates 

Effect Point Estimate 95% 
Confidence Limits 

WgtClass 1 vs 4 0.809 0.301 2.178 

WgtClass 2 vs 4 2.563 0.934 7.034 

WgtClass 3 vs 4 3.015 1.030 8.823 

 
 

Contrast Test Results 

Contrast p-Value 

WgtClass=1 vs WgtClass=2 0.4709 

WgtClass=1 vs WgtClass=3 0.3862 

WgtClass=2 vs WgtClass=3 0.0479 

WgtClass 1, 2, 3 0.2298 

 

Table N12. Logistic regression analysis results for Category 6 Noise Events with Weight Class. 



 

 

67 

 

 

 

 

Supplemental Analysis of Noise Data on a Monthly Basis 

 Noise events were also analyzed on a monthly basis. Results of the Monthly analysis are summarized in 

Figure N-1. Note, there was an average of 4898 Noise Events measure each month. However, there was 

substantial varaibiity as measured by the standard deviation in this number (599 or 12.2%) 

Analysis of these data showed no statistically significant differences in the fraction of aircraft  in the 

various MTOW classifications with respect to their contribution to noise events (analysis not shown.) 

The data are presented in  Appendix 6- Analysis of Noise Data by Month 

 

 

Figure N-1- A comparison of Monthly Noise Events during Sampling Period. 

 

Summary of Data Analytic Results for of Fixed-Site Monitoring Data Noise Events 

We developed two algorithms were developed to assess these correlations between MTOW and Noise 

Events, based upon the identification of individual aircraft and specific measured and categorized noise 

levels. The first, referred to as a Heuristic Approach relied on assessing whether a larger percentage of 

aircraft in heavier weight classes produced a disproportionate fraction of Noise Events of various 

magnitudes when compared to the fraction of aircraft of that type using the airport during the 

timeframe of interest. The second algorithm relied on a statistical approach using logistic regression and 

performed a statistically rigorous assessment of the probability of an aircraft falling into a range of 

MTOW producing a Noise Event in a specific Noise Category. 
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The results of the Heuristic Approach suggested that smaller aircraft were more likely to produce Noise 

Events in Noise Categories of lower magnitude, while larger aircraft produced Noise Events in higher 

magnitude Noise Categories. However, the approach was heuristic and, while appealing, would be 

difficult to defend from both a scientific and statistical point of view as it depends on a subjective view 

of the results with little quantitative support.  

The lack of a firm basis for the Heuristic Approach led us to pursue logistic regression as powerful 

statistical tool to evaluate the impact of aircraft MTOW on Noise Levels. We performed logistic 

regression on six Noise Categories in an effort to explain effects. For the lowest noise-level categories, 

logistic regression indicated that smaller aircraft- those with MTOW < 25,000 lbs and those with 

UNKNOWN characteristics, are over-represented, while larger aircraft are under-represented. As the 

noise level measured, and consequently the Noise Category, increase, this observation reversed with 

small aircraft now under-represented and larger aircraft more abundant. From the point of view of the 

community, the larger aircraft- those with MTOW > 25,000 lbs, and for some Noise Categories, MTOW > 

66,000 lbs, are more likely to produce Noise Events of concern. This is particularly the case for Noise 

Categories with noise levels exceeding 80 dBA (Noise Categories ≥ 3.)  

The results we present in this discussion stand in contrast to results from preliminary analyses that 

suggested that there was no effect on the likelihood of observing a Noise Event associated with MTOW 

of aircraft. These disparate results can be explained by the reversal in trends as we go from lower Noise 

Categories to higher Noise Categories. Lumping all Noise Categories together into a single Noise Event 

would give results that for some measurements Weight Class 4 occurred less frequently than expected 

and for other measurements, the opposite was true. Overall, the effect would be non-significant. Only 

by observing the Noise Categories separately, is this be observable. 

Community Measurements 

During the approximately 14 months that the portable noise monitor was placed within the community, 
we noted 10,983 noise exceedance events. It should be noted that during our monitoring period, 
months, May 2014 through September 2014, the portable noise monitor was recalibrated to threshold  
level of  135 dBA threshold.  Not surprisingly, the 135 dBA threshold, equivalent to a jet engine at 20 
meters, was never exceeded. 
 
Of the nearly 11,000 recorded events by the mobile monitor, 8,394 or approximately 76%, were from a 
single site, a church located approximately 500 meters south of the southern end of the principal 
runway. Additionally, sites near the Airport accounted for 10-15% of the total, with the balance 
scattered around the community. Our background site, located about 8 km south of the Airport (near 
the VA Hospital on Clairmont Road) recorded 6 threshold exceedances during the monitoring period. It 
should be noted as well, that 5,780, or more than 50% could not be associated with any aircraft in the 
area. Events such as lawn mower use, a noisy car, even children playing may have triggered these 
events. Percentages for these unknown events mirrored those from known events; 75% were at the 
single site mentioned above, with the remainder mimicking percentages for the total set of monitor 
locations 

Comparison with Other Studies Conducted in and around Similar Airports 
Goal 5 focuses on comparisons between air pollution and noise data from PDK and similar airports. 
Studies of this type on similar airports are few and data are sparse. Ryan, and co-workers, performed a 
long-term (29 year) study of nitrogen dioxide concentrations in and around Boston’s Logan International 
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Airport, similar to the passive nitrogen dioxide investigation around PDK discussed above. This airport is 
much larger than PDK and may be expected to have a much larger impact on local air pollution levels. 
However, their results showed a downward trend in the measured concentration of this contaminant on 
the airport grounds and in the surrounding community commensurate with the reduction of nitrogen 
dioxide emissions from both automobiles and aircraft. Levels noted in Boston in the community are 
approximately equivalent to those noted in this study. As of 2012, concentrations in the community 
surrounding Logan ranged from about 6 ppb to about 15 ppb, down from levels of around 35-40 ppb in 
the early- and mid-1980s. Nitrogen dioxide concentrations are somewhat higher on average in Atlanta 
than in Boston due to larger amounts of vehicular traffic in Atlanta. A more complete investigation 
focusing on air toxics, but including BTEX, was carried out at this location in 2007-2009. BTEX levels 
reported in the Boston study were quite similar to those reported in the PDK study with the exception of 
benzene concentrations in this study, which were much lower, an observations consistent with reduced 
benzene concentrations in gasoline and related fuels over the time period. It must be emphasized, 
however, that Logan is a much larger facility than PDK so direct comparisons may not be warranted. 
Nevertheless, these results suggest that levels noted in the PDK study are consistent with other urban 
areas. 
 
Several studies have been performed at Teterboro Airport (TEB) in Bergen County, New Jersey. TEB is 
similar in size to PDK with approximately 150,000 airport operations in 2010, but its fleet mix had 
significantly less general aviation aircraft. The studies performed include a screening study done over a 
few days in 2001, a modeling study done in 2002, and a year-long monitoring study conducted by 
ENIVIRON, in 2006. The TEB monitoring study done in 2006 was both similar and different from the PDK 
study. Data collected at TEB were primarily from the airport grounds, rather than a mix of airport 
monitoring and community-based monitoring. The results from this study suggest that VOC 
concentrations on the airport grounds are higher than we see in the community surround PDK by a 
factor of 3 to 5. This is consistent with dispersion of contaminants as they move away from the source. 
Further, results from surrounding communities taken from New Jersey Department of Environmental 
Protection are similar to our community-based results. Black carbon and particle counts on the airport 
ground at TEB are consistent with our Airport-based results as well. Particle mass concentration at TEB is 
similar to PDK, with values ranging from 15-20 µg/m3 on the TEB airport grounds. TEB is located in a 
more congested area with regard to vehicular traffic than PDK, which may account for some of the more 
elevated values for both VOCs and particle measures there, although the values the levels differ by only 
20% or so. It should be noted that the preponderance of jet aircraft as opposed to General Aviation 
aircraft at TEB when compared to PDK makes comparison difficult. 
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Appendix 1. List of Aircraft with Multiple Noise Level Exceedances above 90 

dBA. 
 
Mobile Noise Monitoring and Aircraft Identification 
While the stationary monitors were calibrated to a threshold of  90 or 93 dBA, the mobile noise monitor 
placed out in the community was  calibrated to record noise events that exceeded 65 dBA as FAA deems 
that a relevant value in a community setting. As noted previously, the level of 65 dBA is roughly 
equivalent to general conversation levels in indoor environments. While this level of noise may modestly 
interfere with the conduct of such activities, it is of little relevance to health outcomes, and may just 
reach the nuisance level.  
 
 

Tail Number or 
Identifier 

Number of 

Threshold 

Violations 

Maximum 

Takeoff Weight 

(pounds) 

Aircraft Type 

N773RC 10            11,550  Piaggo P180 

N900JB 7            38,801  1982 DASSAULT-BREGUET FALCON 50 

N30WR 6            69,700  1981 Gulfstream Aerospace G-1159A 

N330WR 5            69,700  1981 Gulfstream American Corp G-1159A 

N200EA 4            12,500  Beechcraft Super King Air 200 

CNS130 3            10,450  Pilatus PC-12 

CNS35 3            10,450  Pilatus PC-12 

N400DW 3            15,780  Beechcraft Beechjet 

N442GJ 3            16,100  Beechcraft Beechjet 

N522DJ 3             9,920  Pilatus PC-12 

N65RA 3            15,780  BEECH 400 

N690XL 3            20,000  Cessna Citation 560XL 

N8834M 3             3,300  Beechcraft 35 Bonanza 

N96757 3            69,700  Gulfstream Aerospace Gulfstream 3 

 
Table S-2. Identified aircraft with 3 or more unique noise threshold violations during the monitoring 
period. Noise threshold violations occur when one or more fixed-site noise monitors measure more than 
85 dBA. 
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Appendix 2- Data Processing of Real-Time Particle Measures- A Detailed 

Description of the Algorithm Used with Illustrative Example. 
 

We begin our analysis of air pollution data by identifying the total number of airport operations by 
during our monitoring period for each of the weight classes of interest to us. In Table AP-1, we present 
information on the airport operations. The first column denotes the Weight Class categorization, while 
the second column specifies the MTOW for these six categories. The second column identifies the 
percentage of airport operations in each of these categories. These categories reflect both FAA 
classifications and classifications of interest to PDK senior staff and Open DeKalb. Note that Weoght 
Class = -1 will be dropped from further analysis. 

Weight 
Class 

Criteria Number of 
Events 

Percent Cumulative 
Frequency 

-1* Non-Fixed Wing     137   0.13       137 

 0 UNKNOWN 37,447 36.62   37,584 

 1 <25,000 lbs 52,302 51.14   89,886 

 2 25,000 – 66,000 lbs   9,645   9.43   99,531 

 3 66,000 – 75,000 lbs  1,786   1.75 101,317 

 4 >75,000 lbs    948   0.93 102,265 

*Not included in further analysis 

Table AP-1- Summary of Airport Operations during the monitoring period commencing on October 10, 
2013 and continuing through October 120, 2014. 

In the data collected at PDK Airport we used two different real-time monitors that measured particulate 
matter in the air. The first of these, the Condensation Particle Counter (CPC) measured particles in the 
respirable (<2.5 µm in diameter) range. It is particles of this size that are of importance in human health 
effects. The second of these, the Black Carbon Aethelomoter sold under the name micrAeth ® (we refer 
to these data as Black Carbon or BC) also measured these fine particles, but focused on the component 
of these fine particles that are made up of finely divided , primarily unburned, carbon, which is a 
material consisting of very fine particles, general < 1.0 µm in diameter. Further, these particles are 
typically associated with diesel exhaust, and exhaust from the burning of kerosene and similar 
compounds, associated with jet fuel. The physics of how these instruments work is covered in some 
detail in the report above. 

I present the particulars of the measurement process, focusing on the real-time aspects of the data 
collection and the averaging time over which the measurements as implemented were carried out. For 
Both the BC and the CPC data were collected essentially second-by-second, then averaged over varying 
time periods. During preliminary testing. We initially selected 300-second (five-minute) averages as this 
time scale gives us stable measurements, but afforded understanding of transient peaks in the 
concentrations that could be associated with individual aircraft. Later, we reduced the time averaging to 
60-second, but consolidated measurements over 15-minute increments for comparison in order to 



 

 

72 

 

afford adequate time for diffusion of air pollutants emitted during airport operations to the various 
pollutant monitors. 

Figure AP-1 depicts a trace of typical data collected in our investigations. This particular trace is from the 
Black Carbon data; the CPC data looks similar but this presentation, which is from the manufacturer’s 
software, shows the trace better and offers a graphical depiction directly from the software. The data 
presented here cover approximately six days of sampling starting at the beginning of our study. First we 
examine the entire trace to get sense of what the data the data presentation. Note that data collection 
begins at about 12:00 on October 10, 2013, and continues through about 10:30 on October 16, 2013. 
The first thing we note are that the values are relatively low and constant for much of the time. 
However, we do see a trace that varies somewhat but is punctuated by transient, short-term events 
lasting a only a few minutes, before dissipating then returning to the slowly varying and modestly 
fluctuating, background levels. We refer to these as punctuating excursions as Transient Particle Peaks 
(TPP).  

Note that there are a number of these transients throughout the particle data. On this trace, covering 
about six days of sampling we can identify at least four relatively large peaks and a number of smaller 
ones. Since our database extends over an entire year for each of eight instruments- four CPC (All 
particles) and four microAeth (Black Carbon particles) monitors, we conducted a search for TPP events 
aided by a computer. The background level of particulate matter varies over time as particulate levels in 
an urban area are influenced by numerous sources and local meteorological conditions such as wind 
speed and wind direction. Our goal is to identify air pollution events associated with aircraft operations. 
Hence, the identification of air pollution events such as TPP events and the association of such events 
with aircraft operations can give us insight as to the impact of aircraft on such events.  

Because of the large number of data gathered, we use a statistical determination of a TPP using the 
definitions on the left of the figure. In our analysis, we identify a TPP as a change from the average CPC 
or Black Carbon that is “significant” in some sense. The instruments used are “counting instruments” in 
that the count the number of particles procedure (CPC) or the attenuation of a light beam associated 
with the presence of colored particle (BC). Background, urban air pollution results in a variable single for 
these instruments. This signal, on average, varies slowly with time, but displays very short term 
variability that is statistical in nature. We can see this by examining the trace of particle counts (for CPC) 
or concentrations (for BC). Note the BC trace in Figure X-1 focusing on the data between 12:00 on Oct 14 
and 12:00 on Oct 15. The data show variability, but in a relatively confined magnitude range of perhaps 
a couple of hundred ng/m3. TPPs are observed, then, reflect a sudden change in BC levels increasing 10- 
or even 100-fold above the background level. These changes are transient, they last for only a very short 
period of time, generally less than five minutes. The key is identifying such peaks in the large amount of 
data available thereby addressing the question: How do we distinguish events from naturally occurring 
background variability. Let us examine a particular TPP to illustrate the process. We choose the peak 
highlighted with the red oval that centers on October 13, 2013, at 14:25.The selection of this peak is 
arbitrary. We are just using as an illustration of the process. 
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Figure AP-1. Screen Capture of processed Black Carbon (Aethelometer) Data for October 10-October 
16, 2013. 

Figure AP-2 displays the same trace from the BC data, but also includes additional information. Since this 
is a complicated presentation, I will spend some time discussing the components. On the right is the 
trace from the instrument software seen in the Figure AP-1. In the middle of the figure, we present the 
data from time shortly before and after this TPP in tabular form. Note the progression of values. The 
concentrations are low <700 ng/m3 from the beginning of this record through 14:20. We then see a 
marked increase, a TPP, at 14:25 that quickly dissipates back to background by 14:30. The concentration 
remains low and relatively constant through 14:50. At 14:55, we note another TPP, albeit substantially 
lower than the earlier one. These features are reflected in the trace encircled in red in this figure as well 
as in the previous one. 

We now invoke a statistical definition of a TPP. A TPP-1 transient means that the value recorded exceed 
the average level measured by one standard deviation. TPP-3 implies a changes of three standard 
deviations from the average. TPP-5, five standard deviations.  The greater the standard deviations, the 
greater the likelihood that this is significantly beyond the likelihood of occurring randomly or naturally. 
Further, one may infer that the higher peaks- the ones with larger deviation from the mean value, are 
larger in magnitude; there is a greater concentration of particulate matter for larger peaks. In statistical 
parlance, the greater the variance from the mean, the greater the likelihood that this is significantly 
beyond the likelihood of occurring randomly or naturally. From  practical point of view, the greater the 
variance from the mean, the larger the magnitude of the local source of particle pollution. One may 
infer that the higher peaks- the ones with larger standard deviation from the mean value, are larger in 
magnitude; there is a greater concentration of particulate matter for larger peaks. One may infer that 
the higher peaks- the ones with larger standard deviation from the mean value, are larger in magnitude; 
there is a greater concentration of particulate matter for larger peaks. 

 



 

 

74 

 

 

Figure AP-2. Examination of Black Carbon Data for one Transient Particle Peak (TPP). Peak is centered 
o 14:25 10 October 2013.  

In October, 2013, the mean Black Carbon concentration observed at this monitor was 1256 ng/m3 as 
indicated in the table at the lower right. The standard deviation- a measure of the natural variability for 
this measure was 1253 ng/m3, the fact that these numbers are close to one another is coincidental; they 
are not always of the same magnitude. According to statistics, a difference as large as TPP-1 might be 
expected to occur about 16% of the time, just by random chance. A value at the TPP-1 level might well 
be due to nothing mare  than normal background variability. A value at TPP-3 would only occur 
randomly less than 1% of the time. We would be quite confident that we are measuring an important 
“Statistically Significant” transient event when a TPP-3 event was noted. Finally, a TPP-5 event would 
occur randomly with a frequency of < 0.01% of the time. Any event at the TPP-5 level would have almost 
no likelihood of occurring randomly- these events are real. 

Performing the calculations using the mean and standard deviation for the month of October 2013, 
indicated that the TPP-1 level was 2508 ng/m3 we observed 624 such events during the monitoring 
period commencing October 10, 2013, and concluding on October 31, 2013, given a total of 
approximately 2000 measurements. Ninety-two such measurements were noted at the TPP-3 level; 25 
at the TPP-5 level.  

At this point, we have identified a TPP and an associated time for that event across our analysis period. 
Given the data on aircraft operations supplied to us in January, we can now more precisely link takeoffs 
and landings, referred to as airport operations with individual aircraft and clarify whether or not the 
aircraft actually landed or took off from PDK. 

 To show how the analysis proceeds, we present data in Figure AP-3 identifying aircraft operations for 
approximately 30 minutes before and 30 minutes after the TPP of interest, which occurred on October 
13, 2013, at 14:25.  As we have noted that the TPP events dissipate rapidly,- within about five minutes- 
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examining airport operations in this 30 minute window affords us the opportunity to assess which 
aircraft performed an operation dung the time period the instruments were reporting a TPP event. 
According to the Flight Event Records (FER), there were 33 airport operations during this time. The FER 
displays information including the Date and Time of the operation, the Airport identifier, the Runway for 
the operation, the Flight Number, which enables identification of the aircraft through the Tail Number, 
the Type of Equipment, if known, how the Aircraft was powered, and information on the Flight Type.  

Many of these data are unnecessary for our purposes or do not supply information in sufficient detail to 
enable identification of the aircraft.  Therefore, they are not used in our analysis. We have cleaned the 
dataset so that only essential information is maintained. Twenty-two of these aircraft are identified with 
Flight_Num UNKNOWN, meaning that there is no corresponding transponder signal affording 
identification of the Unique Tail Number associated with the aircraft. The Tail Number affords 
identification of the aircraft with respect to Maximum Take-Off With (MTOW), the essential variable of 
interest in this investigation. However, these aircraft are typically smaller, General Aviation, aircraft with 
MTOW < 10,000 lbs. Overall, we have found that about 36% of aircraft operations at PDK were in this 
category. In our analyses, these UNKNOWN aircraft are lumped to gather into a single Weight Class 
(WgtClass=0) for classification purposes (See below). Eliminating those aircraft the number during this 
examination time period, reduces the number of Operations from 33 to 11. We present these aircraft 
and information about them in Figure AP-4. 

In this example presentation, we are focused only on the TPP that occurred on October 13, 2013, at 
14:25. It is clear that operations that took place after 14:25 on that date cannot influence the 
measurement, so we eliminate those from consideration. Further, we have made the assumption that 
and TPP-like event occurring more than 15 minutes prior to our measurement would have dissipated to 
background. This assumption can be visually validated by noting that the TP events themselves seldom 
span more than one five-minute increment. 
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Figure AP-3. Observed Flight Events at approximately the same time as the TPP noted in the previous 
figures. 

For the event under current study, that leaves us with only four aircraft that could have influenced the 
event. They are identified in this Figure X-5. The four aircraft have MTOWs as listed. We now draw upon 
our data relating tail numbers to aircraft type. The column Labeled Equip does this as well, but our 
analysis makes use of a “Dictionary” that we have developed mapping some 8,037 unique tail numbers 
that have PDK Airport Operations during our monitoring period, to a specific aircraft, affording a better 
and more accurate determination of MTOW. We note that, in addition to the UNKNOWN aircraft 
defined above, three of the aircraft have MTOW < 25,000 lbs, which is our lowest category. One aircraft, 
the Falcon Air 50, has a MTOW of 39,700 lbs, placing this aircraft in Category 2 with 25,000 lbs < MTOW 
< 66,000 lbs. Category 3 is 66,000 lbs < MTOW < <75000 lbs. Category 4 is MTOW > 75,000 lbs.  

Note that these aircraft, in addition to the UNKNOWN aircraft, are mapped to a specific Time Segment 
of 15 minutes. There are 96 such time segments during each 24-hr period and 365 24-hour periods 
during our monitoring year, for a total of approximately 35,000 analyses similar to this one that are 
performed for each of the four sites on the airport grounds and for each of the two monitoring 
instrument types. 
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Figure AP-4- Table showing non-UNKNOWN aircraft. 

Categories according to the scheme discussed with the previous slide: Category 1 MTOW < 25,000, 
Category 2  25,000 lbs < MTOW < 66,000 lbs. Category 3  66,000 lbs < MTOW < <75000 lbs. Category 4 
MTOW > 75,000 lbs.   

After collecting the data over the entire monitoring period, we perform two types of analyses to assess 
the relationship between TPP events and MTOW of aircraft. These are the Heuristic procedures in which 
we evaluate heuristically if the number of such fraction of such TPP events attributable to each Weight 
Class is similar to the fraction of aircraft operations for that Weight Class. If the fractions are similar, 
then there is no association between TPP events and MTOW. WE follow this with a more rigours 
statistical procedure invoking Logistic Regression. In this analysis. We assess the relative likelihood of an 
event TPP event occurring in association with an aircraft in a particular Weight Class relative to other 
Weight Classes. Logistic regression is a statistical method that has long been used to identify 
associations between the probability of a “binary” or “Yes/No” event occurs based on hypothesized 
factors. Here our binary event is the presence of a TPP. The factors on the Weight Classes. We ask, is the 
appearance of a TPP more like to occur when the Flight Event involves a heavier weight class, than a 
lighter (or UNKNOWN) weight class.  In particular, we look to compare the results for the heaviest 
MTOW Categories 3 and 4, with the smaller-aircraft Categories. 

We have given but one example of the analysis here. There are, for example, typically about 125 TPP-3 
events during the typical month or about 1,500 over the course of the monitoring period for each 
monitor. So, we now have a clean dataset that we can use for the analysis intended. 
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Figure AP-5.- Identification of Aircraft that could be influencing the TPP at 14:25 on 13 October 2013. 

The final step in this analysis is to gather all data together. We associate each specific TPP with the 
aircraft that could have influenced it. Each aircraft is associated with a MTOW and assigned MTOW  

In Figure AP-6, we present ae schematic of the data analysis approach. Using the Black Carbon  and CPC 
data, we identify a Transient Particle Peak (TPP).  For the CPC data, the TPP is particle number count 
which is statistically different from the average value, while for the microAeth apparatus it is a 
concentration of Black Carbon, in ng/m3 that is statistically different from the average value. We choose 
three different levels for this analysis in order to assess the variability of this statistical measure and 
include an assessment of the magnitude of the transient particle peak, assuming larger peaks have 
larger impact on the community. 

Once the peak is identified, we determine the time window in which that peak falls. We put these in 15-
minute segments to allow time for diffusion particles to the monitor. 

Using the Flight Event Data, we identity aircraft operations in the 15-minutes prior to that time window. 
These operations identify the aircraft by Tail number for those aircraft where such identification is 
possible. 

Using the Tail Number of those Aircraft, we identify the aircraft type. 

Using a lookup table we have developed we identify aircraft type with MTOW. 

At this point, we have identified all aircraft that could have produced the TPP and an associated MTOW. 

Using logistic regression, we determine whether there is a relationship between MTOW and the 
presence of a TPP. 
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Figure X-5.- Analytical schematic for particulate air pollution analysis. 

 

To clarify the algorithm: 

1) For each of the monitors on the airport ground (generally four) note the mean number of 
particles per cubic centimeter (#/cm3) for that day and the standard deviation of #/cm3 over the 
1440 measurements of particle concentrations for the day. Example- For one of the monitors 
we note that the mean concentration seen is 5,000 particles/cm3 and that the standard 
deviation is 2,000 particles/cm3. 

2) Calculate a value that is the mean #/cm3 plus three times the standard deviation of #/cm3 over 
the day. Example- From the above, that number would be: 5000 particles/cm3 + 3 x 2000 
particles/cm3 = 11,000 particles/cm3. 

3) If that number is exceeded for that minute, a Peak is noted. 
4) Aggregate the 1440 daily measurements for each monitor into 96 15-minute increments. 
5) If a Peak is noted for any time increment during that 15-minute time period, note a Peak for the 

15-minute period for that monitor. 
6) If a Peak is noted in any of the monitors on the airport grounds, note a Peak for the airport 

during that 15-minute period. 

At the end of this portion of the analysis, we have 96 values for each day- one for each 15-minute time 
increment- that indicates whether an TPP took place at any monitor on the airport grounds during that a 
given 15-minute period on that day. This is repeated for all days during the evaluation period giving 
nominal total of 35,040 increments for each of the monitors in our study. Actual numbers are somewhat 
less given downtime for instruments. However, we identify and air pollution event- a TPP- if any of the 
monitors of a given type reveals an event. We are now ready to assess the impact of aircraft MTOW on 
air pollution events. While this method is crude and does come up with false positives, as we shall see, 
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the large size of the dataset of air pollution data allows us to use statistical analysis of the data to assess 
this impact. 
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Appendix 3- SAS Code for the Analysis of Black Carbon Data 
 

/****************************************************************************

************ 

 

SAS Code to produce analysis of PDK Blac Carbon Data. This uses previously 

developed 

dataset: 

 

 1. analysis.Flight_Events_Weights 

  Data for all FLight Events from early October 2013 to mid-October 

2014. 

 

*****************************************************************************

************/ 

libname analysis 'C:\Working Files\Research\PDK Airport\Analysis 2018\Flight 

Event Data'; 

 

/* Now Construct MTOW WgtClass */ 

data analysis.Flight_Events_Weights; 

  set analysis.Flight_Events_Weights; 

  WgtClass=-1; 

  /* If wgt < 0 it is because the aircraft type is UNKNOWN. This represents 

slightly less than 37% of the  

    Flight Events. This will be included in as a separate WgtClas and 

Analyzed as such. 

 

  Modified after 28 June 2018 Meeting to combine UNKNOWN aircraft with Weight 

Class=1 aircraft to produce 

  new  Weight Class=1 making up approxomately 89% of all airport operations. 

  */ 

 

  if wgt=-999 then WgtClass=0; 

  if wgt > 0 and wgt <= 25000 then WgtClass = 1; 

  if wgt > 25000 and wgt <= 66000 then WgtClass = 2; 

  if wgt > 66000 and wgt <= 75000 then WgtClass = 3; 

  if wgt > 75000 then WgtClass = 4; 

  /*  Reassign UNKNONW Classification to WgtClass 1*/ 

  if WgtClass=0 then WgtClass=1; 

 

/* Creat a new more fonely divided weight class designation in cae Open 

DeKalb requests further analysis.  */ 

 

  WCF=-1; 

  if wgt=-999 then WCF=0; 

  if wgt > 0 and wgt <= 2500 then WCF = 1; 

  if wgt > 2500 and wgt <= 5000 then WCF = 2; 

  if wgt > 5000 and wgt <= 10000 then WCF = 3; 

  if wgt > 10000 and wgt <= 20000 then WCF = 4; 

  if wgt > 20000 and wgt <= 40000 then WCF = 5; 

  if wgt > 40000 and wgt <= 66000 then WCF = 6; 

  if wgt > 66000 and wgt <= 75000 then WCF = 7; 

  if wgt > 75000 then WCF = 8; 

  run; 
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/* Output of PROC CONTENTS for analysis.Flight_Events_Weights 

 

Alphabetic List of Variables and Attributes  

# Variable Type Len Format Informat Label  

5 Equip Char 4 $4. $4. Equip  

4 Flight_Num Char 7 $7. $7. Flight_Num  

3 Op Char 1 $1. $1. Op  

6 Pwr Char 4 $4. $4. Pwr  

2 Rwy Char 3 $3. $3. Rwy  

1 Time_Segment Num 8 BEST.   Time Segment  

10 WC0 Num 8        

11 WC1 Num 8        

12 WC2 Num 8        

13 WC3 Num 8        

14 WC4 Num 8        

9 WCF Num 8        

7 Wgt Num 8 BEST.   Wgt  

8 WgtClass Num 8        

  

 

proc contents data=analysis.Flight_Events_Weights; 

  run;  

  */ 

 

/* Macros to Read in Black Carbon Data and create Peak information and 

various levesl of Transient Particle Pekas (TPP)*/ 

 

/* Ancillary macros. */ 

 

  /* time_segments macro 

   Takes as input the file infilename, creates Time_Segements based on 

Adjusted-Date and Adjusted Time 

   and outputs that information to the file outfilename. This is a general 

macro that can be called inside another macro, 

   e.g., any of the Read_BC macros. */ 

 

%macro time_segments(infilename,outfilename); 

/*  Macro to construct 15-minute Time Segments starting at the begining of 

the study 10 October 2013. Ther are approaximately 

 35,000 15-minute time increments in the one-year monitoring period.*/ 

  data &outfilename; 

    set &infilename; 

    dt1=(Adjusted_Date-19641); 

    dt2=Adjusted_Time/86400; 

    dt3=(dt1+dt2)*96; 

    Time_Segment=int(dt3); 

    keep Adjusted_Date Adjusted_Time BC_Post Time_Segment; 

    run; 

  %mend; 

/* Macro to test the integrity of the Excel Files with respect to 

Adjusted_Date and Adjusted_Time */ 

%macro test_data(filename); 

proc sort data=&filename; 

  by Adjusted_Date Adjusted_Time; 

  run; 

%mend test_data; 
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/* Macro to determine TPP Values for a given Month contained in filename */ 

%macro TPP(filename); 

  /* Get mean and standard deveiation for the BC Post Processed Data and 

output to filename. 

 

  Mean Value --> BC_Mean 

  StDev Value --> BC_Std  

  In macro, would use NOTABLE */ 

proc means data=&filename NOPRINT; 

  var BC_Post; 

  output out=Means Mean=BC_Mean Std=BC_Std; 

  run; 

/* Use SAS trick to allow means and standard deveiations to apply to every 

observation. */  

data Means; 

    set Means; 

 mrger=1; 

    run; 

data &filename; 

  set &filename; 

  mrger=1; 

  run; 

proc sort Data=Means; 

  by mrger; 

  run; 

proc sort data=&filename; 

  by mrger; 

  run; 

data &filename; 

  merge &filename Means; 

  by mrger; 

  run; 

/* Construct TPP values in SAS to compare with Excel */ 

data &filename; 

  set &filename; 

  TPP1=0; 

  TPP3=0; 

  TPP4=0; 

  TPP5=0; 

  TPP10=0; 

  TPP15=0; 

  TPP20=0; 

  TPP25=0; 

  if BC_post>=BC_Mean+1*BC_Std then TPP1=1; 

  if BC_post>=BC_Mean+3*BC_Std then TPP3=1; 

  if BC_post>=BC_Mean+4*BC_Std then TPP4=1; 

  if BC_post>=BC_Mean+5*BC_Std then TPP5=1; 

  if BC_post>=BC_Mean+10*BC_Std then TPP10=1; 

  if BC_post>=BC_Mean+15*BC_Std then TPP15=1; 

  if BC_post>=BC_Mean+20*BC_Std then TPP20=1; 

  if BC_post>=BC_Mean+25*BC_Std then TPP25=1; 

  run; 

%mend TPP; 

%macro findpeaks(infile); 

  /* Within each Increment of 15 minutes, we sum the peak indicators. If the 

sum witin a Increment is greater than or equal to 
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   one, we identify the Increment as having a peak. */ 

 

/* Sum TPP indicator across time_segments. Initialize TPP indicator to zero. 

If there is a TPP indicator anywhere in that time_segement, 

   then set ispeak to 1 meaning there has been a peak identified. this is 

saved in peakfile along with the time_segement. Should store 

   month and site with this file as well.*/ 

 

 

proc sort data=&infile; 

  by time_segment; 

  run; 

proc means data=&infile NOPRINT; 

  output out=peakfile SUM=; 

  var TPP1 TPP3 TPP4 TPP5 TPP10 TPP15 TPP20 TPP25; 

  by time_segment; 

  run; 

data peakfile; 

  set peakfile; 

  ispeak_1=0; 

  if TPP1 > 0 then ispeak_1=1; 

  ispeak_3=0; 

  if TPP3 > 0 then ispeak_3=1; 

  ispeak_4=0; 

  if TPP4 > 0 then ispeak_4=1; 

  ispeak_5=0; 

  if TPP5 > 0 then ispeak_5=1; 

  ispeak_10=0; 

  if TPP10 > 0 then ispeak_10=1; 

  ispeak_15=0; 

  if TPP15 > 0 then ispeak_15=1; 

  ispeak_20=0; 

  if TPP20 > 0 then ispeak_20=1; 

  ispeak_25=0; 

  if TPP25 > 0 then ispeak_25=1; 

  keep time_segment ispeak_1 ispeak_3 ispeak_4 ispeak_5 ispeak_10 ispeak_15 

ispeak_20 ispeak_25; 

  run; 

proc sort data=&infile; 

  by time_segment; 

  run; 

proc sort data=peakfile; 

  by time_segment; 

  run; 

data &infile; 

  merge &infile peakfile; 

  by time_segment; 

  run; 

%mend findpeaks; 

 

/* This macro takes data from  the file input, which is the output of other 

macros and determines whether a given time segment 

   has a TPP of a specific type. The file produced goes into putfile and 

contains only the time segment identifier and 

   an indicator of whether a peak of the specific type has occurred in this 

time segment. This file will be merged with a 
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   similar file indicating whether aircraft of a specific weight class had an 

operation during this time segment. 

 

   This macro is redundant with findpeaks is the intermediate file is stored. 

*/ 

 

%macro putpeaks(infile,putfile); 

  /* Within each Increment of 15 minutes, we sum the peak indicators. If the 

sum within an Increment is greater than or equal to 

   one, we identify the Increment as having a peak. */ 

proc sort data=&infile; 

  by time_segment; 

  run; 

proc means data=&infile NOPRINT; 

  output out=peakfile SUM=; 

  var ispeak_1 ispeak_3 ispeak_4 ispeak_5 ispeak_10 ispeak_15 ispeak_20 

ispeak_25; 

  by time_segment; 

  run; 

data peakfile; 

  set peakfile; 

  ispeak1=0; 

  if ispeak_1 > 0 then ispeak1=1; 

  ispeak3=0; 

  if ispeak_3 > 0 then ispeak3=1; 

  ispeak4=0; 

  if ispeak_4 > 0 then ispeak4=1; 

  ispeak5=0; 

  if ispeak_5 > 0 then ispeak5=1; 

  ispeak10=0; 

  if ispeak_10 > 0 then ispeak10=1; 

  ispeak15=0; 

  if ispeak_15 > 0 then ispeak15=1; 

  ispeak20=0; 

  if ispeak_20 > 0 then ispeak20=1; 

  ispeak25=0; 

  if ispeak_25 > 0 then ispeak25=1; 

  keep time_segment ispeak1 ispeak3 ispeak4 ispeak5 ispeak10 ispeak15 

ispeak20 ispeak25; 

  run; 

data &putfile; 

  set peakfile; 

  run; 

%mend putpeaks; 

 

/* The macro below reads in data files from specific excel Files To be 

generalized */ 

 

 

/* New Generalized Macro to Read all Datasets */ 

 

%macro read_dataset(dataset,location,time); 

proc import datafile=&dataset 

       out=analysis.BC_&location&time DBMS=xlsx REPLACE; 

/* Make range long enough to ensure all data are read. */ 

   range="&time$a1:b100000,k1:k100000"; 
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   getnames=yes; 

   run; 

/* Call the time_segments macro to calculate the time segements and append 

infromation to file. */ 

/*%time_segments(analysis.BC_south_553_&time,analysis.BC_south_553_&time); 

 

%test_data(analysis.BC_south_553_&time); 

%TPP(analysis.BC_south_553_&time); 

%findpeaks(analysis.BC_south_553_&time);*/ 

%time_segments(analysis.BC_&location&time,analysis.BC_&location&time); 

 

%test_data(analysis.BC_&location&time); 

%TPP(analysis.BC_&location&time); 

%findpeaks(analysis.BC_&location&time); 

data analysis.BC_&location&time; 

  set analysis.BC_&location&time; 

  Month="&time"; 

  run; 

 

%let peaks=_peaks; 

%putpeaks(analysis.BC_&location&time,analysis.BC_&location&time&peaks); 

data analysis.BC_&location&time&peaks; 

  set analysis.BC_&location&time&peaks; 

  Month="&time"; 

  Site="&location"; 

  run; 

/*proc print data=analysis.BC_&location&time&peaks (OBS=1); 

  run; 

proc freq data=analysis.BC_&location&time&peaks; 

  table ispeak1 ispeak3 ispeak5 ispeak10 ispeak15 ispeak20 ispeak25; 

  run;*/ 

%mend read_dataset; 

 

/* Using the Main meacro read_dataset and the various Ancillary Macros, we 

proceed through the the months of the study 

 and teh four data locations. South, East, North, and West. */ 

 

/* Need to pass these two arguments to read_dataset macro, namely, the name 

and location of the dataset and the nemae and identifier 

 of the sampler location.*/ 

 

/* South */ 

%let dataset="C:\Working Files\Research\PDK Airport\Analysis 2018\Flight 

Event Data\South 553.xlsx"; 

%let location_monitor=South_553_; 

 

/* Call to read_dataset */ 

%read_dataset(&dataset,&location_monitor,October13); 

%read_dataset(&dataset,&location_monitor,November13); 

%read_dataset(&dataset,&location_monitor,December13); 

%read_dataset(&dataset,&location_monitor,January14); 

%read_dataset(&dataset,&location_monitor,February14); 

%read_dataset(&dataset,&location_monitor,March14); 

%read_dataset(&dataset,&location_monitor,April14); 

%read_dataset(&dataset,&location_monitor,May14); 

%read_dataset(&dataset,&location_monitor,June14); 



 

 

87 

 

/*%read_dataset(&dataset,&location_monitor,July14); 

%read_dataset(&dataset,&location_monitor,August14); 

%read_dataset(&dataset,&location_monitor,September4); 

%read_dataset(&dataset,&location_monitor,October14);*/ 

 

/* East */ 

%let dataset="C:\Working Files\Research\PDK Airport\Analysis 2018\Flight 

Event Data\East 559.xlsx"; 

%let location_monitor=East_559_; 

 

/* Call to read_dataset */ 

%read_dataset(&dataset,&location_monitor,October13); 

%read_dataset(&dataset,&location_monitor,November13); 

%read_dataset(&dataset,&location_monitor,December13); 

%read_dataset(&dataset,&location_monitor,January14); 

%read_dataset(&dataset,&location_monitor,February14); 

%read_dataset(&dataset,&location_monitor,March14); 

%read_dataset(&dataset,&location_monitor,April14); 

%read_dataset(&dataset,&location_monitor,May14); 

%read_dataset(&dataset,&location_monitor,June14); 

%read_dataset(&dataset,&location_monitor,July14); 

%read_dataset(&dataset,&location_monitor,August14); 

%read_dataset(&dataset,&location_monitor,September14); 

%read_dataset(&dataset,&location_monitor,October14); 

 

/* North */ 

%let dataset="C:\Working Files\Research\PDK Airport\Analysis 2018\Flight 

Event Data\North 560.xlsx"; 

%let location_monitor=North_560_; 

 

/* Call to read_dataset */ 

/* %read_dataset(&dataset,&location_monitor,October13); 

%read_dataset(&dataset,&location_monitor,November13);*/ 

%read_dataset(&dataset,&location_monitor,December13); 

%read_dataset(&dataset,&location_monitor,January14); 

%read_dataset(&dataset,&location_monitor,February14); 

%read_dataset(&dataset,&location_monitor,March14); 

%read_dataset(&dataset,&location_monitor,April14); 

%read_dataset(&dataset,&location_monitor,May14); 

%read_dataset(&dataset,&location_monitor,June14); 

%read_dataset(&dataset,&location_monitor,July14); 

%read_dataset(&dataset,&location_monitor,August14); 

%read_dataset(&dataset,&location_monitor,September14); 

%read_dataset(&dataset,&location_monitor,October14); 

 

/* West */ 

%let dataset="C:\Working Files\Research\PDK Airport\Analysis 2018\Flight 

Event Data\West 546.xlsx"; 

%let location_monitor=West_546_; 

 

/* Call to read_dataset */ 

%read_dataset(&dataset,&location_monitor,October13); 

%read_dataset(&dataset,&location_monitor,November13); 

%read_dataset(&dataset,&location_monitor,December13); 

%read_dataset(&dataset,&location_monitor,January14); 

%read_dataset(&dataset,&location_monitor,February14); 
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%read_dataset(&dataset,&location_monitor,March14); 

%read_dataset(&dataset,&location_monitor,April14); 

%read_dataset(&dataset,&location_monitor,May14); 

%read_dataset(&dataset,&location_monitor,June14); 

%read_dataset(&dataset,&location_monitor,July14); 

%read_dataset(&dataset,&location_monitor,August14); 

%read_dataset(&dataset,&location_monitor,September14); 

%read_dataset(&dataset,&location_monitor,October14); 

 

/* Attemps to write a general macro to combine the varaious monthly 

datasets into a single yearly dataset are stymied  

 by the differing months available for each site. Hwoever, the general 

strucure is the same. Hence, we produce multiple macros 

 that are called for the approapriate sites. */ 

 

/* East and West Monitors contain data for all months. */ 

  

%macro combine_monthsEW(location); 

data analysis.BC_&location; 

  set analysis.BC_&location&October13 analysis.BC_&location&November13 

analysis.BC_&location&December13 analysis.BC_&location&January14  

      analysis.BC_&location&February14 analysis.BC_&location&March14 

analysis.BC_&location&April14 analysis.BC_&location&May14  

      analysis.BC_&location&June14 analysis.BC_&location&July14 

analysis.BC_&location&August14 analysis.BC_&location&September14 

   analysis.BC_&location&October14; 

   Site_ID="&location"; 

   run; 

/*proc contents data=analysis.BC_&location; 

  run; 

proc print data=analysis.BC_&location (OBS=10); 

  run;*/ 

%mend combine_monthsEW; 

 

/* South Monitor is missing data from July-October 2014 */ 

%macro combine_monthsS(location); 

data analysis.BC_&location; 

  set analysis.BC_&location&October13 analysis.BC_&location&November13 

analysis.BC_&location&December13 analysis.BC_&location&January14  

      analysis.BC_&location&February14 analysis.BC_&location&March14 

analysis.BC_&location&April14 analysis.BC_&location&May14  

      analysis.BC_&location&June14; 

   Site_ID="&location"; 

   run; 

/*proc contents data=analysis.BC_&location; 

  run; 

proc print data=analysis.BC_&location (OBS=10); 

  run; */ 

%mend combine_monthsS; 

 

/* North Monitor is missing data from October-November 2013 */ 

%macro combine_monthsN(location); 

data analysis.BC_&location; 

  set analysis.BC_&location&December13 analysis.BC_&location&January14  

      analysis.BC_&location&February14 analysis.BC_&location&March14 

analysis.BC_&location&April14 analysis.BC_&location&May14  
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      analysis.BC_&location&June14 analysis.BC_&location&July14 

analysis.BC_&location&August14 analysis.BC_&location&September14 

   analysis.BC_&location&October14; 

   Site_ID="&location"; 

   run; 

/*proc contents data=analysis.BC_&location; 

  run; 

proc print data=analysis.BC_&location (OBS=10); 

  run;*/ 

%mend combine_monthsN; 

 

/* These Macros combines Peak Files to produce a single file */ 

 

/* East and West Monitors have data for all months.*/ 

%macro combine_monthsEW_peaks(location); 

%let peaks=_peaks; 

data analysis.BC_&location&peaks; 

  set analysis.BC_&location&October13&peaks 

analysis.BC_&location&November13&peaks 

      analysis.BC_&location&December13&peaks 

analysis.BC_&location&January14&peaks  

      analysis.BC_&location&February14&peaks 

analysis.BC_&location&March14&peaks analysis.BC_&location&April14&peaks 

analysis.BC_&location&May14&peaks  

      analysis.BC_&location&June14&peaks analysis.BC_&location&July14&peaks 

analysis.BC_&location&August14&peaks analysis.BC_&location&September14&peaks 

   analysis.BC_&location&October14&peaks; 

   Site_ID="&location"; 

   run; 

/*proc contents data=analysis.BC_&location&peaks; 

  run; 

proc print data=analysis.BC_&location&peaks (OBS=10); 

  run;*/ 

%mend combine_monthsEW_peaks; 

 

/* South Monitor is missing data from July-October 2014 */ 

%macro combine_monthsS_peaks(location); 

%let peaks=_peaks; 

data analysis.BC_&location&peaks; 

  set analysis.BC_&location&October13&peaks 

analysis.BC_&location&November13&peaks 

      analysis.BC_&location&December13&peaks 

analysis.BC_&location&January14&peaks  

      analysis.BC_&location&February14&peaks 

analysis.BC_&location&March14&peaks analysis.BC_&location&April14&peaks 

analysis.BC_&location&May14&peaks  

      analysis.BC_&location&June14&peaks; 

   Site_ID="&location"; 

   run; 

/*proc contents data=analysis.BC_&location&peaks; 

  run; 

proc print data=analysis.BC_&location&peaks (OBS=10); 

  run;*/ 

%mend combine_monthsS_peaks; 

 

/* North Monitor is missing data from October-November 2013 */ 
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%macro combine_monthsN_peaks(location); 

%let peaks=_peaks; 

data analysis.BC_&location&peaks; 

  set analysis.BC_&location&December13&peaks 

analysis.BC_&location&January14&peaks  

      analysis.BC_&location&February14&peaks 

analysis.BC_&location&March14&peaks analysis.BC_&location&April14&peaks 

analysis.BC_&location&May14&peaks  

      analysis.BC_&location&June14&peaks analysis.BC_&location&July14&peaks 

analysis.BC_&location&August14&peaks analysis.BC_&location&September14&peaks 

   analysis.BC_&location&October14&peaks; 

   Site_ID="&location"; 

   run; 

/* proc contents data=analysis.BC_&location&peaks; 

  run; 

proc print data=analysis.BC_&location&peaks (OBS=10); 

  run;*/ 

%mend combine_monthsN_peaks; 

 

/* Define Names of Months to be used in FIle Names, etc.*/ 

 

%let October13=October13;  

%let November13=November13; 

%let December13=December13;  

%let January14=January14; 

%let February14=February14; 

%let March14=March14; 

%let April14=April14; 

%let May14=May14; 

%let June14=June14; 

%let July14=July14; 

%let August14=August14; 

%let September14=September14; 

%let October14=October14; 

 

/* Run Macros to Produce Yearly Dataset */ 

%combine_monthsS(South_553_); 

%combine_monthsEW(East_559_); 

%combine_monthsN(North_560_); 

%combine_monthsEW(West_546_); 

 

/* Run Macros to Produce Yearly Dataset for Peaks */ 

%combine_monthsS_peaks(South_553_); 

%combine_monthsEW_peaks(East_559_); 

%combine_monthsN_peaks(North_560_); 

%combine_monthsEW_peaks(West_546_); 

 

/* Calculate Peak Frequencies. */ 

 

proc freq data=analysis.bc_south_553__peaks; 

  title "Black Carbon Peak Frequencies for South 553"; 

  table ispeak1 ispeak3 ispeak4 ispeak5 ispeak10 ispeak15 ispeak20 ispeak25; 

  run; 

 

proc freq data=analysis.bc_east_559__peaks; 

  title "Black Carbon Peak Frequencies for East 559"; 
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  table ispeak1 ispeak3 ispeak4 ispeak5 ispeak10 ispeak15 ispeak20 ispeak25; 

  run; 

 

proc freq data=analysis.bc_north_560__peaks; 

  title "Black Carbon Peak Frequencies for North 560"; 

  table ispeak1 ispeak3 ispeak4 ispeak5 ispeak10 ispeak15 ispeak20 ispeak25; 

  run; 

 

proc freq data=analysis.bc_west_546__peaks; 

  title "Black Carbon Peak Frequencies for West 546"; 

  table ispeak1 ispeak3 ispeak4 ispeak5 ispeak10 ispeak15 ispeak20 ispeak25; 

  run; 

 

/* Combine sites into a single Peak dataset */ 

data analysis.BC__peaks; 

 set analysis.BC_South_553__peaks analysis.BC_East_559__peaks 

analysis.BC_North_560__peaks analysis.BC_West_546__peaks ; 

 drop Site_ID; 

 run; 

 

/* Calculate all-site freqencies. Then repeat site-specifc frqunceis fro  

large dataset for consistency */ 

proc freq data=analysis.BC__peaks; 

  title "All Sites"; 

  table ispeak1 ispeak3 ispeak4 ispeak5 ispeak10 ispeak15 ispeak20 ispeak25; 

  run; 

proc sort data=analysis.BC__peaks; 

  by site; 

   run; 

proc freq data=analysis.BC__peaks; 

/* Peak Frequncies by site. */ 

  table ispeak1 ispeak3 ispeak4 ispeak5 ispeak10 ispeak15 ispeak20 ispeak25; 

  by site; 

  run; 

 

 

  /**** Flight Event Data ***/ 

 

/* Construct WCX Variables and count the number of each Weight Class. Note 

that WgtClass=0 should not exist at this point 

   so that WC0=0 for all observations.*/ 

 

data analysis.Flight_Events_Weights; 

  set analysis.Flight_Events_Weights; 

  WC0=0; 

  WC1=0; 

  WC2=0; 

  WC3=0; 

  WC4=0; 

  if WgtClass=0 then WC0=WC0+1; 

  if WgtClass=1 then WC1=WC1+1; 

  if WgtClass=2 then WC2=WC2+1; 

  if WgtClass=3 then WC3=WC3+1; 

  if WgtClass=4 then WC4=WC4+1; 

  run; 
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proc freq data=analysis.Flight_Events_Weights;; 

  table WC0 WC1 WC2 WC3 WC4 WCF; 

  run; 

/* We begin the development of variables indicating that an aircraft in a 

specific wieght class was present in 

   each time segment. We sort by time segment in order to generate the 

approirate varibes, i.e., the total number of aircraft 

   identified in each time segment. There may be multiple aircraft of any 

given weight class or multiple aircraft of various  

   weight classes in a given time segment. Our goal is to identify whether 

any aircraft of a given weight class was was noted  

   in a time segment. Proc Means does this noting that we output the sums 

in weightclass to a dataset named sumwc. The output  

   the time segement and the sum of the number of all indetified aircraft 

in each time segement. The file is further modified 

   to indicate only whther any aircraft of theat weight class was present 

in the time segment.*/ 

proc sort data=analysis.Flight_Events_Weights; 

  by Time_Segment; 

  run; 

proc means data= analysis.Flight_Events_Weights NOPRINT; 

  output out=sumwc SUM=; 

  var WC1 WC2 WC3 WC4; 

  by time_segment; 

  run; 

data sumwc; 

  set sumwc; 

  if WC0 > 0 then WC0=1; 

  if WC1 > 0 then WC1=1; 

  if WC2 > 0 then WC2=1; 

  if WC3 > 0 then WC3=1; 

  if WC4 > 0 then WC4=1; 

  run; 

data analysis.sumwc; 

  set sumwc; 

  run; 

proc freq data=analysis.sumwc; 

  table WC0 WC1 WC2 WC3 WC4; 

  run; 

/* We are now ready to merge this data file with the Peak file.*/ 

 

 

/****************************************************************************

******************************************** 

/* Merge Weigh Class Data and Peak Data. Data contained in newfile  

 

  Merged datasets too soon here. Must aggregate over time segments for both 

files then merge dta/ 

 

  

*****************************************************************************

*******************************************  */ 

 

  /* Sum ISPEAKx values found in each time_segment*/ 

proc sort data=analysis.BC__peaks; 

  by time_segment; 
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  run; 

proc means data=analysis.BC__peaks noprint; 

  output out=sumpeaks sum=; 

  var ispeak1 ispeak3 ispeak4 ispeak5 ispeak10 ispeak15 ispeak20 ispeak25; 

  by time_segment; 

  run; 

 

/****************************************************************************

************* 

 

  Stopped describing code here 5 July 2018 

 

  

*****************************************************************************

************/ 

 

/* Merge Peak Data with Weight Class Data. Clean up by deleting data prior to 

time segement 43 and Weight Class =0 */ 

 

proc sort data=sumpeaks; 

  by time_segment; 

  run; 

proc sort data=analysis.BC__peaks; 

  by time_segment; 

  run; 

 

data newfile; 

  merge sumpeaks sumwc; 

  by time_segment; 

  if time_segment < 43 then delete; 

  drop wc0; 

  run; 

 

proc freq data=newfile; 

  title "Merged BC__Peaks and Summed WC Data."; 

  table WC1 WC2 WC3 WC4; 

  run; 

 

/* Identify presence of any identifiable aricraft- including UNKNOWN under 

WC1. WCX varaibles are 

   now indicator varaibels for the presence of that weight aircraft. Work 

only with aircraft_present =1 

   data.*/ 

 

data sumnf; 

  set newfile; 

  aircraft_present=1; 

  if WC1 =. then aircraft_present=0; 

  if WC1 > 0 then WC1=1; 

  if WC2 > 0 then WC2=1; 

  if WC3 > 0 then WC3=1; 

  if WC4 > 0 then WC4=1; 

  run; 

proc freq data=sumnf; 

  table aircraft_present; 

  run; 
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proc sort data=sumnf; 

  by time_segment; 

  run; 

data analysis.BC_Analysis; 

  set sumnf; 

  run; 

proc print data=analysis.BC_Analysis(OBS=30); 

  title "BC_Analysis Permanent Dataset"; 

  run; 

 

/* The analysis indicated below matches the analysis done for BC. 

Reproduce Tables for CPC Data in Report.  

 

   The dataset doanal sums peaks and identifieis Weight Classes. This will 

be used in both Heiristic and Logistic Analysis */ 

data doanal; 

  set analysis.BC_Analysis; 

  if WC1=1 then wgtclass=1; 

  if WC2=1 then wgtclass=2; 

  if WC3=1 then wgtclass=3; 

  if WC4=1 then wgtclass=4; 

  if wgtclass=. then delete; 

  if ispeak1=. then delete; 

  if ispeak1 > 1 then ispeak1=1; 

  if ispeak3 > 1 then ispeak3=1; 

  if ispeak4 > 1 then ispeak4=1; 

  if ispeak5 > 1 then ispeak5=1; 

  if ispeak10 > 1 then ispeak10=1; 

  if ispeak15 > 1 then ispeak15=1; 

  if ispeak20 > 1 then ispeak20=1; 

  if ispeak25 > 1 then ispeak25=1; 

  where aircraft_present=1; 

  run; 

 

  /* Determine overall frequencies of peaks over time segments.*/ 

 

proc freq data=doanal; 

  table ispeak1 ispeak3 ispeak4 ispeak5 ispeak10 ispeak15 ispeak20 ispeak25; 

  run; 

 

  /* Determine overall frequencies of peaks over time segments for each 

Weight Class.*/ 

proc sort data=doanal; 

  by wgtclass; 

  run; 

proc freq data=doanal; 

  table ispeak1 ispeak3 ispeak4 ispeak5 ispeak10 ispeak15 ispeak20 ispeak25; 

  by wgtclass; 

  run; 

 

/* 

    Heuristic Analysis 

 

*/ 

proc freq data=doanal; 
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  title "Overall Aircraft"; 

  table wc1 wc2 wc3 wc4; 

  run; 

 

proc freq data=doanal; 

  title "ISPEAK1"; 

  table wc1 wc2 wc3 wc4; 

  where ispeak1=1; 

  run; 

 

proc freq data=doanal; 

  title "ISPEAK3"; 

  table wc1 wc2 wc3 wc4; 

  where ispeak3=1; 

  run; 

 

proc freq data=doanal; 

  title "ISPEAK4"; 

  table wc1 wc2 wc3 wc4; 

  where ispeak4=1; 

  run; 

 

proc freq data=doanal; 

  title "ISPEAK5"; 

  table wc1 wc2 wc3 wc4; 

  where ispeak5=1; 

  run; 

 

proc freq data=doanal; 

  title "ISPEAK10"; 

  table wc1 wc2 wc3 wc4; 

  where ispeak10=1; 

  run; 

 

proc freq data=doanal; 

  title "ISPEAK15"; 

  table wc1 wc2 wc3 wc4; 

  where ispeak15=1; 

  run; 

 

proc freq data=doanal; 

  title "ISPEAK20"; 

  table wc1 wc2 wc3 wc4; 

  where ispeak20=1; 

  run; 

 

proc freq data=doanal; 

  title "ISPEAK25"; 

  table wc1 wc2 wc3 wc4; 

  where ispeak25=1; 

  run; 

 

/* 

 

  Logistic Regression Analysis 
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  */ 

proc logistic data=doanal; 

  title "ISPEAK1"; 

  class wgtclass / param=ref; 

  model ispeak1 (descending)=wgtclass; 

    contrast 'WgtClass=1 vs WgtClass=2' wgtclass 1 1 0; 

      contrast 'WgtClass=1 vs WgtClass=3' wgtclass 1 0 1; 

 contrast 'WgtClass=2 vs WgtClass=3' wgtclass  0 1 1; 

 contrast "WgtClass  1, 2, 3" wgtclass 1 1 1 ; 

    run; 

 

proc logistic data=doanal; 

  title "ISPEAK3"; 

  class wgtclass / param=ref; 

  model ispeak3 (descending)=wgtclass; 

    contrast 'WgtClass=1 vs WgtClass=2' wgtclass 1 1 0; 

      contrast 'WgtClass=1 vs WgtClass=3' wgtclass 1 0 1; 

 contrast 'WgtClass=2 vs WgtClass=3' wgtclass  0 1 1; 

 contrast "WgtClass  1, 2, 3" wgtclass 1 1 1 ; 

    run; 

 

proc logistic data=doanal; 

  title "ISPEAK4";  

  class wgtclass / param=ref; 

  model ispeak4 (descending)=wgtclass; 

    contrast 'WgtClass=1 vs WgtClass=2' wgtclass 1 1 0; 

      contrast 'WgtClass=1 vs WgtClass=3' wgtclass 1 0 1; 

 contrast 'WgtClass=2 vs WgtClass=3' wgtclass  0 1 1; 

 contrast "WgtClass  1, 2, 3" wgtclass 1 1 1 ; 

    run; 

 

proc logistic data=doanal; 

  title "ISPEAK5"; 

  class wgtclass / param=ref; 

  model ispeak5 (descending)=wgtclass; 

    contrast 'WgtClass=1 vs WgtClass=2' wgtclass 1 1 0; 

      contrast 'WgtClass=1 vs WgtClass=3' wgtclass 1 0 1; 

 contrast 'WgtClass=2 vs WgtClass=3' wgtclass  0 1 1; 

 contrast "WgtClass  1, 2, 3" wgtclass 1 1 1 ; 

    run; 

 

proc logistic data=doanal; 

  title "ISPEAK10"; 

  class wgtclass / param=ref; 

  model ispeak10 (descending)=wgtclass; 

    contrast 'WgtClass=1 vs WgtClass=2' wgtclass 1 1 0; 

      contrast 'WgtClass=1 vs WgtClass=3' wgtclass 1 0 1; 

 contrast 'WgtClass=2 vs WgtClass=3' wgtclass  0 1 1; 

 contrast "WgtClass  1, 2, 3" wgtclass 1 1 1 ; 

    run; 

 

proc logistic data=doanal; 

  title "ISPEAK15"; 

  class wgtclass / param=ref; 

  model ispeak15 (descending)=wgtclass; 

    contrast 'WgtClass=1 vs WgtClass=2' wgtclass 1 1 0; 



 

 

97 

 

      contrast 'WgtClass=1 vs WgtClass=3' wgtclass 1 0 1; 

 contrast 'WgtClass=2 vs WgtClass=3' wgtclass  0 1 1; 

 contrast "WgtClass  1, 2, 3" wgtclass 1 1 1 ; 

    run; 

 

proc logistic data=doanal; 

  title "ISPEAK20"; 

  class wgtclass / param=ref; 

  model ispeak20 (descending)=wgtclass; 

    contrast 'WgtClass=1 vs WgtClass=2' wgtclass 1 1 0; 

      contrast 'WgtClass=1 vs WgtClass=3' wgtclass 1 0 1; 

 contrast 'WgtClass=2 vs WgtClass=3' wgtclass  0 1 1; 

 contrast "WgtClass  1, 2, 3" wgtclass 1 1 1 ; 

    run; 

 

proc logistic data=doanal; 

  title "ISPEAK25"; 

  class wgtclass / param=ref; 

  model ispeak25 (descending)=wgtclass; 

    contrast 'WgtClass=1 vs WgtClass=2' wgtclass 1 1 0; 

      contrast 'WgtClass=1 vs WgtClass=3' wgtclass 1 0 1; 

 contrast 'WgtClass=2 vs WgtClass=3' wgtclass  0 1 1; 

 contrast "WgtClass  1, 2, 3" wgtclass 1 1 1 ; 

    run; 
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Appendix 4- SAS Code for the Analysis of CPC Data 
/****************************************************************************

************ 

 

SAS Code to produce analysis of PDK CPC Data. This uses previously developed 

dataset: 

 

 1. analysis.Flight_Events_Weights 

  Data for all FLight Events from early October 2013 to mid-October 

2014. 

 

*****************************************************************************

************/ 

 

/* Set libname for CPC Data Files'*/ 

 

libname CPCSAS 'C:\Working Files\Research\PDK Airport\CPC Data\SAS Files'; 

libname analysis 'C:\Working Files\Research\PDK Airport\Analysis 2018'; 

 

 

 

/* Macro to Read Multiple Data files */ 

 

/* Ancillary macros. */ 

 

  /* time_segments macro 

   Takes as input the file infilename, creates Time_Segments based on 

Adjusted-Date and Adjusted Time 

   and outputs that information to the file outfilename. This is a general 

macro that can be called inside another macro, 

   e.g., any of the Read_BC macros. */ 

 

%macro time_segments(infilename,outfilename); 

data &outfilename; 

  set &infilename; 

 

  /* infilename is the name of the nput file contiang the monthly data  

    outfilename is the file to receive the modified data.  */ 

 

  /* Perform a series of maniulations to determine whether daylight savings 

time corrections must be made. 

 

    EST was in effect from 3 November 2013 to 9 March 2014. The 

transition days were those two dates. During  

    that time period the times as recorded were accurate. For other 

periods, DST was in effect resulting 

    in timing being off by one hour. In particular, midnight was 

recorded as 1:00:00, 11PM recorded as 23:00:00 

    and teh last minute of the day recorded as 0:00:59.*/ 

 

  /* datetime contains the number of days since 1 Jan 1960 with the 

fractional part representing the fraction  

    of a day associated witht he specific time the sample was taken. 

For example, datetime=19654.00069444 

    represents 0:01:00 (12:01 AM) on November 2, 2013. 
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    I have not been able to find a "fractional part" funcsion in SAS 

so I just constructed one.*/ 

 

    frc_dt=datetime-int(datetime); 

  

/*  This DO group resets the times for the DST time period. */ 

  

 if datetime < mdy(11,4,2013) or datetime > mdy(3,9,2014) then do; 

   if frc_dt > 1/24 then frc_dt=frc_dt-1/24; 

 

   else if frc_dt <= 1/24 then frc_dt=frc_dt+23/24; 

 

   datetime=int(datetime)+frc_dt; 

   end; 

/*  The following do conversions to afford assessment of the correct 

dates and time. They can be 

    removed, but I have elected to leave them in. They are not used 

further. */ 

 

 yr=year(datetime); 

 mnth=month(datetime); 

 dy=day(datetime); 

 

 hr=int(frc_dt*24); 

 min=int(60*(frc_dt*24-int(frc_dt*24))+0.5); 

 

/*  Correct datetime to begin on midnitht of day 1 of our sampling 

(10 Oct 2013.) */ 

    dt1=(datetime-19641); 

 

/*  Ther are 96 15 minute increments in each day. Calulate which time 

segment we are in. 

  this allows keying to aircraft operations. */ 

 

 dt3=(dt1)*96; 

    Time_Segment=int(dt3); 

 

 /* Keep only necessary data but keep a copy of all the other material 

handy. 

 keep datetime yr mnth dy hr min frc_dt CPCConc Time_Segment; */ 

 

 keep datetime CPCConc Time_Segment; 

    run; 

  %mend; 

 

/* Macro to test the integrity of the Excel Files with respect to 

Adjusted_Date and Adjusted_Time */ 

 

/*%macro test_data(filename); 

proc sort data=&filename; 

  by Adjusted_Date Adjusted_Time; 

  run; 

%mend test_data;*/ 

 

/* Macro to determine TPP Values for a given Month contained in filename */ 
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%macro TPP(filename); 

  /* Get mean and standard deveiation for the BC Post Processed Data and 

output to filename. 

 

  Mean Value --> CPCConc_Mean 

  StDev Value --> CPCConc_Std  

  In macro, would use NOTABLE */ 

proc means data=&filename NOPRINT; 

  var CPCConc; 

  output out=Means Mean=CPCConc_Mean Std=CPCConc_Std; 

  run; 

/* Use SAS trick to allow means and standard deveiations to apply to every 

observation. */  

data Means; 

    set Means; 

 mrger=1; 

    run; 

data &filename; 

  set &filename; 

  mrger=1; 

  run; 

proc sort Data=Means; 

  by mrger; 

  run; 

proc sort data=&filename; 

  by mrger; 

  run; 

data &filename; 

  merge &filename Means; 

  by mrger; 

  run; 

/* Construct TPP values in SAS*/ 

data &filename; 

  set &filename; 

  TPP1=0; 

  TPP3=0; 

  TPP4=0; 

  TPP5=0; 

  TPP10=0; 

  TPP15=0; 

  TPP20=0; 

  TPP25=0; 

  if CPCConc>=CPCConc_Mean+1*CPCConc_Std then TPP1=1; 

  if CPCConc>=CPCConc_Mean+3*CPCConc_Std then TPP3=1; 

  if CPCConc>=CPCConc_Mean+4*CPCConc_Std then TPP4=1; 

  if CPCConc>=CPCConc_Mean+5*CPCConc_Std then TPP5=1; 

  if CPCConc>=CPCConc_Mean+10*CPCConc_Std then TPP10=1; 

  if CPCConc>=CPCConc_Mean+15*CPCConc_Std then TPP15=1; 

  if CPCConc>=CPCConc_Mean+20*CPCConc_Std then TPP20=1; 

  if CPCConc>=CPCConc_Mean+25*CPCConc_Std then TPP25=1; 

  run; 

%mend TPP; 

 

%macro findpeaks(infile); 
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  /* Within each Increment of 15 minutes, we sum the peak indicators. If the 

sum witin a Increment is greater than or equal to 

   one, we identify the Increment as having a peak. */ 

 

/* Sum TPP indicator across time_segments. Initialize TPP indicator to zero. 

If there is a TPP indicator anywhere in that time_segement, 

   then set ispeak to 1 meaning there has been a peak identified. this is 

saved in peakfile along with the time_segement. Should store 

   month and site with this file as well.*/ 

 

 

proc sort data=&infile; 

  by time_segment; 

  run; 

proc means data=&infile NOPRINT; 

  output out=peakfile SUM=; 

  var TPP1 TPP3 TPP4 TPP5 TPP10 TPP15 TPP20 TPP25; 

  by time_segment; 

  run; 

data peakfile; 

  set peakfile; 

  ispeak_1=0; 

  if TPP1 > 0 then ispeak_1=1; 

  ispeak_3=0; 

  if TPP3 > 0 then ispeak_3=1; 

  ispeak_4=0; 

  if TPP4 > 0 then ispeak_4=1; 

  ispeak_5=0; 

  if TPP5 > 0 then ispeak_5=1; 

  ispeak_10=0; 

  if TPP10 > 0 then ispeak_10=1; 

  ispeak_15=0; 

  if TPP15 > 0 then ispeak_15=1; 

  ispeak_20=0; 

  if TPP20 > 0 then ispeak_20=1; 

  ispeak_25=0; 

  if TPP25 > 0 then ispeak_25=1; 

  keep time_segment ispeak_1 ispeak_3 ispeak_4 ispeak_5 ispeak_10 ispeak_15 

ispeak_20 ispeak_25; 

  run; 

proc sort data=&infile; 

  by time_segment; 

  run; 

proc sort data=peakfile; 

  by time_segment; 

  run; 

data &infile; 

  merge &infile peakfile; 

  by time_segment; 

  run; 

%mend findpeaks; 

 

/* This macro takes data from  the file input, which is the output of other 

macros and determines whether a given time segment 

   has a TPP of a specific type. The file produced goes into putfile and 

contains only the time segment identifier and 
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   an indicator of whether a peak of the specific type has occurred in this 

time segment. This file will be merged with a 

   similar file indicating whether aircraft of a specific weight class had an 

operation during this time segment. 

 

   This macro is redundant with findpeaks is the intermediate file is stored. 

*/ 

 

%macro putpeaks(infile,putfile); 

  /* Within each Increment of 15 minutes, we sum the peak indicators. If the 

sum witin an Increment is greater than or equal to 

   one, we identify the Increment as having a peak. */ 

proc sort data=&infile; 

  by time_segment; 

  run; 

proc means data=&infile NOPRINT; 

  output out=peakfile SUM=; 

  var ispeak_1 ispeak_3 ispeak_4 ispeak_5 ispeak_10 ispeak_15 ispeak_20 

ispeak_25; 

  by time_segment; 

  run; 

data peakfile; 

  set peakfile; 

  ispeak1=0; 

  if ispeak_1 > 0 then ispeak1=1; 

  ispeak3=0; 

  if ispeak_3 > 0 then ispeak3=1; 

  ispeak4=0; 

  if ispeak_4 > 0 then ispeak4=1; 

  ispeak5=0; 

  if ispeak_5 > 0 then ispeak5=1; 

  ispeak10=0; 

  if ispeak_10 > 0 then ispeak10=1; 

  ispeak15=0; 

  if ispeak_15 > 0 then ispeak15=1; 

  ispeak20=0; 

  if ispeak_20 > 0 then ispeak20=1; 

  ispeak25=0; 

  if ispeak_25 > 0 then ispeak25=1; 

 

keep time_segment ispeak1 ispeak3 ispeak4 ispeak5 ispeak10 ispeak15 ispeak20 

ispeak25; 

  run; 

data &putfile; 

  set peakfile; 

  run; 

%mend putpeaks; 

 

 

/* The macro below reads in data files from specific excel Files To be 

generalized */ 

 

 

/* New Generalized Macro to Read all Datasets */ 
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/*proc print data=CPCSAS.cpc_south_699_October13 (OBS=10); 

  run; 

 

proc print data=CPCSAS.october13_east_901 (OBS=10); 

  run;*/ 

 

%macro read_dataset(location,time); 

 

%time_segments(CPCSAS.cpc_&location&time,CPCSAS.cpc_&location&time); 

 

/*%test_data(CPCSAS.cpc_&location&time);*/ 

%TPP(CPCSAS.cpc_&location&time); 

%findpeaks(CPCSAS.cpc_&location&time); 

data CPCSAS.cpc_&location&time; 

  set CPCSAS.cpc_&location&time; 

  Month="&time"; 

  run; 

 

%let peaks=_peaks; 

%putpeaks(CPCSAS.CPC_&location&time,CPCSAS.CPC_&location&time); 

data CPCSAS.CPC_&location&time; 

  set CPCSAS.CPC_&location&time; 

  Month="&time"; 

  Site="&location"; 

  run; 

/*proc print data=CPCSAS.CPC_&location&time (OBS=1); 

  run; 

proc freq data=CPCSAS.CPC_&location&time; 

  table ispeak1 ispeak3 ispeak5; 

  run;*/ 

%mend read_dataset; 

 

/* Need to pass these two arguments to read_dataset macro */ 

 

/* Call to read_dataset. In order for this to run propoerly, the datasets 

in: 

 C:\Working Files\Research\PDK Airport\CPC Data\SAS Files\Full Monthly 

Data for Each Sitefor All Sites 

 must be used. the datasets in the main CPCSAS directory have been 

moified to remove extranous variables btu 

 do not contain the varaibles needed to make the finalized dataset.  PBR 

9 Jul 2018*/ 

 

/* South */ 

 

%let location_monitor=South_699_; 

 

%read_dataset(&location_monitor,October13); 

%read_dataset(&location_monitor,November13); 

%read_dataset(&location_monitor,December13); 

%read_dataset(&location_monitor,January14); 

%read_dataset(&location_monitor,February14); 

%read_dataset(&location_monitor,March14); 

%read_dataset(&location_monitor,April14); 

%read_dataset(&location_monitor,May14); 

%read_dataset(&location_monitor,June14); 
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%read_dataset(&location_monitor,July14); 

%read_dataset(&location_monitor,August14); 

%read_dataset(&location_monitor,September14); 

%read_dataset(&location_monitor,October14); 

 

 

/* East */ 

 

%let location_monitor=East_901_; 

 

/* Call to read_dataset */ 

%read_dataset(&location_monitor,October13); 

%read_dataset(&location_monitor,November13); 

%read_dataset(&location_monitor,December13); 

%read_dataset(&location_monitor,January14); 

%read_dataset(&location_monitor,February14); 

%read_dataset(&location_monitor,March14); 

%read_dataset(&location_monitor,April14); 

/*%read_dataset(&location_monitor,May14);*/ 

%read_dataset(&location_monitor,June14); 

%read_dataset(&location_monitor,July14); 

%read_dataset(&location_monitor,August14); 

%read_dataset(&location_monitor,September14); 

%read_dataset(&location_monitor,October14); 

 

/* North */ 

 

%let location_monitor=North_499_; 

 

/* Call to read_dataset */ 

%read_dataset(&location_monitor,October13); 

%read_dataset(&location_monitor,November13); 

%read_dataset(&location_monitor,December13); 

%read_dataset(&location_monitor,January14); 

%read_dataset(&location_monitor,February14); 

/*%read_dataset(&location_monitor,March14);*/ 

%read_dataset(&location_monitor,April14); 

%read_dataset(&location_monitor,May14); 

%read_dataset(&location_monitor,June14); 

/*%read_dataset(&location_monitor,July14);*/ 

%read_dataset(&location_monitor,August14); 

%read_dataset(&location_monitor,September14); 

%read_dataset(&location_monitor,October14); 

 

 

/* West */ 

 

%let location_monitor=West_698_; 

 

/* Call to read_dataset */ 

%read_dataset(&location_monitor,October13); 

%read_dataset(&location_monitor,November13); 

%read_dataset(&location_monitor,December13); 

%read_dataset(&location_monitor,January14); 

%read_dataset(&location_monitor,February14); 

%read_dataset(&location_monitor,March14); 
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%read_dataset(&location_monitor,April14); 

%read_dataset(&location_monitor,May14); 

%read_dataset(&location_monitor,June14); 

%read_dataset(&location_monitor,July14); 

%read_dataset(&location_monitor,August14); 

%read_dataset(&location_monitor,September14); 

%read_dataset(&location_monitor,October14); 

 

 

 

 

/* Macro to combine all months into one site-specific permanent Sas Data 

set.*/ 

 

%let October13=October13;  

%let November13=November13; 

%let December13=December13;  

%let January14=January14; 

%let February14=February14; 

%let March14=March14; 

%let April14=April14; 

%let May14=May14; 

%let June14=June14; 

%let July14=July14; 

%let August14=August14; 

%let September14=September14; 

%let October14=October14; 

 

/*  Because each site is different with respect to number of months 

of data available, 

  and the macro is alread written to comnbine months, repeat teh 

macro at each location */ 

 

/*  All months are available for South 699  */ 

 

%macro combine_months(location); 

data cpcsas.cpc_&location; 

  set cpcsas.cpc_&location&October13 cpcsas.cpc_&location&November13 

cpcsas.cpc_&location&December13 cpcsas.cpc_&location&January14  

      cpcsas.cpc_&location&February14 cpcsas.cpc_&location&March14 

cpcsas.cpc_&location&April14 cpcsas.cpc_&location&May14  

      cpcsas.cpc_&location&June14 cpcsas.cpc_&location&July14 

cpcsas.cpc_&location&August14 cpcsas.cpc_&location&September14 

   cpcsas.cpc_&location&October14 

     ;  

 

   run; 

/*proc contents data=cpcsas.cpc_&location; 

  run; 

proc print data=cpcsas.cpc_&location (OBS=10); 

  run;*/ 

%mend combine_months; 

 

 

%combine_months(South_699_); 
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/*  East 901 has no data for May 2014 */ 

 

%macro combine_months(location); 

data cpcsas.cpc_&location; 

  set cpcsas.cpc_&location&October13 cpcsas.cpc_&location&November13 

cpcsas.cpc_&location&December13 cpcsas.cpc_&location&January14  

      cpcsas.cpc_&location&February14 cpcsas.cpc_&location&March14 

cpcsas.cpc_&location&April14 /*cpcsas.cpc_&location&May14 */ 

      cpcsas.cpc_&location&June14 cpcsas.cpc_&location&July14 

cpcsas.cpc_&location&August14 cpcsas.cpc_&location&September14 

   cpcsas.cpc_&location&October14 

     ;  

 

   run; 

/*proc contents data=cpcsas.cpc_&location; 

  run; 

proc print data=cpcsas.cpc_&location (OBS=10); 

  run;*/ 

%mend combine_months; 

 

%combine_months(East_901_); 

 

 

/*  North 499 has no data for March 2014 and July 2014*/ 

 

%macro combine_months(location); 

data cpcsas.cpc_&location; 

  set cpcsas.cpc_&location&October13 cpcsas.cpc_&location&November13 

cpcsas.cpc_&location&December13 cpcsas.cpc_&location&January14  

      cpcsas.cpc_&location&February14 /*cpcsas.cpc_&location&March14*/ 

cpcsas.cpc_&location&April14 cpcsas.cpc_&location&May14  

      cpcsas.cpc_&location&June14 /*cpcsas.cpc_&location&July14*/ 

cpcsas.cpc_&location&August14 cpcsas.cpc_&location&September14 

   cpcsas.cpc_&location&October14 

     ;  

 

   run; 

/*proc contents data=cpcsas.cpc_&location; 

  run; 

proc print data=cpcsas.cpc_&location (OBS=10); 

  run;*/ 

%mend combine_months; 

 

%combine_months(North_499_); 

 

 

/*  All months are available for West 698  */ 

 

%macro combine_months(location); 

data cpcsas.cpc_&location; 

  set cpcsas.cpc_&location&October13 cpcsas.cpc_&location&November13 

cpcsas.cpc_&location&December13 cpcsas.cpc_&location&January14  

      cpcsas.cpc_&location&February14 cpcsas.cpc_&location&March14 

cpcsas.cpc_&location&April14 cpcsas.cpc_&location&May14  
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      cpcsas.cpc_&location&June14 cpcsas.cpc_&location&July14 

cpcsas.cpc_&location&August14 cpcsas.cpc_&location&September14 

   cpcsas.cpc_&location&October14 

     ;  

 

   run; 

/*proc contents data=cpcsas.cpc_&location; 

  run; 

proc print data=cpcsas.cpc_&location (OBS=10); 

  run;*/ 

%mend combine_months; 

 

%combine_months(West_698_); 

 

 

 

 

%macro peakfreq(location); 

proc sort data=CPCSAS.cpc_&location; 

  by month; 

  run; 

proc freq data=CPCSAS.cpc_&location; 

  title "Peak Frequencies by Month and Location S, E, N, W"; 

  table ispeak1 ispeak3 ispeak4 ispeak5 ispeak10 ispeak15 ispeak20 ispeak25; 

  by month; 

  run; 

%mend peakfreq; 

 

%peakfreq(South_699_); 

%peakfreq(East_901_); 

%peakfreq(North_499_); 

%peakfreq(West_698_); 

 

/* Combine to form one Dataset */ 

data CPCSAS.CPC_peaks; 

  set CPCSAS.CPC_South_699_ CPCSAS.CPC_East_901_ CPCSAS.CPC_North_499_ 

CPCSAS.CPC_West_698_; 

  /* Remove test data at the beginning of ocotber 2013 and extra data as 

sites were decommisioned in OCtober 2014*/ 

  if time_segment < 1 or time_segment > 35040 then delete; 

  run; 

 

/* Calculate Peak frequencies over all sites. */ 

proc freq data=CPCSAS.CPC_peaks ; 

  title "All Sites"; 

  table ispeak1 ispeak3 ispeak4 ispeak5 ispeak10 ispeak15 ispeak20 ispeak25; 

  run; 

 

  /*proc means data=CPCSAS.CPC_peaks; 

  var time_segment; 

  run; 

 

data CPCSAS.CPC_peaks; 

  set CPCSAS.CPC_peaks; 

  if time_segment < 1 or time_segment > 35040 then delete; 

  run; 
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proc print data=CPCSAS.CPC_peaks (OBS=10); 

  run; 

proc means data=CPCSAS.CPC_peaks; 

  var time_segment; 

  run;*/ 

 

 

/* Calculate Peak frequencies for each site. */ 

proc sort data=CPCSAS.CPC_peaks; 

  by site; 

   run; 

proc freq data=CPCSAS.CPC_peaks; 

  title "Peak Frequencies by Site"; 

  table ispeak1 ispeak3 ispeak4 ispeak5 ispeak10 ispeak15 ispeak20 ispeak25; 

  by site; 

  run; 

 

  /* Accumulate across all sites for each Time_Segement. */ 

proc sort data=cpcsas.cpc_peaks; 

  by time_segment; 

  run; 

 

  proc means data=cpcsas.cpc_peaks NOPRINT; 

  output out=sumcpc_peaks SUM=; 

  var ispeak1 ispeak3 ispeak4 ispeak5 ispeak10 ispeak15 ispeak20 ispeak25; 

  by time_segment; 

  run; 

 

  proc sort data=sumcpc_peaks; 

    by time_segment; 

 run; 

 

proc freq data=sumcpc_peaks; 

  title "Summed Peak Frequencies"; 

    table ispeak1 ispeak3 ispeak4 ispeak5 ispeak10 ispeak15 ispeak20 

ispeak25; 

 run; 

 

/* Now we note if there is a peak at only of the locations. If we note a 

peak in one or more locations,  

 we set the indicator varible. ispeak=1 mens that there is a peak of 

this magnitude somewhere on the 

 airport grounds. For this analysis we do not care where. Put this in: 

CPCSAS.sumcpc_peaks 

 */ 

 

 data CPCSAS.sumcpc_peaks; 

   set sumcpc_peaks; 

   if ispeak1 >=1 then ispeak1=1; 

   if ispeak3 >=1 then ispeak3=1; 

   if ispeak4 >=1 then ispeak4=1; 

   if ispeak5 >=1 then ispeak5=1; 

   if ispeak10 >=1 then ispeak10=1; 

   if ispeak15 >=1 then ispeak15=1; 

   if ispeak20 >=1 then ispeak20=1; 

   if ispeak25 >=1 then ispeak25=1; 
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   if time_segment <43 or time_segment > 35040 then delete; 

   run; 

 

/* Produce a table indicating presence of a peak in each time segment.*/ 

 

proc freq data=CPCSAS.sumcpc_peaks; 

  title 'CPCSAS.sumcpc_peaks'; 

  table ispeak1 ispeak3 ispeak4 ispeak5 ispeak10 ispeak15 ispeak20 ispeak25; 

  run; 

/*proc print data=CPCSAS.sumcpc_peaks (OBS=30); 

  run;*/ 

 

/****************************************************************************

******************** 

 

 Begin combining datesets for Weight Classes, determined previously and 

stored in libname  

 analysis = 'C:\Working Files\Research\PDK Airport\Analysis 2018' 

 

*****************************************************************************

*******************/ 

 

 /* Sum ISPEAKx values found in each time_segment*/ 

 

proc means data=CPCSAS.sumcpc_peaks noprint; 

  output out=sumpeaks sum=; 

  var ispeak1 ispeak3 ispeak4 ispeak5 ispeak10 ispeak15 ispeak20 ispeak25; 

  by time_segment; 

  run; 

 

/* Merge Peak Data with Weight Class Data. Clean up by deleting data prior to 

time segement 43 and Weight Class =0 */ 

 

libname analysis 'C:\Working Files\Research\PDK Airport\Analysis 2018\Flight 

Event Data'; 

 

data sumwc; 

  set analysis.sumwc; 

  run; 

proc freq data=sumwc; 

  table WC0 WC1 WC2 WC3 WC4; 

  run; 

 

proc sort data=sumwc; 

  by time_segment; 

  run; 

 

  proc sort data=sumpeaks; 

  by time_segment; 

  run; 

 

data newfile; 

  merge sumpeaks sumwc; 

  by time_segment; 

  if time_segment < 43 then delete; 

  drop wc0; 
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  run; 

 

proc freq data=newfile; 

  title "Merged CPC Peaks and Summed WC Data."; 

  table WC1 WC2 WC3 WC4; 

  run; 

 

/* Identify presence of any identifiable aricraft- including UNKNOWN under 

WC1. WCX varaibles are 

   now indicator varaibels for the presence of that weight aircraft. Work 

only with aircraft_present =1 

   data.*/ 

 

data sumnf; 

  set newfile; 

  aircraft_present=1; 

  if WC1 =. then aircraft_present=0; 

  if WC1 > 0 then WC1=1; 

  if WC2 > 0 then WC2=1; 

  if WC3 > 0 then WC3=1; 

  if WC4 > 0 then WC4=1; 

  run; 

proc freq data=sumnf; 

  title "Aircraft Present=1 Not Present=0"; 

  table aircraft_present; 

  run; 

 

proc sort data=sumnf; 

  by time_segment; 

  run; 

data CPCSAS.CPC_Analysis; 

  set sumnf; 

  run; 

/*proc print data=CPCSAS.CPC_Analysis(OBS=30); 

  title "CPC Analysis Permanent Dataset"; 

  run;/* 

 

/* The analysis indicated below matches the analysis done for BC. 

Reproduce Tables for CPC Data in Report.  

 

   The dataset doanal sums peaks and identifieis Weight Classes. This will 

be used in both Heiristic and Logistic Analysis */ 

data doanal; 

  set CPCSAS.CPC_Analysis; 

  if WC1=1 then wgtclass=1; 

  if WC2=1 then wgtclass=2; 

  if WC3=1 then wgtclass=3; 

  if WC4=1 then wgtclass=4; 

  if wgtclass=. then delete; 

  if ispeak1=. then delete; 

  if ispeak1 > 1 then ispeak1=1; 

  if ispeak3 > 1 then ispeak3=1; 

  if ispeak4 > 1 then ispeak4=1; 

  if ispeak5 > 1 then ispeak5=1; 

  if ispeak10 > 1 then ispeak10=1; 

  if ispeak15 > 1 then ispeak15=1; 
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  if ispeak20 > 1 then ispeak20=1; 

  if ispeak25 > 1 then ispeak25=1; 

  where aircraft_present=1; 

  run; 

 

  /* Determine overall frequencies of peaks over time segments.*/ 

 

proc freq data=doanal; 

  title "Peak Frequencies All Time Segments"; 

  table ispeak1 ispeak3 ispeak4 ispeak5 ispeak10 ispeak15 ispeak20 ispeak25; 

  run; 

 

  /* Determine overall frequencies of peaks over time segments for each 

Weight Class.*/ 

proc sort data=doanal; 

  by wgtclass; 

  run; 

proc freq data=doanal; 

  title "Peak Frequencies by Weight Class"; 

  table ispeak1 ispeak3 ispeak4 ispeak5 ispeak10 ispeak15 ispeak20 ispeak25; 

  by wgtclass; 

  run; 

 

/* 

    Heuristic Analysis 

 

*/ 

proc freq data=doanal; 

  title "Heuristic Analysis- Overall Aircraft"; 

  table wc1 wc2 wc3 wc4; 

  run; 

 

proc freq data=doanal; 

  title "Heuristic Analysis- ISPEAK1"; 

  table wc1 wc2 wc3 wc4; 

  where ispeak1=1; 

  run; 

 

proc freq data=doanal; 

  title "Heuristic Analysis- ISPEAK3"; 

  table wc1 wc2 wc3 wc4; 

  where ispeak3=1; 

  run; 

 

proc freq data=doanal; 

  title "Heuristic Analysis- ISPEAK4"; 

  table wc1 wc2 wc3 wc4; 

  where ispeak4=1; 

  run; 

 

proc freq data=doanal; 

  title "Heuristic Analysis- ISPEAK5"; 

  table wc1 wc2 wc3 wc4; 

  where ispeak5=1; 

  run; 
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proc freq data=doanal; 

  title "Heuristic Analysis- ISPEAK10"; 

  table wc1 wc2 wc3 wc4; 

  where ispeak10=1; 

  run; 

 

proc freq data=doanal; 

  title "Heuristic Analysis- ISPEAK15"; 

  table wc1 wc2 wc3 wc4; 

  where ispeak15=1; 

  run; 

 

proc freq data=doanal; 

  title "Heuristic Analysis- ISPEAK20"; 

  table wc1 wc2 wc3 wc4; 

  where ispeak20=1; 

  run; 

 

proc freq data=doanal; 

  title "Heuristic Analysis- ISPEAK25"; 

  table wc1 wc2 wc3 wc4; 

  where ispeak25=1; 

  run; 

 

/* 

 

  Logistic Regression Analysis 

 

  */ 

proc logistic data=doanal; 

  title "Logistic Analysis- ISPEAK1"; 

  class wgtclass / param=ref; 

  model ispeak1 (descending)=wgtclass; 

    contrast 'WgtClass=1 vs WgtClass=2' wgtclass 1 1 0; 

      contrast 'WgtClass=1 vs WgtClass=3' wgtclass 1 0 1; 

 contrast 'WgtClass=2 vs WgtClass=3' wgtclass  0 1 1; 

 contrast "WgtClass  1, 2, 3" wgtclass 1 1 1 ; 

    run; 

 

proc logistic data=doanal; 

  title "Logistic Analysis- ISPEAK3"; 

  class wgtclass / param=ref; 

  model ispeak3 (descending)=wgtclass; 

    contrast 'WgtClass=1 vs WgtClass=2' wgtclass 1 1 0; 

      contrast 'WgtClass=1 vs WgtClass=3' wgtclass 1 0 1; 

 contrast 'WgtClass=2 vs WgtClass=3' wgtclass  0 1 1; 

 contrast "WgtClass  1, 2, 3" wgtclass 1 1 1 ; 

    run; 

 

proc logistic data=doanal; 

  title "Logistic Analysis- ISPEAK4";  

  class wgtclass / param=ref; 

  model ispeak4 (descending)=wgtclass; 

    contrast 'WgtClass=1 vs WgtClass=2' wgtclass 1 1 0; 

      contrast 'WgtClass=1 vs WgtClass=3' wgtclass 1 0 1; 

 contrast 'WgtClass=2 vs WgtClass=3' wgtclass  0 1 1; 
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 contrast "WgtClass  1, 2, 3" wgtclass 1 1 1 ; 

    run; 

 

proc logistic data=doanal; 

  title "Logistic Analysis- ISPEAK5"; 

  class wgtclass / param=ref; 

  model ispeak5 (descending)=wgtclass; 

    contrast 'WgtClass=1 vs WgtClass=2' wgtclass 1 1 0; 

      contrast 'WgtClass=1 vs WgtClass=3' wgtclass 1 0 1; 

 contrast 'WgtClass=2 vs WgtClass=3' wgtclass  0 1 1; 

 contrast "WgtClass  1, 2, 3" wgtclass 1 1 1 ; 

    run; 

 

proc logistic data=doanal; 

  title "Logistic Analysis- ISPEAK10"; 

  class wgtclass / param=ref; 

  model ispeak10 (descending)=wgtclass; 

    contrast 'WgtClass=1 vs WgtClass=2' wgtclass 1 1 0; 

      contrast 'WgtClass=1 vs WgtClass=3' wgtclass 1 0 1; 

 contrast 'WgtClass=2 vs WgtClass=3' wgtclass  0 1 1; 

 contrast "WgtClass  1, 2, 3" wgtclass 1 1 1 ; 

    run; 

 

proc logistic data=doanal; 

  title "Logistic Analysis- ISPEAK15"; 

  class wgtclass / param=ref; 

  model ispeak15 (descending)=wgtclass; 

    contrast 'WgtClass=1 vs WgtClass=2' wgtclass 1 1 0; 

      contrast 'WgtClass=1 vs WgtClass=3' wgtclass 1 0 1; 

 contrast 'WgtClass=2 vs WgtClass=3' wgtclass  0 1 1; 

 contrast "WgtClass  1, 2, 3" wgtclass 1 1 1 ; 

    run; 

 

proc logistic data=doanal; 

  title "Logistic Analysis- ISPEAK20"; 

  class wgtclass / param=ref; 

  model ispeak20 (descending)=wgtclass; 

    contrast 'WgtClass=1 vs WgtClass=2' wgtclass 1 1 0; 

      contrast 'WgtClass=1 vs WgtClass=3' wgtclass 1 0 1; 

 contrast 'WgtClass=2 vs WgtClass=3' wgtclass  0 1 1; 

 contrast "WgtClass  1, 2, 3" wgtclass 1 1 1 ; 

    run; 

 

proc logistic data=doanal; 

  title "Logistic Analysis- ISPEAK25"; 

  class wgtclass / param=ref; 

  model ispeak25 (descending)=wgtclass; 

    contrast 'WgtClass=1 vs WgtClass=2' wgtclass 1 1 0; 

      contrast 'WgtClass=1 vs WgtClass=3' wgtclass 1 0 1; 

 contrast 'WgtClass=2 vs WgtClass=3' wgtclass  0 1 1; 

 contrast "WgtClass  1, 2, 3" wgtclass 1 1 1 ; 

    run; 
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Appendix 5- SAS Code for the Analysis of Noise Data 
 

/****************************************************************************

**** 

 

 Analysis of All Noise Data July 2018 

 

*****************************************************************************

***/ 

 

/* All work for Noise analysis will be done using the noise libname*/ 

libname noise "C:\Working Files\Research\PDK Airport\Noise Work\SAS Files"; 

 

 

/* Read in the Noise Data from Single File defined as dataset. The file 

ddataset is an MSExcel file containg all  

 relevnat data as obtianed from PDK airport staff. Monthly data have 

been placed in separate worksheets in the 

 singel file dataset*/ 

 

%let dataset="C:\Working Files\Research\PDK Airport\Noise Work\SAS Files\Full 

Study Noise Data.xlsx"; 

 

 

/* Thisis a simple macro to read each month;s data in. Note that the 

maximum number of observations in a 

 given month is 5826 in September 2014. The read allows up tp 6000 (See 

"range" below. This will need to be increased 

 if more data are evident in any month. 

 

 The month name is passed in as an argument and is appended to the 

dataset as "Monitoring Month. Will consider 

 changing this from Oct13 to 1310, 1311, 1312, 1401, 1402, etc. to get 

proper ordering. DONE 

 

 Output file is noise.&month, e.g, noise.Oct13  */ 

%macro read_month(month,yearmonth); 

proc import datafile=&dataset 

       out=noise.&month DBMS=xlsx REPLACE; 

/* Make range long enough to ensure all data are read. */ 

      range="&month$a1:j6500"; 

   getnames=Yes; 

   run; 

data noise.&month; 

  set noise.&month; 

  Month_Ind=&yearmonth; 

  run; 

%mend read_month; 

 

/* Read each month*/ 

%read_month(Oct13,1310); 

%read_month(Nov13,1311); 

%read_month(Dec13,1312); 

%read_month(Jan14,1401); 

%read_month(Feb14,1402); 
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%read_month(Mar14,1403); 

%read_month(Apr14,1404); 

%read_month(May14,1405); 

%read_month(Jun14,1406); 

%read_month(Jul14,1407) 

%read_month(Aug14,1408); 

%read_month(Sep14,1409); 

/*%read_month(Oct14,1410);*/ 

 

/* Combine all months to produce a single dataset. noise.alldata */ 

data noise.alldata; 

  set  noise.Oct13 noise.Nov13 noise.Dec13 noise.Jan14 noise.Feb14 

noise.Mar14 

  noise.Apr14 noise.May14 noise.Jun14 noise.Jul14 noise.Aug14 

noise.Sep14 

  /*noise.Oct14*/; 

  run; 

 

/* Using the value LMAX, contruct noise categories for all events using 

the following table of values: 

 

   if LMAX > 90 then noise_category=6; 

   else if LMAX > 85 and < 90 then noise_category=5; 

   else if LMAX > 80 and < 85 then noise_category=4; 

   else if LMAX > 75 and < 80 then noise_category=3; 

   else if LMAX > 70 and < 75 then noise_category=2; 

   else noise_category=1;*/ 

data noise.alldata; 

  set noise.alldata; 

  noise_category=-1; 

  if LMAX > 90 then noise_category=6; 

  else if LMAX > 85 then noise_category=5; 

  else if LMAX > 80 then noise_category=4; 

  else if LMAX > 75 then noise_category=3; 

  else if LMAX > 70 then noise_category=2; 

  else noise_category=1; 

  run; 

 

proc freq data=noise.alldata; 

  table noise_category; 

  run; 

 

proc sort data=noise.alldata; 

  by month_ind; 

  run; 

proc freq data=noise.alldata; 

  table noise_category;   

  by month_ind; 

  run; 

 

/* Task is now to identify unique Equipment Types. This allows merger of 

Weights*/ 

 

 

/* Note that date___time has three underscore lines between the words. 

   Sort by date and time. This will be used to calcualte segments later.*/ 
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proc sort data=noise.alldata; 

  by date___time; 

  run; 

 

/* Look at varous cuts on the data. "look" files are intemediare and will 

be converted to permanet files as needed. 

 

   This code will be used to eliminate multiple noise monitors picking up 

the same aircraft.*/ 

data look; 

  set noise.alldata; 

  same_aircraft=0; 

  if Flight_Num=lag(Flight_Num) then same_aircraft=1; 

  run; 

proc freq data=look; 

  table same_aircraft; 

  run; 

 

 

 

/* Now look for unique aircraft equipment types. There are a realtively 

small number of them ~300- that are then converted 

   to MTOW and identified with specific Tail Numbers. 

 

   First, determine the unique equipment types in the noise data. 

 

 

 

/* Now look for unique aircraft equipment types. There are a realtively 

small number of them ~300- that are then converted 

   to MTOW and identified with specific Tail Numbers. 

 

   First, determine the unique equipment types in the noise data. 

 

  */ 

 

proc sort data=noise.alldata; 

  by equip; 

  run; 

data noise_unique_equip; 

  set noise.alldata; 

  if lag(equip)=equip then delete; 

  keep equip; 

  run; 

proc print data=noise_unique_equip (OBS=30); 

  run; 

 

/* The permanent file analysis.flight_event_weights has the most complete 

listing of eqipment types and weights. Use it to  

 Use it to detemine weights of aircraft.*/ 

 

libname analysis 'C:\Working Files\Research\PDK Airport\Analysis 2018'; 

 

data best_equip_wgt; 

  set analysis.Flight_event_Weights; 
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  keep equip wgt; 

  run; 

proc sort data=best_equip_wgt; 

  by equip; 

  run; 

data best_equip_wgt; 

  set best_equip_wgt; 

  if lag(equip)=equip then delete; 

  run; 

proc print data=best_equip_wgt (OBS=30); 

  run; 

 

/* Sort and merge these two files together*/ 

 

proc sort data=noise_unique_equip; 

  by equip; 

  run; 

proc sort data=best_equip_wgt; 

  by equip; 

  run; 

data noise_equip_wgt; 

  merge noise_unique_equip best_equip_wgt; 

  by equip; 

  run; 

 

/* There are wo equipment types found in the noise data for which there is 

no MTOW data. These are: 

     N187MG C25 10,700 lb from existing information on 

N187MG 

     N7ZD C400 3,400 lb from existing information on N7ZD 

 

  */ 

 

/* Merge the noise_equip_wgt database with the noaise_alldata database and 

store as a permanent dataset. */ 

proc sort data=noise.alldata; 

  by equip; 

  run; 

proc sort data=noise_equip_wgt; 

  by equip; 

  run; 

data noise_equip_wgt_alldata; 

  merge noise.alldata noise_equip_wgt; 

  by equip; 

/* Fix two Missing Weights in Database. */ 

  if Flight_Num=Flight_Num='N7ZD' then wgt=3400; 

  if Flight_Num=Flight_Num='N187MG' then wgt=1070; 

  run; 

 

/* Clean up observations for no equipment, helicopters, and blimps.*/ 

data noise_equip_wgt_alldata; 

  set noise_equip_wgt_alldata; 

  if wgt = -998 or wgt = -997  then delete; 

/* Some equipment types were not found in the noise data. If they are not in 

the data they can be deleted.*/ 

  if Month_Ind=. then delete; 
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  run; 

/* Seem to have lost information on two aricraft with undefined equipment 

types. Must find.  FOUND*/ 

 

proc sort data=noise_equip_wgt_alldata; 

  by date___time; 

  run; 

 

 

/* Reset weights for UNKNOWN to zero. They wil be modified later. */ 

data noise_equip_wgt_alldata; 

  set noise_equip_wgt_alldata; 

  if Flight_Num='UNKNOWN' then wgt=2500; 

  run; 

 

/* All noise events have been identified and the MTOW of the aircraft 

involved has been specified. Note that that UNKNOWN aircraft have been 

   arbtratily assigned a weight of 2500*/ 

proc means data=noise_equip_wgt_alldata; 

  var wgt; 

  where Flight_Num='UNKNOWN'; 

  run; 

 

data noise_equip_wgt_alldata; 

  set noise_equip_wgt_alldata; 

  if wgt >= 0 and wgt <= 25000 then WgtClass = 1; 

  if wgt > 25000 and wgt <= 66000 then WgtClass = 2; 

  if wgt > 66000 and wgt <= 75000 then WgtClass = 3; 

  if wgt > 75000 then WgtClass = 4; 

 

/* Create a new more finely divided weight class designation in cae Open 

DeKalb requests further analysis.  */ 

 

  WCF=-1; 

  if wgt=-999 then WCF=0; 

  if wgt > 0 and wgt <= 2500 then WCF = 1; 

  if wgt > 2500 and wgt <= 5000 then WCF = 2; 

  if wgt > 5000 and wgt <= 10000 then WCF = 3; 

  if wgt > 10000 and wgt <= 20000 then WCF = 4; 

  if wgt > 20000 and wgt <= 40000 then WCF = 5; 

  if wgt > 40000 and wgt <= 66000 then WCF = 6; 

  if wgt > 66000 and wgt <= 75000 then WCF = 7; 

  if wgt > 75000 then WCF = 8; 

  NC1=0; 

  NC2=0; 

  NC3=0; 

  NC4=0; 

  NC5=0; 

  NC6=0; 

  if noise_category=1 then nc1=1; 

  if noise_category=2 then nc2=1; 

  if noise_category=3 then nc3=1; 

  if noise_category=4 then nc4=1; 

  if noise_category=5 then nc5=1; 

  if noise_category=6 then nc6=1; 

  run; 
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/* Keep as permanent dataset */ 

data noise.noise_wgt; 

  set noise_equip_wgt_alldata; 

  run; 

proc contents data=noise.noise_wgt; 

  run; 

 

/* Commence Analysis of Noise Events by Wgt Class and Noise Category. 

 

   Get local copy of Noise Events by Wgt Class and Noise Category. */ 

 

data doanal; 

  set noise.noise_wgt; 

  run; 

 

/* Heuristic Analysis*/ 

 

proc freq data=doanal; 

  title 'Frequency of Noise Events by Weight Class'; 

  table WgtClass; 

  run; 

proc freq data=doanal; 

    title 'Frequency of Noise Category'; 

  table noise_category; 

  run; 

proc sort data=doanal; 

  by noise_category; 

  run; 

proc freq data=doanal; 

  title 'Frequency of Noise Events by Noise Category'; 

  table WgtClass; 

  by noise_category; 

  run; 

 

/* 

 

  Logistic Regression Analysis 

 

  */ 

 

proc logistic data=doanal; 

  title "Noise Category 1"; 

  class wgtclass nc1/ param=ref; 

  model nc1 (descending)=wgtclass; 

    contrast 'WgtClass=1 vs WgtClass=2' wgtclass 1 1 0; 

      contrast 'WgtClass=1 vs WgtClass=3' wgtclass 1 0 1; 

 contrast 'WgtClass=2 vs WgtClass=3' wgtclass  0 1 1; 

 contrast "WgtClass  1, 2, 3" wgtclass 1 1 1 ; 

    run; 

 

proc logistic data=doanal; 

  title "Noise Category 2"; 

  class wgtclass nc2/ param=ref; 

  model nc2 (descending)=wgtclass; 

    contrast 'WgtClass=1 vs WgtClass=2' wgtclass 1 1 0; 
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      contrast 'WgtClass=1 vs WgtClass=3' wgtclass 1 0 1; 

 contrast 'WgtClass=2 vs WgtClass=3' wgtclass  0 1 1; 

 contrast "WgtClass  1, 2, 3" wgtclass 1 1 1 ; 

    run; 

 

proc logistic data=doanal; 

  title "Noise Category 3"; 

  class wgtclass nc3/ param=ref; 

  model nc3 (descending)=wgtclass; 

    contrast 'WgtClass=1 vs WgtClass=2' wgtclass 1 1 0; 

      contrast 'WgtClass=1 vs WgtClass=3' wgtclass 1 0 1; 

 contrast 'WgtClass=2 vs WgtClass=3' wgtclass  0 1 1; 

 contrast "WgtClass  1, 2, 3" wgtclass 1 1 1 ; 

    run; 

 

proc logistic data=doanal; 

  title "Noise Category 4"; 

  class wgtclass nc4/ param=ref; 

  model nc4 (descending)=wgtclass; 

    contrast 'WgtClass=1 vs WgtClass=2' wgtclass 1 1 0; 

      contrast 'WgtClass=1 vs WgtClass=3' wgtclass 1 0 1; 

 contrast 'WgtClass=2 vs WgtClass=3' wgtclass  0 1 1; 

 contrast "WgtClass  1, 2, 3" wgtclass 1 1 1 ; 

    run; 

 

proc logistic data=doanal; 

  title "Noise Category 5"; 

  class wgtclass nc5/ param=ref; 

  model nc5 (descending)=wgtclass; 

    contrast 'WgtClass=1 vs WgtClass=2' wgtclass 1 1 0; 

      contrast 'WgtClass=1 vs WgtClass=3' wgtclass 1 0 1; 

 contrast 'WgtClass=2 vs WgtClass=3' wgtclass  0 1 1; 

 contrast "WgtClass  1, 2, 3" wgtclass 1 1 1 ; 

    run; 

 

proc logistic data=doanal; 

  title "Noise Category 6"; 

  class wgtclass nc6/ param=ref; 

  model nc6 (descending)=wgtclass; 

    contrast 'WgtClass=1 vs WgtClass=2' wgtclass 1 1 0; 

      contrast 'WgtClass=1 vs WgtClass=3' wgtclass 1 0 1; 

 contrast 'WgtClass=2 vs WgtClass=3' wgtclass  0 1 1; 

 contrast "WgtClass  1, 2, 3" wgtclass 1 1 1 ; 

    run; 

 

proc export data=doanal 

  outfile="C:\Working Files\Research\PDK Airport\Noise Work\SAS 

Files\doanal.csv" 

  DBMS=csv 

  REPLACE; 

  run; 
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Appendix 6- Analysis of Noise Data by Month 
October 2113 

 
The FREQ Procedure 

Month_Ind=1310 

noise_category Frequency Percent Cumulative 

Frequency 

Cumulative 

Percent 

1 1354 23.65 1354 23.65 

2 1989 34.75 3343 58.40 

3 1001 17.49 4344 75.89 

4 1073 18.75 5417 94.64 

5 275 4.80 5692 99.44 

6 32 0.56 5724 100.00 
 
 

November 2013 6 

 
The FREQ Procedure 

Month_Ind=1311 

noise_category Frequency Percent Cumulative 

Frequency 

Cumulative 

Percent 

1 1125 24.00 1125 24.00 

2 1658 35.37 2783 59.36 

3 852 18.17 3635 77.54 

4 794 16.94 4429 94.48 

5 227 4.84 4656 99.32 

6 32 0.68 4688 100.00 
 
 

December 2013 6 

 
The FREQ Procedure 

Month_Ind=1312 

noise_category Frequency Percent Cumulative 

Frequency 

Cumulative 

Percent 

1 1030 22.71 1030 22.71 

2 1485 32.74 2515 55.45 

3 854 18.83 3369 74.27 

4 865 19.07 4234 93.34 

5 261 5.75 4495 99.10 

6 41 0.90 4536 100.00 
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January 2014 

 
The FREQ Procedure 

Month_Ind=1401 

noise_category Frequency Percent Cumulative 

Frequency 

Cumulative 

Percent 

1 971 20.67 971 20.67 

2 1667 35.48 2638 56.15 

3 910 19.37 3548 75.52 

4 848 18.05 4396 93.57 

5 276 5.87 4672 99.45 

6 26 0.55 4698 100.00 
 
 
 

February 2014 

 
The FREQ Procedure 

Month_Ind=1402 

noise_category Frequency Percent Cumulative 

Frequency 

Cumulative 

Percent 

1 839 21.04 839 21.04 

2 1548 38.83 2387 59.87 

3 759 19.04 3146 78.91 

4 628 15.75 3774 94.66 

5 190 4.77 3964 99.42 

6 23 0.58 3987 100.00 
 
 
 

March 2014 

 
The FREQ Procedure 

Month_Ind=1403 

noise_category Frequency Percent Cumulative 

Frequency 

Cumulative 

Percent 

1 986 21.58 986 21.58 

2 1724 37.74 2710 59.33 

3 876 19.18 3586 78.50 

4 728 15.94 4314 94.44 

5 223 4.88 4537 99.32 

6 31 0.68 4568 100.00 
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April 2014 

 
The FREQ Procedure 

Month_Ind=1404 

noise_category Frequency Percent Cumulative 

Frequency 

Cumulative 

Percent 

1 935 20.93 935 20.93 

2 1269 28.41 2204 49.34 

3 596 13.34 2800 62.68 

4 1496 33.49 4296 96.17 

5 147 3.29 4443 99.46 

6 24 0.54 4467 100.00 
 
 

 
May 2014 

 
The FREQ Procedure 

Month_Ind=1405 

noise_category Frequency Percent Cumulative 

Frequency 

Cumulative 

Percent 

1 1362 22.04 1362 22.04 

2 2305 37.29 3667 59.33 

3 1019 16.49 4686 75.81 

4 1145 18.52 5831 94.34 

5 305 4.93 6136 99.27 

6 45 0.73 6181 100.00 
 
 

June 2014 

 
The FREQ Procedure 

Month_Ind=1406 

noise_category Frequency Percent Cumulative 

Frequency 

Cumulative 

Percent 

1 1199 22.96 1199 22.96 

2 1852 35.47 3051 58.43 

3 897 17.18 3948 75.60 

4 982 18.81 4930 94.41 

5 267 5.11 5197 99.52 

6 25 0.48 5222 100.00 
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July 2014 

 
The FREQ Procedure 

Month_Ind=1407 

noise_category Frequency Percent Cumulative 

Frequency 

Cumulative 

Percent 

1 916 20.07 916 20.07 

2 1594 34.93 2510 55.00 

3 803 17.59 3313 72.59 

4 954 20.90 4267 93.49 

5 265 5.81 4532 99.30 

6 32 0.70 4564 100.00 
 
 

August 2014 

 
The FREQ Procedure 

Month_Ind=1408 

noise_category Frequency Percent Cumulative 

Frequency 

Cumulative 

Percent 

1 1337 26.09 1337 26.09 

2 1753 34.20 3090 60.29 

3 800 15.61 3890 75.90 

4 933 18.20 4823 94.11 

5 263 5.13 5086 99.24 

6 39 0.76 5125 100.00 
 
 

September 2014 

 
The FREQ Procedure 

Month_Ind=1409 

noise_category Frequency Percent Cumulative 

Frequency 

Cumulative 

Percent 

1 1281 25.52 1281 25.52 

2 1737 34.61 3018 60.13 

3 854 17.02 3872 77.15 

4 869 17.31 4741 94.46 

5 250 4.98 4991 99.44 

6 28 0.56 5019 100.00 
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Appendix 7 – Supplemental Information 
 

 

• The TPPs, themselves, are transient. The peaks are sharp, and short in duration, lasting no more 
than about five minutes before values return to background level. The overall contribution to 
particles in the air is not readily measurable as they are soon lost as part of the full urban mix of 
air contaminants. 

• The transient nature of these peaks is not reflected in regulatory strategies. EPA regulates 
particulate matter based on annual averages or, at very high levels, eight-hour averages. 
Transients contribute to the long-term averages, but only in a marginal way. 

• The multiday average above suggests that the total Black Carbon measured amounts to about 1 
µg/m3 over the time period indicated. This is typical of urban areas overall. Averages at the 
airport are no higher than averages across the city. 

 

 

 

 

 

 

 

 



 

 

126 

 

Weight Class Identifier Description (MTOW) N Fraction of Total 

-1 Non-Fixed Wing      137   0.13% 

 0 Unknown* 37,447 35.62% 

 1 MTOW < 25,000 lbs 52,302 52.14% 

 2 25,000 lb < MTOW < 66,000 lbs    9,645   9.43% 

 3 66,000 lbs < MTOW < 75,000 lbs    1,786   1.75% 

 4 MTOW > 75,000 lbs       948   0.93% 

 

*Analysis requested by Open DeKalb 

Table APP-1. Weigh Classifications for 102,265 Flight Events 

 

Site Identifier Number of Observations Fraction of Observations 

West_546     728,542 28.3% 

South_553     408,553 15.9% 

East_559     680,061 26.4% 

North_560     756,675 39.4% 

Total Black Carbon 2,574,235  

 

Table APP-2. Black Carbon data. Data collected in six-day cycles. Compiled by Month of 13 months 
(October 2013 – October 2014, October 2013 and October 2014 are partial months.) 

 

Site Identifier Number of Observations Fraction of Observations 

West_698 433,559     26.7% 

South_699 404,773     24.9% 

East_901 447,640     27.5% 

North_499 339,943     20.9% 

Total Black Carbon 1,634,915  
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Table APP-3. Condensation Particle Counter (CPC) data. Data collected in one-day cycles. Compiled by 
Month of 13 months (October 2013 – October 2014, October 2013 and October 2014 are partial 
months.) 


