

Tobie Grant Recreation Center

POND JOB NO: 1180510

Project Manual

Construction Documents - 100% Submittal

RELEASED FOR CONSTRUCTION

VOLUME 1 of 1 Division 00 to 32 March 22, 2019

Division Section Title

SPECIFICATIONS GROUP

DIVISION 00 – CONTRACTOR PROCUREMENT REQUIREMENTS

BALANCE OF DIVISION 00 – CONTRACTOR PROCUREMENT REQUIREMENTS: REFER TO DEKALB COUNTY INVITATION TO BID AND CONTRACT DOCUMENTS.

GEOTECHNICAL DATA PROVIDED AS AN EXHIBIT IN THE DEKALB COUNTY INVITATION TO BID PACKAGE

000101	PROJECT TITLE PAGE
000107	SEALS PAGE

000115 LIST OF DRAWING SHEETS

DIVISION 01 – GENERAL REQUIREMENTS

BALANCE OF DIVISION 01 – GENERAL REQUIREMENTS: REFER TO DEKALB COUNTY INVITATION TO BID AND CONTRACT DOCUMENTS.

013100	PROJECT MANAGEMENT AND COORDINATION
013200	CONSTRUCTION PROGRESS DOCUMENTATION
013233	PHOTOGRAPHIC DOCUMENTATION
013300	SUBMITTAL PROCEDURES
013330	STRUCTURAL SUBMITTALS
014000	QUALITY REQUIREMENTS
014200	REFERENCES
014525	STRUCTURAL TESTING/INSPECTION AGENCY SERVICES
015000	TEMPORARY FACILITIES AND CONTROLS
015639	TEMPORARY TREE AND PLANT PROTECTION
016000	PRODUCT REQUIREMENTS
017300	EXECUTION
017419	CONSTRUCTION WASTE MANAGEMENT AND DISPOSAL
017700	CLOSEOUT PROCEDURES
017823	OPERATION AND MAINTENANCE DATA
017839	PROJECT RECORD DOCUMENTS
017900	DEMONSTRATION AND TRAINING

DIVISION 03 – CONCRETE

031000	CONCRETE FORMWORK
032000	CONCRETE REINFORCEMENT
033000	CAST-IN-PLACE CONCRETE
036200	NON-SHRINK GROUT

DIVISION 04 – MASONRY

042000 UNIT MASONRY

DIVISION 05 – METALS

051000	STRUCTURAL	STEEL

052000 STEEL JOISTS AND JOIST GIRDERS

053000 METAL DECKING

054000 COLD-FORMED METAL FRAMING

055000 METAL FABRICATIONS

DIVISION 06 – WOODS, PLASTICS AND COMPOSITES

061053 MISCELLANEOUS ROUGH CARPENTRY

061600 SHEATHING

064116 PLASTIC-LAMINATE ARCHITECTURAL CABINETS 066116 SOLID POLYMER (SOLID SURFACING) FABRICATIONS

DIVISION 07 – THERMAL AND MOISTURE PROTECTION

077200 ROOF ACCESSORIES 079200 JOINT SEALANTS

DIVISION 08 - OPENINGS

081113	HOLLOW	METAL	DOORS	AND	FRAMES
001113	110000 11	111111111	DOORD	I I I I	ILLUMIN

083113 ACCESS DOORS AND FRAMES 083313 COILING COUNTER DOORS

084113 ALUMINUM-FRAMED ENTRANCES AND STOREFRONTS

084229.23 SLIDING AUTOMATIC ENTRANCES

087100 DOOR HARDWARE

088000 GLAZING

DIVISION 09 - FINISHES

		_
092216	NON-STRUCTURAL METAL FRAMING	. 7
074410	NON-STRUCTURAL METAL TRAMIN	J

092900 GYPSUM BOARD 093000 PORCELAIN TILE

095123 ACOUSTICAL TILE CEILINGS

096513 RESILIENT WALL BASE AND ACCESSORIES

096516 RESILIENT TILE FLOORING

096566 RESILIENT ATHLETIC FLOORING

096813 TILE CARPETING
097200 WALL COVERINGS
099113 EXTERIOR PAINTING
099123 INTERIOR PAINTING

099600 HIGH-PERFORMANCE COATINGS

DIVISION 10 – SPECIALTIES

101400 SIGNAGE

101419 DIMENSIONAL LETTER SIGNAGE

1180510 TOBIE GRANT RECREATION CENTER
3/22/19

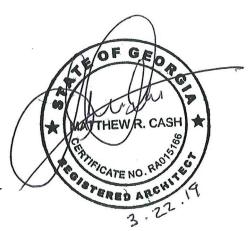
CONSTRUCTION DOCUMENTS 100% SUBMITTAL

102113.17	PHENOLIC-CORE TOILET COMPARTMENTS
102113.17	FOLDING PANEL PARTITIONS
102800	TOILET AND BATH ACCESSORIES
104413	FIRE PROTECTION CABINETS
104416	FIRE EXTINGUISHERS
105126	PLASTIC LOCKERS
103120	TEMOTIC ECCKERG
DIVISIO	N 11 – EQUIPMENT
113100	RESIDENTIAL APPLIANCES
115213	PROJECTION SCREENS
116623	ATHLETIC EQUIPMENT
116643	SCOREBOARD
DIVISIO	N 12 – FURNISHINGS
122413	ROLLER WINDOW SHADES
126613	TELESCOPING STANDS
	N 21 – FIRE PROTECTION
210513	COMMON MOTOR REQUIREMENTS FOR FIRE SUPPRESSION EQUIPMENT
210517	SLEEVES AND SLEEVE SEALS FOR FIRE-SUPPRESSION PIPING
210518	ESCUTCHEONS FOR FIRE-SUPPRESSION PIPING
210523	GENERAL-DUTY VALVES FOR FIRE PROTECTION PIPING
210529	HANGERS AND SUPPORTS FOR FIRE SUPRESSION PIPING AND EQUIPMENT
210548	VIBRATION AND SEISMIC CONTROLS FOR FIRE-SUPPRESSION PIPING AND
	EQUIPMENT
210553	IDENTIFICATION FOR FIRE-SUPPRESSION PIPING AND EQUIPMENT
210700	FIRE-SUPPRESSION SYSTEMS INSULATION
211119	FIRE DEPARTMENT CONNECTIONS
211313	WET-PIPE SPRINKLER SYSTEMS
DIVISIO	N 22 – PLUMBING
220517	SLEEVES AND SLEEVE SEALS FOR PLUMBING PIPING
220529	HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT
220548	VIBRATION AND SEISMIC CONTROLS FOR PLUMBING PIPING AND
	EQUIPMENT
220553	IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT
220719	PLUMBING PIPING INSULATION
221116	DOMESTIC WATER PIPING
221119	DOMESTIC WATER PIPING SPECIALTIES
221316	SANITARY WASTE AND VENT PIPING
221319	SANITARY WASTE PIPING SPECIALTIES
223400	FUEL-FIRED, DOMESTIC-WATER HEATERS
224213.13	
224213.16	
224216.13	
224216.16	
224713	DRINKING FOUNTAINS
1/12	

DIVISION 23	- HEATING, VENTILATING, AND AIR CONDITIONING (HVAC)
230513	COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT
230517	SLEEVES AND SLEEVE SEALS FOR HVAC PIPING
230529	HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT
230553	IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT
220548	VIBRATION AND SEISMIC CONTROLS FOR HVAC
230593	TESTING, ADJUSTING, AND BALANCING FOR HVAC
230713	DUCT INSULATION
230719	HVAC PIPING INSULATION
230923	DIRECT DIGITAL CONTROL (DDC) SYSTEM FOR HVAC
232300	REFRIGERANT PIPING
233113	METAL DUCTS
233300	AIR DUCT ACCESSORIES
233423	HVAC POWER VENTILATORS
233600	AIR TERMINAL UNITS
233713.23	REGISTERS AND GRILLES
233716	FABRIC AIR-DISTRIBUTION DEVICES
235123	GAS VENTS
237413	PACKAGE OUTDOOR CENTRAL STATION AIR HANDLER UNIT
238126	SPLIT-SYSTEM AIR-CONDITIONERS
238239	UNIT HEATERS
DIVISION 26	- ELECTRICAL
260519	LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES
260526	GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS
260529	HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS
260533	RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS
260543	UNDERGROUND DUCTS AND RACEWAYS FOR ELECTRICAL SYSTEMS
260544	SLEEVES AND SLEEVE SEALS FOR ELECTRICAL RACEWAYS AND CABLING
260548.16	SEISMIC CONTROLS FOR ELECTRICAL SYSTEMS
260553	IDENTIFICATION FOR ELECTRICAL SYSTEMS
260573.13	SHORT-CIRCUIT STUDIES
260573.16	COORDINATION STUDIES
260573.19	ARC-FLASH HAZARD ANALYSIS
260923	LIGHTING CONTROL DEVICES
260943.23	RELAY-BASED LIGHTING CONTROLS
262213	LOW-VOLTAGE DISTRIBUTION TRANSFORMERS
262413	SWITCHBOARDS
262416	PANELBOARDS
262726	WIRING DEVICES
262813	FUSES
262816	ENCLOSED SWITCHES AND CIRCUIT BREAKERS
262913.03	MANUAL AND MAGNETIC MOTOR CONTROLLERS
262913.06	SOFT-START MOTOR CONTROLLERS
262923	VARIABLE-FREQUENCY MOTOR CONTROLLERS
264113	LIGHTNING PROTECTION FOR STRUCTURES

1180510 TOBI	E GRANT RECREATION CENTER	CONSTRUCTION DOCUMENTS
3/22/19		100% SUBMITTAL
264313	SURGE PROTECTION FOR LOW-VOLTAGE ELE	ECTRICAL POWER CIRCUITS
265119	LED INTERIOR LIGHTING	
265213	EMERGENCY AND EXIT LIGHTING	
265613	LIGHTING POLES AND STANDARDS	
265619	LED EXTERIOR LIGHTING	
DIVISION 27	- COMMUNICATIONS	
270526	GROUNDING AND BONDING FOR COMMUNIC	PATIONS SYSTEMS
270528	PATHWAYS FOR COMMUNICATIONS SYSTEM	
270529	HANGERS AND SUPPORTS FOR COMMUNICATIONS STSTEM	·-
270543	UNDERGROUND PATHWAYS AND STRUCTUR	RES FOR COMMUNICATION
270544	SYSTEMS	ICATIONG DATHWAYG AND
270544	SLEEVES AND SLEEVE SEALS FOR COMMUN	ICATIONS PATHWAYS AND
25054046	CABLING	GY GTTP 1 G
270548.16	SEISMIC CONTROLS FOR COMMUNICATIONS	SYSTEMS
DIVISION 28	- ELECTRONIC SAFETY AND SECURITY	
284621.11	ADDRESSABLE FIRE-ALARM SYSTEMS	
284700	MASS NOTIFICATION SYSTEMS	
DIVICION 44	F A DEWYORK	
	- EARTHWORK	
311000	SITE CLEARING	
312000	EARTH MOVING	
312301	EXCAVATING, BACKFILLING, AND COMPACT	ΓING FOR STRUCTURES
313116	TERMITE CONTROL	
DIVISION 32	– EXTERIOR IMPROVEMENTS	
321216	ASPHALT PAVING	
321313	CONCRETE PAVING	
321373	CONCRETE PAVING JOINT SEALANTS	
321713	PARKING BUMPERS	
321713	PAVEMENT MARKINGS	
321726	TACTILE WARNING SURFACING	
329100	PLANTING SOIL	
349100	LANTING SOIL	
DIVISION 33		
334200	STORMWATER CONVEYANCE	
334210	STORMWATER OIL AND SEDIMENT SEPARAT	TOR
334220	STORMWATER UNDERGROUND DETENTION	

(END OF TABLE OF CONTENTS)



DOCUMENT 000107 - SEALS PAGE

1.1 DESIGN PROFESSIONALS OF RECORD

A. Design Professional / Architect:

- 1. Matthew R. Cash, AIA, NCARB
- 2. GA License: RA015166
- 3. Responsible for Sections in Divisions 00-32, except where indicated as prepared by other design professionals of record.

B. Structural Design Professional:

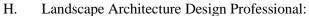
- 1. Holly C. Jeffreys, P.E.
- 2. GA License: PE026260
- 3. Responsible for Sections in Divisions 03, 04 and 05.

C. Fire-Protection Design Professional:

- 1. Kevin D. Champion, P.E.
- 2. GA License: PE032676
- 3. Responsible for Sections in Division 21.

D. Plumbing Design Professional:

- 1. Kevin D. Champion, P.E.
- 2. GA License: PE032676
- 3. Responsible for Sections in Division 22.


E. HVAC Design Professional:

- 1. Kevin D. Champion, P.E.
- 2. GA License: PE032676
- 3. Responsible for Sections in Division 23.

SEALS PAGE 000107 - 1

- F. Electrical Design Professional:
 - 1. Kevin D. Champion, P.E.
 - 2. GA License: PE032676
 - 3. Responsible for Division 26, 27 and 28 Sections.
- G. Civil Design Professional:
 - 1. Samuel A. McIntosh, P.E.
 - 2. GA License: PE025100
 - 3. Responsible for Sections in Divisions 01, 31 and 32.

- 1. Robert B. Jones, PLA
- 2. GA License: LA001229
- 3. Responsible for Sections in Divisions 01, 31 and 32.

END OF DOCUMENT 000107

SEALS PAGE 000107 - 2

DOCUMENT 000115 - LIST OF DRAWING SHEETS

1.1 LIST OF DRAWINGS

- A. Drawings: Drawings consist of the Contract Drawings and other drawings listed on the Table of Contents page of the separately bound drawing set titled "Tobie Grant Recreation Center, Released For Construction, Construction Documents 100% Submittal," dated 3/22/19, as modified by subsequent Addenda and Contract modifications.
- B. List of Drawings: Drawings consist of the following Contract Drawings and other drawings of type indicated:
 - G-001 COVER SHEET
 - G-002 SHEET INDEX
 - G-100 BUILDING CODE SUMMARY
 - G-101 LIFE SAFETY PLAN
 - C-000 CIVIL COVER SHEET
 - C-001 GENERAL NOTES & LEGEND
 - C-002 EXISTING CONDITIONS
 - C-101 DEMOLITION PLAN
 - C-110 SITE PLAN
 - C-121 GRADING & DRAINAGE PLAN
 - C-122 STORMWATER MANAGEMENT PLAN
 - C-131 UTILITY PLAN
 - C-501 CONSTRUCTION DETAILS
 - C-502 CONSTRUCTION DETAILS
 - C-503 CONSTRUCTION DETAILS
 - C-504 CONSTRUCTION DETAILS
 - C-505 CONSTRUCTION DETAILS
 - C-506 HARDSCAPE STANDARD DETAILS
 - C-510 DUMPSTER DETAILS
 - C-520 SITE FURNISHING AND AMENITIES
 - C-521 SITE FURNISHING AND AMENITIES
 - C-701 NPDES POLLUTION PREVENTION PLAN
 - C-702 NPDES CHECKLIST
 - C-710 INITIAL EROSION CONTROL PLAN
 - C-711 INTERMEDIATE EROSION CONTROL PLAN
 - C-712 FINAL EROSION CONTROL PLAN
 - C-750 EROSION CONTROL DETAILS
 - C-751 EROSION CONTROL DETAILS
 - LD101 TREE PROTECTION AND REPLACEMENT PLAN
 - LS101 LANDSCAPE PLAN TREES AND GROUNDCOVERS
 - LS102 LANDSCAPE PLAN SHRUBS AND GROUNDCOVERS
 - L-501 LANDSCAPE DETAILS
 - S-001 STRUCTURAL GENERAL NOTES
 - S-002 STRUCTURAL GENERAL NOTES

- S-003 WINDLOAD DIAGRAMS S-101 FIRST FLOOR FOUNDATION PLAN
- S-102 LOW ROOF FRAMING PLAN
- S-103 HIGH ROOF FRAMING PLAN
- S-301 FOUNDATION DETAILS
- S-302 FOUNDATION DETAILS
- S-401 MASONRY DETAILS
- S-402 MASONRY DETAILS
- S-501 STEEL FRAMING DETAILS
- S-502 STEEL FRAMING DETAILS
- S-503 STEEL FRAMING ELEVATIONS
- A-001 GENERAL NOTES, ABBREVIATIONS & SYMBOLS
- A-002 PARTITION TYPES & DETAILS
- A-100 OVERALL FLOOR PLAN
- A-101 PARTIAL NOTED FLOOR PLAN AREA A
- A-102 PARTIAL NOTED FLOOR PLAN AREA B
- A-103 PARTIAL DIMENSIONED FLOOR PLAN AREA A
- A-104 PARTIAL DIMENSIONED FLOOR PLAN AREA B
- A-111 CLERESTORY PLAN
- A-130 OVERALL REFLECTED CEILING PLAN
- A-131 PARTIAL REFLECTED CEILING PLAN AREA A
- A-132 PARTIAL REFLECTED CEILING PLAN AREA B
- A-151 ROOF PLAN
- A-201 EXTERIOR ELEVATIONS
- A-211 PARTIAL EXTERIOR ELEVATIONS
- A-212 PARTIAL EXTERIOR ELEVATIONS
- A-301 BUILDING SECTIONS
- A-302 BUILDING SECTIONS
- A-351 WALL SECTIONS
- A-352 WALL SECTIONS
- A-353 WALL SECTIONS
- A-354 WALL SECTIONS
- A-401 ENLARGED FLOOR PLANS
- A-402 ENLARGED FLOOR PLANS
- A-411 CANOPY PLANS & DETAILS
- A-421 INTERIOR ELEVATIONS
- A-422 INTERIOR ELEVATIONS
- A-423 INTERIOR ELEVATIONS
- A-501 PLAN DETAILS
- A-531 SECTION DETAILS
- A-551 ROOF DETAILS
- A-552 ROOF DETAILS
- A-571 ADA MOUNTING HEIGHTS & DETAILS
- A-601 DOOR SCHEDULE & TYPES
- A-602 DOOR DETAILS
- A-603 DOOR DETAILS
- A-611 STOREFRONT TYPES
- A-612 STOREFRONT TYPES
- A-613 STOREFRONT DETAILS
- A-614 STOREFRONT DETAILS

A-751	MILLWORK DETAILS
I-101 I-601	INTERIOR FINISH PLAN ROOM FINISH SCHEDULE & GENERAL NOTES
IF101	FURNITURE PLAN
IG101	SIGNAGE PLAN
IG601	SIGNAGE SCHEDULE
10001	SIGNAGE SCHEDULE
FP-101	FLOOR PLAN – FIRE PROTECTION
FA-401	PARTIAL FIRE ALARM PLAN – AREA A
FA-402	PARTIAL FIRE ALARM PLAN – AREA B
P-001	PLUMBING NOTES, LEGENDS, SCHEDULES, AND ABBREVIATIONS
P-101	FLOOR PLAN – PLUMBING
P-102	ROOF PLAN – PLUMBING
P-121	ENLARGED PLAN – PLUMBING
P-201	PLUMBING RISERS
P-202	
P-301	PLUMBING DETAILS
1 301	TECHEN O DETAILS
M-001	MECHANICAL NOTES, LEGENDS, AND ABBREVIATIONS
M-002	MECHANICAL SCHEDULES
M-101	FLOOR PLAN – MECHANICAL
M-102	ROOF PLAN – MECHANICAL
M-201	MECHANICAL CONTROL SCHEMATICS
M-202	MECHANICAL CONTROL SCHEMATICS
M-203	MECHANICAL CONTROL SCHEMATICS
M-301	MECHANICAL DETAILS
M-302	MECHANICAL DETAILS
E 000	ELECTRICAL CENERAL NOTES
E-000	ELECTRICAL GENERAL NOTES
E-001	ELECTRICAL SYMBOLS & ABBREVIATIONS
E-200	ELECTRICAL SITE PLAN SITE LIGHTING PHOTOMETRIC PLAN
E-201	GROUNDING AND LIGHTNING PROTECTION PLAN
E-202 E-301	PARTIAL ELECTRICAL LIGHTING PLAN – AREA A
E-301 E-302	PARTIAL ELECTRICAL LIGHTING PLAN – AREA A PARTIAL ELECTRICAL LIGHTING PHOTOMETRIC PLAN – AREA A
E-302 E-303	PARTIAL ELECTRICAL LIGHTING PLAN – AREA B
E-303	PARTIAL ELECTRICAL LIGHTING PHOTOMETRIC PLAN – AREA B
E-401	PARTIAL ELECTRICAL POWER PLAN – AREA A
E-402	PARTIAL ELECTRICAL POWER PLAN – AREA B
E-403	MECHANICAL POWER PLAN – AREA A
E-404	MECHANICAL POWER PLAN – AREA B
E-405	ROOF ELECTRICAL PLAN
E-600	ELECTRICAL ONE-LINE DIAGRAM
E-601	LIGHTING CONTROL WIRING DIAGRAM 1
E-602	LIGHTING CONTROL WIRING DIAGRAM 2
E-603	LIGHTING CONTROL WIRING DIAGRAM 3
E-700	LIGHT FIXTURE SCHEDULE
E-701	PANELBOARD SCHEDULE
E-800	ELECTRICAL DETAILS 1

1180510 TOBIE GRANT RECREATION CENTER 3/22/19

CONSTRUCTION DOCUMENTS 100% SUBMITTAL

E-801	ELECTRICAL DETAILS 2
E-802	ELECTRICAL DETAILS 3
E-803	ELECTRICAL DETAILS 4
E-804	ELECTRICAL DETAILS 5
LV-401	LOW VOLTAGE PLAN

END OF DOCUMENT 000115

SECTION 013100 - PROJECT MANAGEMENT AND COORDINATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes administrative provisions for coordinating construction operations on Project including, but not limited to, the following:
 - 1. General coordination procedures.
 - 2. Coordination drawings.
 - 3. RFIs.
 - 4. Digital project management procedures.
 - 5. Project meetings.

B. Related Requirements:

- 1. Section 011200 "Multiple Contract Summary" for a description of the division of work among separate contracts and responsibility for coordination activities not in this Section.
- 2. Section 017300 "Execution" for procedures for coordinating general installation and field-engineering services, including establishment of benchmarks and control points.
- 3. Section 019113 "General Commissioning Requirements" for coordinating the Work with Owner's Commissioning Authority.

1.3 DEFINITIONS

- A. BIM: Building Information Modeling.
- B. RFI: Request for Information. Request from Owner, Architect, or Contractor seeking information required by or clarifications of the Contract Documents.

1.4 INFORMATIONAL SUBMITTALS

- A. Subcontract List: Prepare a written summary identifying individuals or firms proposed for each portion of the Work, including those who are to furnish products or equipment fabricated to a special design. Include the following information in tabular form:
 - 1. Name, address, telephone number, and email address of entity performing subcontract or supplying products.
 - 2. Number and title of related Specification Section(s) covered by subcontract.
 - 3. Drawing number and detail references, as appropriate, covered by subcontract.

1.5 GENERAL COORDINATION PROCEDURES

- A. Coordination: Coordinate construction operations included in different Sections of the Specifications to ensure efficient and orderly installation of each part of the Work. Coordinate construction operations included in different Sections that depend on each other for proper installation, connection, and operation.
 - 1. Schedule construction operations in sequence required to obtain the best results where installation of one part of the Work depends on installation of other components, before or after its own installation.
 - 2. Coordinate installation of different components to ensure maximum performance and accessibility for required maintenance, service, and repair.
 - 3. Make adequate provisions to accommodate items scheduled for later installation.
- B. Administrative Procedures: Coordinate scheduling and timing of required administrative procedures with other construction activities and scheduled activities of other contractors to avoid conflicts and to ensure orderly progress of the Work. Such administrative activities include, but are not limited to, the following:
 - 1. Preparation of Contractor's construction schedule.
 - 2. Preparation of the schedule of values.
 - 3. Installation and removal of temporary facilities and controls.
 - 4. Delivery and processing of submittals.
 - 5. Progress meetings.
 - 6. Preinstallation conferences.
 - 7. Project closeout activities.
 - 8. Startup and adjustment of systems.

1.6 COORDINATION DRAWINGS

- A. Coordination Drawings, General: Prepare coordination drawings according to requirements in individual Sections, and additionally where installation is not completely indicated on Shop Drawings, where limited space availability necessitates coordination, or if coordination is required to facilitate integration of products and materials fabricated or installed by more than one entity.
 - 1. Content: Project-specific information, drawn accurately to a scale large enough to indicate and resolve conflicts. Do not base coordination drawings on standard printed data. Include the following information, as applicable:
 - a. Indicate functional and spatial relationships of components of architectural, structural, civil, mechanical, and electrical systems.
 - b. Indicate dimensions shown on Drawings. Specifically note dimensions that appear to be in conflict with submitted equipment and minimum clearance requirements. Provide alternative sketches to Architect indicating proposed resolution of such conflicts. Minor dimension changes and difficult installations will not be considered changes to the Contract.
- B. Coordination Drawing Organization: Organize coordination drawings as follows:

- 1. Floor Plans and Reflected Ceiling Plans: Show architectural and structural elements, and mechanical, plumbing, fire-protection, fire-alarm, and electrical Work. Show locations of visible ceiling-mounted devices relative to acoustical ceiling grid. Supplement plan drawings with section drawings where required to adequately represent the Work.
- 2. Plenum Space: Indicate subframing for support of ceiling and wall systems, mechanical and electrical equipment, and related Work. Locate components within plenums to accommodate layout of light fixtures and other components indicated on Drawings. Indicate areas of conflict between light fixtures and other components.
- 3. Mechanical Rooms: Provide coordination drawings for mechanical rooms showing plans and elevations of mechanical, plumbing, fire-protection, fire-alarm, and electrical equipment.
- 4. Structural Penetrations: Indicate penetrations and openings required for all disciplines.
- 5. Slab Edge and Embedded Items: Indicate slab edge locations and sizes and locations of embedded items for metal fabrications, sleeves, anchor bolts, bearing plates, angles, door floor closers, slab depressions for floor finishes, curbs and housekeeping pads, and similar items.
- 6. Mechanical and Plumbing Work: Show the following:
 - a. Sizes and bottom elevations of ductwork, piping, and conduit runs, including insulation, bracing, flanges, and support systems.
 - b. Dimensions of major components, such as dampers, valves, diffusers, access doors, cleanouts and electrical distribution equipment.
 - c. Fire-rated enclosures around ductwork.
- 7. Electrical Work: Show the following:
 - a. Runs of vertical and horizontal conduit 1-1/4 inches in diameter and larger.
 - b. Light fixture, exit light, emergency battery pack, smoke detector, and other firealarm locations.
 - c. Panel board, switch board, switchgear, transformer, busway, generator, and motor-control center locations.
 - d. Location of pull boxes and junction boxes, dimensioned from column center lines.
- 8. Fire-Protection System: Show the following:
 - a. Locations of standpipes, mains piping, branch lines, pipe drops, and sprinkler heads.
- 9. Review: Architect will review coordination drawings to confirm that in general the Work is being coordinated, but not for the details of the coordination, which are Contractor's responsibility.
- C. Coordination Digital Data Files: Prepare coordination digital data files according to the following requirements:
 - 1. File Preparation Format: Same digital data software program, version, and operating system as original Drawings.
 - 2. File Preparation Format:
 - a. CADD: DWG or DXF, operating in Microsoft Windows operating system.
 - b. BIM: RVT, Version 17.

- 3. File Submittal Format: Submit or post coordination drawing files using format same as file preparation format.
- 4. BIM File Incorporation: Develop and incorporate coordination drawing files into BIM established for Projec
- 5. Revise subparagraph below to reflect office practice for release of electronic files for use by Contractor.
- 6. Architect will furnish Contractor one set of digital data files of Drawings for use in preparing coordination digital data files.
 - a. Architect makes no representations as to the accuracy or completeness of digital data files as they relate to Drawings.
 - b. Digital Data Software Program: Drawings are available in AutoDesk Revit 2017.
- D. Contractor shall execute a data licensing agreement in the form of Agreement included in this Project ManualPDF Document Preparation: Where PDFs are required to be submitted to Architect, prepare as follows:
 - 1. Assemble complete submittal package into a single indexed file incorporating submittal requirements of a single Specification Section and transmittal form with links enabling navigation to each item.
 - 2. Name file with submittal number or other unique identifier, including revision identifier.
 - 3. Certifications: Where digitally submitted certificates and certifications are required, provide a digital signature with digital certificate on where indicated.

1.7 DIGITAL PROJECT MANAGEMENT PROCEDURES

- A. Use of Architect's Digital Data Files: Digital data files of Architect's Bidding Construction Documents, BIM model will be provided by Architect for Contractor's use during construction.
 - 1. Digital data files may be used by Contractor in preparing coordination drawings, Shop Drawings, and Project record Drawings.
 - 2. Architect makes no representations as to the accuracy or completeness of digital data files as they relate to Contract Drawings.
 - a. Subcontractors, and other parties granted access by Contractor to Architect's digital data files shall execute a data licensing agreement acceptable to Architect.

1.8 REQUEST FOR INFORMATION (RFI)

- A. General: Immediately on discovery of the need for additional information, clarification, or interpretation of the Contract Documents, Contractor shall prepare and submit an RFI in the form specified.
 - 1. Architect will return without response those RFIs submitted to Architect by other entities controlled by Contractor.
 - 2. Coordinate and submit RFIs in a prompt manner so as to avoid delays in Contractor's work or work of subcontractors.

- CONSTRUCTION DOCUMENTS 100% SUBMITTAL
- B. Content of the RFI: Include a detailed, legible description of item needing information or interpretation and the following:
 - 1. Project name.
 - 2. Project number.
 - Date 3.
 - 4. Name of Contractor.
 - Name of Architect.
 - RFI number, numbered sequentially. 6.
 - 7. RFI subject.
 - Specification Section number and title and related paragraphs, as appropriate. 8.
 - Drawing number and detail references, as appropriate. 9
 - Field dimensions and conditions, as appropriate. 10.
 - Contractor's suggested resolution. If Contractor's suggested resolution impacts the 11. Contract Time or the Contract Sum, Contractor shall state impact in the RFI.
 - Contractor's signature. 12.
 - Attachments: Include sketches, descriptions, measurements, photos, Product Data, Shop Drawings, coordination drawings, and other information necessary to fully describe items needing interpretation.
- C. RFI Forms: AIA Document G716 or similar Software-generated form with substantially the same content as indicated above, acceptable to Architect.
- D. Architect's Action: Architect will review each RFI, determine action required, and respond. Allow seven working days for Architect's response for each RFI. RFIs received by Architect after 2:00 p.m. will be considered as received the following working day.
 - 1. The following Contractor-generated RFIs will be returned without action:
 - Requests for approval of submittals. a.
 - Requests for approval of substitutions. b.
 - Requests for approval of Contractor's means and methods. c.
 - Requests for coordination information already indicated in the Contract d. Documents.
 - Requests for adjustments in the Contract Time or the Contract Sum. e.
 - f. Requests for interpretation of Architect's actions on submittals.
 - Incomplete RFIs or inaccurately prepared RFIs. g.
 - 2. Architect's action may include a request for additional information, in which case Architect's time for response will date from time of receipt by Architect of additional information.
 - Architect's action on RFIs that may result in a change to the Contract Time or the 3. Contract Sum may be eligible for Contractor to submit Change Proposal according to Section 012600 "Contract Modification Procedures."
 - If Contractor believes the RFI response warrants change in the Contract Time or a. the Contract Sum, notify Architect in writing within 10 days of receipt of the RFI response.
- RFI Log: Prepare, maintain, and submit a tabular log of RFIs organized by the RFI number. E. Submit log bi-weekly with not less than the following:

- 1. Project name.
- 2. Name and address of Contractor.
- 3. Name and address of Architect.
- 4. RFI number including RFIs that were returned without action or withdrawn.
- 5. RFI description.
- 6. Date the RFI was submitted.
- 7. Date Architect's response was received.
- F. On receipt of Architect's action, update the RFI log and immediately distribute the RFI response to affected parties. Review response and notify Architect within seven days if Contractor disagrees with response.

1.9 PROJECT MEETINGS

- A. General: Schedule and conduct meetings and conferences at Project site unless otherwise indicated.
- B. Preconstruction Conference: Contractor will schedule and conduct a preconstruction conference before starting construction, at a time convenient to Owner and Architect, but no later than 10 days after execution of the Agreement.
 - 1. Attendees: Authorized representatives of Owner, Architect, and their consultants; Contractor and its superintendent; major subcontractors; suppliers; and other concerned parties shall attend the conference. Participants at the conference shall be familiar with Project and authorized to conclude matters relating to the Work.
 - 2. Agenda: Discuss items of significance that could affect progress, including the following:
 - a. Responsibilities and personnel assignments.
 - b. Tentative construction schedule.
 - c. Phasing.
 - d. Critical work sequencing and long lead items.
 - e. Designation of key personnel and their duties.
 - f. Lines of communications.
 - g. Use of web-based Project software.
 - h. Procedures for processing field decisions and Change Orders.
 - i. Procedures for RFIs.
 - j. Procedures for testing and inspecting.
 - k. Procedures for processing Applications for Payment.
 - 1. Distribution of the Contract Documents.
 - m. Submittal procedures.
 - n. Sustainable design requirements.
 - o. Preparation of Record Documents.
 - p. Use of the premises.
 - q. Work restrictions.
 - r. Working hours.
 - s. Owner's occupancy requirements.
 - t. Responsibility for temporary facilities and controls.
 - u. Procedures for moisture and mold control.
 - v. Procedures for disruptions and shutdowns.
 - w. Construction waste management and recycling.

- x. Parking availability.
- y. Office, work, and storage areas.
- z. Equipment deliveries and priorities.
- aa. First aid.
- bb. Security.
- cc. Progress cleaning.
- 3. Minutes: Entity responsible for conducting meeting will record and distribute meeting minutes.
- C. Preinstallation Conferences: Conduct a preinstallation conference at Project site before each construction activity when required by other sections and when required for coordination with other construction.
 - 1. Attendees: Installer and representatives of manufacturers and fabricators involved in or affected by the installation and its coordination or integration with other materials and installations that have preceded or will follow, shall attend the meeting. Advise Architect, of scheduled meeting dates.
 - 2. Agenda: Review progress of other construction activities and preparations for the particular activity under consideration, including requirements for the following:
 - a. Contract Documents.
 - b. Options.
 - c. Related RFIs.
 - d. Related Change Orders.
 - e. Purchases.
 - f. Deliveries.
 - g. Submittals.
 - h. Sustainable design requirements.
 - i. Review of mockups.
 - i. Possible conflicts.
 - k. Compatibility requirements.
 - 1. Time schedules.
 - m. Weather limitations.
 - n. Manufacturer's written instructions.
 - o. Warranty requirements.
 - p. Compatibility of materials.
 - q. Acceptability of substrates.
 - r. Temporary facilities and controls.
 - s. Space and access limitations.
 - t. Regulations of authorities having jurisdiction.
 - u. Testing and inspecting requirements.
 - v. Installation procedures.
 - w. Coordination with other work.
 - x. Required performance results.
 - y. Protection of adjacent work.
 - z. Protection of construction and personnel.
 - 3. Record significant conference discussions, agreements, and disagreements, including required corrective measures and actions.

- 4. Reporting: Distribute minutes of the meeting to each party present and to other parties requiring information.
- 5. Do not proceed with installation if the conference cannot be successfully concluded. Initiate whatever actions are necessary to resolve impediments to performance of the Work and reconvene the conference at earliest feasible date.
- D. Progress Meetings: Conduct progress meetings at biweekly intervals.
 - 1. Coordinate dates of meetings with preparation of payment requests.
 - Attendees: In addition to representatives of Owner and Architect, each contractor, subcontractor, supplier, and other entity concerned with current progress or involved in planning, coordination, or performance of future activities shall be represented at these meetings. All participants at the meeting shall be familiar with Project and authorized to conclude matters relating to the Work.
 - 3. Agenda: Review and correct or approve minutes of previous progress meeting. Review other items of significance that could affect progress. Include topics for discussion as appropriate to status of Project.
 - a. Contractor's Construction Schedule: Review progress since the last meeting. Determine whether each activity is on time, ahead of schedule, or behind schedule, in relation to Contractor's construction schedule. Determine how construction behind schedule will be expedited; secure commitments from parties involved to do so. Discuss whether schedule revisions are required to ensure that current and subsequent activities will be completed within the Contract Time.
 - 1) Review schedule for next period.
 - b. Review present and future needs of each entity present, including the following:
 - 1) Interface requirements.
 - 2) Sequence of operations.
 - 3) Resolution of BIM component conflicts.
 - 4) Status of submittals.
 - 5) Status of sustainable design documentation.
 - 6) Deliveries.
 - 7) Off-site fabrication.
 - 8) Access.
 - 9) Site use.
 - 10) Temporary facilities and controls.
 - 11) Progress cleaning.
 - 12) Quality and work standards.
 - 13) Status of correction of deficient items.
 - 14) Field observations.
 - 15) Status of RFIs.
 - 16) Status of Proposal Requests.
 - 17) Pending changes.
 - 18) Status of Change Orders.
 - 19) Pending claims and disputes.
 - 20) Documentation of information for payment requests.

- 4. Minutes: Entity responsible for conducting the meeting will record and distribute the meeting minutes to each party present and to parties requiring information.
 - a. Schedule Updating: Revise Contractor's construction schedule after each progress meeting where revisions to the schedule have been made or recognized. Issue revised schedule concurrently with the report of each meeting.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 013100

SECTION 013200 - CONSTRUCTION PROGRESS DOCUMENTATION

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes administrative and procedural requirements for documenting the progress of construction during performance of the Work, including the following:
 - 1. Contractor's Construction Schedule.
 - 2. Construction schedule updating reports.
 - 3. Daily construction reports.
 - 4. Site condition reports.

B. Related Requirements:

- 1. Section 011200 "Multiple Contract Summary" for preparing a combined Contractor's Construction Schedule.
- C. Activity: A discrete part of a project that can be identified for planning, scheduling, monitoring, and controlling the construction Project. Activities included in a construction schedule consume time and resources.
 - 1. Critical Activity: An activity on the critical path that must start and finish on the planned early start and finish times.
 - 2. Predecessor Activity: An activity that precedes another activity in the network.
 - 3. Successor Activity: An activity that follows another activity in the network.
- D. Cost Loading: The allocation of the schedule of values for completing an activity as scheduled. The sum of costs for all activities must equal the total Contract Sum.
- E. CPM: Critical path method, which is a method of planning and scheduling a construction project where activities are arranged based on activity relationships. Network calculations determine when activities can be performed and the critical path of Project.
- F. Critical Path: The longest connected chain of interdependent activities through the network schedule that establishes the minimum overall Project duration and contains no float.
- G. Event: The starting or ending point of an activity.
- H. Float: The measure of leeway in starting and completing an activity.
 - 1. Free float is the amount of time an activity can be delayed without adversely affecting the early start of the successor activity.
 - 2. Total float is the measure of leeway in starting or completing an activity without adversely affecting the planned Project completion date.
- I. Resource Loading: The allocation of manpower and equipment necessary for completing an activity as scheduled.

1.2 DEFINITIONS

- A. Activity: A discrete part of a project that can be identified for planning, scheduling, monitoring, and controlling the construction Project. Activities included in a construction schedule consume time and resources.
 - 1. Critical Activity: An activity on the critical path that must start and finish on the planned early start and finish times.
 - 2. Predecessor Activity: An activity that precedes another activity in the network.
 - 3. Successor Activity: An activity that follows another activity in the network.
- B. Cost Loading: The allocation of the schedule of values for completing an activity as scheduled. The sum of costs for all activities must equal the total Contract Sum.
- C. CPM: Critical path method, which is a method of planning and scheduling a construction project where activities are arranged based on activity relationships. Network calculations determine when activities can be performed and the critical path of Project.
- D. Critical Path: The longest connected chain of interdependent activities through the network schedule that establishes the minimum overall Project duration and contains no float.
- E. Event: The starting or ending point of an activity.
- F. Float: The measure of leeway in starting and completing an activity.
 - 1. Free float is the amount of time an activity can be delayed without adversely affecting the early start of the successor activity.
 - 2. Total float is the measure of leeway in starting or completing an activity without adversely affecting the planned Project completion date.
- G. Resource Loading: The allocation of manpower and equipment necessary for completing an activity as scheduled.

1.3 INFORMATIONAL SUBMITTALS

- A. Format for Submittals: Submit required submittals in the following format:
 - 1. Working electronic copy of schedule file, where indicated.
 - 2. PDF file.
- B. Startup construction schedule.
 - 1. Submittal of cost-loaded, startup construction schedule will not constitute approval of schedule of values for cost-loaded activities.
- C. Startup Network Diagram: Of size required to display entire network for entire construction period. Show logic ties for activities.
- D. Contractor Construction Schedule: Initial schedule, of size required to display entire schedule for entire construction period.

- 1. Submit a working digital copy of schedule, using software indicated, and labeled to comply with requirements for submittals. Include type of schedule (initial or updated) and date on label.
- E. Construction Schedule Updating Reports: Submit with Applications for Payment.
- F. Daily Construction Reports: Submit at monthly intervals.
- G. Material Location Reports: Submit at monthly intervals.
- H. Site Condition Reports: Submit at time of discovery of differing conditions.
- I. Special Reports: Submit at time of unusual event.

1.4 QUALITY ASSURANCE

- A. Scheduling Consultant Qualifications: An experienced specialist in CPM scheduling and reporting, with capability of producing CPM reports and diagrams within 24 hours of Design Professional's request.
- B. Prescheduling Conference: Conduct conference at Project site to comply with requirements in Section 013100 "Project Management and Coordination." Review methods and procedures related to the preliminary construction schedule and Contractor Construction Schedule the following:
 - 1. Review software limitations and content and format for reports.
 - 2. Verify availability of qualified personnel needed to develop and update schedule.
 - 3. Discuss constraints, including phasing, work stages, area separations and interim milestones.
 - 4. Review delivery dates for Owner-furnished products.
 - 5. Review schedule for work of Owner's separate contracts.
 - 6. Review submittal requirements and procedures.
 - 7. Review time required for review of submittals and resubmittals.
 - 8. Review requirements for tests and inspections by independent testing and inspecting agencies.
 - 9. Review time required for Project closeout and Owner startup procedures, including commissioning activities.
 - 10. Review and finalize list of construction activities to be included in schedule.
 - 11. Review procedures for updating schedule.

1.5 COORDINATION

- A. Coordinate Contractor Construction Schedule with the schedule of values, submittal schedule, progress reports, payment requests, and other required schedules and reports.
 - 1. Secure time commitments for performing critical elements of the Work from entities involved.
 - 2. Coordinate each construction activity in the network with other activities and schedule them in proper sequence.

1.6 CONTRACTOR CONSTRUCTION SCHEDULE, GENERAL

- A. Computer Scheduling Software: Prepare schedules using current version of a program that has been developed specifically to manage construction schedules.
 - 1. Use current operating system.
- B. Scheduling Management: Provide planning, evaluation, and reporting using CPM scheduling throughout the duration of the Work.
 - 1. Utilize skilled personnel with experience in CPM scheduling and reporting techniques.
 - 2. Meetings: Scheduler shall attend all meetings related to Project progress, alleged delays, and time impact.
- C. Time Frame: Extend schedule from date established for Notice to Proceed to date of Material Completion, and Final Completion.
 - 1. Contract completion date shall not be changed by submission of a schedule that shows an early completion date, unless specifically authorized by Change Order.
- D. Activities: Treat each floor or separate area as a separate numbered activity for each main element of the Work. Comply with the following:
 - 1. Activity Duration: Define activities so no activity is longer than 14 days.
 - 2. Procurement Activities: Include procurement process activities for the following long lead items and major items, requiring a cycle of more than 60 days, as separate activities in schedule. Procurement cycle activities include submittals, approvals, purchasing, fabrication, and delivery.
 - a. Structural steel
 - b. Major mechanical.
 - c. Major electrical equipment.
 - 3. Submittal Review Time: Include review and resubmittal times indicated in Section 013300 "Submittal Procedures" in schedule. Coordinate submittal review times in Contractor Construction Schedule with submittal schedule.
 - 4. Startup and Testing Time: Include no fewer than 15 days for startup and testing.
 - 5. Commissioning Time: Include no fewer than 15 days for commissioning.
 - 6. Material Completion: Indicate completion in advance of date established for Material Completion, and allow time for Architect's administrative procedures necessary for certification of Material Completion.
 - 7. Punch List and Final Completion: Include not more than 30 days for completion of punch list items and final completion.
- E. Constraints: Include constraints and work restrictions indicated in the Contract Documents and as follows in schedule, and show how the sequence of the Work is affected.
 - 1. Work by Owner: Include a separate activity for each portion of the Work performed by Owner.

- 2. Products Ordered in Advance: Include a separate activity for each product. Include delivery date indicated in Section 011000 "Summary." Delivery dates indicated stipulate the earliest possible delivery date.
- 3. Owner-Furnished Products: Include a separate activity for each product. Include delivery date indicated in Section 011000 "Summary." Delivery dates indicated stipulate the earliest possible delivery date.
- 4. Work Restrictions: Show the effect of the following items on the schedule:
 - a. Seasonal variations.
 - b. Environmental control.
- 5. Work Stages: Indicate important stages of construction for each major portion of the Work, including the following:
 - a. Subcontract awards.
 - b. Submittals.
 - c. Purchases.
 - d. Mockups.
 - e. Fabrication.
 - f. Sample testing.
 - g. Deliveries.
 - h. Installation.
 - i. Tests and inspections.
 - j. Adjusting.
 - k. Curing.
 - 1. Building flush-out.
 - m. Startup and placement into final use and operation.
 - n. Commissioning.
- 6. Construction Areas: Identify each major area of construction for each major portion of the Work. Indicate where each construction activity within a major area must be sequenced or integrated with other construction activities to provide for the following:
 - a. Structural completion.
 - b. Temporary enclosure and space conditioning.
 - c. Permanent space enclosure.
 - d. Completion of mechanical installation.
 - e. Completion of electrical installation.
 - f. Material Completion.
- F. Milestones: Include milestones indicated in the Contract Documents in schedule, including the Notice to Proceed, Material Completion, and final completion, and the following interim milestones:
 - 1. Temporary enclosure
 - 2. Permanent Power
 - 3. Space conditioning.
- G. Upcoming Work Summary: Prepare summary report indicating activities scheduled to occur or commence prior to submittal of next schedule update. Summarize the following issues:

- 1. Unresolved issues.
- 2. Unanswered Requests for Information.
- 3. Rejected or unreturned submittals.
- 4. Notations on returned submittals.
- 5. Pending modifications affecting the Work and the Contract Time.
- H. Contractor Construction Schedule Updating: At bi-weekly intervals, update schedule to reflect actual construction progress and activities. Issue schedule one week before each regularly scheduled progress meeting.
 - 1. Revise schedule immediately after each meeting or other activity where revisions have been recognized or made. Issue updated schedule concurrently with the report of each such meeting.
 - 2. Include a report with updated schedule that indicates every change, including changes in logic, durations, actual starts and finishes, and activity durations.
 - 3. As the Work progresses, indicate final completion percentage for each activity.
- I. Recovery Schedule: When periodic update indicates the Work is 14 or more calendar days behind the current approved schedule, submit a separate recovery schedule indicating means by which Construction Professional intends to regain compliance with the schedule. Indicate changes to working hours, working days, crew sizes, equipment required to achieve compliance, and date by which recovery will be accomplished.
- J. Distribution: Distribute copies of approved schedule to Architect Owner, separate Construction Professionals, testing and inspecting agencies, and other parties identified by Construction Professional with a need-to-know schedule responsibility.
 - 1. Post copies in Project meeting rooms and temporary field offices.
 - 2. When revisions are made, distribute updated schedules to the same parties and post in the same locations. Delete parties from distribution when they have completed their assigned portion of the Work and are no longer involved in performance of construction activities.

1.7 STARTUP CONSTRUCTION SCHEDULE

- A. Gantt-Chart Schedule: Submit startup, horizontal, Gantt-chart-type construction schedule within seven days of date established for commencement of the Workand the Notice to Proceed.
- B. Preparation: Indicate each significant construction activity separately. Identify first workday of each week with a continuous vertical line. Outline significant construction activities for first 90 days of construction. Include skeleton diagram for the remainder of the Work and a cash requirement prediction based on indicated activities.

1.8 GANTT-CHART SCHEDULE REQUIREMENTS

A. Gantt-Chart Schedule: Submit a comprehensive, fully developed, horizontal, Gantt-chart-type, Contractor Construction Schedule within fourteen (14) days of date established for the Notice to Proceed.

- 1. Base schedule on the startup construction schedule and additional information received since the start of Project.
- B. Preparation: Indicate each significant construction activity separately. Identify first workday of each week with a continuous vertical line.
 - 1. For construction activities that require three months or longer to complete, indicate an estimated completion percentage in 10 percent increments within time bar.

1.9 CPM SCHEDULE REQUIREMENTS

- A. General: Include the following within the GANTT-Chart schedule.
 - 1. Activities: Indicate the estimated time duration, sequence requirements, and relationship of each activity in relation to other activities. Include estimated time frames for the following activities:
 - a. Preparation and processing of submittals.
 - b. Mobilization and demobilization.
 - c. Temporary utility connection.
 - d. Purchase of materials.
 - e. Delivery.
 - f. Fabrication.
 - g. Utility interruptions.
 - h. Installation.
 - i. Work by Owner that may affect or be affected by Contractor activities.
 - j. Testing and inspection.
 - k. Commissioning.
 - 1. Punch list and final completion.
 - m. Activities occurring following final completion.
 - 2. Critical Path Activities: Identify critical path activities, including those for interim completion dates. Scheduled start and completion dates shall be consistent with Contract milestone dates.
 - 3. Processing: Process data to produce output data on a computer-drawn, time-scaled network. Revise data, reorganize activity sequences, and reproduce as often as necessary to produce the CPM schedule within the limitations of the Contract Time.
 - 4. Format: Mark the critical path. Locate the critical path near center of network; locate paths with most float near the edges.
 - a. Subnetworks on separate sheets are permissible for activities clearly off the critical path.

1.10 REPORTS

- A. Daily Construction Reports: Prepare a daily construction report recording the following information concerning events at Project site:
 - 1. List of subcontractors at Project site.

- 2. List of separate contractors at Project site.
- 3. Approximate count of personnel at Project site.
- 4. Equipment at Project site.
- 5. Material deliveries.
- 6. High and low temperatures and general weather conditions, including presence of rain or snow.
- 7. Testing and inspection.
- 8. Accidents.
- 9. Meetings and significant decisions.
- 10. Unusual events.
- 11. Stoppages, delays, shortages, and losses.
- 12. Meter readings and similar recordings.
- 13. Emergency procedures.
- 14. Orders and requests of the Architect.
- 15. Change Orders received and implemented.
- 16. Change Directives received and implemented.
- 17. Services connected and disconnected.
- 18. Equipment or system tests and startups.
- 19. Partial completions and occupancies.
- 20. Material Completions authorized.
- B. Material Location Reports: At monthly intervals, prepare and submit a comprehensive list of materials delivered to and stored at Project site. List shall be cumulative, showing materials previously reported plus items recently delivered. Include with list a statement of progress on and delivery dates for materials or items of equipment fabricated or stored away from Project site. Indicate the following categories for stored materials:
 - 1. Material stored prior to previous report and remaining in storage.
 - 2. Material stored prior to previous report and since removed from storage and installed.
 - 3. Material stored following previous report and remaining in storage.
- C. Site Condition Reports: Immediately on discovery of a difference between site conditions and the Contract Documents, prepare and submit a detailed report. Submit with a Request for Information. Include a detailed description of the differing conditions, together with recommendations for changing the Contract Documents.
- D. Unusual Event Reports: When an event of an unusual and significant nature occurs at Project site, whether or not related directly to the Work, prepare and submit a special report. List chain of events, persons participating, responses by Contractor personnel, evaluation of results or effects, and similar pertinent information. Advise Owner in advance when these events are known or predictable.
 - 1. Submit unusual event reports directly to Owner within **one** day(s) of an occurrence. Distribute copies of report to parties affected by the occurrence.

1180510 TOBIE GRANT RECREATION CENTER 3/22/19

CONSTRUCTION DOCUMENTS 100% SUBMITTAL

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 013200

SECTION 013233 - PHOTOGRAPHIC DOCUMENTATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes administrative and procedural requirements for the following:
 - 1. Preconstruction photographs.
 - 2. Periodic construction photographs.
 - 3. Final completion construction photographs.
 - 4. Preconstruction video recordings.
 - 5. Periodic construction video recordings.
 - 6. Construction webcam.

B. Related Requirements:

- 1. Section 017700 "Closeout Procedures" for submitting photographic documentation as Project Record Documents at Project closeout.
- 2. Section 017900 "Demonstration and Training" for submitting video recordings of demonstration of equipment and training of Owner's personnel.
- 3. Section 024119 "Selective Demolition" for photographic documentation before selective demolition operations commence.
- 4. Section 311000 "Site Clearing" for photographic documentation before site clearing operations commence.

1.3 INFORMATIONAL SUBMITTALS

- A. Key Plan: Submit key plan of Project site and building with notation of vantage points marked for location and direction of each photograph. Indicate elevation or story of construction. Include same information as corresponding photographic documentation.
- B. Digital Photographs: Submit image files within three (3) days of taking photographs.
 - 1. Submit photos by uploading to web-based project software site.
 - 2. Identification: Provide the following information with each image description in file metadata tag:
 - a. Name of Project.
 - b. Name and contact information for photographer.
 - c. Name of Architect.
 - d. Name of Contractor.

- e. Date photograph was taken.
- f. Description of location, vantage point, and direction.
- g. Unique sequential identifier keyed to accompanying key plan.
- C. Printed Photographs: Submit two sets of prints of each photographic view within five (5) days of taking photographs.
 - 1. Format: 8-by-10-inch smooth-surface matte prints on single-weight, paper; enclosed back to back in clear plastic sleeves punched for three-ring binder. Include copy of key plan indicating each photograph's location and direction. Provide one binder for each set of prints.
 - 2. Identification: On back of each print, label with the following information:
 - a. Name of Project.
 - b. Name and contact information for photographer.
 - c. Name of Architect.
 - d. Name of Contractor.
 - e. Date photograph was taken if not date stamped by camera.
 - f. Description of vantage point, indicating location, direction (by compass point), and elevation or story of construction.
 - g. Unique sequential identifier keyed to accompanying key plan.

1.4 QUALITY ASSURANCE

- A. Photographer Qualifications: An individual who has been regularly engaged as a professional photographer of construction projects for not less than three years.
- B. Construction Webcam Service Provider: A firm specializing in providing photographic equipment, web-based software, and related services for construction projects, with record of providing satisfactory services similar to those required for Project.

1.5 FORMATS AND MEDIA

- A. Digital Photographs: Provide color images in JPG format, produced by a digital camera with minimum sensor size of 12 megapixels, and at an image resolution of not less than 3200 by 2400 pixels. Use flash in low light levels or backlit conditions.
- B. Digital Images: Submit digital media as originally recorded in the digital camera, without alteration, manipulation, editing, or modifications using image-editing software.
- C. File Names: Name media files with date and sequential numbering suffix.

1.6 CONSTRUCTION PHOTOGRAPHS

- A. Photographer: Engage a qualified photographer to take construction photographs.
- B. General: Take photographs with maximum depth of field and in focus.

- 1. Maintain key plan with each set of construction photographs that identifies each photographic location.
- C. Preconstruction Photographs: Before commencement of excavation and commencement of demolition or starting any construction, take photographs of Project site and surrounding properties, including existing items to remain during construction, from different vantage points.
 - 1. Flag construction limits before taking construction photographs.
 - 2. Take photographs to show and record existing conditions adjacent to property before starting the Work.
 - 3. Take photographs of existing buildings either on or adjoining property to accurately record physical conditions prior to start of construction.
 - 4. Take additional photographs as required to record settlement or cracking of adjacent structures, pavements, and improvements.
- D. Periodic Construction Photographs: Take photographs associated with each Application for Payment. Select vantage points to show status of construction and progress since last photographs were taken.
- E. Final Completion Construction Photographs: Take photographs onr date of Substantial Completion for submission as Project Record Documents.
- 1.7 AERIAL PHOTOGRAPHS
 - A. Not Applicable.
- 1.8 CONSTRUCTION VIDEO RECORDINGS
 - A. Not Applicable.
- 1.9 CONSTRUCTION WEBCAM
 - A. Webcam: Not Applicable:

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 013233

SECTION 013330 - STRUCTURAL SUBMITTALS

PART 1 - GENERAL

1.1 SECTION INCLUDES

- A. Structural submittals include shop drawings, design calculations, diagrams, illustrations, schedules, performance charts, nomenclature charts, samples, brochures and other data prepared by the Contractor or any subcontractor, manufacturer, supplier, fabricator, or distributor and which illustrate some portion of the Project.
- B. Submittals by the Contractor are not a part of the Contract Documents.

1.2 RELATED SECTIONS

A. Section 01 33 00 - Submittals

1.3 SUBMITTAL PROCEDURES

- A. Prior to the initial submittal, Contractor shall submit to the Design Professional a completed *Submittal Information and Schedules* form given in Appendix I.
- B. Submittals shall be accompanied by a transmittal letter with the following information:
 - 1. Project name.
 - 2. Contractor's name.
 - 3. Date submitted.
 - 4. Description of items submitted; identify work and product by Specification Section.
 - 5. Number of drawings and other pertinent data.
- C. Provide blank space on each submittal for the Design Professional's review stamp.
- D. The type and number of submittals for each item shall be in accordance with Section 013000.
- E. Contractor shall direct specific attention on the submittal to any deviation from the Contract Documents.

1.4 CONTRACTOR RESPONSIBILITY

- A. Contractor shall make all submittals in advance of installation or construction to allow the Design Professional sufficient time for review.
- B. Contractor shall stamp and sign each sheet of shop drawings and product data, and sign or initial each sample to certify compliance with requirements of Contract Documents.

SUBMITTALS RECEIVED WITHOUT THE CONTRACTOR'S STAMP OF REVIEW WILL BE RETURNED TO THE CONTRACTOR FOR REVIEW AND RESUBMITTAL.

- C. Contractor shall understand that the submittal of the required documents does not constitute compliance with the requirements of the Contract Documents; only submittals reviewed by the Design Professional constitute compliance.
- D. It is the Contractor's responsibility to furnish equipment, materials, and labor for the Project which meets the requirements of the codes and authorities quoted as well as the Contract Documents. Proprietary items specified herein only establish a minimum functional and aesthetic standard and it is incumbent upon the Contractor to ascertain conformance of these proprietary items or any proposed substitution with the codes and authorities.
- E. By reviewing, approving and submitting shop drawings, product data, or samples, Contractor thereby represents that he has determined and verified all field measurements, field construction criteria, materials, member sizes catalog numbers, and similar data and that he has checked and coordinated shop drawings with the requirements of the Project and of the Contract Documents.
- F. Work requiring shop drawings, whether called for by the Contract Documents or requested by the Contractor, shall not commence until the submission has been reviewed by the Design Professional. Work may commence if the Contractor verifies the accuracy of the Design Professional's corrections and notations and complies with them without exception and without requesting change in Contract Sum or Contract Time.

1.5 DESIGN PROFESSIONAL REVIEW

- A. Design Professional will review submittals with reasonable promptness.
- B. Design Professional's review or corrections refer only to the general arrangement and conformance of the subject of the submittals with the design concept of the project and with the information given in the Contract Documents. Under no conditions should the Contractor consider the review to include the dimensions, quantities, and details of the items nor the approval of an assembly in which the item functions.
- C. Design Professional's review shall not relieve the Contractor from responsibility for errors or omissions in the submittals.
- D. Design Professional's review of submittals shall not relieve the Contractor of responsibility for any deviation from the requirements of the Contract Documents unless the Contractor has directed specific attention to the deviation at the time of submission and the Design Professional has given written approval to the specific deviation.
- E. Design Professional's review of submittals shall not be construed as authorizing any change in the Contract Sum or Contract Time.

1.6 SHOP DRAWINGS

- A. Present in a clear and thorough manner. Title each drawing with Project name and number; identify each element of drawings by reference to sheet number and detail of Contract Documents.
- B. Reproduction of Structural Drawings for shop drawings is not permitted. Electronic drawing files will not be provided to the Contractor.
- C. Identify field dimensions; show relationship to adjacent or critical features of Work or products.
- D. A copy of the marked structural shop drawings with the Design Professional's review stamp is to be maintained at the job site.

1.7 PRODUCT DATA

- A. Submit only pages which are pertinent; mark each copy of standard printed data to identify pertinent products, referenced to Specification Section and Article number. Show reference standards, performance characteristics, and capacities; wiring and piping diagrams and controls; component parts; finishes; dimensions; and required clearances.
- B. Modify manufacturer's standard schematic drawings and diagrams to supplement standard information and to provide information specifically applicable to the work. Delete information which is not applicable.
- C. Provide manufacturer's preparation, assembly, and installation instructions.

1.8 SAMPLES

- A. Submit full range of manufacturer's standard finishes except where more restrictive requirements are specified, indicating colors, textures, and patterns.
- B. Submit samples to illustrate functional characteristics of products, including parts and attachments as required by Design Professional.
- C. Approved samples which are of proper size may be incorporated in Work.
- D. Label each sample with identification.
- E. Field Finishes: Provide full samples at Project, at location acceptable to Design Professional, as required by individual Specification Section. Install each sample complete and finished. Acceptable finishes in place may be retained in completed work.

1.9 RESUBMITTALS

- A. When submittals are returned to the Contractor with the Design Professional's corrections the Contractor shall make the required corrections. Upon request, resubmit one corrected set.
- B. Contractor shall direct specific attention on the resubmittal to all revisions including those requested by the Design Professional on previous submission.

1.10 DISTRIBUTION

- A. Distribute reproductions of shop drawings, copies of product data, and samples which bear the Design Professional's review stamp to job site file, Record Documents file, subcontractors, suppliers, other affected contractors, and other entities requiring information.
- B. Work shall be in accordance with and performed from the reviewed drawings.

PART 2 - PRODUCTS

Not Used.

PART 3 - EXECUTION

Not Used.

END OF SECTION 013330

END OF APPENDIX I

CONSTRUCTION DOCUMENTS 100% SUBMITTAL

APPENDIX I SUBMITTAL INFORMATION AND SCHEDULES

PROJECT						
CONTRACTOR						
CONTRACTOR'S AI	DDRESS _					
PROJ. MANAGER	-	PHC	ONE () _	FAX (_)	
SUPERINTENDENT		PHO	ONE ()_	FAX (_)	
	I	PROJECTED SUBMIT	TAL DATE	S		
FOUNDATION, CONCRETE & REINFORCING		STRUCTURAL :	STEEL	MASONRY		
SUBMITTAL	DATE	SUBMITTAL	DATE	SUBMITTAL	DATE	
Site Preparation & Equipment Information		Fabricator / Erector Qualifications		Grout & Mortar Mix		
Concrete Mix Design		Anchor Bolt & Embedded Items		Block Prism & Comp. Strength		
Foundation Reinforcing		Erection & Detail Drawings		Reinforcing		
		Joists		Written Procedures		
		Deck				
Remarks:						
COMPLETED BY			DA	TE		

SECTION 014000 - QUALITY REQUIREMENTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes administrative and procedural requirements for quality assurance and quality control.
- B. Testing and inspection services are required to verify compliance with requirements specified or indicated. These services do not relieve Contractor of responsibility for compliance with the Contract Document requirements.
 - 1. Specific quality-assurance and quality-control requirements for individual work results are specified in their respective Specification Sections. Requirements in individual Sections may also cover production of standard products.
 - 2. Specified tests, inspections, and related actions do not limit Contractor's other quality-assurance and quality-control procedures that facilitate compliance with the Contract Document requirements.
 - 3. Requirements for Contractor to provide quality-assurance and quality-control services required by Architect, Owner, or authorities having jurisdiction are not limited by provisions of this Section.
 - 4. Specific test and inspection requirements are not specified in this Section.

1.3 DEFINITIONS

- A. Experienced: When used with an entity or individual, "experienced" unless otherwise further described means having successfully completed a minimum of five previous projects similar in nature, size, and extent to this Project; being familiar with special requirements indicated; and having complied with requirements of authorities having jurisdiction.
- B. Field Quality-Control Tests: Tests and inspections that are performed on-site for installation of the Work and for completed Work.
- C. Installer/Applicator/Erector: Contractor or another entity engaged by Contractor as an employee, Subcontractor, or Sub-subcontractor, to perform a particular construction operation, including installation, erection, application, assembly, and similar operations.
 - 1. Use of trade-specific terminology in referring to a trade or entity does not require that certain construction activities be performed by accredited or unionized individuals, or that requirements specified apply exclusively to specific trade(s).

- D. Mockups: Full-size physical assemblies that are constructed on-site either as freestanding temporary built elements or as part of permanent construction. Mockups are constructed to verify selections made under Sample submittals; to demonstrate aesthetic effects and qualities of materials and execution; to review coordination, testing, or operation; to show interface between dissimilar materials; and to demonstrate compliance with specified installation tolerances. Mockups are not Samples. Unless otherwise indicated, approved mockups establish the standard by which the Work will be judged.
 - 1. Laboratory Mockups: Full-size physical assemblies constructed and tested at testing facility to verify performance characteristics.
 - 2. Integrated Exterior Mockups: Mockups of the exterior envelope constructed on-site as freestanding temporary built elements or as part of permanent construction where indicated, consisting of multiple products, assemblies, and subassemblies.
 - 3. Room Mockups: Mockups of typical interior spaces complete with wall, floor, and ceiling finishes; doors; windows; millwork; casework; specialties; furnishings and equipment; and lighting.
- E. Preconstruction Testing: Tests and inspections performed specifically for Project before products and materials are incorporated into the Work, to verify performance or compliance with specified criteria.
- F. Product Tests: Tests and inspections that are performed by a nationally recognized testing laboratory (NRTL) according to 29 CFR 1910.7, by a testing agency accredited according to NIST's National Voluntary Laboratory Accreditation Program (NVLAP), or by a testing agency qualified to conduct product testing and acceptable to authorities having jurisdiction, to establish product performance and compliance with specified requirements.
- G. Source Quality-Control Tests: Tests and inspections that are performed at the source; for example, plant, mill, factory, or shop.
- H. Testing Agency: An entity engaged to perform specific tests, inspections, or both. Testing laboratory shall mean the same as testing agency.
- I. Quality-Assurance Services: Activities, actions, and procedures performed before and during execution of the Work to guard against defects and deficiencies and substantiate that proposed construction will comply with requirements.
- J. Quality-Control Services: Tests, inspections, procedures, and related actions during and after execution of the Work to evaluate that actual products incorporated into the Work and completed construction comply with requirements. Contractor's quality-control services do not include contract administration activities performed by Architect.

1.4 DELEGATED-DESIGN SERVICES

- A. Performance and Design Criteria: Where professional design services or certifications by a design professional are specifically required of Contractor by the Contract Documents, provide products and systems complying with specific performance and design criteria indicated.
 - 1. If criteria indicated are not sufficient to perform services or certification required, submit a written request for additional information to Architect.

1.5 CONFLICTING REQUIREMENTS

- A. Conflicting Standards and Other Requirements: If compliance with two or more standards or requirements are specified and the standards or requirements establish different or conflicting requirements for minimum quantities or quality levels, comply with the most stringent requirement. Refer conflicting requirements that are different, but apparently equal, to Architect for direction before proceeding.
- B. Minimum Quantity or Quality Levels: The quantity or quality level shown or specified shall be the minimum provided or performed. The actual installation may comply exactly with the minimum quantity or quality specified, or it may exceed the minimum within reasonable limits. To comply with these requirements, indicated numeric values are minimum or maximum, as appropriate, for the context of requirements. Refer uncertainties to Architect for a decision before proceeding.

1.6 ACTION SUBMITTALS

- A. Shop Drawings: For integrated exterior mockups.
 - 1. Include plans, sections, and elevations, indicating materials and size of mockup construction.
 - 2. Indicate manufacturer and model number of individual components.
 - 3. Provide axonometric drawings for conditions difficult to illustrate in two dimensions.
- B. Delegated-Design Services Submittal: In addition to Shop Drawings, Product Data, and other required submittals, submit a statement signed and sealed by the responsible design professional, for each product and system specifically assigned to Contractor to be designed or certified by a design professional, indicating that the products and systems are in compliance with performance and design criteria indicated. Include list of codes, loads, and other factors used in performing these services.

1.7 INFORMATIONAL SUBMITTALS

- A. Contractor's Quality-Control Plan: For quality-assurance and quality-control activities and responsibilities.
- B. Qualification Data: For Contractor's quality-control personnel.
- C. Contractor's Statement of Responsibility: When required by authorities having jurisdiction, submit copy of written statement of responsibility submitted to authorities having jurisdiction before starting work on the following systems:
 - 1. Seismic-force-resisting system, designated seismic system, or component listed in the Statement of Special Inspections.
 - 2. Main wind-force-resisting system or a wind-resisting component listed in the Statement of Special Inspections.

- D. Testing Agency Qualifications: For testing agencies specified in "Quality Assurance" Article to demonstrate their capabilities and experience. Include proof of qualifications in the form of a recent report on the inspection of the testing agency by a recognized authority.
- E. Schedule of Tests and Inspections: Prepare in tabular form and include the following:
 - 1. Specification Section number and title.
 - 2. Entity responsible for performing tests and inspections.
 - 3. Description of test and inspection.
 - 4. Identification of applicable standards.
 - 5. Identification of test and inspection methods.
 - 6. Number of tests and inspections required.
 - 7. Time schedule or time span for tests and inspections.
 - 8. Requirements for obtaining samples.
 - 9. Unique characteristics of each quality-control service.
- F. Reports: Prepare and submit certified written reports and documents as specified.
- G. Permits, Licenses, and Certificates: For Owner's record, submit copies of permits, licenses, certifications, inspection reports, releases, jurisdictional settlements, notices, receipts for fee payments, judgments, correspondence, records, and similar documents established for compliance with standards and regulations bearing on performance of the Work.

1.8 CONTRACTOR'S QUALITY-CONTROL PLAN

- A. Quality-Control Plan, General: Submit quality-control plan within 10 days of Notice of Award Notice to Proceed, and not less than five days prior to preconstruction conference. Submit in format acceptable to Architect. Identify personnel, procedures, controls, instructions, tests, records, and forms to be used to carry out Contractor's quality-assurance and quality-control responsibilities. Coordinate with Contractor's Construction Schedule.
- B. Quality-Control Personnel Qualifications: Engage qualified personnel trained and experienced in managing and executing quality-assurance and quality-control procedures similar in nature and extent to those required for Project.
 - 1. Project quality-control manager may also serve as Project superintendent.
- C. Submittal Procedure: Describe procedures for ensuring compliance with requirements through review and management of submittal process. Indicate qualifications of personnel responsible for submittal review.
- D. Testing and Inspection: In quality-control plan, include a comprehensive schedule of Work requiring testing or inspection, including the following:
 - 1. Contractor-performed tests and inspections including Subcontractor-performed tests and inspections. Include required tests and inspections and Contractor-elected tests and inspections. Distinguish source quality-control tests and inspections from field quality-control tests and inspections.
 - 2. Special inspections required by authorities having jurisdiction and indicated on the Statement of Special Inspections.

- 3. Owner-performed tests and inspections indicated in the Contract Documents, including tests and inspections indicated to be performed by Commissioning Authority.
- E. Continuous Inspection of Workmanship: Describe process for continuous inspection during construction to identify and correct deficiencies in workmanship in addition to testing and inspection specified. Indicate types of corrective actions to be required to bring work into compliance with standards of workmanship established by Contract requirements and approved mockups.
- F. Monitoring and Documentation: Maintain testing and inspection reports including log of approved and rejected results. Include work Architect has indicated as nonconforming or defective. Indicate corrective actions taken to bring nonconforming work into compliance with requirements. Comply with requirements of authorities having jurisdiction.

1.9 REPORTS AND DOCUMENTS

- A. Test and Inspection Reports: Prepare and submit certified written reports specified in other Sections. Include the following:
 - 1. Date of issue.
 - 2. Project title and number.
 - 3. Name, address, telephone number, and email address of testing agency.
 - 4. Dates and locations of samples and tests or inspections.
 - 5. Names of individuals making tests and inspections.
 - 6. Description of the Work and test and inspection method.
 - 7. Identification of product and Specification Section.
 - 8. Complete test or inspection data.
 - 9. Test and inspection results and an interpretation of test results.
 - 10. Record of temperature and weather conditions at time of sample taking and testing and inspection.
 - 11. Comments or professional opinion on whether tested or inspected Work complies with the Contract Document requirements.
 - 12. Name and signature of laboratory inspector.
 - 13. Recommendations on retesting and reinspecting.
- B. Manufacturer's Technical Representative's Field Reports: Prepare written information documenting manufacturer's technical representative's tests and inspections specified in other Sections. Include the following:
 - 1. Name, address, telephone number, and email address of technical representative making report.
 - 2. Statement on condition of substrates and their acceptability for installation of product.
 - 3. Statement that products at Project site comply with requirements.
 - 4. Summary of installation procedures being followed, whether they comply with requirements and, if not, what corrective action was taken.
 - 5. Results of operational and other tests and a statement of whether observed performance complies with requirements.
 - 6. Statement whether conditions, products, and installation will affect warranty.
 - 7. Other required items indicated in individual Specification Sections.

- C. Factory-Authorized Service Representative's Reports: Prepare written information documenting manufacturer's factory-authorized service representative's tests and inspections specified in other Sections. Include the following:
 - 1. Name, address, telephone number, and email address of factory-authorized service representative making report.
 - 2. Statement that equipment complies with requirements.
 - 3. Results of operational and other tests and a statement of whether observed performance complies with requirements.
 - 4. Statement whether conditions, products, and installation will affect warranty.
 - 5. Other required items indicated in individual Specification Sections.

1.10 QUALITY ASSURANCE

- A. General: Qualifications paragraphs in this article establish the minimum qualification levels required; individual Specification Sections specify additional requirements.
- B. Manufacturer Qualifications: A firm experienced in manufacturing products or systems similar to those indicated for this Project and with a record of successful in-service performance, as well as sufficient production capacity to produce required units. As applicable, procure products from manufacturers able to meet qualification requirements, warranty requirements, and technical or factory-authorized service representative requirements.
- C. Fabricator Qualifications: A firm experienced in producing products similar to those indicated for this Project and with a record of successful in-service performance, as well as sufficient production capacity to produce required units.
- D. Installer Qualifications: A firm or individual experienced in installing, erecting, applying, or assembling work similar in material, design, and extent to that indicated for this Project, whose work has resulted in construction with a record of successful in-service performance.
- E. Professional Engineer Qualifications: A professional engineer who is legally qualified to practice in jurisdiction where Project is located and who is experienced in providing engineering services of the kind indicated. Engineering services are defined as those performed for installations of the system, assembly, or product that are similar in material, design, and extent to those indicated for this Project.
- F. Specialists: Certain Specification Sections require that specific construction activities shall be performed by entities who are recognized experts in those operations. Specialists shall satisfy qualification requirements indicated and shall be engaged for the activities indicated.
 - 1. Requirements of authorities having jurisdiction shall supersede requirements for specialists.
- G. Testing Agency Qualifications: An NRTL, an NVLAP, or an independent agency with the experience and capability to conduct testing and inspection indicated, as documented according to ASTM E 329 and with additional qualifications specified in individual Sections; and, where required by authorities having jurisdiction, that is acceptable to authorities.

- H. Manufacturer's Technical Representative Qualifications: An authorized representative of manufacturer who is trained and approved by manufacturer to observe and inspect installation of manufacturer's products that are similar in material, design, and extent to those indicated for this Project.
- I. Factory-Authorized Service Representative Qualifications: An authorized representative of manufacturer who is trained and approved by manufacturer to inspect installation of manufacturer's products that are similar in material, design, and extent to those indicated for this Project.
- J. Preconstruction Testing: Where testing agency is indicated to perform preconstruction testing for compliance with specified requirements for performance and test methods, comply with the following:
 - 1. Contractor responsibilities include the following:
 - a. Provide test specimens representative of proposed products and construction.
 - b. Submit specimens in a timely manner with sufficient time for testing and analyzing results to prevent delaying the Work.
 - c. Provide sizes and configurations of test assemblies, mockups, and laboratory mockups to adequately demonstrate capability of products to comply with performance requirements.
 - d. Build site-assembled test assemblies and mockups using installers who will perform same tasks for Project.
 - e. Build laboratory mockups at testing facility using personnel, products, and methods of construction indicated for the completed Work.
 - f. When testing is complete, remove test specimens and test assemblies, mockups; do not reuse products on Project.
 - 2. Testing Agency Responsibilities: Submit a certified written report of each test, inspection, and similar quality-assurance service to Architect, with copy to Contractor. Interpret tests and inspections and state in each report whether tested and inspected work complies with or deviates from the Contract Documents.
- K. Mockups: Before installing portions of the Work requiring mockups, build mockups for each form of construction and finish required to comply with the following requirements, using materials indicated for the completed Work:
 - 1. Build mockups of size indicated.
 - 2. Build mockups in location indicated or, if not indicated, as directed by Architect.
 - 3. Notify Architect seven days in advance of dates and times when mockups will be constructed.
 - 4. Employ supervisory personnel who will oversee mockup construction. Employ workers that will be employed to perform same tasks during the construction at Project.
 - 5. Demonstrate the proposed range of aesthetic effects and workmanship.
 - 6. Obtain Architect's approval of mockups before starting corresponding work, fabrication, or construction.
 - a. Allow seven days for initial review and each re-review of each mockup.

- 7. Maintain mockups during construction in an undisturbed condition as a standard for judging the completed Work.
- 8. Demolish and remove mockups when directed unless otherwise indicated.
- L. Integrated Exterior Mockups: Construct integrated exterior mockup according to approved Shop Drawings or as indicated on Drawings. Coordinate installation of exterior envelope materials and products for which mockups are required in individual Specification Sections, along with supporting materials. Comply with requirements in "Mockups" Paragraph.

1.11 QUALITY CONTROL

- A. Owner Responsibilities: Where quality-control services are indicated as Owner's responsibility, Owner will engage a qualified testing agency to perform these services.
 - 1. Owner will furnish Contractor with names, addresses, and telephone numbers of testing agencies engaged and a description of types of testing and inspection they are engaged to perform.
 - 2. Payment for these services will be made from testing and inspection allowances, as authorized by Change Orders.
 - 3. Costs for retesting and reinspecting construction that replaces or is necessitated by work that failed to comply with the Contract Documents will be charged to Contractor, and the Contract Sum will be adjusted by Change Order.
- B. Contractor Responsibilities: Tests and inspections not explicitly assigned to Owner are Contractor's responsibility. Perform additional quality-control activities, whether specified or not, to verify and document that the Work complies with requirements.
 - 1. Unless otherwise indicated, provide quality-control services specified and those required by authorities having jurisdiction. Perform quality-control services required of Contractor by authorities having jurisdiction, whether specified or not.
 - 2. Engage a qualified testing agency to perform quality-control services.
 - a. Contractor shall not employ same entity engaged by Owner, unless agreed to in writing by Owner.
 - 3. Notify testing agencies at least 24 hours in advance of time when Work that requires testing or inspection will be performed.
 - 4. Where quality-control services are indicated as Contractor's responsibility, submit a certified written report, in duplicate, of each quality-control service.
 - 5. Testing and inspection requested by Contractor and not required by the Contract Documents are Contractor's responsibility.
 - 6. Submit additional copies of each written report directly to authorities having jurisdiction, when they so direct.
- C. Retesting/Reinspecting: Regardless of whether original tests or inspections were Contractor's responsibility, provide quality-control services, including retesting and reinspecting, for construction that replaced Work that failed to comply with the Contract Documents.

- D. Testing Agency Responsibilities: Cooperate with Architect[, Commissioning Authority and Contractor in performance of duties. Provide qualified personnel to perform required tests and inspections.
 - 1. Notify Architect, Commissioning Authority, and Contractor promptly of irregularities or deficiencies observed in the Work during performance of its services.
 - 2. Determine the locations from which test samples will be taken and in which in-situ tests are conducted.
 - 3. Conduct and interpret tests and inspections and state in each report whether tested and inspected work complies with or deviates from requirements.
 - 4. Submit a certified written report, in duplicate, of each test, inspection, and similar quality-control service through Contractor.
 - 5. Do not release, revoke, alter, or increase the Contract Document requirements or approve or accept any portion of the Work.
 - 6. Do not perform duties of Contractor.
- E. Manufacturer's Field Services: Where indicated, engage a factory-authorized service representative to inspect field-assembled components and equipment installation, including service connections. Report results in writing as specified in Section 013300 "Submittal Procedures."
- F. Manufacturer's Technical Services: Where indicated, engage a manufacturer's technical representative to observe and inspect the Work. Manufacturer's technical representative's services include participation in preinstallation conferences, examination of substrates and conditions, verification of materials, observation of Installer activities, inspection of completed portions of the Work, and submittal of written reports.
- G. Associated Contractor Services: Cooperate with agencies and representatives performing required tests, inspections, and similar quality-control services, and provide reasonable auxiliary services as requested. Notify agency sufficiently in advance of operations to permit assignment of personnel. Provide the following:
 - 1. Access to the Work.
 - 2. Incidental labor and facilities necessary to facilitate tests and inspections.
 - 3. Adequate quantities of representative samples of materials that require testing and inspection. Assist agency in obtaining samples.
 - 4. Facilities for storage and field curing of test samples.
 - 5. Delivery of samples to testing agencies.
 - 6. Preliminary design mix proposed for use for material mixes that require control by testing agency.
 - 7. Security and protection for samples and for testing and inspection equipment at Project site.
- H. Coordination: Coordinate sequence of activities to accommodate required quality-assurance and quality-control services with a minimum of delay and to avoid necessity of removing and replacing construction to accommodate testing and inspection.
 - 1. Schedule times for tests, inspections, obtaining samples, and similar activities.
- I. Schedule of Tests and Inspections: Prepare a schedule of tests, inspections, and similar quality-control services required by the Contract Documents as a component of Contractor's quality-

control plan. Coordinate and submit concurrently with Contractor's Construction Schedule. Update as the Work progresses.

1. Distribution: Distribute schedule to Owner, Architect, Commissioning Authority, testing agencies, and each party involved in performance of portions of the Work where tests and inspections are required.

1.12 SPECIAL INSPECTIONS & MATERIAL TESTING

- A. Special Tests and Inspections: Owner will engage a qualified special inspector or testing agency to conduct special tests and inspections required by authorities having jurisdiction as the responsibility of Owner, as indicated in the Statement of Special Inspections attached to this Section, and as follows:
 - 1. Verifying that manufacturer maintains detailed fabrication and quality-control procedures and reviewing the completeness and adequacy of those procedures to perform the Work.
 - 2. Notifying Architect, Commissioning Authority, and Contractor promptly of irregularities and deficiencies observed in the Work during performance of its services.
 - 3. Submitting a certified written report of each test, inspection, and similar quality-control service to Architect and Commissioning Authority, through Construction Manager, with copy to Contractor and to authorities having jurisdiction.
 - 4. Submitting a final report of special tests and inspections at Substantial Completion, which includes a list of unresolved deficiencies.
 - 5. Interpreting tests and inspections and stating in each report whether tested and inspected work complies with or deviates from the Contract Documents.
 - 6. Retesting and reinspecting corrected work.
- B. Special Tests and Inspections: Conducted by a qualified testing agency or special inspector as required by authorities having jurisdiction, as indicated in individual Specification Sections and in the Statement of Special Inspections, and as follows:
 - 1. Verifying that manufacturer maintains detailed fabrication and quality-control procedures and reviewing the completeness and adequacy of those procedures to perform the Work.
 - 2. Notifying Architect, Commissioning Authority, and Contractor promptly of irregularities and deficiencies observed in the Work during performance of its services.
 - 3. Submitting a certified written report of each test, inspection, and similar quality-control service to Architect and Commissioning Authority, through Construction Manager, with copy to Contractor and to authorities having jurisdiction.
 - 4. Submitting a final report of special tests and inspections at Substantial Completion, which includes a list of unresolved deficiencies.
 - 5. Interpreting tests and inspections and stating in each report whether tested and inspected work complies with or deviates from the Contract Documents.
 - 6. Retesting and reinspecting corrected work.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION

3.1 ACCEPTABLE TESTING AGENCIES

A. Procurement of Testing Agency to be determined by Owner.

3.2 TEST AND INSPECTION LOG

- A. Test and Inspection Log: Prepare a record of tests and inspections. Include the following:
 - 1. Date test or inspection was conducted.
 - 2. Description of the Work tested or inspected.
 - 3. Date test or inspection results were transmitted to Architect.
 - 4. Identification of testing agency or special inspector conducting test or inspection.
- B. Maintain log at Project site. Post changes and revisions as they occur. Provide access to test and inspection log for Architect's, Commissioning Authority's reference during normal working hours.
 - 1. Submit log at Project closeout as part of Project Record Documents.

3.3 REPAIR AND PROTECTION

- A. General: On completion of testing, inspection, sample taking, and similar services, repair damaged construction and restore substrates and finishes.
 - 1. Provide materials and comply with installation requirements specified in other Specification Sections or matching existing substrates and finishes. Restore patched areas and extend restoration into adjoining areas with durable seams that are as invisible as possible. Comply with the Contract Document requirements for cutting and patching in Section 017300 "Execution."
- B. Protect construction exposed by or for quality-control service activities.
- C. Repair and protection are Contractor's responsibility, regardless of the assignment of responsibility for quality-control services.

END OF SECTION 014000

SECTION 014200 - REFERENCES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 DEFINITIONS

- A. General: Basic Contract definitions are included in the Conditions of the Contract.
- B. "Approved": When used to convey Architect's action on Contractor's submittals, applications, and requests, "approved" is limited to Architect's duties and responsibilities as stated in the Conditions of the Contract.
- C. "Directed": A command or instruction by Architect. Other terms including "requested," "authorized," "selected," "required," and "permitted" have the same meaning as "directed."
- D. "Indicated": Requirements expressed by graphic representations or in written form on Drawings, in Specifications, and in other Contract Documents. Other terms including "shown," "noted," "scheduled," and "specified" have the same meaning as "indicated."
- E. "Regulations": Laws, ordinances, statutes, and lawful orders issued by authorities having jurisdiction, and rules, conventions, and agreements within the construction industry that control performance of the Work.
- F. "Furnish": Supply and deliver to Project site, ready for unloading, unpacking, assembly, installation, and similar operations.
- G. "Install": Unload, temporarily store, unpack, assemble, erect, place, anchor, apply, work to dimension, finish, cure, protect, clean, and similar operations at Project site.
- H. "Provide": Furnish and install, complete and ready for the intended use.
- I. "Project Site": Space available for performing construction activities. The extent of Project site is shown on Drawings and may or may not be identical with the description of the land on which Project is to be built.

1.3 INDUSTRY STANDARDS

A. Applicability of Standards: Unless the Contract Documents include more stringent requirements, applicable construction industry standards have the same force and effect as if bound or copied directly into the Contract Documents to the extent referenced. Such standards are made a part of the Contract Documents by reference.

- B. Publication Dates: Comply with standards in effect as of date of the Contract Documents unless otherwise indicated.
- C. Copies of Standards: Each entity engaged in construction on Project should be familiar with industry standards applicable to its construction activity. Copies of applicable standards are not bound with the Contract Documents.
 - 1. Where copies of standards are needed to perform a required construction activity, obtain copies directly from publication source.

1.4 ABBREVIATIONS AND ACRONYMS

- A. Industry Organizations: Where abbreviations and acronyms are used in Specifications or other Contract Documents, they shall mean the recognized name of the entities indicated in Gale's "Encyclopedia of Associations: National Organizations of the U.S." or in Columbia Books' "National Trade & Professional Associations of the United States."
- B. Industry Organizations: Where abbreviations and acronyms are used in Specifications or other Contract Documents, they shall mean the recognized name of the entities in the following list.
 - 1. AABC Associated Air Balance Council; <u>www.aabc.com</u>.
 - 2. AAMA American Architectural Manufacturers Association; www.aamanet.org.
 - 3. AAPFCO Association of American Plant Food Control Officials; www.aapfco.org.
 - 4. AASHTO American Association of State Highway and Transportation Officials; www.transportation.org.
 - 5. AATCC American Association of Textile Chemists and Colorists; www.aatcc.org.
 - 6. ABMA American Bearing Manufacturers Association; www.americanbearings.org.
 - 7. ABMA American Boiler Manufacturers Association; www.abma.com.
 - 8. ACI American Concrete Institute; (Formerly: ACI International); www.abma.com.
 - 9. ACPA American Concrete Pipe Association; www.concrete-pipe.org.
 - 10. AEIC Association of Edison Illuminating Companies, Inc. (The); www.aeic.org.
 - 11. AF&PA American Forest & Paper Association; www.afandpa.org.
 - 12. AGA American Gas Association; www.aga.org.
 - 13. AHAM Association of Home Appliance Manufacturers; www.aham.org.
 - 14. AHRI Air-Conditioning, Heating, and Refrigeration Institute (The); www.ahrinet.org.
 - 15. AI Asphalt Institute; www.asphaltinstitute.org.
 - 16. AIA American Institute of Architects (The); www.aia.org.
 - 17. AISC American Institute of Steel Construction; www.aisc.org.
 - 18. AISI American Iron and Steel Institute; http://www.steel.org.
 - 19. AITC American Institute of Timber Construction; <u>www.aitc-glulam.org</u>.
 - 20. AMCA Air Movement and Control Association International, Inc.; www.amca.org.
 - 21. ANSI American National Standards Institute; www.ansi.org.
 - 22. AOSA Association of Official Seed Analysts, Inc.; www.aosaseed.com.
 - 23. APA APA The Engineered Wood Association; www.apawood.org.
 - 24. APA Architectural Precast Association; www.archprecast.org.
 - 25. API American Petroleum Institute; www.api.org.
 - 26. ARI Air-Conditioning & Refrigeration Institute; (See AHRI).
 - 27. ARI American Refrigeration Institute; (See AHRI).
 - 28. ARMA Asphalt Roofing Manufacturers Association; www.asphaltroofing.org.

29. ASCE - American Society of Civil Engineers; <u>www.asce.org</u>.

- 30. ASCE/SEI American Society of Civil Engineers/Structural Engineering Institute; (See ASCE).
- 31. ASHRAE American Society of Heating, Refrigerating and Air-Conditioning Engineers; www.ashrae.org.
- 32. ASME ASME International; (American Society of Mechanical Engineers); www.asme.org.
- 33. ASSE American Society of Safety Engineers (The); www.asse.org.
- 34. ASSE American Society of Sanitary Engineering; www.asse-plumbing.org.
- 35. ASTM ASTM International; www.astm.org.
- 36. ATIS Alliance for Telecommunications Industry Solutions; www.atis.org.
- 37. AWEA American Wind Energy Association; www.awea.org.
- 38. AWI Architectural Woodwork Institute; www.awinet.org.
- 39. AWMAC Architectural Woodwork Manufacturers Association of Canada; www.awmac.com.
- 40. AWPA American Wood Protection Association; <u>www.awpa.com</u>.
- 41. AWS American Welding Society; www.aws.org.
- 42. AWWA American Water Works Association; www.awwa.org.
- 43. BHMA Builders Hardware Manufacturers Association; www.buildershardware.com.
- 44. BIA Brick Industry Association (The); www.gobrick.com.
- 45. BICSI BICSI, Inc.; www.bicsi.org.
- 46. BIFMA BIFMA International; (Business and Institutional Furniture Manufacturer's Association); www.bifma.org.
- 47. BISSC Baking Industry Sanitation Standards Committee; <u>www.bissc.org</u>.
- 48. BWF Badminton World Federation; (Formerly: International Badminton Federation); www.bissc.org.
- 49. CDA Copper Development Association; <u>www.copper.org</u>.
- 50. CEA Canadian Electricity Association; www.electricity.ca.
- 51. CEA Consumer Electronics Association; www.ce.org.
- 52. CFFA Chemical Fabrics and Film Association, Inc.; www.chemicalfabricsandfilm.com.
- 53. CFSEI Cold-Formed Steel Engineers Institute; www.cfsei.org.
- 54. CGA Compressed Gas Association; www.cganet.com.
- 55. CIMA Cellulose Insulation Manufacturers Association; www.cellulose.org.
- 56. CISCA Ceilings & Interior Systems Construction Association; www.cisca.org.
- 57. CISPI Cast Iron Soil Pipe Institute; www.cispi.org.
- 58. CLFMI Chain Link Fence Manufacturers Institute; www.chainlinkinfo.org.
- 59. CPA Composite Panel Association; <u>www.pbmdf.com</u>.
- 60. CRI Carpet and Rug Institute (The); www.carpet-rug.org.
- 61. CRRC Cool Roof Rating Council; www.coolroofs.org.
- 62. CRSI Concrete Reinforcing Steel Institute; www.crsi.org.
- 63. CSA Canadian Standards Association; www.csa.ca.
- 64. CSA CSA International; (Formerly: IAS International Approval Services); <u>www.csa-international.org</u>.
- 65. CSI Construction Specifications Institute (The); <u>www.csinet.org.</u>
- 66. CSSB Cedar Shake & Shingle Bureau; www.cedarbureau.org.
- 67. CTI Cooling Technology Institute; (Formerly: Cooling Tower Institute); www.cti.org.
- 68. CWC Composite Wood Council; (See CPA).
- 69. DASMA Door and Access Systems Manufacturers Association; www.dasma.com.
- 70. DHI Door and Hardware Institute; www.dhi.org.
- 71. ECA Electronic Components Association; (See ECIA).
- 72. ECAMA Electronic Components Assemblies & Materials Association; (See ECIA).
- 73. ECIA Electronic Components Industry Association; www.eciaonline.org.

- 74. EIA Electronic Industries Alliance; (See TIA).
- 75. EIMA EIFS Industry Members Association; www.eima.com.
- 76. EJMA Expansion Joint Manufacturers Association, Inc.; www.ejma.org.
- 77. ESD ESD Association; (Electrostatic Discharge Association); www.esda.org.
- 78. ESTA Entertainment Services and Technology Association; (See PLASA).
- 79. EVO Efficiency Valuation Organization; <u>www.evo-world.org</u>.
- 80. FCI Fluid Controls Institute; www.fluidcontrolsinstitute.org.
- 81. FIBA Federation Internationale de Basketball; (The International Basketball Federation); www.fiba.com.
- 82. FIVB Federation Internationale de Volleyball; (The International Volleyball Federation); www.fivb.org.
- 83. FM Approvals FM Approvals LLC; www.fmglobal.com.
- 84. FM Global FM Global; (Formerly: FMG FM Global); www.fmglobal.com.
- 85. FRSA Florida Roofing, Sheet Metal & Air Conditioning Contractors Association, Inc.; www.floridaroof.com.
- 86. FSA Fluid Sealing Association; <u>www.fluidsealing.com</u>.
- 87. FSC Forest Stewardship Council U.S.; <u>www.fscus.org</u>.
- 88. GA Gypsum Association; www.gypsum.org.
- 89. GANA Glass Association of North America; www.glasswebsite.com.
- 90. GS Green Seal; www.greenseal.org.
- 91. HI Hydraulic Institute; www.pumps.org.
- 92. HI/GAMA Hydronics Institute/Gas Appliance Manufacturers Association; (See AHRI).
- 93. HMMA Hollow Metal Manufacturers Association; (See NAAMM).
- 94. HPVA Hardwood Plywood & Veneer Association; www.hpva.org.
- 95. HPW H. P. White Laboratory, Inc.; www.hpwhite.com.
- 96. IAPSC International Association of Professional Security Consultants; www.iapsc.org.
- 97. IAS International Accreditation Service; www.iasonline.org.
- 98. IAS International Approval Services; (See CSA).
- 99. ICBO International Conference of Building Officials; (See ICC).
- 100. ICC International Code Council; www.iccsafe.org.
- 101. ICEA Insulated Cable Engineers Association, Inc.; www.icea.net.
- 102. ICPA International Cast Polymer Alliance; www.icpa-hq.org.
- 103. ICRI International Concrete Repair Institute, Inc.; www.icri.org.
- 104. IEC International Electrotechnical Commission; www.iec.ch.
- 105. IEEE Institute of Electrical and Electronics Engineers, Inc. (The); www.ieee.org.
- 106. IES Illuminating Engineering Society; (Formerly: Illuminating Engineering Society of North America); www.ies.org.
- 107. IESNA Illuminating Engineering Society of North America; (See IES).
- 108. IEST Institute of Environmental Sciences and Technology; www.iest.org.
- 109. IGMA Insulating Glass Manufacturers Alliance; www.igmaonline.org.
- 110. IGSHPA International Ground Source Heat Pump Association; www.igshpa.okstate.edu.
- 111. ILI Indiana Limestone Institute of America, Inc.; www.iliai.com.
- 112. Intertek Intertek Group; (Formerly: ETL SEMCO; Intertek Testing Service NA); www.intertek.com.
- 113. ISA International Society of Automation (The); (Formerly: Instrumentation, Systems, and Automation Society); www.isa.org.
- 114. ISAS Instrumentation, Systems, and Automation Society (The); (See ISA).
- 115. ISFA International Surface Fabricators Association; (Formerly: International Solid Surface Fabricators Association); www.isfanow.org.
- 116. ISO International Organization for Standardization; www.iso.org.

- 117. ISSFA International Solid Surface Fabricators Association; (See ISFA).
- 118. ITU International Telecommunication Union; www.itu.int/home.
- 119. KCMA Kitchen Cabinet Manufacturers Association; www.kcma.org.
- 120. LMA Laminating Materials Association; (See CPA).
- 121. LPI Lightning Protection Institute; www.lightning.org.
- 122. MBMA Metal Building Manufacturers Association; www.mbma.com.
- 123. MCA Metal Construction Association; <u>www.metalconstruction.org</u>.
- 124. MFMA Maple Flooring Manufacturers Association, Inc.; www.maplefloor.org.
- 125. MFMA Metal Framing Manufacturers Association, Inc.; www.metalframingmfg.org.
- 126. MHIA Material Handling Industry of America; www.mhia.org.
- 127. MIA Marble Institute of America; www.mhia.org.
- 128. MMPA Moulding & Millwork Producers Association; www.wmmpa.com.
- 129. MPI Master Painters Institute; www.paintinfo.com.
- 130. MSS Manufacturers Standardization Society of The Valve and Fittings Industry Inc.; www.mss-hq.org.
- 131. NAAMM National Association of Architectural Metal Manufacturers; www.naamm.org.
- 132. NACE NACE International; (National Association of Corrosion Engineers International); www.nace.org.
- 133. NADCA National Air Duct Cleaners Association; www.nadca.com.
- 134. NAIMA North American Insulation Manufacturers Association; www.naima.org.
- 135. NBGQA National Building Granite Quarries Association, Inc.; www.nbgqa.com.
- 136. NBI New Buildings Institute; www.newbuildings.org.
- 137. NCAA National Collegiate Athletic Association (The); www.ncaa.org.
- 138. NCMA National Concrete Masonry Association; www.ncma.org.
- 139. NEBB National Environmental Balancing Bureau; www.nebb.org.
- 140. NECA National Electrical Contractors Association; www.necanet.org.
- 141. NeLMA Northeastern Lumber Manufacturers Association; www.nelma.org.
- 142. NEMA National Electrical Manufacturers Association; www.nema.org.
- 143. NETA InterNational Electrical Testing Association; www.netaworld.org.
- 144. NFHS National Federation of State High School Associations; www.nfhs.org.
- 145. NFPA National Fire Protection Association; www.nfpa.org.
- 146. NFPA NFPA International; (See NFPA).
- 147. NFRC National Fenestration Rating Council; www.nfrc.org.
- 148. NHLA National Hardwood Lumber Association; www.nhla.com.
- 149. NLGA National Lumber Grades Authority; www.nlga.org.
- 150. NOFMA National Oak Flooring Manufacturers Association; (See NWFA).
- 151. NOMMA National Ornamental & Miscellaneous Metals Association; www.nomma.org.
- 152. NRCA National Roofing Contractors Association; www.nrca.net.
- 153. NRMCA National Ready Mixed Concrete Association; www.nrmca.org.
- 154. NSF NSF International; www.nsf.org.
- 155. NSPE National Society of Professional Engineers; www.nspe.org.
- 156. NSSGA National Stone, Sand & Gravel Association; www.nssga.org.
- 157. NTMA National Terrazzo & Mosaic Association, Inc. (The); www.ntma.com.
- 158. NWFA National Wood Flooring Association; www.nwfa.org.
- 159. PCI Precast/Prestressed Concrete Institute; www.pci.org.
- 160. PDI Plumbing & Drainage Institute; www.pdionline.org.
- 161. PLASA PLASA; (Formerly: ESTA Entertainment Services and Technology Association); www.plasa.org.
- 162. RCSC Research Council on Structural Connections; www.boltcouncil.org.
- 163. RFCI Resilient Floor Covering Institute; www.rfci.com.

- 164. RIS Redwood Inspection Service; <u>www.redwoodinspection.com</u>.
- 165. SAE SAE International; www.sae.org.
- 166. SCTE Society of Cable Telecommunications Engineers; www.scte.org.
- 167. SDI Steel Deck Institute; www.sdi.org.
- 168. SDI Steel Door Institute; www.steeldoor.org.
- 169. SEFA Scientific Equipment and Furniture Association (The); www.sefalabs.com.
- 170. SEI/ASCE Structural Engineering Institute/American Society of Civil Engineers; (See ASCE).
- 171. SIA Security Industry Association; www.siaonline.org.
- 172. SJI Steel Joist Institute; www.steeljoist.org.
- 173. SMA Screen Manufacturers Association; www.smainfo.org.
- 174. SMACNA Sheet Metal and Air Conditioning Contractors' National Association; www.smacna.org.
- 175. SMPTE Society of Motion Picture and Television Engineers; www.smpte.org.
- 176. SPFA Spray Polyurethane Foam Alliance; www.sprayfoam.org.
- 177. SPIB Southern Pine Inspection Bureau; www.spib.org.
- 178. SPRI Single Ply Roofing Industry; www.spri.org.
- 179. SRCC Solar Rating & Certification Corporation; www.solar-rating.org.
- 180. SSINA Specialty Steel Industry of North America; www.ssina.com.
- 181. SSPC SSPC: The Society for Protective Coatings; www.sspc.org.
- 182. STI Steel Tank Institute; www.steeltank.com.
- 183. SWI Steel Window Institute; www.steelwindows.com.
- 184. SWPA Submersible Wastewater Pump Association; www.swpa.org.
- 185. TCA Tilt-Up Concrete Association; www.tilt-up.org.
- 186. TCNA Tile Council of North America, Inc.; www.tileusa.com.
- 187. TEMA Tubular Exchanger Manufacturers Association, Inc.; www.tema.org.
- 188. TIA Telecommunications Industry Association (The); (Formerly: TIA/EIA Telecommunications Industry Association/Electronic Industries Alliance); www.tiaonline.org.
- 189. TIA/EIA Telecommunications Industry Association/Electronic Industries Alliance; (See TIA).
- 190. TMS The Masonry Society; www.masonrysociety.org.
- 191. TPI Truss Plate Institute; www.tpinst.org.
- 192. TPI Turfgrass Producers International; www.turfgrasssod.org.
- 193. TRI Tile Roofing Institute; www.tileroofing.org.
- 194. UL Underwriters Laboratories Inc.; www.ul.com.
- 195. UNI Uni-Bell PVC Pipe Association; www.uni-bell.org.
- 196. USAV USA Volleyball; www.usavolleyball.org.
- 197. USGBC U.S. Green Building Council; www.usgbc.org.
- 198. USITT United States Institute for Theatre Technology, Inc.; www.usitt.org.
- 199. WASTEC Waste Equipment Technology Association; www.wastec.org.
- 200. WCLIB West Coast Lumber Inspection Bureau; www.wclib.org.
- 201. WCMA Window Covering Manufacturers Association; www.wcmanet.org.
- 202. WDMA Window & Door Manufacturers Association; www.wdma.com.
- 203. WI Woodwork Institute; www.wicnet.org.
- 204. WSRCA Western States Roofing Contractors Association; www.wsrca.com.
- 205. WWPA Western Wood Products Association; www.wwpa.org.
- C. Code Agencies: Where abbreviations and acronyms are used in Specifications or other Contract Documents, they shall mean the recognized name of the entities in the following list.

- 1. DIN Deutsches Institut für Normung e.V.; www.din.de.
- 2. IAPMO International Association of Plumbing and Mechanical Officials; www.iapmo.org.
- 3. ICC International Code Council; www.iccsafe.org.
- 4. ICC-ES ICC Evaluation Service, LLC; www.icc-es.org.
- D. Federal Government Agencies: Where abbreviations and acronyms are used in Specifications or other Contract Documents, they shall mean the recognized name of the entities in the following list.
 - 1. COE Army Corps of Engineers; <u>www.usace.army.mil</u>.
 - 2. CPSC Consumer Product Safety Commission; www.cpsc.gov.
 - 3. DOC Department of Commerce; National Institute of Standards and Technology; www.nist.gov.
 - 4. DOD Department of Defense; www.quicksearch.dla.mil.
 - 5. DOE Department of Energy; <u>www.energy.gov</u>.
 - 6. EPA Environmental Protection Agency; <u>www.epa.gov</u>.
 - 7. FAA Federal Aviation Administration; www.faa.gov.
 - 8. FG Federal Government Publications; www.gpo.gov/fdsys.
 - 9. GSA General Services Administration; www.gsa.gov.
 - 10. HUD Department of Housing and Urban Development; www.hud.gov.
 - 11. LBL Lawrence Berkeley National Laboratory; Environmental Energy Technologies Division; www.eetd.lbl.gov.
 - 12. OSHA Occupational Safety & Health Administration; www.osha.gov.
 - 13. SD Department of State; www.state.gov.
 - 14. TRB Transportation Research Board; National Cooperative Highway Research Program; The National Academies; www.trb.org.
 - 15. USDA Department of Agriculture; Agriculture Research Service; U.S. Salinity Laboratory; www.ars.usda.gov.
 - 16. USDA Department of Agriculture; Rural Utilities Service; www.usda.gov.
 - 17. USDOJ Department of Justice; Office of Justice Programs; National Institute of Justice; www.ojp.usdoj.gov.
 - 18. USP U.S. Pharmacopeial Convention; www.usp.org.
 - 19. USPS United States Postal Service; www.usps.com.
- E. Standards and Regulations: Where abbreviations and acronyms are used in Specifications or other Contract Documents, they shall mean the recognized name of the standards and regulations in the following list.
 - 1. CFR Code of Federal Regulations; Available from Government Printing Office; www.gpo.gov/fdsys.
 - 2. DOD Department of Defense; Military Specifications and Standards; Available from DLA Document Services; www.quicksearch.dla.mil.
 - 3. DSCC Defense Supply Center Columbus; (See FS).
 - 4. FED-STD Federal Standard; (See FS).
 - 5. FS Federal Specification; Available from DLA Document Services; www.quicksearch.dla.mil.
 - a. Available from Defense Standardization Program; www.dsp.dla.mil.
 - b. Available from General Services Administration; www.gsa.gov.

- c. Available from National Institute of Building Sciences/Whole Building Design Guide; www.wbdg.org/ccb.
- 6. MILSPEC Military Specification and Standards; (See DOD).
- 7. USAB United States Access Board; <u>www.access-board.gov</u>.
- 8. USATBCB U.S. Architectural & Transportation Barriers Compliance Board; (See USAB).
- F. State Government Agencies: Where abbreviations and acronyms are used in Specifications or other Contract Documents, they shall mean the recognized name of the entities in the following list.
 - 1. CBHF; State of California; Department of Consumer Affairs; Bureau of Electronic and Appliance Repair, Home Furnishings and Thermal Insulation; www.bearhfti.ca.gov.
 - 2. CCR; California Code of Regulations; Office of Administrative Law; California Title 24 Energy Code; www.calregs.com.
 - 3. CDHS; California Department of Health Services; (See CDPH).
 - 4. CDPH; California Department of Public Health; Indoor Air Quality Program; www.caliaq.org.
 - 5. CPUC; California Public Utilities Commission; www.cpuc.ca.gov.
 - 6. SCAQMD; South Coast Air Quality Management District; www.aqmd.gov.
 - 7. TFS; Texas A&M Forest Service; Sustainable Forestry and Economic Development; www.txforestservice.tamu.edu.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 014200

SECTION 014525 - STRUCTURAL TESTING/INSPECTION AGENCY SERVICES

PART 1 - GENERAL

1.1 SECTION INCLUDES

- A. Section summarizes the responsibility of the Contractor and the Structural Testing/Inspection Agency in the performance of the testing/inspection specified in the Contract Documents.
- B. Neither the observation of the Design Professional in the administration of the contract, nor tests/inspections by the Testing/Inspection Agency, nor approvals by persons other than the Design Professional shall relieve the Contractor from his obligation to perform the work in accordance with the Contract Documents.

1.2 RELATED SECTIONS

- A. Section 013330 Structural Submittals.
- B. Section 014000 Quality Control Services.

1.3 REFERENCES

- A. ASTM D3740 Practice for Evaluation of Agencies Engaged in Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction.
- B. ASTM E329 Recommended Practice for Inspection and Testing Agencies for Concrete, Steel, and Bituminous Materials as Used in Construction.
- C. American Council of Independent Laboratories Recommended Requirements for Independent Laboratories Qualifications.

1.4 SELECTION AND PAYMENT

- A. Owner will employ and pay for the structural testing/inspection services that are required by the Contract Documents.
- B. Contractor shall pay for any additional structural testing/inspection required for work or materials not complying with Contract Documents due to negligence or nonconformance.
- C. Contractor shall pay for any additional structural testing/inspection required for his convenience.
- D. Qualifications: Minimum Special Inspector qualifications shall be per Table 1704.1 of 2010 Georgia State Amendments to the International Building Code (2012 Edition).

1.6 STRUCTURAL TESTING/INSPECTION REQUIREMENT SUMMARY

A. Specific structural testing/inspection requirements are given in the following specification sections:

Specification 03 3100 - Concrete Formwork Inspection

Specification 03 2000 - Concrete Reinforcement Inspection

Specification 03 3000 - Concrete Testing/Inspection

Specification 03 6200 - Non-Shrink Grout Inspection

Specification 04 2200 - Masonry Testing/Inspection

Specification 05 1000 - Structural Steel Inspection

Specification 05 2000- Steel Joist Inspection

Specification 05 3000 - Metal Deck Inspection

Specification 31 2301 - Excavating, Backfilling, and Compacting For Structures

1.7 STATEMENT OF SPECIAL INSPECTIONS

A. Provide testing/inspection required to meet the provisions of the Schedule of Special Inspection Services below.

PART 2 - PRODUCTS

Not Used.

PART 3 - EXECUTION

3.1 STRUCTURAL PRECONSTRUCTION MEETING

A. A structural preconstruction meeting may be conducted at the construction site by the Design Professional to discuss quality issues. The parties involved may be the Design Professional, Contractor, Structural Testing/Inspection Agency, appropriate subcontractors, suppliers, and detailers.

3.2 STRUCTURAL TESTING/INSPECTION AGENCY'S RESPONSIBILITIES

- A. Cooperate with the Contractor and provide timely service.
- B. Upon arriving at the construction site, sign in and notify the Contractor of presence.
- C. Select the representative samples that are to be tested/inspected.
- D. Perform tests/ inspections as outlined in Contract Documents, the applicable codes, and as directed by the Design Professional.
- E. Report work and materials not complying with Contract Documents immediately to the Contractor and Design Professional.

- F. Leave copies of field notes with the Contractor prior to leaving the construction site. Field notes shall include the message given to the Contractor, date, time of message, name of Contractor's representative informed, type and location of work or materials tested/inspected, whether the work or materials complies with Contract Documents and name of the Structural Testing/Inspection Agency's representative.
- G. Report and distribute results of tests/inspections promptly in the form of written reports as directed by the Design Professional.
- H. Structural Testing/Inspection Agency shall not alter requirements of Contract Documents, approve or reject any portion of the work, or perform duties of the Contractor.

3.3 CONTRACTOR'S RESPONSIBILITIES

- A. Provide copy of Contract Documents to the Structural Testing/Inspection Agency.
- B. Arrange the preconstruction meeting to discuss quality issues.
- C. Notify the Structural Testing/Inspection Agency sufficiently in advance of operations to allow assignment of personnel and scheduling of tests.
- D. Cooperate with Structural Testing/Inspection Agency and provide access to work.
- E. Provide samples of materials to be tested in required quantities.
- F. Furnish copies of mill test reports when requested.
- G. Provide storage space for Structural Testing/Inspection Agency's exclusive use, such as for storing and curing concrete testing samples.
- H. Provide labor to assist the Structural Testing/Inspection Agency in performing tests/inspections.

3.4 OPTIONS

A. If the Structural Testing/Inspection Agency is located at such a distance from the project that travel expenses will be a consideration, or if the amount of sampling performed is minor, and by mutual agreement of the Design Professional and Contractor, the Contractor may be requested to take samples and forward them to the Structural Testing/Inspection Agency for testing/inspection.

END OF SECTION 014525

	SCHEDULE OF SPECIAL INSPECTION SERVICES						
PROJECT	Tobie Grant Recreation Center						
MATERIAL / ACTIVITY	OFDVIOE	V/N	APPLICABLE EXTENT	TO THIS PI	ROJECT DATE COMPLETED		
MATERIAL / ACTIVITY 1704.2.5 Inspection of	SERVICE	Y/N	EXIENI	AGENT	DATE COMPLETED		
Fabricators .							
Verify fabrication/quality control procedures	In-plant review (3)	Υ	Periodic	TA			
1705.1.1 Special Cases (work unusual in nature, including but not limited to alternative materials and systems, unusual design applications, materials and systems with special manufacturer's requirements)	Submittal review, shop (3) and/or field inspection	N					
1705.2 Steel Construction							
Fabricator and erector documents (Verify reports and certificates as listed in AISC 360, chapter N, paragraph 3.2 for compliance with construction documents)	Submittal Review	Y	Each submittal	TA			
Material verification of structural steel	Shop (3) and field inspection	Υ	Periodic	TA			
3. Embedments (Verify diameter, grade, type, length, embedment. See 1705.3 for anchors)	Field inspection	Υ	Periodic	TA			
Verify member locations, braces, stiffeners, and application of joint details at each connection comply with construction documents	Field inspection	Y	Periodic	TA			
Structural steel welding: a. Inspection tasks Prior to Welding (Observe, or perform for each welded joint or member, the QA tasks listed in AISC 360, Table N5.4-1)	Shop (3) and field inspection	Υ	Observe or Perform as noted (4)	TA			
b. Inspection tasks During Welding (Observe, or perform for each welded joint or member, the QA tasks listed in AISC 360, Table N5.4-2)	Shop (3) and field inspection	Υ	Observe (4)	TA			
c. Inspection tasks After Welding (Observe, or perform for each welded joint or member, the QA tasks listed in AISC 360, Table N5.4-3)	Shop (3) and field inspection	Y	Observe or Perform as noted (4)	TA			
d. Nondestructive testing (NDT) of welded joints: see Commentary							
Complete penetration groove welds 5/16" or greater in risk category III or IV	Shop (3) or field ultrasonic testing - 100%	Y	Periodic	TA			
Complete penetration groove welds 5/16" or greater in risk category II	Shop (3) or field ultrasonic testing - 10% of welds minimum	N	Periodic				
3) Thermally cut surfaces of access holes when material t > 2"	Shop (3) or field magnetic Partical or Penetrant testing	N	Periodic				
4) Welded joints subject to fatigue when required by AISC 360, Appendix 3, Table A-3.1	Shop (3) or field radiographic or Ultrasonic testing	N	Periodic				
5) Fabricator's NDT reports when fabricator performs NDT	Verify reports	Υ	Each submittal (5)	TA			
Structural steel bolting: a. Inspection tasks Prior to Bolting	Shop (3) and field inspection						
(Observe, or perform tasks for each bolted connection, in accordance with QA tasks listed in AISC 360, Table N5.6-1)		Υ	Observe or Perform as noted (4)	TA			

	SCHEDULE OF SPECIAL INSPECTION SERVICES					
PROJECT	Tobie Grant Recreation Center					
		ROJECT				
MATERIAL / ACTIVITY	SERVICE	Y/N	EXTENT	AGENT*	DATE COMPLETED	
b.Inspection tasks During Bolting (Observe the QA tasks listed in AISC 360, Table N5.6-2)		Υ	Observe (4)	TA		
Pre-tensioned and slip-critical joints		N				
 a) Turn-of-nut with matching markings 			Periodic			
b) Direct tension indicator			Periodic			
c) Twist-off type tension control bolt			Periodic			
d) Turn-of-nut without matching markings			Continuous			
e) Calibrated wrench			Continuous			
2) Snug-tight joints		Υ	Periodic	TA		
c. Inspection tasks After Bolting (Perform tasks for each bolted connection in accordance with QA tasks listed in AISC 360, Table N5.6-3)		Υ	Perform (4)	TA		
7. Inspection of steel elements of composite construction prior to concrete placement in accordance with QA tasks listed in AISC 360, Table N6.1	Shop (3) and field inspection and testing	N	Observe or Perform as noted (4)			
1705.2.2 Steel Construction Other Than Structural Steel						
Material verification of cold-formed steel deck:						
a. Identification markings	Field inspection	Υ	Periodic	TA		
b. Manufacturer's certified test reports	Submittal Review	Υ	Each submittal	TA		
Connection of cold-formed steel deck to supporting structure:	Shop (3) and field inspection					
a. Welding		Υ	Periodic	TA		
b. Other fasteners (in accordance with AISC 360,Section N6)		N				
Verify fasteners are in conformance with approved submittal			Periodic			
Verify fastener installation is in conformance with approved submittal and manufacturer's recommendations			Periodic			
Reinforcing steel	Shop (3) and field inspection	N				
a. Verification of weldability of steel other than ASTM A706			Periodic		-	
b. Reinforcing steel resisting flexural and axial forces in intermediate and special moment frames, boundary elements of special concrete structural walls and shear reinforcement			Continuous			
c. Shear reinforcement			Continuous			
d. Other reinforcing steel			Periodic			
4. Cold-formed steel trusses spanning 60 feet or greater		N				
Verify temporary and permanent restraint/bracing are installed in accordance with the approved truss submittal package	Field inspection		Periodic			
1705.3 Concrete Construction						

	SCHEDULE OF SPEC	IAL II	NSPECTION SER	VICES		
PROJECT	Tobie Grant Recreation Center					
			APPLICABLE	TO THIS PROJECT		
MATERIAL / ACTIVITY	SERVICE	Y/N	EXTENT	AGENT*	DATE COMPLETED	
Inspection of reinforcing steel installation (see 1705.2.2 for welding)	Shop (3) and field inspection	Υ	Periodic	TA		
Inspection of prestressing steel installation	Shop (3) and field inspection	N	Periodic			
Inspection of anchors cast in concrete where allowable loads have been increased per section 1908.5 or where strength design is used	Shop (3) and field inspection	N	Periodic			
Inspection of anchors and reinforcing steel post-installed in hardened concrete: Per research reports including verification of anchor type, anchor dimensions, hole dimensions, hole cleaning procedures, anchor spacing, edge distances, concrete minimum thickness, anchor embedment and tightening torque	Field inspection	Y	Periodic or as required by the research report issued by an approved source	TA		
5. Verify use of approved design mix	Shop (3) and field inspection	Υ	Periodic	TA		
6. Fresh concrete sampling, perform slump and air content tests and determine temperature of concrete	Shop (3) and field inspection	Υ	Continuous	TA		
Inspection of concrete and shotcrete placement for proper application techniques	Shop (3) and field inspection	Υ	Continuous	TA		
Inspection for maintenance of specified curing temperature and techniques	Shop (3) and field inspection	Υ	Periodic	TA		
9. Inspection of prestressed concrete:	Shop (3) and field inspection	N				
a. Application of prestressing force			Continuous			
b. Grouting of bonded prestressing tendons in the seismic-forceresisting system			Continuous			
10. Erection of precast concrete members		N				
a. Inspect in accordance with construction documents	Field inspection		In accordance with construction documents			
b. Perform inspections of welding and bolting in accordance with Section 1705.2	Field inspection		In accordance with Section 1705.2			
11. Verification of in-situ concrete strength, prior to stressing of tendons in post tensioned concrete and prior to removal of shores and forms from beams and structural slabs	Review field testing and laboratory reports	N	Periodic			
12. Inspection of formwork for shape, lines, location and dimensions	Field inspection	N	Periodic			
Concrete strength testing and verification of compliance with construction documents	Field testing and review of laboratory reports	Υ	Periodic	TA		
1705.4 Masonry Construction						
(A) Level A, B and C Quality Assurance:						
Verify compliance with approved submittals	Field Inspection	Υ	Periodic	TA		
(B) Level B Quality Assurance:						

	SCHEDULE OF SPECIAL INSPECTION SERVICES						
PROJECT	Tobie Grant Recreation Center						
			APPLICABLE				
MATERIAL / ACTIVITY	SERVICE	Y/N	EXTENT	AGENT*	DATE COMPLETED		
Verification of f'm and f'AAC prior to construction	Testing by unit strength method or prism test method	Υ	Periodic	TA			
(C) Level C Quality Assurance:		N					
Verification of f'm and f'AAC prior to construction and for every 5,000 SF during construction	Testing by unit strength method or prism test method		Periodic				
Verification of proportions of materials in premixed or preblended mortar, prestressing grout, and grout other than self-consolidating grout, as delivered to the project site	Field inspection		Continuous				
Verify placement of masonry units	Field Inspection		Periodic				
(D) Levels B and C Quality Assurance:							
Verification of Slump Flow and Visual Stability Index (VSI) of self- consolidating grout as delivered to the project	Field testing	Y	Continuous	TA			
Verify compliance with approved submittals	Field inspection	Υ	Periodic	TA			
Verify proportions of site-mixed mortar, grout and prestressing grout for bonded tendons	Field Inspection	Y	Periodic	TA			
Verify grade, type, and size of reinforcement and anchor bolts, and prestressing tendons and anchorages	Field Inspection	Y	Periodic	TA			
Verify construction of mortar joints	Field Inspection	Υ	Periodic	TA			
Verify placement of reinforcement, connectors, and prestressing tendons and anchorages	Field Inspection	Y	Level B - Periodic	TA			
			Level C - Continuous				
7. Verify grout space prior to grouting	Field Inspection	Υ	Level B - Periodic Level C - Continuous	TA			
Verify placement of grout and prestressing grout for bonded tendons	Field Inspection	Y	Continuous	TA			
Verify size and location of structural masonry elements	Field Inspection	Υ	Periodic	TA			
10. Verify type, size, and location of anchors, including details of anchorage of masonry to structural members, frames, or other construction.	Field inspection	Y	Level B - Periodic	TA			
			Level C - Continuous				
11. Verify welding of reinforcement (see 1705.2.2)	Field inspection	N	Continuous				

	SCHEDULE OF SPE	CIAL II	NSPECTION SER	VICES		
PROJECT	Tobie Grant Recreation Center					
			APPLICABLE			
MATERIAL / ACTIVITY	SERVICE	Y/N	EXTENT	AGENT*	DATE COMPLETED	
12. Verify preparation, construction, and protestion of masonry during cold weather (temperature below 40°F) or hot weather (temperature above 90°F)	Field inspection	Y	Periodic	TA		
Verify application and measurement of prestressing force	Field Inspection	N	Continuous			
14. Verify placement of AAC masonry units and construction of thin-bed mortar joints (first 5000 SF of AAC masonry)	Field inspection	N	Continuous			
15. Verify placement of AAC masonry units and construction of thin-bed mortar joints (after the first 5000 SF of AAC masonry)	Field inspection	N	Level B - Periodic			
			Level C - Continuous			
16. Verify properties of thin-bed mortar for AAC masonry (first 5000 SF of AAC masonry)	Field inspection	N	Continuous			
17. Verify properties of thin-bed mortar forAAC masonry (after the first 5000 SF of AAC masonry)	Field inspection	N	Level B - Periodic			
			Level C - Continuous			
18. Prepare grout and mortar specimens	Field testing	Υ	Level B - Periodic	TA		
эресипена			Level C - Continuous			
19. Observe preparation of prisms	Field inspection	Υ	Level B - Periodic	TA		
			Level C - Continuous			
1705.5 Wood Construction		N				
Inspection of the fabrication process of wood structural elements and assemblies in accordance with Section 1704.2.5	In-plant review (3)		Periodic			
For high-load diaphragms, verify grade and thickness of structural panel sheathing agree with approved building plans	Field inspection		Periodic			
3. For high-load diaphragms, verify nominal size of framing members at adjoining panel edges, nail or staple diameter and length, number of fastener lines, and that spacing between fasteners in each line and at edge margins agree with approved building plans	Field inspection		Periodic			
Metal-plate-connected wood trusses spanning 60 feet or greater: verify temporary and permanent restraint/bracing are installed in accordance with the approved truss submittal package 1705.6 Soils	Field inspection		Periodic			
Verify materials below shallow foundations are adequate to achieve the design bearing capacity.	Field inspection	Y	Periodic	TA		

	SCHEDULE OF SPECIAL INSPECTION SERVICES					
PROJECT	Tobie Grant Recreation Center					
			APPLICABLE			
MATERIAL / ACTIVITY	SERVICE	Y/N	EXTENT	AGENT*	DATE COMPLETED	
Verify excavations are extended to proper depth and have reached proper material.	Field inspection	Y	Periodic	TA		
Perform classification and testing of controlled fill materials.	Field inspection	Υ	Periodic	TA		
Verify use of proper materials, densities, and lift thicknesses during placement and compaction of controlled fill	Field inspection	Υ	Continuous	TA		
5. Prior to placement of controlled fill, observe subgrade and verify that site has been prepared properly	Field inspection	Y	Periodic	TA		
1705.7 Driven Deep Foundations		N				
Verify element materials, sizes and lengths comply with requirements	Field inspection		Continuous			
Determine capacities of test elements and conduct additional load tests, as required	Field inspection		Continuous			
Observe driving operations and maintain complete and accurate records for each element	Field inspection		Continuous			
Verify placement locations and plumbness, confirm type and size of hammer, record number of blows per foot of penetration, determine required penetrations to achieve design capacity, record tip and butt elevations and document any damage to foundation element	Field inspection		Continuous			
5. For steel elements, perform additional inspections per Section 1705.2	See Section 1705.2		See Section 1705.2			
6. For concrete elements and concrete-filled elements, perform additional inspections per Section 1705.3	See Section 1705.3		See Section 1705.3			
7. For specialty elements, perform additional inspections as determined by the registered design professional in responsible charge	Field inspection		In accordance with construction documents			
Perform additional inspections and tests in accordance with the construction documents	Field Inspection and testing		In accordance with construction documents			
1705.8 Cast-in-Place Deep		N				
Foundations 1.Observe drilling operations and maintain complete and accurate records for each element	Field inspection		Continuous			
2. Verify placement locations and plumbness, confirm element diameters, bell diameters (if applicable), lengths, embedment into bedrock (if applicable) and adequate end-bearing strata capacity. Record concrete or grout volumes	Field inspection		Continuous			
For concrete elements, perform additional inspections in accordance with Section 1705.3	See Section 1705.3		See Section 1705.3			
Perform additional inspections and tests in accordance with the construction documents	Field Inspection and testing		In accordance with construction documents			
1705.9 Helical Pile Foundations		N				

	SCHEDULE OF SPECIAL INSPECTION SERVICES						
PROJECT	Tobie Grant Recreation C	enter					
			APPLICABLE	APPLICABLE TO THIS PROJECT			
MATERIAL / ACTIVITY	SERVICE	Y/N	EXTENT	AGENT*	DATE COMPLETED		
Verify installation equipment, pile dimensions, tip elevations, final depth, final installation torque and other data as required.	Field inspection		Continuous				
Perform additional inspections and tests in accordance with the construction documents	Field Inspection and testing		In accordance with construction documents				
1705.10.1 Structural Wood Special Inspections For Wind Resistance		N					
Inspection of field gluing operations of elements of the main windforce-resisting system	Field inspection		Continuous				
Inspection of nailing, bolting, anchoring and other fastening of components within the main windforce-resisting system	Shop (3) and field inspection		Periodic				
1705.10.2 Cold-formed Steel Special Inspections For Wind Resistance		N					
Inspection during welding operations of elements of the main windforce-resisting system	Shop (3) and field inspection		Periodic				
2.Inspections for screw attachment, bolting, anchoring and other fastening of components within the main windforce-resisting system	Shop (3) and field inspection		Periodic				
1705.10.3 Wind-resisting Components		N					
1. Roof cladding	Shop (3) and field inspection		Periodic				
2. Wall cladding 1705.11.1 Structural Steel	Shop (3) and field inspection		Periodic				
Special Inspections for Seismic Resistance		N					
Inspection of structural steel in accordance with AISC 341	Shop (3) and field inspection		In accordance with AISC 341				
1705.11.2 Structural Wood Special Inspections for Seismic Resistance		Ν					
Inspection of field gluing operations of elements of the seismic- force resisting system	Field inspection		Continuous				
Inspection of nailing, bolting, anchoring and other fastening of components within the seismic-force- resisting system	Shop (3) and field inspection		Periodic				
1705.11.3 Cold-formed Steel Light-Frame Construction Special Inspections for Seismic Resistance		N					
Inspection during welding operations of elements of the seismic- force-resisting system	Shop (3) and field inspection		Periodic				
Inspections for screw attachment, bolting, anchoring and other fastening of components within the seismic- force-resisting system	Shop (3) and field inspection		Periodic				

	SCHEDULE OF SPEC	IAL II	NSPECTION SER	RVICES			
PROJECT	Tobie Grant Recreation Center						
MATERIAL / ACTIVITY	050/405	V/NI	APPLICABLE				
MATERIAL / ACTIVITY	SERVICE	Y/N	EXTENT	AGENT*	DATE COMPLETED		
1705.11.4 Designated Seismic Systems Verification		N					
Inspect and verify that that the component label, anchorage or mounting conforms to the certificate of compliance in accordance with Section 1705.12.3	Field inspection		Periodic				
1705.11.5 Architectural Components Special Inspections for Seismic Resistance		N					
Inspection during the erection and fastening of exterior cladding and interior and exterior veneer	Field inspection		Periodic				
Inspection during the erection and fastening of interior and exterior nonbearing walls	Field inspection		Periodic				
Inspection during anchorage of access floors	Field inspection		Periodic				
1705.11.6 Mechanical and Electrical Components Special Inspections for Seismic Resistance							
Inspection during the anchorage of electrical equipment for emergency or standby power systems	Field inspection	Y	Periodic	TA			
Inspection during the anchorage of other electrical equipment	Field inspection	N	Periodic				
Inspection during installation and anchorage of piping systems designed to carry hazardous materials, and their associated mechanical units	Field inspection	N	Periodic				
Inspection during the installation and anchorage of HVAC ductwork that will contain hazardous materials	Field inspection	N	Periodic				
Inspection during the installation and anchorage of vibration isolation systems	Field inspection	N	Periodic				
1705.11.7 Storage Racks Special Inspections for Seismic Resistance		N					
Inspection during the anchorage of storage racks 8 feet or greater in height	Field inspection		Periodic				
1705.11.8 Seismic Isolation Systems		N					
Inspection during the fabrication and installation of isolator units and energy dissipation devices used as part of the seismic isolation system	Shop and field inspection		Periodic				
1705.12.1 Concrete Reinforcement Testing and Qualification for Seismic Resistance		N					

	SCHEDULE OF SPEC	IAL II	NSPECTION SER	RVICES		
PROJECT	Tobie Grant Recreation Center					
			APPLICABLE TO THIS PROJECT			
MATERIAL / ACTIVITY	SERVICE	Y/N	EXTENT	AGENT*	DATE COMPLETED	
Review certified mill test reports for each shipment of reinforcement used to resist earthquake-induced flexural and axial forces in reinforced concrete special moment frames, special structural walls, and coupling beams connecting special structural walls	Review certified mill test reports		Each shipment			
Verify reinforcement weldability of ASTM A615 reinforcement used to resist earthquake-induced flexural and axial forces in reinforced concrete special moment frames, special structural walls, and coupling beams connecting special structural walls	Review test reports		Each shipment			
1705.12.2 Structural Steel Testing and Qualification for Seismic Resistance		Z				
Test in accordance with the quality assurance requirements of AISC 341	Shop (3) and field testing		Per AISC 341			
1705.12.3 Seismic Certification of Nonstructural Components		N				
Review certificate of compliance for designated seismic system components.	Certificate of compliance review		Each submittal			
1705.12.4 Seismic Isolation Systems		N				
Test seismic isolation system in accordance with ASCE 7 Section 17.8	Prototype testing		Per ASCE 7			
1705.13 Sprayed Fire-resistant Materials		N				
Verify surface condition preparation of structural members	Field inspection		Periodic			
Verify application of sprayed fire- resistant materials	Field inspection		Periodic			
Verify average thickness of sprayed fire-resistant materials applied to structural members	Field inspection		Periodic			
Verify density of the sprayed fire- resistant material complies with approved fire-resistant design	Field inspection and testing		Per IBC Section 1705.13.5			
Verify the cohesive/adhesive bond strength of the cured sprayed fire- resistant material	Field inspection and testing		Per IBC Section 1705.13.6			
1705.14 Mastic and Intumescent Fire-Resistant Coatings		Ν				
Inspect mastic and intumescent fire- resistant coatings applied to structural elements and decks	Field inspection		Periodic			
1705.15 Exterior Insulation and Finish Systems (EIFS)		N				
Verify materials, details and installations are per the approved construction documents	Field inspection		Periodic			
Inspection of water-resistive barrier over sheathing substrate	Field inspection		Periodic			

DDO IECT	Tobie Grant Recreatio	- Conton			
PROJECT	Toble Grant Recreatio	n Center	455110451		20.1505
			APPLICABLE		
MATERIAL / ACTIVITY	SERVICE	Y/N	EXTENT	AGENT*	DATE COMPLETED
1705.16 Fire-Resistant		N			
Penetrations and Joints		N			
Inspect penetration firestop	Field testing		Per ASTM E2174		
2. Inspect fire-resistant joint systems	Field testing		Per ASTM E2393		
1705.17 Smoke Control		N.			
Systems		N			
Leakage testing and recording of					
device locations prior to	Field testing		Periodic		
concealment					
2. Prior to occupancy and after					
sufficient completion, pressure					
difference testing, flow	Field testing		Periodic		
measurements, and detection and					
control verification					
* INSPECTION AGENTS FIRM			ADDDECC		TELEBUONE NO
TIKIVI 1			ADDRESS		TELEPHONE NO.
2.					
3.					
4.					
Notes: 1. The inspection and testing agent(s) sl	hall be engaged by the Owner or the (Owner's Agent,	and not by the Contractor or S	Subcontractor whose	work is to be inspected or
tested. Any conflict of interest must be	ne disclosed to the Building Official pri	or to commenci	ng work. The qualifications of	the Special Inspect	or(s) and/or
testing agencies may be subject to th	e approval of the Building Official and	/or the Design I	Professional.		
2. The list of Special Inspectors may be	submitted as a separate document, if	noted so above			
3. Special Insepctions as required by Se	ction 1704.2.5 are not required where	the fabricator	is approved in accordance wit	h IBC Section 1704.	2.5.2
4. Observe on a random basis, operation	ns need not be delayed pending these	inspections. Pe	erform these tasks for each we	elded joint, bolted co	nnection, or steel element.

5. NDT of welds completed in an approved fabricator's shop may be performed by that fabricator when approved by the AHJ. Refer to AISC 360, N7.

Are Requirements for Seismic Resistance included in the Statement of Special Inspections?

Are Requirements for Wind Resistance included in the Statement of Special Inspections?

Yes No

DATE:

Statement of Special Inspections Requirements for Wind Resistance

See the Schedule of Special Inspections for inspection and testing requirements

Nominal Design Wind Speed, Vasd: 90 m.p.h.

Wind Exposure Category: B

Statement of Special Inspection for Wind Resistance Required (Yes/No): <u>No</u> (Required in wind exposure Category B, where the nominal design wind speed, V_{asd}, is 120 miles per hour or greater. Required in wind exposure Category C or D, where the nominal design wind speed, V_{asd}, is 110 miles per hour or greater.)

<u>Description of main windforce-resisting system subject to special inspection for wind resistance:</u>

(Required for systems noted in IBC Section 1705.10.1 and 1705.10.2)

<u>Description of windforce-resisting components subject to special inspection for wind resistance:</u>

(Required for systems and components noted in IBC Section 1705.10.3)

Statement of Responsibility:

Each contractor responsible for the construction or fabrication of a system or component described above must submit a Statement of Responsibility.

Statement of Special Inspections Requirements for Seismic Resistance

See the Schedule of Special Inspections for inspection and testing requirements

Seismic Design Category: C

Statement of Special Inspection for Seismic Resistance Required (Yes/No): Yes

<u>Description of seismic force-resisting system subject to special inspection and testing</u> for seismic resistance:

(Required for Seismic Design Categories C, D, E or F in accordance with IBC Sections 1705.11.1 through 1705.11.3, 1707.12.1 and 1705.12.2.)

Special Reinforced Masonry Shear Walls

<u>Description of designated seismic systems subject to special inspection and testing for seismic resistance:</u>

(Required for architectural, electrical and mechanical systems and their components that require design in accordance with Chapter 13 of ASCE 7, have a component importance factor, *Ip*, greater than one and are in Seismic Design Categories C, D, E or F.)

N/A

<u>Description of additional seismic systems and components requiring special inspections and testing:</u>

(Required for systems noted in IBC Section 1705.11, cases 3, 4 & 5 in Seismic Design Categories C, D, E or F.)

N/A

Statement of Responsibility:

Each contractor responsible for the construction or fabrication of a system or component described above must submit a Statement of Responsibility.

SECTION 015000 - TEMPORARY FACILITIES AND CONTROLS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes requirements for temporary utilities, support facilities, and security and protection facilities.
- B. Related Requirements:
 - 1. Section 011000 "Summary" for work restrictions and limitations on utility interruptions.

1.3 USE CHARGES

- A. General: Installation and removal of and use charges for temporary facilities shall be included in the Contract Sum unless otherwise indicated. Allow other entities engaged in the Project to use temporary services and facilities without cost, including, but not limited to, Architect, testing agencies, and authorities having jurisdiction.
 - 1. Do not disrupt utilities at existing, occupied building and site while occupied.
- B. Sewer Service: Pay sewer-service use charges for sewer usage by all entities for construction operations.
- C. Water Service: Pay water-service use charges for water used by all entities for construction operations.
- D. Electric Power Service: Pay electric-power-service use charges for electricity used by all entities for construction operations.

1.4 INFORMATIONAL SUBMITTALS

- A. Site Utilization Plan: Show temporary facilities, temporary utility lines and connections, staging areas, construction site entrances, vehicle circulation, and parking areas for construction personnel.
- B. Implementation and Termination Schedule: Within 15 days of date established for commencement of the Work, submit schedule indicating implementation and termination dates of each temporary utility.

- C. Project Identification and Temporary Signs: Show fabrication and installation details, including plans, elevations, details, layouts, typestyles, graphic elements, and message content.
- D. Fire-Safety Program: Show compliance with requirements of NFPA 241 and authorities having jurisdiction. Indicate Contractor personnel responsible for management of fire-prevention program.
- E. Moisture- and Mold-Protection Plan: Describe procedures and controls for protecting materials and construction from water absorption and damage and mold.
- F. Dust- and HVAC-Control Plan: Submit coordination drawing and narrative that indicates the dust- and HVAC-control measures proposed for use, proposed locations, and proposed time frame for their operation. Include the following:
 - 1. Locations of dust-control partitions at each phase of work.
 - 2. HVAC system isolation schematic drawing.
 - 3. Location of proposed air-filtration system discharge.
 - 4. Waste-handling procedures.
 - 5. Other dust-control measures.

1.5 QUALITY ASSURANCE

- A. Electric Service: Comply with NECA, NEMA, and UL standards and regulations for temporary electric service. Install service to comply with NFPA 70.
- B. Tests and Inspections: Arrange for authorities having jurisdiction to test and inspect each temporary utility before use. Obtain required certifications and permits.
- C. Accessible Temporary Egress: Comply with applicable provisions in the United States Access Board's ADA-ABA Accessibility Guidelines.

1.6 PROJECT CONDITIONS

A. Temporary Use of Permanent Facilities: Engage Installer of each permanent service to assume responsibility for operation, maintenance, and protection of each permanent service during its use as a construction facility before Owner's acceptance, regardless of previously assigned responsibilities.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Chain-Link Fencing: Minimum 2-inch, 0.148-inch-thick, galvanized-steel, chain-link fabric fencing; minimum 6 feet high with galvanized-steel pipe posts; minimum 2-3/8-inch-OD line posts and 2-7/8-inch-OD corner and pull posts, with 1-5/8-inch-OD top rails.
- B. Portable Chain-Link Fencing: Minimum 2-inch, 0.148-inch-thick, galvanized-steel, chain-link fabric fencing; minimum 6 feet high with galvanized-steel pipe posts; minimum 2-3/8-inch-OD

line posts and 2-7/8-inch-OD corner and pull posts, with 1-5/8-inch-OD top and bottom rails. Provide galvanized-steel bases for supporting posts.

- C. Fencing Windscreen Privacy Screen: Polyester fabric scrim with grommets for attachment to chain link fence, sized to height of fence, in color selected by Architect from manufacturer's standard colors.
- D. Polyethylene Sheet: Reinforced, fire-resistive sheet, 10-mil minimum thickness, with flame-spread rating of 15 or less per ASTM E 84 and passing NFPA 701 Test Method 2.
- E. Dust-Control Adhesive-Surface Walk-Off Mats: Provide mats minimum 36 by 60 inches.
- F. Insulation: Unfaced mineral-fiber blanket, manufactured from glass, slag wool, or rock wool; with maximum flame-spread and smoke-developed indexes of 25 and 50, respectively.

2.2 TEMPORARY FACILITIES

- A. Field Offices, General: Prefabricated or mobile units with serviceable finishes, temperature controls, and foundations adequate for normal loading.
- B. Common-Use Field Office: Of sufficient size to accommodate needs of Owner, Architect, Construction Manager, and construction personnel office activities and to accommodate Project meetings specified in other Division 01 Sections. Keep office clean and orderly. Furnish and equip offices as follows:
 - 1. Furniture required for Project-site documents including file cabinets, plan tables, plan racks, and bookcases.
 - 2. Conference room of sufficient size to accommodate meetings of 10 individuals. Provide electrical power service and 120-V ac duplex receptacles, with no fewer than one receptacle on each wall. Furnish room with conference table, chairs, and 4-foot-square tack and marker boards.
 - 3. Drinking water and private toilet.
 - 4. Heating and cooling equipment necessary to maintain a uniform indoor temperature of 68 to 72 deg F.
 - 5. Lighting fixtures capable of maintaining average illumination of 20 fc at desk height.
- C. Storage and Fabrication Sheds: Provide sheds sized, furnished, and equipped to accommodate materials and equipment for construction operations.
 - 1. Store combustible materials apart from building.

2.3 EQUIPMENT

- A. Fire Extinguishers: Portable, UL rated; with class and extinguishing agent as required by locations and classes of fire exposures.
- B. HVAC Equipment: Unless Owner authorizes use of permanent HVAC system, provide vented, self-contained, liquid-propane-gas or fuel-oil heaters with individual space thermostatic control.

- 1. Use of gasoline-burning space heaters, open-flame heaters, or salamander-type heating units is prohibited.
- 2. Heating Units: Listed and labeled for type of fuel being consumed, by a qualified testing agency acceptable to authorities having jurisdiction, and marked for intended location and application.
- 3. Permanent HVAC System: If Owner authorizes use of permanent HVAC system for temporary use during construction, provide filter with MERV of 8 at each return-air grille in system and remove at end of construction.
- C. Air-Filtration Units: Primary and secondary HEPA-filter-equipped portable units with four-stage filtration. Provide single switch for emergency shutoff. Configure to run continuously.

PART 3 - EXECUTION

3.1 TEMPORARY FACILITIES, GENERAL

- A. Conservation: Coordinate construction and use of temporary facilities with consideration given to conservation of energy, water, and materials. Coordinate use of temporary utilities to minimize waste.
 - 1. Salvage materials and equipment involved in performance of, but not actually incorporated into, the Work. See other Sections for disposition of salvaged materials that are designated as Owner's property.

3.2 INSTALLATION, GENERAL

- A. Locate facilities where they will serve Project adequately and result in minimum interference with performance of the Work. Relocate and modify facilities as required by progress of the Work.
 - 1. Locate facilities to limit site disturbance as specified in Section 011000 "Summary."
- B. Provide each facility ready for use when needed to avoid delay. Do not remove until facilities are no longer needed or are replaced by authorized use of completed permanent facilities.

3.3 TEMPORARY UTILITY INSTALLATION

- A. General: Install temporary service or connect to existing service.
 - 1. Arrange with utility company, Owner, and existing users for time when service can be interrupted, if necessary, to make connections for temporary services.
- B. Sewers and Drainage: Provide temporary utilities to remove effluent lawfully.
 - 1. Connect temporary sewers to municipal system as directed by authorities having jurisdiction.

- C. Water Service: Install water service and distribution piping in sizes and pressures adequate for construction.
- D. Water Service: Connect to Owner's existing water service facilities. Clean and maintain water service facilities in a condition acceptable to Owner. At Substantial Completion, restore these facilities to condition existing before initial use.
- E. Sanitary Facilities: Provide temporary toilets, wash facilities, and drinking water for use of construction personnel. Comply with requirements of authorities having jurisdiction for type, number, location, operation, and maintenance of fixtures and facilities.
 - 1. Toilets: Use of Owner's existing toilet facilities will be permitted, as long as facilities are cleaned and maintained in a condition acceptable to Owner. At Substantial Completion, restore these facilities to condition existing before initial use.
- F. Temporary Heating and Cooling: Provide temporary heating and cooling required by construction activities for curing or drying of completed installations or for protecting installed construction from adverse effects of low temperatures or high humidity. Select equipment that will not have a harmful effect on completed installations or elements being installed.
 - 1. Provide temporary dehumidification systems when required to reduce ambient and substrate moisture levels to level required to allow installation or application of finishes and their proper curing or drying.
- G. Isolation of Work Areas in Occupied Facilities: Prevent dust, fumes, and odors from entering occupied areas.
 - 1. Prior to commencing work, isolate the HVAC system in area where work is to be performed.
 - a. Disconnect supply and return ductwork in work area from HVAC systems servicing occupied areas.
 - b. Maintain negative air pressure within work area using HEPA-equipped airfiltration units, starting with commencement of temporary partition construction, and continuing until removal of temporary partitions is complete.
 - 2. Maintain dust partitions during the Work. Use vacuum collection attachments on dust-producing equipment. Isolate limited work within occupied areas using portable dust-containment devices.
 - 3. Perform daily construction cleanup and final cleanup using approved, HEPA-filter-equipped vacuum equipment.
- H. Electric Power Service: Connect to Owner's existing electric power service. Maintain equipment in a condition acceptable to Owner.
- I. Electric Power Service: Provide electric power service and distribution system of sufficient size, capacity, and power characteristics required for construction operations.
 - 1. Install electric power service underground unless otherwise indicated.
 - 2. Connect temporary service to Owner's existing power source, as directed by Owner.

- J. Lighting: Provide temporary lighting with local switching that provides adequate illumination for construction operations, observations, inspections, and traffic conditions.
 - 1. Install and operate temporary lighting that fulfills security and protection requirements without operating entire system.
- K. Telephone Service: Provide temporary telephone service in common-use facilities for use by all construction personnel. Install one land-based telephone line(s) for each field office.
 - 1. Provide additional telephone lines for the following:
 - a. Provide one telephone line(s) for Owner's use.
 - 2. At each telephone, post a list of important telephone numbers.
 - a. Police and fire departments.
 - b. Ambulance service.
 - c. Contractor's home office.
 - d. Contractor's emergency after-hours telephone number.
 - e. Architect's office.
 - f. Engineers' offices.
 - g. Owner's office.
 - h. Principal subcontractors' field and home offices.
- L. Electronic Communication Service: Provide a desktop computer in the primary field office adequate for use by Architect and Owner to access Project electronic documents and maintain electronic communications. Equip computer with not less than the following:
 - 1. Processor: Intel Core i5 or i7.
 - 2. Memory: 4 gigabyte.
 - 3. Disk Storage: 500 gigabyte hard-disk drive and combination DVD-RW/CD-RW drive.
 - 4. Display: 24-inch LCD monitor with 256-Mb dedicated video RAM.
 - 5. Full-size keyboard and mouse.
 - 6. Network Connectivity: 10/100BaseT Ethernet.
 - 7. Operating System: Microsoft Windows 7 Professional.
 - 8. Productivity Software:
 - a. Microsoft Office Professional, 2010 or higher, including Word, Excel, and Outlook.
 - b. Adobe Reader 11.0 or higher.
 - c. WinZip 7.0 or higher.
 - 9. Printer: "All-in-one" unit equipped with printer server, combining color printing, photocopying, scanning, and faxing, or separate units for each of these three functions.
 - 10. Internet Service: Broadband modem, router and ISP, equipped with hardware firewall, providing minimum 1.0 Mbps upload and 15 Mbps download speeds at each computer.
 - 11. Internet Security: Integrated software, providing software firewall, virus, spyware, phishing, and spam protection in a combined application.
 - 12. Backup: External hard drive, minimum 2 terrabyte, with automated backup software providing daily backups.

3.4 SUPPORT FACILITIES INSTALLATION

- A. General: Comply with the following:
 - 1. Provide construction for temporary offices, shops, and sheds located within construction area or within 30 feet of building lines that is noncombustible according to ASTM E 136. Comply with NFPA 241.
 - 2. Maintain support facilities until Architect schedules Substantial Completion inspection. Remove before Substantial Completion. Personnel remaining after Substantial Completion will be permitted to use permanent facilities, under conditions acceptable to Owner.
- B. Temporary Roads and Paved Areas: Construct and maintain temporary roads and paved areas adequate for construction operations. Locate temporary roads and paved areas within construction limits indicated on Drawings.
 - 1. Provide dust-control treatment that is nonpolluting and nontracking. Reapply treatment as required to minimize dust.
- C. Temporary Use of Planned Permanent Roads and Paved Areas: Locate temporary roads and paved areas in same location as permanent roads and paved areas. Construct and maintain temporary roads and paved areas adequate for construction operations. Extend temporary roads and paved areas, within construction limits indicated, as necessary for construction operations.
 - 1. Coordinate elevations of temporary roads and paved areas with permanent roads and paved areas.
 - 2. Prepare subgrade and install subbase and base for temporary roads and paved areas according to Section 312000 "Earth Moving."
 - 3. Recondition base after temporary use, including removing contaminated material, regrading, proofrolling, compacting, and testing.
 - 4. Delay installation of final course of permanent hot-mix asphalt pavement until immediately before Substantial Completion. Repair hot-mix asphalt base-course pavement before installation of final course according to Section 321216 "Asphalt Paving."
- D. Traffic Controls: Comply with requirements of authorities having jurisdiction.
 - 1. Protect existing site improvements to remain including curbs, payement, and utilities.
 - 2. Maintain access for fire-fighting equipment and access to fire hydrants.
- E. Parking: Provide temporary parking areas for construction personnel.
- F. Dewatering Facilities and Drains: Comply with requirements of authorities having jurisdiction. Maintain Project site, excavations, and construction free of water.
 - 1. Dispose of rainwater in a lawful manner that will not result in flooding Project or adjoining properties or endanger permanent Work or temporary facilities.
 - 2. Remove snow and ice as required to minimize accumulations.
- G. Project Signs: Provide Project signs as indicated. Unauthorized signs are not permitted.

- 1. Identification Signs: Provide Project identification signs as indicated on Drawings.
- 2. Temporary Signs: Provide other signs as indicated and as required to inform public and individuals seeking entrance to Project.
 - a. Provide temporary, directional signs for construction personnel and visitors.
- 3. Maintain and touch up signs so they are legible at all times.
- H. Waste Disposal Facilities: Comply with requirements specified in Section 017419 "Construction Waste Management and Disposal."
- I. Waste Disposal Facilities: Provide waste-collection containers in sizes adequate to handle waste from construction operations. Comply with requirements of authorities having jurisdiction. Comply with progress cleaning requirements in Section 017300 "Execution."
- J. Lifts and Hoists: Provide facilities necessary for hoisting materials and personnel.
 - 1. Truck cranes and similar devices used for hoisting materials are considered "tools and equipment" and not temporary facilities.

3.5 SECURITY AND PROTECTION FACILITIES INSTALLATION

- A. Protection of Existing Facilities: Protect existing vegetation, equipment, structures, utilities, and other improvements at Project site and on adjacent properties, except those indicated to be removed or altered. Repair damage to existing facilities.
 - 1. Where access to adjacent properties is required in order to affect protection of existing facilities, obtain written permission from adjacent property owner to access property for that purpose.
- B. Environmental Protection: Provide protection, operate temporary facilities, and conduct construction as required to comply with environmental regulations and that minimize possible air, waterway, and subsoil contamination or pollution or other undesirable effects.
 - 1. Comply with work restrictions specified in Section 011000 "Summary."
- C. Temporary Erosion and Sedimentation Control: Comply with requirements of EPA Construction General Permit or authorities having jurisdiction, whichever is more stringent and requirements specified in Section 311000 "Site Clearing."
- D. Temporary Erosion and Sedimentation Control: Provide measures to prevent soil erosion and discharge of soil-bearing water runoff and airborne dust to undisturbed areas and to adjacent properties and walkways, according to requirements of EPA Construction General Permit or authorities having jurisdiction, whichever is more stringent.
 - 1. Verify that flows of water redirected from construction areas or generated by construction activity do not enter or cross tree- or plant-protection zones.
 - 2. Inspect, repair, and maintain erosion- and sedimentation-control measures during construction until permanent vegetation has been established.

- 3. Clean, repair, and restore adjoining properties and roads affected by erosion and sedimentation from Project site during the course of Project.
- 4. Remove erosion and sedimentation controls and restore and stabilize areas disturbed during removal.
- E. Stormwater Control: Comply with requirements of authorities having jurisdiction. Provide barriers in and around excavations and subgrade construction to prevent flooding by runoff of stormwater from heavy rains.
- F. Tree and Plant Protection: Comply with requirements specified in Section 015639 "Temporary Tree and Plant Protection."
- G. Tree and Plant Protection: Install temporary fencing located as indicated or outside the drip line of trees to protect vegetation from damage from construction operations. Protect tree root systems from damage, flooding, and erosion.
- H. Pest Control: Engage pest-control service to recommend practices to minimize attraction and harboring of rodents, roaches, and other pests and to perform extermination and control procedures at regular intervals so Project will be free of pests and their residues at Substantial Completion. Perform control operations lawfully, using materials approved by authorities having jurisdiction.
- I. Site Enclosure Fence: Before construction operations begin, furnish and install site enclosure fence in a manner that will prevent people from easily entering site except by entrance gates.
 - 1. Extent of Fence: As required to enclose entire Project site or portion determined sufficient to accommodate construction operations.
 - 2. Maintain security by limiting number of keys and restricting distribution to authorized personnel. Furnish one set of keys to Owner.
- J. Security Enclosure and Lockup: Install temporary enclosure around partially completed areas of construction. Provide lockable entrances to prevent unauthorized entrance, vandalism, theft, and similar violations of security. Lock entrances at end of each workday.
- K. Barricades, Warning Signs, and Lights: Comply with requirements of authorities having jurisdiction for erecting structurally adequate barricades, including warning signs and lighting.
- L. Temporary Egress: Maintain temporary egress from existing occupied facilities as indicated and as required by authorities having jurisdiction.
- M. Temporary Fire Protection: Install and maintain temporary fire-protection facilities of types needed to protect against reasonably predictable and controllable fire losses. Comply with NFPA 241; manage fire-prevention program.
 - 1. Prohibit smoking in construction areas. Comply with additional limits on smoking specified in other Sections.
 - 2. Supervise welding operations, combustion-type temporary heating units, and similar sources of fire ignition according to requirements of authorities having jurisdiction.
 - 3. Develop and supervise an overall fire-prevention and -protection program for personnel at Project site. Review needs with local fire department and establish procedures to be followed. Instruct personnel in methods and procedures. Post warnings and information.

4. Provide temporary standpipes and hoses for fire protection. Hang hoses with a warning sign stating that hoses are for fire-protection purposes only and are not to be removed. Match hose size with outlet size and equip with suitable nozzles.

3.6 MOISTURE AND MOLD CONTROL

- A. Contractor's Moisture-Protection Plan: Describe delivery, handling, storage, installation, and protection provisions for materials subject to water absorption or water damage.
 - 1. Indicate procedures for discarding water-damaged materials, protocols for mitigating water intrusion into completed Work, and replacing water-damaged Work.
 - 2. Indicate sequencing of work that requires water, such as sprayed fire-resistive materials, plastering, and terrazzo grinding, and describe plans for dealing with water from these operations. Show procedures for verifying that wet construction has dried sufficiently to permit installation of finish materials.
 - 3. Indicate methods to be used to avoid trapping water in finished work.
- B. Exposed Construction Period: Before installation of weather barriers, when materials are subject to wetting and exposure and to airborne mold spores, protect as follows:
 - 1. Protect porous materials from water damage.
 - 2. Protect stored and installed material from flowing or standing water.
 - 3. Keep porous and organic materials from coming into prolonged contact with concrete.
 - 4. Remove standing water from decks.
 - 5. Keep deck openings covered or dammed.
- C. Partially Enclosed Construction Period: After installation of weather barriers but before full enclosure and conditioning of building, when installed materials are still subject to infiltration of moisture and ambient mold spores, protect as follows:
 - 1. Do not load or install drywall or other porous materials or components, or items with high organic content, into partially enclosed building.
 - 2. Keep interior spaces reasonably clean and protected from water damage.
 - 3. Periodically collect and remove waste containing cellulose or other organic matter.
 - 4. Discard or replace water-damaged material.
 - 5. Do not install material that is wet.
 - 6. Discard and replace stored or installed material that begins to grow mold.
 - 7. Perform work in a sequence that allows wet materials adequate time to dry before enclosing the material in gypsum board or other interior finishes.
- D. Controlled Construction Period: After completing and sealing of the building enclosure but prior to the full operation of permanent HVAC systems, maintain as follows:
 - 1. Control moisture and humidity inside building by maintaining effective dry-in conditions.
 - 2. Use temporary or permanent HVAC system to control humidity within ranges specified for installed and stored materials.
 - 3. Comply with manufacturer's written instructions for temperature, relative humidity, and exposure to water limits.

- a. Hygroscopic materials that may support mold growth, including wood and gypsum-based products, that become wet during the course of construction and remain wet for 48 hours are considered defective and require replacing.
- b. Measure moisture content of materials that have been exposed to moisture during construction operations or after installation. Record readings beginning at time of exposure and continuing daily for 48 hours. Identify materials containing moisture levels higher than allowed. Report findings in writing to Architect.
- c. Remove and replace materials that cannot be completely restored to their manufactured moisture level within 48 hours.

3.7 OPERATION, TERMINATION, AND REMOVAL

- A. Supervision: Enforce strict discipline in use of temporary facilities. To minimize waste and abuse, limit availability of temporary facilities to essential and intended uses.
- B. Maintenance: Maintain facilities in good operating condition until removal.
 - 1. Maintain operation of temporary enclosures, heating, cooling, humidity control, ventilation, and similar facilities on a 24-hour basis where required to achieve indicated results and to avoid possibility of damage.
- C. Temporary Facility Changeover: Do not change over from using temporary security and protection facilities to permanent facilities until Substantial Completion.
- D. Termination and Removal: Remove each temporary facility when need for its service has ended, when it has been replaced by authorized use of a permanent facility, or no later than Substantial Completion. Complete or, if necessary, restore permanent construction that may have been delayed because of interference with temporary facility. Repair damaged Work, clean exposed surfaces, and replace construction that cannot be satisfactorily repaired.
 - 1. Materials and facilities that constitute temporary facilities are property of Contractor. Owner reserves right to take possession of Project identification signs.
 - 2. Remove temporary roads and paved areas not intended for or acceptable for integration into permanent construction. Where area is intended for landscape development, remove soil and aggregate fill that do not comply with requirements for fill or subsoil. Remove materials contaminated with road oil, asphalt and other petrochemical compounds, and other substances that might impair growth of plant materials or lawns. Repair or replace street paving, curbs, and sidewalks at temporary entrances, as required by authorities having jurisdiction.
 - 3. At Substantial Completion, repair, renovate, and clean permanent facilities used during construction period. Comply with final cleaning requirements specified in Section 017700 "Closeout Procedures."

END OF SECTION 015000

SECTION 015639 - TEMPORARY TREE AND PLANT PROTECTION

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes general protection and pruning of existing trees and plants that are affected by execution of the Work, whether temporary or permanent construction.

1.2 DEFINITIONS

- A. Plant-Protection Zone: Area surrounding individual trees, groups of trees, shrubs, or other vegetation to be protected during construction and indicated on Drawings.
- B. Tree-Protection Zone: Area surrounding individual trees or groups of trees to be protected during construction and indicated on Drawings. This is indicated by the Tree Protection Fence and the Critical Root Zone.
- C. Critical Root Zone: Area indicating the approximate location of root boundary of a tree based on caliper of tree.

1.3 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings:
 - 1. Include plans, elevations, sections, and locations of protection-zone fencing and signage, showing relation of equipment-movement routes and material storage locations with protection zones.
- C. Samples: For each type of the following:
 - 1. Organic Mulch: Sealed plastic bags labeled with composition of materials by percentage of weight and source of mulch.
 - 2. Protection-Zone Fencing: Assembled Samples.
 - 3. Protection-Zone Signage: Full-size Samples.
- D. Tree Pruning Schedule: Written schedule detailing scope and extent of pruning of trees to remain that interfere with or are affected by construction.

1.5 INFORMATIONAL SUBMITTALS

- A. Certification: From arborist, certifying that trees indicated to remain have been protected during construction according to recognized standards and that trees were promptly and properly treated and repaired when damaged.
- B. Maintenance Recommendations: From arborist, for care and protection of trees affected by construction during and after completing the Work.
- C. Existing Conditions: Documentation of existing trees and plantings indicated to remain, which establishes preconstruction conditions that might be misconstrued as damage caused by construction activities.

1.6 QUALITY ASSURANCE

A. Arborist Qualifications: Certified Arborist as certified by ISA, licensed arborist in jurisdiction where Project is located, current member of ASCA, or registered Consulting Arborist as designated by ASCA.

1.7 FIELD CONDITIONS

- A. The following practices are prohibited within protection zones:
 - 1. Storage of construction materials, debris, or excavated material.
 - 2. Moving or parking vehicles or equipment.
 - 3. Foot traffic.
 - 4. Erection of sheds or structures.
 - 5. Impoundment of water.
 - 6. Excavation or other digging unless otherwise indicated.
 - 7. Attachment of signs to or wrapping materials around trees or plants unless otherwise indicated.
- B. Do not direct vehicle or equipment exhaust toward protection zones.
- C. Prohibit heat sources, flames, ignition sources, and smoking within or near protection zones and organic mulch.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Organic Mulch: Free from deleterious materials and suitable as a top dressing for trees and shrubs, consisting of one of the following:
 - 1. Type: Shredded hardwood, Ground or shredded bark, wood and bark chips.

- B. Protection-Zone Fencing: Fencing fixed in position and meeting the following requirements. Previously used materials may be used when approved by Architect.
 - 1. Plastic Protection-Zone Fencing: Plastic construction fencing constructed of high-density extruded and stretched polyethylene fabric with 2-inch maximum opening in pattern and supported by 2x2 wood posts spaced not more than 72 inches apart. High-visibility orange color.
 - a. Height: 48 inches
 - b. See LD-1.01 for additional details regarding staking location.
 - 2. Gates: Swing access gates matching material and appearance of fencing, to allow for maintenance activities within protection zones.
- C. Protection-Zone Signage: Shop-fabricated, rigid plastic or metal sheet with attachment holes pre-punched and reinforced; legibly printed with nonfading lettering.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Erosion and Sedimentation Control: Examine the site to verify that temporary erosion- and sedimentation-control measures are in place. Verify that flows of water redirected from construction areas or generated by construction activity do not enter or cross protection zones.

3.2 PREPARATION

A. Protect tree root systems from damage caused by runoff or spillage of noxious materials while mixing, placing, or storing construction materials. Protect root systems from ponding, eroding, or excessive wetting caused by dewatering operations.

3.3 PROTECTION ZONES

- A. Protection-Zone Fencing: Install protection-zone fencing along edges of protection zones in a manner that will prevent people from easily entering protected areas except by entrance gates.
 - 1. Chain-Link Fencing: Install to comply with ASTM F567 and with manufacturer's written instructions.
 - 2. Posts: Set or drive posts into ground one-third the total height of the fence without concrete footings. Where a post is located on existing paving or concrete to remain, provide appropriate means of post support acceptable to Architect.
- B. Protection-Zone Signage: Install protection-zone signage in visibly prominent locations in a manner approved by Architect.
- C. Maintain protection zones free of weeds and trash.

D. Maintain protection-zone fencing and signage in good condition as acceptable to Architect and remove when construction operations are complete and equipment has been removed from the site.

3.4 EXCAVATION

- A. General: Excavate at edge of protection zones and for trenches indicated within protection zones according to requirements in Section 312000 "Earth Moving" unless otherwise indicated.
- B. Trenching within Protection Zones: Where utility trenches are required within protection zones, excavate under or around tree roots by hand or with air spade, or tunnel under the roots by drilling, auger boring, or pipe jacking. Do not cut main lateral tree roots or taproots; cut only smaller roots that interfere with installation of utilities. Cut roots as required for root pruning.
- C. Do not allow exposed roots to dry out before placing permanent backfill.

3.5 ROOT PRUNING

- A. Prune tree roots that are affected by temporary and permanent construction. Prune roots as follows:
 - 1. Cut roots manually by digging a trench and cutting exposed roots with sharp pruning instruments; do not break, tear, chop, or slant the cuts. Do not use a backhoe or other equipment that rips, tears, or pulls roots.
 - 2. Temporarily support and protect roots from damage until they are permanently redirected and covered with soil.
 - 3. Cover exposed roots with burlap and water regularly.
 - 4. Backfill as soon as possible according to requirements in Section 312000 "Earth Moving."
- B. Root Pruning at Edge of Protection Zone: Prune tree roots by cleanly cutting all roots to the depth of the required excavation.
- C. Root Pruning within Protection Zone: Clear and excavate by hand or with air spade to the depth of the required excavation to minimize damage to tree root systems. If excavating by hand, use narrow-tine spading forks to comb soil to expose roots. Cleanly cut roots as close to excavation as possible.

3.6 CROWN PRUNING

- A. Prune branches that are affected by temporary and permanent construction. Prune branches as directed by arborist.
 - 1. Prune to remove only injured, broken, dying, or dead branches unless otherwise indicated. Do not prune for shape unless otherwise indicated.
 - 2. Do not remove or reduce living branches to compensate for root loss caused by damaging or cutting root system.

- 3. Pruning Standards: Prune trees according to ANSI A300 (Part 1)
- B. Cut branches with sharp pruning instruments; do not break or chop.
- C. Do not paint or apply sealants to wounds.
- D. Chip removed branches and spread over areas identified by Architect.

3.7 REGRADING

- A. Lowering Grade: Where new finish grade is indicated below existing grade around trees, slope grade beyond the protection zone. Maintain existing grades within the protection zone.
- B. Raising Grade: Where new finish grade is indicated above existing grade around trees, slope grade beyond the protection zone. Maintain existing grades within the protection zone.
- C. Minor Fill within Protection Zone: Where existing grade is 2 inches or less below elevation of finish grade, fill with backfill soil. Place backfill soil in a single uncompacted layer and hand grade to required finish elevations.

3.8 FIELD QUALITY CONTROL

A. Inspections: Engage a certified-arborist to direct plant-protection measures in the vicinity of trees, shrubs, and other vegetation indicated to remain and to prepare inspection reports.

3.9 REPAIR AND REPLACEMENT

- A. General: Repair or replace trees, shrubs, and other vegetation indicated to remain or to be relocated that are damaged by construction operations, in a manner approved by Architect.
 - 1. Perform repairs of damaged trunks, branches, and roots within 24 hours according to arborist's written instructions.
 - 2. Replace trees and other plants that cannot be repaired and restored to full-growth status, as determined by Architect.
- B. Excess Mulch: Rake mulched area within protection zones, being careful not to injure roots. Rake to loosen and remove mulch that exceeds a 2-inch uniform thickness to remain.

3.10 DISPOSAL OF SURPLUS AND WASTE MATERIALS

A. Disposal: Remove excess excavated material, displaced trees, trash, and debris and legally dispose of them off Owner's property.

END OF SECTION 015639

SECTION 016000 - PRODUCT REQUIREMENTS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes administrative and procedural requirements for selection of products for use in Project; product delivery, storage, and handling; manufacturers' standard warranties on products; special warranties; and comparable products.

B. Related Requirements:

1. Section 012500 "Substitution Procedures" for requests for substitutions.

1.2 DEFINITIONS

- A. Products: Items obtained for incorporating into the Work, whether purchased for Project or taken from previously purchased stock. The term "product" includes the terms "material," "equipment," "system," and terms of similar intent.
 - 1. Named Products: Items identified by manufacturer's product name, including make or model number or other designation shown or listed in manufacturer's published product literature that is current as of date of the Contract Documents.
 - 2. New Products: Items that have not previously been incorporated into another project or facility. Products salvaged or recycled from other projects are not considered new products.
 - 3. Comparable Product: Product that is demonstrated and approved by Architect through submittal process to have the indicated qualities related to type, function, dimension, inservice performance, physical properties, appearance, and other characteristics that equal or exceed those of specified product.
- B. Basis-of-Design Product Specification: A specification in which a single manufacturer's product is named and accompanied by the words "basis-of-design product," including make or model number or other designation. In addition to the basis-of-design product description, product attributes and characteristics may be listed to establish the significant qualities related to type, function, in-service performance and physical properties, weight, dimension, durability, visual characteristics, and other special features and requirements for purposes of evaluating comparable products of additional manufacturers named in the specification.

1.3 ACTION SUBMITTALS

A. Comparable Product Request Submittal: Submit request for consideration of each comparable product. Identify basis-of-design product or fabrication or installation method to be replaced. Include Specification Section number and title and Drawing numbers and titles.

- 1. Include data to indicate compliance with the requirements specified in "Comparable Products" Article.
- 2. Architect's Action: If necessary, Architect will request additional information or documentation for evaluation within seven days of receipt of a comparable product request. Architect will notify Contractor of approval or rejection of proposed comparable product request within 15 days of receipt of request, or seven days of receipt of additional information or documentation, whichever is later.
 - a. Form of Architect's Approval of Submittal: As specified in Section 013300 "Submittal Procedures."
 - b. Use product specified if Architect does not issue a decision on use of a comparable product request within time allocated.
- B. Basis-of-Design Product Specification Submittal: Comply with requirements in Section 013300 "Submittal Procedures." Show compliance with requirements.

1.4 QUALITY ASSURANCE

A. Compatibility of Options: If Contractor is given option of selecting between two or more products for use on Project, select product compatible with products previously selected, even if previously selected products were also options.

1.5 PRODUCT DELIVERY, STORAGE, AND HANDLING

A. Deliver, store, and handle products using means and methods that will prevent damage, deterioration, and loss, including theft and vandalism. Comply with manufacturer's written instructions.

B. Delivery and Handling:

- 1. Schedule delivery to minimize long-term storage at Project site and to prevent overcrowding of construction spaces.
- 2. Coordinate delivery with installation time to ensure minimum holding time for items that are flammable, hazardous, easily damaged, or sensitive to deterioration, theft, and other losses.
- 3. Deliver products to Project site in an undamaged condition in manufacturer's original sealed container or other packaging system, complete with labels and instructions for handling, storing, unpacking, protecting, and installing.
- 4. Inspect products on delivery to determine compliance with the Contract Documents and to determine that products are undamaged and properly protected.

C. Storage:

- 1. Store products to allow for inspection and measurement of quantity or counting of units.
- 2. Store materials in a manner that will not endanger Project structure.
- 3. Store products that are subject to damage by the elements, under cover in a weathertight enclosure above ground, with ventilation adequate to prevent condensation.

- 4. Protect foam plastic from exposure to sunlight, except to extent necessary for period of installation and concealment.
- 5. Comply with product manufacturer's written instructions for temperature, humidity, ventilation, and weather-protection requirements for storage.
- 6. Protect stored products from damage and liquids from freezing.

1.6 PRODUCT WARRANTIES

- A. Warranties specified in other Sections shall be in addition to, and run concurrent with, other warranties required by the Contract Documents. Manufacturer's disclaimers and limitations on product warranties do not relieve Contractor of obligations under requirements of the Contract Documents.
 - 1. Manufacturer's Warranty: Written warranty furnished by individual manufacturer for a particular product and specifically endorsed by manufacturer to Owner.
 - 2. Special Warranty: Written warranty required by the Contract Documents to provide specific rights for Owner.
- B. Special Warranties: Prepare a written document that contains appropriate terms and identification, ready for execution.
 - 1. Manufacturer's Standard Form: Modified to include Project-specific information and properly executed.
 - 2. Specified Form: When specified forms are included with the Specifications, prepare a written document using indicated form properly executed.
 - 3. See other Sections for specific content requirements and particular requirements for submitting special warranties.

PART 2 - PRODUCTS

2.1 PRODUCT SELECTION PROCEDURES

- A. General Product Requirements: Provide products that comply with the Contract Documents, are undamaged and, unless otherwise indicated, are new at time of installation.
 - 1. Provide products complete with accessories, trim, finish, fasteners, and other items needed for a complete installation and indicated use and effect.
 - 2. Standard Products: If available, and unless custom products or nonstandard options are specified, provide standard products of types that have been produced and used successfully in similar situations on other projects.
 - 3. Owner reserves the right to limit selection to products with warranties meeting requirements of the Contract Documents.
 - 4. Where products are accompanied by the term "as selected," Architect will make selection.
 - 5. Descriptive, performance, and reference standard requirements in the Specifications establish salient characteristics of products.

B. Product Selection Procedures:

- 1. Sole Product: Where Specifications name a single manufacturer and product, provide the named product that complies with requirements. Comparable products or substitutions for Contractor's convenience will not be considered.
 - a. Sole product may be indicated by the phrase: "Subject to compliance with requirements, provide the following: ..."
- 2. Sole Manufacturer/Source: Where Specifications name a single manufacturer or source, provide a product by the named manufacturer or source that complies with requirements. Comparable products or substitutions for Contractor's convenience will not be considered.
 - a. Sole manufacturer/source may be indicated by the phrase: "Subject to compliance with requirements, provide products by the following: ..."
- 3. Limited List of Products: Where Specifications include a list of names of both manufacturers and products, provide one of the products listed that complies with requirements. Comparable products or substitutions for Contractor's convenience will not be considered unless otherwise indicated.
 - a. Limited list of products may be indicated by the phrase: "Subject to compliance with requirements, provide one of the following: ..."
- 4. Non-Limited List of Products: Where Specifications include a list of names of both available manufacturers and products, provide one of the products listed, or an unnamed product, which complies with requirements.
 - a. Non-limited list of products is indicated by the phrase: "Subject to compliance with requirements, available products that may be incorporated in the Work include, but are not limited to, the following: ..."
- 5. Limited List of Manufacturers: Where Specifications include a list of manufacturers' names, provide a product by one of the manufacturers listed that complies with requirements. Comparable products or substitutions for Contractor's convenience will not be considered unless otherwise indicated.
 - a. Limited list of manufacturers is indicated by the phrase: "Subject to compliance with requirements, provide products by one of the following: ..."
- 6. Non-Limited List of Manufacturers: Where Specifications include a list of available manufacturers, provide a product by one of the manufacturers listed, or a product by an unnamed manufacturer, which complies with requirements.
 - a. Non-limited list of manufacturers is indicated by the phrase: "Subject to compliance with requirements, available manufacturers whose products may be incorporated in the Work include, but are not limited to, the following: ..."

- 7. Basis-of-Design Product: Where Specifications name a product, or refer to a product indicated on Drawings, and include a list of manufacturers, provide the specified or indicated product or a comparable product by one of the other named manufacturers. Drawings and Specifications indicate sizes, profiles, dimensions, and other characteristics that are based on the product named. Comply with requirements in "Comparable Products" Article for consideration of an unnamed product by one of the other named manufacturers.
 - a. For approval of products by unnamed manufacturers, comply with requirements in Section 012500 "Substitution Procedures" for substitutions for convenience.
- C. Visual Matching Specification: Where Specifications require "match Architect's sample," provide a product that complies with requirements and matches Architect's sample. Architect's decision will be final on whether a proposed product matches.
 - 1. If no product available within specified category matches and complies with other specified requirements, comply with requirements in Section 012500 "Substitution Procedures" for proposal of product.
- D. Visual Selection Specification: Where Specifications include the phrase "as selected by Architect from manufacturer's full range" or similar phrase, select a product that complies with requirements. Architect will select color, gloss, pattern, density, or texture from manufacturer's product line that includes both standard and premium items.

2.2 COMPARABLE PRODUCTS

- A. Conditions for Consideration of Comparable Products: Architect will consider Contractor's request for comparable product when the following conditions are satisfied. If the following conditions are not satisfied, Architect may return requests without action, except to record noncompliance with these requirements:
 - 1. Evidence that proposed product does not require revisions to the Contract Documents, is consistent with the Contract Documents, will produce the indicated results, and is compatible with other portions of the Work. Detailed comparison of significant qualities of proposed product with those named in the Specifications. Significant product qualities include attributes such as type, function, in-service performance and physical properties, weight, dimension, durability, visual characteristics, and other specific features and requirements.
 - 2. Evidence that proposed product provides specified warranty.
 - 3. List of similar installations for completed projects with project names and addresses and names and addresses of architects and owners, if requested.
 - 4. Samples, if requested.

PART 3 - EXECUTION (Not Used)

END OF SECTION 016000

SECTION 017300 - EXECUTION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes general administrative and procedural requirements governing execution of the Work including, but not limited to, the following:
 - 1. Construction layout.
 - 2. Field engineering and surveying.
 - 3. Installation of the Work.
 - 4. Cutting and patching.
 - 5. Progress cleaning.
 - 6. Starting and adjusting.
 - 7. Protection of installed construction.

B. Related Requirements:

- 1. Section 011000 "Summary" for limits on use of Project site.
- 2. Section 017700 "Closeout Procedures" for submitting final property survey with Project Record Documents, recording of Owner-accepted deviations from indicated lines and levels, replacing defective work, and final cleaning.

1.3 INFORMATIONAL SUBMITTALS

- A. Certificates: Submit certificate signed by land surveyor or professional engineer certifying that location and elevation of improvements comply with requirements.
- B. Landfill Receipts: Submit copy of receipts issued by a landfill facility, licensed to accept hazardous materials, for hazardous waste disposal.
- C. Certified Surveys: Submit two copies signed by land surveyor.
- D. Final Property Survey: Submit 10 copies showing the Work performed and record survey data.

1.4 QUALITY ASSURANCE

A. Land Surveyor Qualifications: A professional land surveyor who is legally qualified to practice in jurisdiction where Project is located and who is experienced in providing land-surveying services of the kind indicated.

- B. Cutting and Patching: Comply with requirements for and limitations on cutting and patching of construction elements.
 - 1. Structural Elements: When cutting and patching structural elements, notify Architect of locations and details of cutting and await directions from Architect before proceeding. Shore, brace, and support structural elements during cutting and patching. Do not cut and patch structural elements in a manner that could change their load-carrying capacity or increase deflection.
 - 2. Operational Elements: Do not cut and patch operating elements and related components in a manner that results in reducing their capacity to perform as intended or that results in increased maintenance or decreased operational life or safety.
 - 3. Other Construction Elements: Do not cut and patch other construction elements or components in a manner that could change their load-carrying capacity, that results in reducing their capacity to perform as intended, or that results in increased maintenance or decreased operational life or safety.
 - 4. Visual Elements: Do not cut and patch construction in a manner that results in visual evidence of cutting and patching. Do not cut and patch exposed construction in a manner that would, in Architect's opinion, reduce the building's aesthetic qualities. Remove and replace construction that has been cut and patched in a visually unsatisfactory manner.
- C. Manufacturer's Installation Instructions: Obtain and maintain on-site manufacturer's written recommendations and instructions for installation of products and equipment.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. General: Comply with requirements specified in other Sections.
 - 1. For projects requiring compliance with sustainable design and construction practices and procedures, use products for patching that comply with sustainable design requirements.
- B. In-Place Materials: Use materials for patching identical to in-place materials. For exposed surfaces, use materials that visually match in-place adjacent surfaces to the fullest extent possible.
 - 1. If identical materials are unavailable or cannot be used, use materials that, when installed, will provide a match acceptable to Architect for the visual and functional performance of in-place materials.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Existing Conditions: The existence and location of underground and other utilities and construction indicated as existing are not guaranteed. Before beginning sitework, investigate

and verify the existence and location of underground utilities, mechanical and electrical systems, and other construction affecting the Work.

- 1. Before construction, verify the location and invert elevation at points of connection of sanitary sewer, storm sewer, and water-service piping; underground electrical services; and other utilities.
- 2. Furnish location data for work related to Project that must be performed by public utilities serving Project site.
- B. Examination and Acceptance of Conditions: Before proceeding with each component of the Work, examine substrates, areas, and conditions, with Installer or Applicator present where indicated, for compliance with requirements for installation tolerances and other conditions affecting performance. Record observations.
 - 1. Examine roughing-in for mechanical and electrical systems to verify actual locations of connections before equipment and fixture installation.
 - 2. Examine walls, floors, and roofs for suitable conditions where products and systems are to be installed.
 - 3. Verify compatibility with and suitability of substrates, including compatibility with existing finishes or primers.
- C. Proceed with installation only after unsatisfactory conditions have been corrected. Proceeding with the Work indicates acceptance of surfaces and conditions.

3.2 PREPARATION

- A. Existing Utility Information: Furnish information to local utility and Owner that is necessary to adjust, move, or relocate existing utility structures, utility poles, lines, services, or other utility appurtenances located in or affected by construction. Coordinate with authorities having jurisdiction.
- B. Field Measurements: Take field measurements as required to fit the Work properly. Recheck measurements before installing each product. Where portions of the Work are indicated to fit to other construction, verify dimensions of other construction by field measurements before fabrication. Coordinate fabrication schedule with construction progress to avoid delaying the Work.
- C. Space Requirements: Verify space requirements and dimensions of items shown diagrammatically on Drawings.
- D. Review of Contract Documents and Field Conditions: Immediately on discovery of the need for clarification of the Contract Documents caused by differing field conditions outside the control of Contractor, submit a request for information to Architect according to requirements in Section 013100 "Project Management and Coordination."

3.3 CONSTRUCTION LAYOUT

- A. Verification: Before proceeding to lay out the Work, verify layout information shown on Drawings, in relation to the property survey and existing benchmarks. If discrepancies are discovered, notify Architect promptly.
- B. General: Engage a land surveyor or qualified professional engineer to lay out the Work using accepted surveying practices.
 - 1. Establish benchmarks and control points to set lines and levels at each story of construction and elsewhere as needed to locate each element of Project.
 - 2. Establish limits on use of Project site.
 - 3. Establish dimensions within tolerances indicated. Do not scale Drawings to obtain required dimensions.
 - 4. Inform installers of lines and levels to which they must comply.
 - 5. Check the location, level and plumb, of every major element as the Work progresses.
 - 6. Notify Architect when deviations from required lines and levels exceed allowable tolerances.
 - 7. Close site surveys with an error of closure equal to or less than the standard established by authorities having jurisdiction.
- C. Site Improvements: Locate and lay out site improvements, including pavements, grading, fill and topsoil placement, utility slopes, and rim and invert elevations.
- D. Building Lines and Levels: Locate and lay out control lines and levels for structures, building foundations, column grids, and floor levels, including those required for mechanical and electrical work. Transfer survey markings and elevations for use with control lines and levels. Level foundations and piers from two or more locations.
- E. Record Log: Maintain a log of layout control work. Record deviations from required lines and levels. Include beginning and ending dates and times of surveys, weather conditions, name and duty of each survey party member, and types of instruments and tapes used. Make the log available for reference by Architect.

3.4 FIELD ENGINEERING

- A. Identification: Owner will identify existing benchmarks, control points, and property corners.
- B. Reference Points: Locate existing permanent benchmarks, control points, and similar reference points before beginning the Work. Preserve and protect permanent benchmarks and control points during construction operations.
- C. Benchmarks: Establish and maintain a minimum of two permanent benchmarks on Project site, referenced to data established by survey control points. Comply with authorities having jurisdiction for type and size of benchmark.
 - 1. Record benchmark locations, with horizontal and vertical data, on Project Record Documents.

- D. Certified Survey: On completion of foundation walls, major site improvements, and other work requiring field-engineering services, prepare a certified survey showing dimensions, locations, angles, and elevations of construction and sitework.
- E. Final Property Survey: Engage a land surveyor to prepare a final property survey showing significant features (real property) for Project. Include on the survey a certification, signed by land surveyor, that principal metes, bounds, lines, and levels of Project are accurately positioned as shown on the survey.
 - 1. Recording: At Substantial Completion, have the final property survey recorded by or with authorities having jurisdiction as the official "property survey."

3.5 INSTALLATION

- A. General: Locate the Work and components of the Work accurately, in correct alignment and elevation, as indicated.
 - 1. Make vertical work plumb and make horizontal work level.
 - 2. Where space is limited, install components to maximize space available for maintenance and ease of removal for replacement.
 - 3. Conceal pipes, ducts, and wiring in finished areas unless otherwise indicated.
- B. Comply with manufacturer's written instructions and recommendations for installing products in applications indicated.
- C. Install products at the time and under conditions that will ensure the best possible results. Maintain conditions required for product performance until Substantial Completion.
- D. Conduct construction operations so no part of the Work is subjected to damaging operations or loading in excess of that expected during normal conditions of occupancy.
- E. Sequence the Work and allow adequate clearances to accommodate movement of construction items on site and placement in permanent locations.
- F. Tools and Equipment: Where possible, select tools or equipment that minimize production of excessive noise levels.
- G. Templates: Obtain and distribute to the parties involved templates for work specified to be factory prepared and field installed. Check Shop Drawings of other portions of the Work to confirm that adequate provisions are made for locating and installing products to comply with indicated requirements.
- H. Attachment: Provide blocking and attachment plates and anchors and fasteners of adequate size and number to securely anchor each component in place, accurately located and aligned with other portions of the Work. Where size and type of attachments are not indicated, verify size and type required for load conditions.
 - 1. Mounting Heights: Where mounting heights are not indicated, mount components at heights directed by Architect.
 - 2. Allow for building movement, including thermal expansion and contraction.

- 3. Coordinate installation of anchorages. Furnish setting drawings, templates, and directions for installing anchorages, including sleeves, concrete inserts, anchor bolts, and items with integral anchors, that are to be embedded in concrete or masonry. Deliver such items to Project site in time for installation.
- I. Joints: Make joints of uniform width. Where joint locations in exposed work are not indicated, arrange joints for the best visual effect. Fit exposed connections together to form hairline joints.
- J. Remove and replace damaged, defective, or non-conforming Work.

3.6 CUTTING AND PATCHING

- A. Cutting and Patching, General: Employ skilled workers to perform cutting and patching. Proceed with cutting and patching at the earliest feasible time, and complete without delay.
 - 1. Cut in-place construction to provide for installation of other components or performance of other construction, and subsequently patch as required to restore surfaces to their original condition.
- B. Existing Warranties: Remove, replace, patch, and repair materials and surfaces cut or damaged during installation or cutting and patching operations, by methods and with materials so as not to void existing warranties.
- C. Temporary Support: Provide temporary support of work to be cut.
- D. Protection: Protect in-place construction during cutting and patching to prevent damage. Provide protection from adverse weather conditions for portions of Project that might be exposed during cutting and patching operations.
- E. Adjacent Occupied Areas: Where interference with use of adjoining areas or interruption of free passage to adjoining areas is unavoidable, coordinate cutting and patching according to requirements in Section 011000 "Summary."
- F. Existing Utility Services and Mechanical/Electrical Systems: Where existing services/systems are required to be removed, relocated, or abandoned, bypass such services/systems before cutting to prevent interruption to occupied areas.
- G. Cutting: Cut in-place construction by sawing, drilling, breaking, chipping, grinding, and similar operations, including excavation, using methods least likely to damage elements retained or adjoining construction. If possible, review proposed procedures with original Installer; comply with original Installer's written recommendations.
 - 1. In general, use hand or small power tools designed for sawing and grinding, not hammering and chopping. Cut holes and slots neatly to minimum size required, and with minimum disturbance of adjacent surfaces. Temporarily cover openings when not in use.
 - 2. Finished Surfaces: Cut or drill from the exposed or finished side into concealed surfaces.
 - 3. Concrete and Masonry: Cut using a cutting machine, such as an abrasive saw or a diamond-core drill.
 - 4. Excavating and Backfilling: Comply with requirements in applicable Sections where required by cutting and patching operations.

- 5. Mechanical and Electrical Services: Cut off pipe or conduit in walls or partitions to be removed. Cap, valve, or plug and seal remaining portion of pipe or conduit to prevent entrance of moisture or other foreign matter after cutting.
- 6. Proceed with patching after construction operations requiring cutting are complete.
- H. Patching: Patch construction by filling, repairing, refinishing, closing up, and similar operations following performance of other work. Patch with durable seams that are as invisible as practicable. Provide materials and comply with installation requirements specified in other Sections, where applicable.
 - 1. Inspection: Where feasible, test and inspect patched areas after completion to demonstrate physical integrity of installation.
 - 2. Exposed Finishes: Restore exposed finishes of patched areas and extend finish restoration into retained adjoining construction in a manner that will minimize evidence of patching and refinishing.
 - 3. Floors and Walls: Where walls or partitions that are removed extend one finished area into another, patch and repair floor and wall surfaces in the new space. Provide an even surface of uniform finish, color, texture, and appearance. Remove in-place floor and wall coverings and replace with new materials, if necessary, to achieve uniform color and appearance.
 - 4. Ceilings: Patch, repair, or rehang in-place ceilings as necessary to provide an even-plane surface of uniform appearance.
 - 5. Exterior Building Enclosure: Patch components in a manner that restores enclosure to a weathertight condition and ensures thermal and moisture integrity of building enclosure.
- I. Cleaning: Clean areas and spaces where cutting and patching are performed. Remove paint, mortar, oils, putty, and similar materials from adjacent finished surfaces.

3.7 PROGRESS CLEANING

- A. General: Clean Project site and work areas daily, including common areas. Enforce requirements strictly. Dispose of materials lawfully.
 - 1. Comply with requirements in NFPA 241 for removal of combustible waste materials and debris.
 - 2. Do not hold waste materials more than seven days during normal weather or three days if the temperature is expected to rise above 80 deg F.
 - 3. Containerize hazardous and unsanitary waste materials separately from other waste. Mark containers appropriately and dispose of legally, according to regulations.
 - a. Use containers intended for holding waste materials of type to be stored.
 - 4. Coordinate progress cleaning for joint-use areas where Contractor and other contractors are working concurrently.
- B. Site: Maintain Project site free of waste materials and debris.
- C. Work Areas: Clean areas where work is in progress to the level of cleanliness necessary for proper execution of the Work.

- 1. Remove liquid spills promptly.
- 2. Where dust would impair proper execution of the Work, broom-clean or vacuum the entire work area, as appropriate.
- D. Installed Work: Keep installed work clean. Clean installed surfaces according to written instructions of manufacturer or fabricator of product installed, using only cleaning materials specifically recommended. If specific cleaning materials are not recommended, use cleaning materials that are not hazardous to health or property and that will not damage exposed surfaces.
- E. Concealed Spaces: Remove debris from concealed spaces before enclosing the space.
- F. Exposed Surfaces in Finished Areas: Clean exposed surfaces and protect as necessary to ensure freedom from damage and deterioration at time of Substantial Completion.
- G. Waste Disposal: Do not bury or burn waste materials on-site. Do not wash waste materials down sewers or into waterways. Comply with waste disposal requirements in Section 015000 "Temporary Facilities and Controls," and Section 017419 "Construction Waste Management and Disposal."
- H. During handling and installation, clean and protect construction in progress and adjoining materials already in place. Apply protective covering where required to ensure protection from damage or deterioration at Substantial Completion.
- I. Clean and provide maintenance on completed construction as frequently as necessary through the remainder of the construction period. Adjust and lubricate operable components to ensure operability without damaging effects.
- J. Limiting Exposures: Supervise construction operations to ensure that no part of the construction, completed or in progress, is subject to harmful, dangerous, damaging, or otherwise deleterious exposure during the construction period.

3.8 STARTING AND ADJUSTING

- A. Coordinate startup and adjusting of equipment and operating components with requirements in Section 019113 "General Commissioning Requirements."
- B. Start equipment and operating components to confirm proper operation. Remove malfunctioning units, replace with new units, and retest.
- C. Adjust equipment for proper operation. Adjust operating components for proper operation without binding.
- D. Test each piece of equipment to verify proper operation. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- E. Manufacturer's Field Service: Comply with qualification requirements in Section 014000 "Quality Requirements."

3.9 PROTECTION OF INSTALLED CONSTRUCTION

- A. Provide final protection and maintain conditions that ensure installed Work is without damage or deterioration at time of Substantial Completion.
- B. Protection of Existing Items: Provide protection and ensure that existing items to remain undisturbed by construction are maintained in condition that existed at commencement of the Work.
- C. Comply with manufacturer's written instructions for temperature and relative humidity.

END OF SECTION 017300

SECTION 017419 - CONSTRUCTION WASTE MANAGEMENT AND DISPOSAL

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes administrative and procedural requirements for the following:
 - 1. Recycling nonhazardous site demolition and construction waste.
 - 2. Disposing of nonhazardous site demolition and construction waste.

B. Related Requirements:

- 1. Section 042000 "Unit Masonry" for disposal requirements for masonry waste.
- 2. Section 311000 "Site Clearing" for disposition of waste resulting from site clearing and removal of above- and below-grade improvements.

1.2 DEFINITIONS

- A. Construction Waste: Building and site improvement materials and other solid waste resulting from construction, remodeling, renovation, or repair operations. Construction waste includes packaging.
- B. Demolition Waste: Site improvement materials resulting from demolition or selective demolition operations.
- C. Disposal: Removal off-site of site demolition and construction waste and subsequent sale, recycling, reuse, or deposit in landfill or incinerator acceptable to authorities having jurisdiction.
- D. Recycle: Recovery of site demolition or construction waste for subsequent processing in preparation for reuse.
- E. Salvage: Recovery of site demolition or construction waste and subsequent sale or reuse in another facility.
- F. Salvage and Reuse: Recovery of site demolition or construction waste and subsequent incorporation into the Work.

1.3 ACTION SUBMITTALS

A. Waste Management Plan: Submit plan within 30 days of date established for the Notice to Proceed.

1.4 INFORMATIONAL SUBMITTALS

A. Landfill and Incinerator Disposal Records: Indicate receipt and acceptance of waste by landfills and incinerator facilities licensed to accept them. Include manifests, weight tickets, receipts, and invoices.

1.5 WASTE MANAGEMENT PLAN

A. General: Develop a waste management plan according to ASTM E 1609 and requirements in this Section. Distinguish between site demolition and construction waste.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION

3.1 PLAN IMPLEMENTATION

- A. General: Implement approved waste management plan. Provide handling, containers, storage, signage, transportation, and other items as required to implement waste management plan during the entire duration of the Contract.
- B. Training: Train workers, subcontractors, and suppliers on proper waste management procedures, as appropriate for the Work occurring at Project site.
 - 1. Distribute waste management plan to entities when they first begin work on-site. Review plan procedures and locations established for salvage, recycling, and disposal.
- C. Site Access and Temporary Controls: Conduct waste management operations to ensure minimum interference with roads, streets, walks, walkways, and other adjacent occupied and used facilities.
 - 1. Designate and label specific areas on Project site necessary for separating materials that are to be salvaged, recycled, reused, donated, and sold.
 - 2. Comply with Section 015000 "Temporary Facilities and Controls" for controlling dust and dirt, environmental protection, and noise control.

3.2 RECYCLING SITE DEMOLITION WASTE

- A. Asphalt Paving: Grind asphalt to maximum 4-inch size.
- B. Asphalt Paving: Break up and transport paving to asphalt-recycling facility.
- C. Concrete: Remove reinforcement and other metals from concrete and sort with other metals.
 - 1. Pulverize concrete to maximum 4-inch size.

- D. Masonry: Remove metal reinforcement, anchors, and ties from masonry and sort with other metals.
 - 1. Pulverize masonry to maximum 4-inch size.
 - 2. Clean and stack undamaged, whole masonry units on wood pallets.

3.3 RECYCLING CONSTRUCTION WASTE

A. Packaging:

- 1. Cardboard and Boxes: Break down packaging into flat sheets. Bundle and store in a dry location.
- 2. Polystyrene Packaging: Separate and bag materials.
- 3. Pallets: As much as possible, require deliveries using pallets to remove pallets from Project site. For pallets that remain on-site, break down pallets into component wood pieces and comply with requirements for recycling wood.
- 4. Crates: Break down crates into component wood pieces and comply with requirements for recycling wood.

B. Wood Materials:

- 1. Clean Cut-Offs of Lumber: Grind or chip into small pieces.
- 2. Clean Sawdust: Bag sawdust that does not contain painted or treated wood.
- C. Gypsum Board: Stack large clean pieces on wood pallets or in container and store in a dry location.
 - 1. Clean Gypsum Board: Grind scraps of clean gypsum board using small mobile chipper or hammer mill. Screen out paper after grinding.

3.4 DISPOSAL OF WASTE

- A. General: Except for items or materials to be salvaged, recycled, or otherwise reused, remove waste materials from Project site and legally dispose of them in a landfill or incinerator acceptable to authorities having jurisdiction.
 - 1. Except as otherwise specified, do not allow waste materials that are to be disposed of accumulate on-site.
 - 2. Remove and transport debris in a manner that will prevent spillage on adjacent surfaces and areas.
- B. Burning: Do not burn waste materials.
- C. Disposal: Remove waste materials from Owner's property and legally dispose of them.

END OF SECTION 017419

SECTION 017700 - CLOSEOUT PROCEDURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Requirements and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes administrative and procedural requirements for contract closeout, including, but not limited to, the following:
 - 1. Substantial Completion procedures.
 - 2. Final completion procedures.
 - 3. Warranties.
 - 4. Final cleaning.
 - 5. Repair of the Work.

B. Related Requirements:

- 1. Section 017823 "Operation and Maintenance Data" for additional operation and maintenance manual requirements.
- 2. Section 017839 "Project Record Documents" for submitting Record Drawings, Record Specifications, and Record Product Data.
- 3. Section 017900 "Demonstration and Training" for requirements to train the Owner's maintenance personnel to adjust, operate, and maintain products, equipment, and systems.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of cleaning agent.
- B. Contractor's List of Incomplete Items: Initial submittal at Substantial Completion.
- C. Certified List of Incomplete Items: Final submittal at final completion.

1.4 CLOSEOUT SUBMITTALS

- A. Certificates of Release: From authorities having jurisdiction.
- B. Certificate of Insurance: For continuing coverage.
- C. Field Report: For pest control inspection.

1.5 SUBSTANTIAL COMPLETION PROCEDURES

- A. Contractor's List of Incomplete Items: Prepare and submit a list of items to be completed and corrected (Contractor's punch list), indicating the value of each item on the list and reasons why the Work is incomplete.
- B. Submittals Prior to Substantial Completion: Complete the following a minimum of 10 days prior to requesting inspection for determining date of Substantial Completion. List items below that are incomplete at time of request.
 - 1. Certificates of Release: Obtain and submit releases from authorities having jurisdiction permitting Owner unrestricted use of the Work and access to services and utilities. Include occupancy permits, operating certificates, and similar releases.
 - 2. Submit closeout submittals specified in other Division 01 Sections, including project record documents, operation and maintenance manuals, damage or settlement surveys, property surveys, and similar final record information.
 - 3. Submit closeout submittals specified in individual Sections, including specific warranties, workmanship bonds, maintenance service agreements, final certifications, and similar documents.
 - 4. Submit maintenance material submittals specified in individual Sections, including tools, spare parts, extra materials, and similar items, and deliver to location designated by Architect. Label with manufacturer's name and model number.
 - 5. Submit testing, adjusting, and balancing records.
 - 6. Submit sustainable design submittals not previously submitted.
 - 7. Submit changeover information related to Owner's occupancy, use, operation, and maintenance.
- C. Procedures Prior to Substantial Completion: Complete the following a minimum of 10 days prior to requesting inspection for determining date of Substantial Completion. List items below that are incomplete at time of request.
 - 1. Advise Owner of pending insurance changeover requirements.
 - 2. Make final changeover of permanent locks and deliver keys to Owner. Advise Owner's personnel of changeover in security provisions.
 - 3. Complete startup and testing of systems and equipment.
 - 4. Perform preventive maintenance on equipment used prior to Substantial Completion.
 - 5. Instruct Owner's personnel in operation, adjustment, and maintenance of products, equipment, and systems. Submit demonstration and training video recordings specified in Section 017900 "Demonstration and Training."
 - 6. Advise Owner of changeover in utility services.
 - 7. Participate with Owner in conducting inspection and walkthrough with local emergency responders.
 - 8. Terminate and remove temporary facilities from Project site, along with mockups, construction tools, and similar elements.
 - 9. Complete final cleaning requirements.
 - 10. Touch up paint and otherwise repair and restore marred exposed finishes to eliminate visual defects.
- D. Inspection: Submit a written request for inspection to determine Substantial Completion a minimum of 10 days prior to date the Work will be completed and ready for final inspection and tests. On receipt of request, Architect will either proceed with inspection or notify Contractor of

unfulfilled requirements. Architect will prepare the Certificate of Substantial Completion after inspection or will notify Contractor of items, either on Contractor's list or additional items identified by Architect, that must be completed or corrected before certificate will be issued.

1.6 FINAL COMPLETION PROCEDURES

- A. Submittals Prior to Final Completion: Before requesting final inspection for determining final completion, complete the following:
 - 1. Submit a final Application for Payment according to Section 012900 "Payment Procedures."
 - 2. Certified List of Incomplete Items: Submit certified copy of Architect's Substantial Completion inspection list of items to be completed or corrected (punch list), endorsed and dated by Architect. Certified copy of the list shall state that each item has been completed or otherwise resolved for acceptance.
 - 3. Certificate of Insurance: Submit evidence of final, continuing insurance coverage complying with insurance requirements.
 - 4. Submit pest-control final inspection report.
- B. Inspection: Submit a written request for final inspection to determine acceptance a minimum of 10 days prior to date the work will be completed and ready for final inspection and tests. On receipt of request, Architect will either proceed with inspection or notify Contractor of unfulfilled requirements. Architect will prepare a final Certificate for Payment after inspection or will notify Contractor of construction that must be completed or corrected before certificate will be issued.

1.7 LIST OF INCOMPLETE ITEMS (PUNCH LIST)

- A. Organization of List: Include name and identification of each space and area affected by construction operations for incomplete items and items needing correction including, if necessary, areas disturbed by Contractor that are outside the limits of construction.
 - 1. Organize list of spaces in sequential order, starting with exterior areas first.
 - 2. Organize items applying to each space by major element, including categories for ceiling, individual walls, floors, equipment, and building systems.
 - 3. Submit list of incomplete items in the following format:
 - a. MS Excel electronic file. Architect will return annotated file.
 - b. PDF electronic file. Architect will return annotated file.
 - c. Web-based project software upload. Utilize software feature for creating and updating list of incomplete items (punch list).
 - d. Three paper copies. Architect will return two copies.

1.8 SUBMITTAL OF PROJECT WARRANTIES

A. Time of Submittal: Submit written warranties on request of Architect for designated portions of the Work where warranties are indicated to commence on dates other than date of Substantial

- Completion, or when delay in submittal of warranties might limit Owner's rights under warranty.
- B. Organize warranty documents into an orderly sequence based on the table of contents of Project Manual.
- C. Warranty Electronic File: Provide warranties and bonds in PDF format. Assemble complete warranty and bond submittal package into a single electronic PDF file with bookmarks enabling navigation to each item. Provide bookmarked table of contents at beginning of document.
 - 1. Submit on digital media acceptable to Architect by uploading to web-based project software site.

D. Warranties in Paper Form:

- 1. Bind warranties and bonds in heavy-duty, three-ring, vinyl-covered, loose-leaf binders, thickness as necessary to accommodate contents, and sized to receive 8-1/2-by-11-inch paper.
- E. Provide additional copies of each warranty to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Cleaning Agents: Use cleaning materials and agents recommended by manufacturer or fabricator of the surface to be cleaned. Do not use cleaning agents that are potentially hazardous to health or property or that might damage finished surfaces.

PART 3 - EXECUTION

3.1 FINAL CLEANING

- A. General: Perform final cleaning. Conduct cleaning and waste-removal operations to comply with local laws and ordinances and Federal and local environmental and antipollution regulations.
- B. Cleaning: Employ experienced workers or professional cleaners for final cleaning. Clean each surface or unit to condition expected in an average commercial building cleaning and maintenance program. Comply with manufacturer's written instructions.
 - 1. Complete the following cleaning operations before requesting inspection for certification of Substantial Completion for entire Project or for a designated portion of Project:
 - a. Clean Project site, yard, and grounds, in areas disturbed by construction activities, including landscape development areas, of rubbish, waste material, litter, and other foreign substances.

- b. Clean exposed exterior and interior hard-surfaced finishes to a dirt-free condition, free of stains, films, and similar foreign substances. Avoid disturbing natural weathering of exterior surfaces. Restore reflective surfaces to their original condition.
- c. Remove debris and surface dust from limited access spaces, including roofs, plenums, shafts, trenches, equipment vaults, manholes, attics, and similar spaces.
- d. Sweep concrete floors broom clean in unoccupied spaces.
- e. Vacuum carpet and similar soft surfaces, removing debris and excess nap; clean according to manufacturer's recommendations if visible soil or stains remain.
- f. Clean plumbing fixtures to a sanitary condition, free of stains, including stains resulting from water exposure.
- g. Replace disposable air filters and clean permanent air filters. Clean exposed surfaces of diffusers, registers, and grills.
- h. Clean light fixtures, lamps, globes, and reflectors to function with full efficiency.
- i. Leave Project clean and ready for occupancy.
- C. Pest Control: Comply with pest control requirements in Section 015000 "Temporary Facilities and Controls." Prepare written report.
- D. Construction Waste Disposal: Comply with waste disposal requirements in Section 015000 "Temporary Facilities and Controls." and Section 017419 "Construction Waste Management and Disposal."

3.2 REPAIR OF THE WORK

- A. Complete repair and restoration operations, before requesting inspection for determination of Substantial Completion.
- B. Repair, or remove and replace, defective construction. Repairing includes replacing defective parts, refinishing damaged surfaces, touching up with matching materials, and properly adjusting operating equipment. Where damaged or worn items cannot be repaired or restored, provide replacements. Remove and replace operating components that cannot be repaired. Restore damaged construction and permanent facilities used during construction to specified condition.

SECTION 017823 - OPERATION AND MAINTENANCE DATA

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes administrative and procedural requirements for preparing operation and maintenance manuals, including the following:
 - 1. Operation and maintenance documentation directory manuals.
 - 2. Emergency manuals.
 - 3. Systems and equipment operation manuals.
 - 4. Systems and equipment maintenance manuals.
 - 5. Product maintenance manuals.

1.2 CLOSEOUT SUBMITTALS

- A. Submit operation and maintenance manuals indicated. Provide content for each manual as specified in individual Specification Sections, and as reviewed and approved at the time of Section submittals. Submit reviewed manual content formatted and organized as required by this Section.
 - 1. Architect will comment on whether content of operation and maintenance submittals is acceptable.
 - 2. Where applicable, clarify and update reviewed manual content to correspond to revisions and field conditions.
- B. Format: Submit operation and maintenance manuals in the following format:
 - 1. Submit on digital media acceptable to Architect by uploading to web-based project software site. Enable reviewer comments on draft submittals.
 - 2. Submit three paper copies. Architect will return two copies.
- C. Final Manual Submittal: Submit each manual in final form prior to requesting inspection for Substantial Completion and at least 15 days before commencing demonstration and training. Architect will return copy with comments.
 - 1. Correct or revise each manual to comply with Architect's comments. Submit copies of each corrected manual within 15 days of receipt of Architect's and Commissioning Authority's comments and prior to commencing demonstration and training.
- D. Comply with Section 017700 "Closeout Procedures" for schedule for submitting operation and maintenance documentation.

1.3 FORMAT OF OPERATION AND MAINTENANCE MANUALS

- A. Manuals, Electronic Files: Submit manuals in the form of a multiple file composite electronic PDF file for each manual type required.
 - 1. Electronic Files: Use electronic files prepared by manufacturer where available. Where scanning of paper documents is required, configure scanned file for minimum readable file size.
 - 2. File Names and Bookmarks: Bookmark individual documents based on file names. Name document files to correspond to system, subsystem, and equipment names used in manual directory and table of contents. Group documents for each system and subsystem into individual composite bookmarked files, then create composite manual, so that resulting bookmarks reflect the system, subsystem, and equipment names in a readily navigated file tree. Configure electronic manual to display bookmark panel on opening file.
- B. Manuals, Paper Copy: Submit manuals in the form of hard-copy, bound and labeled volumes.
 - 1. Binders: Heavy-duty, three-ring, vinyl-covered, loose-leaf, 3-ring binders, in thickness necessary to accommodate contents, sized to hold 8-1/2-by-11-inch paper; with clear plastic sleeve on spine to hold label describing contents and with pockets inside covers to hold folded oversize sheets.
 - 2. Drawings: Attach reinforced, punched binder tabs on drawings and bind with text.
 - a. If oversize drawings are necessary, fold drawings to same size as text pages and use as foldouts.
 - b. If drawings are too large to be used as foldouts, fold and place drawings in labeled envelopes and bind envelopes in rear of manual. At appropriate locations in manual, insert typewritten pages indicating drawing titles, descriptions of contents, and drawing locations.

1.4 REQUIREMENTS FOR EMERGENCY, OPERATION, AND MAINTENANCE MANUALS

- A. Organization of Manuals: Unless otherwise indicated, organize each manual into a separate section for each system and subsystem, and a separate section for each piece of equipment not part of a system. Each manual shall contain the following materials, in the order listed:
 - 1. Title page.
 - 2. Table of contents.
 - 3. Manual contents.
- B. Title Page: Include the following information:
 - 1. Subject matter included in manual.
 - 2. Name and address of Project.
 - 3. Name and address of Owner.
 - 4. Date of submittal.
 - 5. Name and contact information for Contractor.
 - 6. Name and contact information for Construction Manager.
 - 7. Name and contact information for Architect.
 - 8. Name and contact information for Commissioning Authority.

- 9. Names and contact information for major consultants to the Architect that designed the systems contained in the manuals.
- 10. Cross-reference to related systems in other operation and maintenance manuals.
- C. Table of Contents: List each product included in manual, identified by product name, indexed to the content of the volume, and cross-referenced to Specification Section number in Project Manual.
- D. Manual Contents: Organize into sets of manageable size. Arrange contents alphabetically by system, subsystem, and equipment. If possible, assemble instructions for subsystems, equipment, and components of one system into a single binder.
- E. Identification: In the documentation directory and in each operation and maintenance manual, identify each system, subsystem, and piece of equipment with same designation used in the Contract Documents. If no designation exists, assign a designation according to ASHRAE Guideline 4, "Preparation of Operating and Maintenance Documentation for Building Systems."

1.5 EMERGENCY MANUALS

- A. Emergency Manual: Assemble a complete set of emergency information indicating procedures for use by emergency personnel and by Owner's operating personnel for types of emergencies indicated.
- B. Content: Organize manual into a separate section for each of the following:
 - 1. Type of emergency.
 - 2. Emergency instructions.
 - 3. Emergency procedures.
- C. Type of Emergency: Where applicable for each type of emergency indicated below, include instructions and procedures for each system, subsystem, piece of equipment, and component:
 - 1. Fire.
 - 2. Flood.
 - 3. Gas leak.
 - 4. Water leak.
 - 5. Power failure.
 - 6. Water outage.
 - 7. System, subsystem, or equipment failure.
 - 8. Chemical release or spill.
- D. Emergency Instructions: Describe and explain warnings, trouble indications, error messages, and similar codes and signals. Include responsibilities of Owner's operating personnel for notification of Installer, supplier, and manufacturer to maintain warranties.
- E. Emergency Procedures: Include the following, as applicable:
 - 1. Instructions on stopping.
 - 2. Shutdown instructions for each type of emergency.

- 3. Operating instructions for conditions outside normal operating limits.
- 4. Required sequences for electric or electronic systems.
- 5. Special operating instructions and procedures.

1.6 SYSTEMS AND EQUIPMENT OPERATION MANUALS

- A. Systems and Equipment Operation Manual: Assemble a complete set of data indicating operation of each system, subsystem, and piece of equipment not part of a system. Include information required for daily operation and management, operating standards, and routine and special operating procedures.
- B. Content: In addition to requirements in this Section, include operation data required in individual Specification Sections and the following information:
 - 1. System, subsystem, and equipment descriptions. Use designations for systems and equipment indicated on Contract Documents.
 - 2. Performance and design criteria if Contractor has delegated design responsibility.
 - 3. Operating standards.
 - 4. Operating procedures.
 - 5. Operating logs.
 - 6. Wiring diagrams.
 - 7. Control diagrams.
 - 8. Piped system diagrams.
 - 9. Precautions against improper use.
 - 10. License requirements including inspection and renewal dates.

C. Descriptions: Include the following:

- 1. Product name and model number. Use designations for products indicated on Contract Documents.
- 2. Manufacturer's name.
- 3. Equipment identification with serial number of each component.
- 4. Equipment function.
- 5. Operating characteristics.
- 6. Limiting conditions.
- 7. Performance curves.
- 8. Engineering data and tests.
- 9. Complete nomenclature and number of replacement parts.

D. Operating Procedures: Include the following, as applicable:

- 1. Startup procedures.
- 2. Equipment or system break-in procedures.
- 3. Routine and normal operating instructions.
- 4. Regulation and control procedures.
- 5. Instructions on stopping.
- 6. Normal shutdown instructions.
- 7. Seasonal and weekend operating instructions.
- 8. Required sequences for electric or electronic systems.
- 9. Special operating instructions and procedures.

- E. Systems and Equipment Controls: Describe the sequence of operation, and diagram controls as installed.
- F. Piped Systems: Diagram piping as installed, and identify color coding where required for identification.

1.7 SYSTEMS AND EQUIPMENT MAINTENANCE MANUALS

- A. Systems and Equipment Maintenance Manuals: Assemble a complete set of data indicating maintenance of each system, subsystem, and piece of equipment not part of a system. Include manufacturers' maintenance documentation, preventive maintenance procedures and frequency, repair procedures, wiring and systems diagrams, lists of spare parts, and warranty information.
- B. Content: For each system, subsystem, and piece of equipment not part of a system, include source information, manufacturers' maintenance documentation, maintenance procedures, maintenance and service schedules, spare parts list and source information, maintenance service contracts, and warranties and bonds, as described below.
- C. Manufacturers' Maintenance Documentation: Include the following information for each component part or piece of equipment:
 - 1. Standard maintenance instructions and bulletins; include only sheets pertinent to product or component installed. Mark each sheet to identify each product or component incorporated into the Work. If data include more than one item in a tabular format, identify each item using appropriate references from the Contract Documents. Identify data applicable to the Work and delete references to information not applicable.
 - a. Prepare supplementary text if manufacturers' standard printed data are not available and where the information is necessary for proper operation and maintenance of equipment or systems.
 - 2. Drawings, diagrams, and instructions required for maintenance, including disassembly and component removal, replacement, and assembly.
 - 3. Identification and nomenclature of parts and components.
 - 4. List of items recommended to be stocked as spare parts.
- D. Maintenance Procedures: Include the following information and items that detail essential maintenance procedures:
 - 1. Test and inspection instructions.
 - 2. Troubleshooting guide.
 - 3. Precautions against improper maintenance.
 - 4. Disassembly; component removal, repair, and replacement; and reassembly instructions.
 - 5. Aligning, adjusting, and checking instructions.
 - 6. Demonstration and training video recording, if available.
- E. Maintenance and Service Schedules: Include service and lubrication requirements, list of required lubricants for equipment, and separate schedules for preventive and routine maintenance and service with standard time allotment.

- F. Spare Parts List and Source Information: Include lists of replacement and repair parts, with parts identified and cross-referenced to manufacturers' maintenance documentation and local sources of maintenance materials and related services.
- G. Warranties and Bonds: Include copies of warranties and bonds and lists of circumstances and conditions that would affect validity of warranties or bonds.
 - 1. Include procedures to follow and required notifications for warranty claims.
- H. Drawings: Prepare drawings supplementing manufacturers' printed data to illustrate the relationship of component parts of equipment and systems and to illustrate control sequence and flow diagrams. Coordinate these drawings with information contained in record Drawings to ensure correct illustration of completed installation.

1.8 PRODUCT MAINTENANCE MANUALS

- A. Product Maintenance Manual: Assemble a complete set of maintenance data indicating care and maintenance of each product, material, and finish incorporated into the Work.
- B. Content: Organize manual into a separate section for each product, material, and finish. Include source information, product information, maintenance procedures, repair materials and sources, and warranties and bonds, as described below.
- C. Product Information: Include the following, as applicable:
 - 1. Product name and model number.
 - 2. Manufacturer's name.
 - 3. Color, pattern, and texture.
 - 4. Material and chemical composition.
 - 5. Reordering information for specially manufactured products.
- D. Maintenance Procedures: Include manufacturer's written recommendations and the following:
 - 1. Inspection procedures.
 - 2. Types of cleaning agents to be used and methods of cleaning.
 - 3. List of cleaning agents and methods of cleaning detrimental to product.
 - 4. Schedule for routine cleaning and maintenance.
 - 5. Repair instructions.
- E. Repair Materials and Sources: Include lists of materials and local sources of materials and related services.
- F. Warranties and Bonds: Include copies of warranties and bonds and lists of circumstances and conditions that would affect validity of warranties or bonds.
 - 1. Include procedures to follow and required notifications for warranty claims.

1180510 TOBIE GRANT RECREATION CENTER 3/22/19

CONSTRUCTION DOCUMENTS 100% SUBMITTAL

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

SECTION 017839 - PROJECT RECORD DOCUMENTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplemental Requirements and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes administrative and procedural requirements for project record documents, including the following:
 - 1. Record Drawings.
 - 2. Record Specifications.
 - 3. Record Product Data.

B. Related Requirements:

- 1. Section 017300 "Execution" for final property survey.
- 2. Section 017700 "Closeout Procedures" for general closeout procedures.
- 3. Section 017823 "Operation and Maintenance Data" for operation and maintenance manual requirements.

1.3 CLOSEOUT SUBMITTALS

- A. Record Drawings: Comply with the following:
 - 1. Number of Copies: Submit one set(s) of marked-up record prints.
 - 2. Number of Copies: Submit copies of record Drawings as follows:
 - a. Initial Submittal:
 - 1) Submit one paper-copy set(s) of marked-up record prints.
 - 2) Submit PDF electronic files of scanned record prints and one of file prints.
 - 3) Submit record digital data files and one set of plots.
 - 4) Architect will indicate whether general scope of changes, additional information recorded, and quality of drafting are acceptable.

b. Final Submittal:

- 1) Submit three paper-copy set(s) of marked-up record prints.
- 2) Submit PDF electronic files of scanned record prints and three set(s) of prints.
- Print each drawing, whether or not changes and additional information were recorded.

- B. Record Specifications: Submit one annotated paper copy and an annotated PDF electronic file of Project's Specifications, including addenda and contract modifications.
- C. Record Product Data: Submit annotated PDF electronic files and directories of each submittal.
 - 1. Where record Product Data are required as part of operation and maintenance manuals, submit duplicate marked-up Product Data as a component of manual.

1.4 RECORD DRAWINGS

- A. Record Prints: Maintain one set of marked-up paper copies of the Contract Drawings and Shop Drawings, incorporating new and revised drawings as modifications are issued.
 - 1. Preparation: Mark record prints to show the actual installation where installation varies from that shown originally. Require individual or entity who obtained record data, whether individual or entity is Installer, subcontractor, or similar entity, to provide information for preparation of corresponding marked-up record prints.
 - a. Give particular attention to information on concealed elements that would be difficult to identify or measure and record later.
 - b. Accurately record information in an acceptable drawing technique.
 - c. Record data as soon as possible after obtaining it.
 - d. Record and check the markup before enclosing concealed installations.
 - e. Cross-reference record prints to corresponding photographic documentation.
 - 2. Content: Types of items requiring marking include, but are not limited to, the following:
 - a. Dimensional changes to Drawings.
 - b. Revisions to details shown on Drawings.
 - c. Depths of foundations.
 - d. Locations and depths of underground utilities.
 - e. Revisions to routing of piping and conduits.
 - f. Revisions to electrical circuitry.
 - g. Actual equipment locations.
 - h. Duct size and routing.
 - i. Locations of concealed internal utilities.
 - j. Changes made by Change Order or Construction Change Directive.
 - k. Changes made following Architect's written orders.
 - 1. Details not on the original Contract Drawings.
 - m. Field records for variable and concealed conditions.
 - n. Record information on the Work that is shown only schematically.
 - 3. Mark the Contract Drawings and Shop Drawings completely and accurately. Use personnel proficient at recording graphic information in production of marked-up record prints.
 - 4. Mark record sets with erasable, red-colored pencil. Use other colors to distinguish between changes for different categories of the Work at same location.
 - 5. Mark important additional information that was either shown schematically or omitted from original Drawings.

- 6. Note Construction Change Directive numbers, alternate numbers, Change Order numbers, and similar identification, where applicable.
- B. Record Digital Data Files: Immediately before inspection for Certificate of Substantial Completion, review marked-up record prints with Architect. When authorized, prepare a full set of corrected digital data files of the Contract Drawings, as follows:
 - 1. Format: Same digital data software program, version, and operating system as the original Contract Drawings.
 - 2. Format: DWG or DXF, for Microsoft Windows operating system.
 - 3. Format: Annotated PDF electronic file with comment function enabled.
 - 4. Incorporate changes and additional information previously marked on record prints. Delete, redraw, and add details and notations where applicable.
 - 5. Refer instances of uncertainty to Architect for resolution.
 - 6. Architect will furnish Contractor with one set of digital data files of the Contract Drawings for use in recording information.
 - a. See Section 013100 "Project Management and Coordination" for requirements related to use of Architect's digital data files.
 - b. Architect will provide data file layer information. Record markups in separate layers.
- C. Format: Identify and date each record Drawing; include the designation "PROJECT RECORD DRAWING" in a prominent location.
 - 1. Record Prints: Organize record prints into manageable sets. Bind each set with durable paper cover sheets. Include identification on cover sheets.
 - 2. Format: Annotated PDF electronic file with comment function enabled.
 - 3. Record Digital Data Files: Organize digital data information into separate electronic files that correspond to each sheet of the Contract Drawings. Name each file with the sheet identification. Include identification in each digital data file.
 - 4. Identification: As follows:
 - a. Project name.
 - b. Date
 - c. Designation "PROJECT RECORD DRAWINGS."
 - d. Name of Architect.
 - e. Name of Contractor.

1.5 RECORD SPECIFICATIONS

- A. Preparation: Mark Specifications to indicate the actual product installation where installation varies from that indicated in Specifications, addenda, and contract modifications.
 - 1. Give particular attention to information on concealed products and installations that cannot be readily identified and recorded later.
 - 2. Mark copy with the proprietary name and model number of products, materials, and equipment furnished, including substitutions and product options selected.
 - 3. Record the name of manufacturer, supplier, Installer, and other information necessary to provide a record of selections made.

- 4. For each principal product, indicate whether record Product Data has been submitted in operation and maintenance manuals instead of submitted as record Product Data.
- 5. Note related Change Orders, record Product Data, and record Drawings where applicable.
- B. Format: Submit record Specifications as annotated PDF electronic file and one paper copy.

1.6 RECORD PRODUCT DATA

- A. Recording: Maintain one copy of each submittal during the construction period for project record document purposes. Post changes and revisions to project record documents as they occur; do not wait until end of Project.
- B. Preparation: Mark Product Data to indicate the actual product installation where installation varies substantially from that indicated in Product Data submittal.
 - 1. Give particular attention to information on concealed products and installations that cannot be readily identified and recorded later.
 - 2. Include significant changes in the product delivered to Project site and changes in manufacturer's written instructions for installation.
 - 3. Note related Change Orders, record Specifications, and record Drawings where applicable.
- C. Format: Submit record Product Data as annotated PDF electronic file and paper copy scanned PDF electronic file(s) of marked-up paper copy of Product Data.
 - 1. Include record Product Data directory organized by Specification Section number and title, electronically linked to each item of record Product Data.

1.7 MAINTENANCE OF RECORD DOCUMENTS

A. Maintenance of Record Documents: Store record documents in the field office apart from the Contract Documents used for construction. Do not use project record documents for construction purposes. Maintain record documents in good order and in a clean, dry, legible condition, protected from deterioration and loss. Provide access to project record documents for Architect's reference during normal working hours.

PART 2 - PRODUCTS

PART 3 - EXECUTION

SECTION 017900 - DEMONSTRATION AND TRAINING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes administrative and procedural requirements for instructing Owner's personnel, including the following:
 - 1. Instruction in operation and maintenance of systems, subsystems, and equipment.
 - 2. Demonstration and training video recordings.

1.2 INFORMATIONAL SUBMITTALS

- A. Instruction Program: Submit outline of instructional program for demonstration and training, including a list of training modules and a schedule of proposed dates, times, length of instruction time, and instructors' names for each training module. Include learning objective and outline for each training module.
 - 1. Indicate proposed training modules using manufacturer-produced demonstration and training video recordings for systems, equipment, and products in lieu of video recording of live instructional module.

1.3 CLOSEOUT SUBMITTALS

- A. Demonstration and Training Video Recordings: Submit two copies within seven days of end of each training module.
 - 1. At completion of training, submit complete training manual(s) for Owner's use prepared in same paper and PDF file format required for operation and maintenance manuals specified in Section 017823 "Operation and Maintenance Data."

1.4 QUALITY ASSURANCE

- A. Facilitator Qualifications: A firm or individual experienced in training or educating maintenance personnel in a training program similar in content and extent to that indicated for this Project, and whose work has resulted in training or education with a record of successful learning performance.
- B. Instructor Qualifications: A factory-authorized service representative, complying with requirements in Section 014000 "Quality Requirements," experienced in operation and maintenance procedures and training.
- C. Preinstruction Conference: Conduct conference at Project site to comply with requirements in Section 013100 "Project Management and Coordination."

1.5 COORDINATION

- A. Coordinate instruction schedule with Owner's operations. Adjust schedule as required to minimize disrupting Owner's operations and to ensure availability of Owner's personnel.
- B. Coordinate instructors, including providing notification of dates, times, length of instruction time, and course content.
- C. Coordinate content of training modules with content of approved emergency, operation, and maintenance manuals. Do not submit instruction program until operation and maintenance data have been reviewed and approved by Architect.

1.6 INSTRUCTION PROGRAM

- A. Program Structure: Develop an instruction program that includes individual training modules for each system and for equipment not part of a system, as required by individual Specification Sections.
- B. Training Modules: Develop a learning objective and teaching outline for each module. Include a description of specific skills and knowledge that participant is expected to master. For each module, include instruction for the following as applicable to the system, equipment, or component:
 - 1. Basis of System Design, Operational Requirements, and Criteria: Include the following:
 - a. System, subsystem, and equipment descriptions.
 - b. Performance and design criteria if Contractor is delegated design responsibility.
 - c. Operating standards.
 - d. Regulatory requirements.
 - e. Equipment function.
 - f. Operating characteristics.
 - g. Limiting conditions.
 - h. Performance curves.
 - 2. Documentation: Review the following items in detail:
 - a. Emergency manuals.
 - b. Systems and equipment operation manuals.
 - c. Systems and equipment maintenance manuals.
 - d. Product maintenance manuals.
 - e. Project Record Documents.
 - f. Identification systems.
 - g. Warranties and bonds.
 - h. Maintenance service agreements and similar continuing commitments.
 - 3. Emergencies: Include the following, as applicable:
 - a. Instructions on meaning of warnings, trouble indications, and error messages.
 - b. Instructions on stopping.
 - c. Shutdown instructions for each type of emergency.

- d. Operating instructions for conditions outside of normal operating limits.
- e. Sequences for electric or electronic systems.
- f. Special operating instructions and procedures.
- 4. Operations: Include the following, as applicable:
 - a. Startup procedures.
 - b. Equipment or system break-in procedures.
 - c. Routine and normal operating instructions.
 - d. Regulation and control procedures.
 - e. Control sequences.
 - f. Safety procedures.
 - g. Instructions on stopping.
 - h. Normal shutdown instructions.
 - i. Operating procedures for emergencies.
 - j. Operating procedures for system, subsystem, or equipment failure.
 - k. Seasonal and weekend operating instructions.
 - 1. Required sequences for electric or electronic systems.
 - m. Special operating instructions and procedures.
- 5. Adjustments: Include the following:
 - a. Alignments.
 - b. Checking adjustments.
 - c. Noise and vibration adjustments.
 - d. Economy and efficiency adjustments.
- 6. Troubleshooting: Include the following:
 - a. Diagnostic instructions.
 - b. Test and inspection procedures.
- 7. Maintenance: Include the following:
 - a. Inspection procedures.
 - b. Types of cleaning agents to be used and methods of cleaning.
 - c. List of cleaning agents and methods of cleaning detrimental to product.
 - d. Procedures for routine cleaning.
 - e. Procedures for preventive maintenance.
 - f. Procedures for routine maintenance.
 - g. Instruction on use of special tools.
- 8. Repairs: Include the following:
 - a. Diagnosis instructions.
 - b. Repair instructions.
 - c. Disassembly; component removal, repair, and replacement; and reassembly instructions.
 - d. Instructions for identifying parts and components.
 - e. Review of spare parts needed for operation and maintenance.

1.7 PREPARATION

- A. Assemble educational materials necessary for instruction, including documentation and training module. Assemble training modules into a training manual organized in coordination with requirements in Section 017823 "Operation and Maintenance Data."
- B. Set up instructional equipment at instruction location.

1.8 INSTRUCTION

- A. Facilitator: Engage a qualified facilitator to prepare instruction program and training modules, to coordinate instructors, and to coordinate between Contractor and Owner for number of participants, instruction times, and location.
- B. Engage qualified instructors to instruct Owner's personnel to adjust, operate, and maintain systems, subsystems, and equipment not part of a system.
- C. Scheduling: Provide instruction at mutually agreed-on times. For equipment that requires seasonal operation, provide similar instruction at start of each season.
 - 1. Schedule training with Owner with at least seven days' advance notice.
- D. Training Location and Reference Material: Conduct training on-site in the completed and fully operational facility using the actual equipment in-place. Conduct training using final operation and maintenance data submittals.
- E. Evaluation: At conclusion of each training module, assess and document each participant's mastery of module by use of a demonstration performance-based test.
- F. Cleanup: Collect used and leftover educational materials and give to Owner. Remove instructional equipment. Restore systems and equipment to condition existing before initial training use.

1.9 DEMONSTRATION AND TRAINING VIDEO RECORDINGS

- A. General: Engage a qualified commercial videographer to record demonstration and training video recordings. Record each training module separately. Include classroom instructions and demonstrations, board diagrams, and other visual aids, but not student practice.
 - 1. At beginning of each training module, record each chart containing learning objective and lesson outline.
- B. Digital Video Recordings: Provide high-resolution, digital video in MPEG format, produced by a digital camera with minimum sensor resolution of 18 megapixels and capable of recording in full HD mode with vibration reduction technology.
 - 1. Submit video recordings by uploading to web-based Project software site.
- C. Recording: Mount camera on tripod before starting recording, unless otherwise necessary to adequately cover area of demonstration and training. Display continuous running time.

1180510 TOBIE GRANT RECREATION CENTER 3/22/19

CONSTRUCTION DOCUMENTS 100% SUBMITTAL

- D. Light Levels: Verify light levels are adequate to properly light equipment. Verify equipment markings are clearly visible prior to recording.
- E. Preproduced Video Recordings: Provide video recordings used as a component of training modules in same format as recordings of live training.

PART 2 - PRODUCTS

PART 3 - EXECUTION

SECTION 031000 - CONCRETE FORMWORK

PART 1 - GENERAL

1.1 SECTION INCLUDES

A. Section includes the design and erection of formwork, shoring and reshoring for cast-inplace concrete and accessories.

1.2 RELATED SECTIONS

- A. Section 013330 Structural Submittals.
- B. Section 032000 Concrete Reinforcement.
- C. Section 033000 Cast-in-Place Concrete.

1.3 REFERENCES

- A. ACI 117 Standard Specifications for Tolerances for Concrete Construction and Materials.
- B. ACI 301 Standard Specifications for Structural Concrete.
- C. ACI 318 Building Code Requirements for Structural Concrete.
- D. ACI 347 Recommended Practice for Concrete Formwork.
- E. ASTM D1751 Standard Specification for Preformed Expansion Joint Filler for Concrete Paving and Structural Construction (Nonextruding and Resilient Bituminous Types).
- F. ASTM E154 Standard Test Methods for Water Vapor Retarders Used in Contact with Earth Under Concrete Slabs, on Walls, or as Ground Cover.

1.4 SUBMITTALS

- A. Submit locations of construction joints for approval.
- B. Submit manufacturer's data for formwork accessories, inserts, form release agent, and isolation joint filler.

1.5 DESIGN OF FORMWORK

A. Design of formwork, shoring, and reshoring and its removal is the Contractor's responsibility.

- B. Design of formwork, shoring, and reshoring shall conform to ACI 117, ACI 301, ACI 318, and ACI 347.
- C. Design formwork in a manner such that existing or new construction is not overloaded.
- D. Do not remove shores or reshores earlier than recommended by ACI 301 and ACI 347.

PART 2 - PRODUCTS

2.1 FORM MATERIALS

- A. Construct forms with wood, plywood, metal, fiberglass or a combination of these.
- B. Form materials shall have sufficient strength to prevent distortion.

2.2 FORMWORK ACCESSORIES

A. Formwork accessories that are embedded in concrete, including ties and hangers, shall be commercially manufactured products. Do not use nonfabricated wire form ties.

2.3 FORM RELEASE AGENT

A. Form release agent shall not bond with, stain, nor adversely affect concrete surfaces.

2.4 VAPOR BARRIER

- A. Vapor barrier shall consist of polyethylene sheet, not less than ten mils thick.
- B. For areas to receive wood flooring, provide a waterproof and vaporproof membrane such as Sealtight Premoulded Membrane Vapor Seal with Plasmatic Core.

2.5 ISOLATION JOINT FILLER

A. Asphalt impregnated premolded fiberboard isolation joint filler shall conform with ASTM D1751 and be 1/2-inch thick by full thickness of slab or joint, unless indicated otherwise on the Drawings.

2.6 CONSTRUCTION JOINTS

A. Provide key type steel forms by Vulcan screed joints, Burke Keyed Kold joint form or Form-A-Key.

PART 3 - EXECUTION

3.1 GENERAL

- A. Erect formwork in accordance with ACI 301, ACI 318, and ACI 347.
- B. Maintain formwork and shoring to support loads until such loads can be supported by concrete structure.

3.2 TOLERANCES

A. Finished work shall comply with ACI 117 tolerances.

3.3 CAMBER

- A. Camber formwork for slabs and beams to compensate for anticipated deflections in formwork prior to hardening of concrete to maintain tolerances specified by ACI 117.
- B. Set screeds to a like camber to maintain specified concrete thickness.

3.4 SURFACE PREPARATION

- A. For concrete exposed to view, seal form joints to prevent leakage.
- B. Before reinforcement is placed, coat contact surfaces of form with form release agent in accordance with manufacturer's recommendations. Do not allow excess form release agent to accumulate in forms or come in contact with concrete surfaces against which fresh concrete will be placed.

3.5 CHAMFERS

A. Provide 3/4-inch chamfer at all corners.

3.6 FOUNDATION ELEMENTS

- A. Form foundation elements if soil or other conditions are such that earth trench forms are unsuitable.
- B. Sides of exterior turned-down slabs shall be formed.
- C. Maintain minimum coverage of reinforcing steel as indicated on Structural Drawings.

3.7 INSERTS

- A. Install and secure in position required inserts, hangers, sleeves, anchors, and nailers.
- B. Locate anchor bolts by using templates with two nuts to secure in position.

3.8 EMBEDS

A. Set and secure embedded plates, bearing plates, and anchor bolts in accordance with approved setting drawings and in such a manner to prevent displacement during placement of concrete.

3.9 VAPOR BARRIER

- A. Where indicated on Drawings, place vapor barrier over sewer, piping, and granular subbase, but below conduits and ducts, and behind insulation and expansion joints at sidewalls.
- B. Lap vapor barrier six inches minimum at splices.
- C. Do not puncture vapor barrier.
- D. Install waterproof and vaporproof membrane in accordance with manufacturer's recommendations.

3.10 FORM REMOVAL

A. Remove forms carefully in such manner and at such time as to ensure complete safety of structure. Do not remove forms shoring, or reshoring until members have acquired sufficient strength to support their weight and the load thereon safely.

3.11 PROVISIONS FOR OTHER TRADES

- A. Provide openings in concrete formwork to accommodate work of other trades. Determine size and location of openings and recesses from trades providing such items.
- B. Accurately place and securely support items built into forms. Obtain approval for openings not shown on Drawings.

3.12 CLEANING

A. Thoroughly clean forms and adjacent surfaces to receive concrete. Remove chips, wood, sawdust, dirt or other debris just before concrete is placed.

3.13 FORM SURFACES

A. Coat contact surfaces of forms with a form coating compound before reinforcement is placed. Apply in accordance with manufacturer's recommendations. Rust-stained steel formwork is not acceptable.

3.14 CONSTRUCTION JOINTS

- A. Provide construction joints in accordance with ACI 318.
- B. Obtain Design Professional's prior approval for use and location of joints.
- C. Provide 1-1/2 inch deep key type construction joints at end of each placement for slabs, beams, walls, and footings. Bevel forms for easy removal.
- D. Remove loose particles and latency from surface prior to placing the next lift. Chip the surface to a depth sufficient to expose sound concrete.

SECTION 032000 - CONCRETE REINFORCEMENT

PART 1 - GENERAL

1.1 RELATED SECTIONS

- A. Section 013330 Structural Submittals.
- B. Section 014525 Structural Testing/Inspection Agency Services.
- C. Section 031000 Concrete Formwork.
- D. Section 033000 Cast-in-Place Concrete.

1.2 REFERENCES

- A. ACI 117 Standard Specifications for Tolerances for Concrete Construction and Materials.
- B. ACI 301 Standard Specifications for Structural Concrete.
- C. ACI 315 Details and Detailing of Concrete Reinforcement.
- D. ACI 318 Building Code Requirements for Structural Concrete.
- E. ASTM A1064 Standard Specification for Carbon-Steel Wire and Welded Wire Reinforcement, Plain and Deformed, for Concrete Reinforcement.
- F. ASTM A615 Standard Specification for Deformed and Plain Billet-Steel Bars for Concrete Reinforcement.
- G. ASTM A706 Standard Specification for Low-Alloy Steel Deformed Bars for Concrete Reinforcement.
- H. AWS D12.1 Recommended Practices for Welding Reinforcing Steel Metal Inserts, and Connections in Reinforced Concrete Construction.
- I. AWS D1.4 Structural Weld Code Reinforcing Steel.
- J. CRSI Manual of Practice, and Documents 63 and 65.

1.3 SUBMITTALS

A. Submit shop drawings as follows:

- 1. Notify Design Professional prior to detailing reinforcing steel shop drawings.
- 2. Indicate size, spacings, locations and quantities of reinforcing steel and wire fabric, bending and cutting schedules, splice lengths, stirrup spacing, supporting and spacing devices. Detail reinforcing steel in accordance with ACI 315 and CRSI Standards.
- 3. Written description of reinforcement without adequate sections, elevations, and details is not acceptable.
- 4. Reproduction of Structural Drawings for shop drawings is not permitted. Electronic drawing files will not be provided to the Contractor.
- B. Submit a certification from each manufacturer or supplier stating that materials meet the requirements of the ASTM and ACI standards referenced.
- C. Submit mill test reports.
- D. Submit manufacturer's data for tensile and compressive splicers.
- E. Submit manufacturer's data including installation recommendations for dowel adhesive.

1.4 QUALITY ASSURANCE

- A. Coordinate and schedule in a timely manner with the Structural Testing/Inspection Agency the following quality related items:
 - 1. Verify reinforcing steel for quantity, size, location, and support.
 - 2. Verify proper reinforcing steel concrete coverage.
- B. The Structural Testing / Inspection Agency shall provide special inspections as required by Chapter 17 of the building code as required by Specification 01 4525.

1.5 STORAGE AND PROTECTING

A. Store reinforcing steel above ground so that it remains clean. Maintain steel surfaces free from materials and coatings which might impair bond.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Deformed reinforcing steel shall conform to ASTM A615, refer to Structural Drawings for grade (Grade 60 minimum).
- B. Welded steel wire fabric shall conform to ASTM A1064.

2.2 ACCESSORY MATERIALS

- A. Annealed steel tie wire shall be 16-1/2 gage minimum.
- B. Bar supports shall be plastic-tipped steel Class I bar supports conforming to CRSI Specifications. Concrete brick may be used to support reinforcement to obtain proper clearance from earth.

2.3 DOWEL ADHESIVE

A. Adhesive for reinforcing dowels in existing concrete shall conform to ASTM C881-13, Type IV, Grade 3, CLASS A, B, & C except gel times and epoxy content. Adhesive shall consist of a two-component adhesive system contained in side by side packaging connected to a mixing nozzle which thoroughly mixes the components as it is injected into the hole. Adhesive shall have passed ICC Evaluation Services, Inc. Acceptance Criteria 308 for long term creep and be specifically approved for use in cracked concrete.

PART 3 - EXECUTION

3.1 FABRICATION

- A. Fabricate steel in accordance with ACI 318 and CRSI standards.
- B. Bend bars cold. Do not heat or flame cut bars. No field bending of bars partially embedded in concrete is permitted, unless specifically approved Design Professional and checked by Testing and Inspection Agency for cracks.
- C. Weld only as indicated. Perform welding in accordance with AWS D12.1 and or AWS D1.4.
- D. Tag reinforcing steel for easy identification.

3.2 INSTALLATION

- A. Before placing concrete, clean reinforcement of foreign particles and coatings.
- B. Place, support, and secure reinforcement against displacement in accordance with ACI 318 and CRSI standards. Do not deviate from alignment or measurement.

- C. Place concrete beam reinforcement support parallel to main reinforcement.
- D. Locate welded wire fabric in the top third of slabs. Overlap mesh one lap plus two inches at side and end joints.
- E. Furnish and install dowels or mechanical splices at intersections of walls, columns and piers to permit continuous reinforcement or development lengths at such intersections.
- F. Maintain cover and tolerances in accordance with ACI and CRSI Specifications, unless indicated otherwise on Structural Drawings.

3.3 SPLICES

A. Do not splice reinforcement except as indicated on Structural Drawings.

3.4 DOWELS IN EXISTING CONCRETE

- A. Install dowels and dowel adhesive in accordance with manufacturer's recommendations.
- B. Minimum embedment length shall be 12 bar diameters, unless noted otherwise.

SECTION 033000 - CAST-IN-PLACE CONCRETE

PART 1 - GENERAL

1.1 SECTION INCLUDES

A. Section includes cast-in-place concrete work indicated in the Contract Documents or otherwise required for proper completion of the work.

1.2 RELATED SECTIONS

- A. Section 013300 Structural Submittals.
- B. Section 014525 Structural Testing/Inspection Agency Services.
- C. Section 031000 Concrete Formwork.
- D. Section 032000 Concrete Reinforcement.
- E. Section 036200 Non-Shrink Grout.

1.3 REFERENCES

- A. ACI 214 Recommended Practice for Evaluation of Strength Test Results of Concrete.
- B. ACI 301 Specifications for Structural Concrete for Buildings.
- C. ACI 302.1 Guide for Concrete Floor and Slab Construction.
- D. ACI 304 Guide for Measuring, Mixing, Transporting and Placing Concrete.
- E. ACI 305 Hot Weather Concreting.
- F. ACI 306 Cold Weather Concreting.
- G. ACI 308 Standard Practice for Curing Concrete.
- H. ACI 309 Guide for Consolidation of Concrete.
- I. ACI 318 Building Code Requirements for Structural Concrete.
- J. ASTM C31 Standard Practice for Making and Curing Concrete Test Specimens in the Field.
- K. ASTM C33 Standard Specification for Concrete Aggregates.
- L. ASTM C39 Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens.

- M. ASTM C94 Standard Specification for Ready-Mixed Concrete.
- N. ASTM C138 Standard Test Method for Unit Weight, Yield, and Air Content (Gravimetric) of Concrete.
- O. ASTM C143 Standard Test Method for Slump of Hydraulic Cement Concrete.
- P. ASTM C150 Standard Specification for Portland Cement.
- Q. ASTM C172 Standard Practice for Sampling Freshly Mixed Concrete.
- R. ASTM C173 Standard Test Method for Air Content of Freshly Mixed Concrete by the Volumetric Method.
- S. ASTM C230 Standard Specification for Flow Table or Use in Tests of Hydraulic Cement.
- T. ASTM C260 Standard Specification for Air-Entraining Admixtures for Concrete.
- U. ASTM C494 Standard Specification for Chemical Admixtures for Concrete.
- V. ASTM C618 Standard Specification for Fly Ash and Raw or Calcined Natural Pozzolan for Use as a Mineral Admixture in Portland Cement Concrete.
- W. ASTM E1155 Standard Test Method for Determining Floor Flatness and Levelness Using the F-Number System.
- X. ASTM C1315 Standard Specification for Liquid Membrane-Forming Compounds Having Special Properties for Curing and Sealing Concrete.

1.4 NOTICE

A. Notify Design Professional and Structural Testing/Inspection Agency not less than 48 hours prior to placing concrete.

1.5 QUALITY ASSURANCE

- A. Structural Testing/Inspection Agency shall perform the following quality related items:
 - 1. Examine concrete in truck to verify that concrete appears properly mixed.
 - 2. Perform a slump test as deemed necessary for each concrete load. Record if water or admixtures are added to the concrete at the job site. Perform additional slump tests after job site adjustments.
 - 3. Mold four specimens per set for compressive strength testing; one set for each 75 cubic yards of each mix design placed in any one day. For each set molded, record:

- a. Slump
- b. Air content
- c. Unit weight
- d. Temperature, ambient and concrete
- e. Location of placement
- f. Any pertinent information, such as addition of water, addition of admixtures, etc.

Perform one 7-day and two 28-day compressive strength tests. (Use one as a spare to be broken as directed by the Design Professional if compressive strengths do not appear adequate.)

- 6. Report in writing, as directed by the Design Professional, on the same day that tests are performed. Reports of compressive strength tests shall contain the project identification name and number, date of concrete placement, name of concrete testing agency, concrete design compressive strength, location of concrete placement in structure, concrete mix proportions and materials, compressive breaking strength and type of break.
- B. The ready-mixed concrete plant shall be certified for conformance with the requirements of the National Ready Mix Concrete Association.
- C. The Structural Testing / Inspection Agency shall provide special inspections as required by Chapter 17 of the building code as required in Specification 01 4525.

1.6 CONCRETE MIX DESIGN

- A. Establish concrete mix design proportions in accordance with ACI 318, Chapter 5.
- B. Submit concrete mix designs. Include the following:
 - 1. Type and quantities of materials.
 - 2. Slump.
 - 3. Air content.
 - 4. Fresh unit weight.
 - 5. Aggregates sieve analysis.
 - 6. Design compressive strength.
 - 7. Location of placement in structure.
 - 8. Method of placement.
 - 9. Method of curing.
 - 10. Seven-day and 28-day compressive strengths.
- C. Concrete supplier shall submit certifications that the materials used meet applicable ASTM Specifications. Mix designs not conforming to the above will be rejected.

1.7 SLUMP

A. Design concrete with a maximum slump of five inches.

B. If a slump greater than five inches is desired it shall be achieved with a high-range water reducer. Design the concrete mix with a high range water reducer slump of two and one-half inches plus or minus one and one-half inches. The maximum slump after high-range water reducers are added shall be eight inches.

1.8 FRESH UNIT WEIGHT

A. Normal weight concrete shall have a fresh unit weight of 140 to 152 pcf.

1.9 AIR CONTENT

- A. No entrained air content is required in concrete placed in the foundation.
- B. For normal weight concrete, entrained air content shall be four and one-half percent plus or minus one and one-half percent, unless specified otherwise.

1.10 WATER/CEMENT RATIO

- A. Concrete elements shall have a maximum water cement ratio of 0.50, unless noted otherwise.
- B. Air entrained concrete elements shall have a maximum water cement ratio of 0.45.

1.11 SUBMITTALS

- A. Submit a concrete mix design as specified above for each type of concrete included in the work.
- B. Submit a certification from each manufacturer or supplier stating that materials meet the requirements of the ASTM and ACI standards referenced.
- C. Submit manufacturer's data including Product Data and installation instructions for the following items. Manufacturer's Data shall include the name of the manufacturer and date of the publication. All manufacturers' data shall be maintained at the project site by the contractor.

Admixtures Curing materials Joint sealing materials Expansion joint filler Patching compounds Bonding agents

PART 2 - PRODUCTS

2.1 MATERIALS

A. Materials designated by specific manufacturer's trade names are approved, subject to compliance with the quality and performance indicated by the manufacturer. Instructions and specifications published by the manufacturer of such materials are included in and are a part of these specifications. Upon request, provide certification from manufacturer or supplier that materials designated by reference to ASTM and ACI standards meet the requirements of these standards.

2.2 CONCRETE STRENGTH

A. Provide concrete strengths indicated on the Structural Drawings.

2.3 CEMENT

A. Portland cement shall conform to ASTM C150, Type I, unless noted otherwise. Use one brand only.

2.4 AGGREGATE

- A. Fine aggregate shall conform to ASTM C33.
- B. Coarse aggregate of gravel or crushed stone shall conform to ASTM C33, Class 3M. Size coarse aggregate in accordance with ACI 318.

2.5 WATER

A. Water shall be potable and free of deleterious substances in accordance with ACI 318.

2.6 AIR ENTRAINING AGENT

A. Air entraining agent shall conform to ASTM C260.

2.7 WATER REDUCER

A. Water reducing agent shall conform to ASTM C494.

2.8 HIGH-RANGE WATER REDUCER

A. High-range water reducers (superplasticizers) shall conform to ASTM C494.

2.9 CHLORIDE

A. Use no chlorides of any form in concrete.

2.10 CURING COMPOUND

A. An acrylic curing compound meeting the requirements of ASTM C1315 and all local, state and federal Volatile Organic Carbon regulations may be used at the Contractor's option.

2.11 FLY ASH

A. Fly ash shall be Class F fly ash with a loss on ignition of less than five percent or Class C fly ash with a loss on ignition of less than one percent in accordance with ASTM C618.

2.12 ACCELERATORS

A. Non-chloride accelerators shall conform to ASTM C494.

2.13 RETARDERS

A. Retarders shall conform to ASTM C494.

PART 3 - EXECUTION

3.1 HIGH-RANGE WATER REDUCERS

A. High-range water reducers are to be added at dosage recommended by the manufacturer. The slump of the concrete shall be one to four inches at the time the high-range water reducers are added. Do not permit fresh concrete containing superplasticizers to come in contact with fresh concrete not containing superplasticizers.

3.2 ADDITION OF WATER AT JOB SITE

- A. Provide batch tickets indicating the amount of mix water withheld at the batch plant for each load of concrete delivered. Water may be added to the batch only if neither the maximum permissible water/cement ratio nor the maximum slump is exceeded.
- B. Water shall not be added to the batch after the required on-site testing has been performed.

3.3 PLACEMENT OF CONCRETE

- A. Deposit concrete as near as practical to final position to prevent segregation of concrete.
- B. Do no flowing of concrete with vibrators.
- C. Place floors and slabs in accordance with ACI 302.
- D. Do not use aluminum equipment in placing and finishing concrete.

- E. Place thickened slabs for partitions integral with floor slabs.
- F. Prepare place of deposit, mix, convey, place, and cure concrete in accordance with ACI 301, ACI 304, and ACI 318. Wet forms before placing concrete.

3.4 TIME LIMIT

A. Deposit concrete within one and one-half hours after batching.

3.5 VIBRATION

A. Consolidate concrete in accordance with ACI 301 and ACI 309.

3.6 CURING

- A. Begin curing procedures immediately following the commencement of the finishing operation.
- B. Cure concrete in accordance with ACI 308. Keep the concrete surface moist. If an acrylic curing compound is used, apply in accordance with manufacturer's recommendations to surfaces of concrete not protected for five days by formwork. Do not use curing compounds in areas to receive material that does not adhere to concrete cured with a curing compound unless the curing compound is water soluble.

3.7 ENVIRONMENTAL PROVISIONS

- A. Perform cold weather concreting in accordance with ACI 306.
- B. Perform hot weather concreting in accordance with ACI 305.
- C. Protect concrete from drying and excessive temperature for the first seven days.
- D. Protect fresh concrete from wind.

3.8 CONTRACTION JOINTS

- A. Obtain Design Professional 's approval for location of contraction joints.
- B. Do not place contraction joints in framed floors, composite slabs, or shear walls.
- C. Place contraction joints in slabs-on-grade as indicated on the Drawings.

3.9 CUTTING CONCRETE

A. Obtain Design Professional's written approval prior to cutting concrete for installation of other work.

3.10 PATCHWORK AND REPAIRS

A. Notify Design Professional of any defective areas in concrete to be patched or repaired. Repair and patch defective areas with non-shrink grout. Cut out defective areas over two inches in diameter to solid concrete, but not less than a depth of one inch. Make edges of cuts perpendicular to the concrete surface.

3.11 CONCRETE FINISHES

- A. Finish concrete in accordance with ACI 301.
- B. Finish concrete slabs to flatness and levelness tolerances which correspond to F_F25/F_L 20 minimum overall for composite of all measured values and F_F 17/F_L 12 minimum for any individual floor section.
- C. For concrete slabs to receive wood flooring, finish to flatness and levelness tolerances which correspondence to F_F 45/ F_L 30 minimum overall for composite of all measured values and F_F 30/ F_L 20 minimum for any individual floor section.
- D. For shored construction, F_L values do not apply if slab is tested after shoring is removed.
- E. Slabs, which do not meet the flatness and levelness criteria shall be repaired or replaced.

SECTION 036200 - NON-SHRINK GROUT

PART 1 - GENERAL

1.1 SECTION INCLUDES

A. Section includes non-shrink grout under base plates, bearing plates, and where specified in Contract Documents.

1.2 RELATED SECTIONS

- A. Section 013330 Structural Submittals.
- B. Section 014525 Structural Testing/Inspection Agency Services.

1.3 REFERENCES

- A. ASTM C1107 Standard Specification for Packaged Dry, Hydraulic-Cement Grout (Nonshrink).
- B. ASTM C109 Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or 50-mm Cube Specimens).

1.4 QUALITY ASSURANCE

- A. Structural Testing/Inspection Agency shall perform the following quality related items:
 - 1. Perform compressive strength tests in accordance with ASTM C109 with 2-inch x 2-inch cubes. Test one cube at three days, two cubes at seven days and three cubes at 28 days. Perform one test for each ten bags of grout used or one test in accordance with day of grouting.

1.5 SUBMITTALS

A. Submit product data sheets for review.

PART 2 - PRODUCTS

2.1 GROUT

- A. Provide a non-shrink, non-metallic grout that complies with ASTM C1107.
- B. Grout shall have a minimum compressive strength of 5000 psi at 28 days.

NON-SHRINK GROUT 036200 - 1

2.2 WATER

A. Provide clean, potable water.

PART 3 - EXECUTION

3.1 HANDLING

A. Store and protect non-shrink grout from moisture and contamination.

3.2 PREPARATION

A. Remove mud, dirt and other foreign materials from areas to be grouted.

3.3 MIXING

A. Mix grout to its fluid, self-leveling consistency in accordance with manufacturers recommendations. Do not retemper grout. Do not exceed manufacturer's maximum limit on water content or use at a consistency which produces free bleeding. Mix grout in a paddle-type mortar mixer. Do not mix by hand.

3.4 PLACEMENT

- A. Consolidate grout to provide uniformity. Do not vibrate grout.
- B. Use forms to contain grout.

3.5 PROTECTION

A. Protect grout and areas to be grouted from excessive heat and cold in accordance with manufacturer's specifications. Protect grout from excessive drying shrinkage resulting from wind or direct sunlight. Protect areas grouted from excessive vibrations for three days.

END OF SECTION 036200

NON-SHRINK GROUT 036200 - 2

SECTION 042000 - UNIT MASONRY GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Concrete masonry units.
- 2. Clay face brick.
- 3. Mortar and grout.
- 4. Steel reinforcing bars.
- 5. Masonry-joint reinforcement.
- 6. Ties and anchors.
- 7. Embedded flashing.
- 8. Miscellaneous masonry accessories.

B. Products Installed but not Furnished under This Section:

- 1. Steel lintels in unit masonry.
- 2. Steel shelf angles for supporting unit masonry.
- 3. Cavity wall insulation.

C. Related Requirements:

- 1. Section 051200 "Structural Steel Framing" for installing anchor sections of adjustable masonry anchors for connecting to structural steel frame.
- 2. Section 072100 "Thermal Insulation" for cavity wall insulation.
- 3. Section 076200 "Sheet Metal Flashing and Trim" for exposed sheet metal flashing and for furnishing manufactured reglets installed in masonry joints.

1.3 DEFINITIONS

- A. CMU(s): Concrete masonry unit(s).
- B. Reinforced Masonry: Masonry containing reinforcing steel in grouted cells.

1.4 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.5 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: For the following:
 - 1. Masonry Units: Show sizes, profiles, coursing, and locations of special shapes.
 - 2. Stone Trim Units: Show sizes, profiles, and locations of each stone trim unit required.
 - 3. Reinforcing Steel: Detail bending, lap lengths, and placement of unit masonry reinforcing bars. Comply with ACI 315.
 - 4. Fabricated Flashing: Detail corner units, end-dam units, and other special applications.
- C. Samples for Initial Selection:
 - 1. Clay face brick, in the form of straps of five or more bricks.
 - 2. Colored mortar.
 - 3. Weep holes.
- D. Samples for Verification: For each type and color of the following:
 - 1. Clay face brick, in the form of straps of five or more bricks.
 - 2. Pigmented and colored-aggregate mortar. Make Samples using same sand and mortar ingredients to be used on Project.
 - 3. Weep holes.
 - 4. Accessories embedded in masonry.

1.6 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For testing agency.
- B. Material Certificates: For each type and size of the following:
 - 1. Masonry units.

Retain second option in first subparagraph below if required by authorities having jurisdiction or if the added assurance of quality that test reports provide is desired.

- a. Include data on material properties.
- b. For brick, include size-variation data verifying that actual range of sizes falls within specified tolerances.
- c. For exposed brick, include test report for efflorescence according to ASTM C67.

Retain first subparagraph below only if retaining unit-strength method in "Performance Requirements" Article or if requirements for average net-area compressive strength of units are retained in Part 2.

- d. For masonry units used in structural masonry, include data and calculations establishing average net-area compressive strength of units.
- 2. Cementitious materials. Include name of manufacturer, brand name, and type.
- 3. Mortar admixtures.
- 4. Preblended, dry mortar mixes. Include description of type and proportions of ingredients.

- 5. Grout mixes. Include description of type and proportions of ingredients.
- 6. Reinforcing bars.
- 7. Joint reinforcement.
- 8. Anchors, ties, and metal accessories.
- C. Mix Designs: For each type of mortar and grout. Include description of type and proportions of ingredients.
 - 1. Include test reports for mortar mixes required to comply with property specification. Test according to ASTM C109/C109M for compressive strength, ASTM C1506 for water retention, and ASTM C91/C91M for air content.
 - 2. Include test reports, according to ASTM C1019, for grout mixes required to comply with compressive strength requirement.

Retain "Statement of Compressive Strength of Masonry" Paragraph below only if retaining unit-strength method in "Performance Requirements" Article.

- D. Statement of Compressive Strength of Masonry: For each combination of masonry unit type and mortar type, provide statement of average net-area compressive strength of masonry units, mortar type, and resulting net-area compressive strength of masonry determined according to TMS 602/ACI 530.1/ASCE 6.
- E. Cold-Weather and Hot-Weather Procedures: Detailed description of methods, materials, and equipment to be used to comply with requirements.

1.7 QUALITY ASSURANCE

- A. Testing Agency Qualifications: Qualified according to ASTM C1093 for testing indicated.
- B. Sample Panels: Build sample panels to verify selections made under Sample submittals and to demonstrate aesthetic effects. Comply with requirements in Section 014000 "Quality Requirements" for mockups.
 - 1. Build sample panels for typical exterior wall in sizes approximately 48 inches (1200 mm long by 36 inches (900 mm) high by full thickness.
 - 2. Build sample panels facing south.
 - 3. Protect approved sample panels from the elements with weather-resistant membrane.
 - 4. Approval of sample panels is for color, texture, and blending of masonry units; relationship of mortar and sealant colors to masonry unit colors; tooling of joints; aesthetic qualities of workmanship; and other material and construction qualities specifically approved by Architect in writing.
 - a. Approval of sample panels does not constitute approval of deviations from the Contract Documents contained in sample panels unless Architect specifically approves such deviations in writing.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Store masonry units on elevated platforms in a dry location. If units are not stored in an enclosed location, cover tops and sides of stacks with waterproof sheeting, securely tied. If units become wet, do not install until they are dry.

Delete first two paragraphs below if requiring Contractor to use preblended, dry mortar mix.

- B. Store cementitious materials on elevated platforms, under cover, and in a dry location. Do not use cementitious materials that have become damp.
- C. Store aggregates where grading and other required characteristics can be maintained and contamination avoided.

Always retain first paragraph below in case Contractor uses a preblended, dry mortar mix.

- D. Deliver preblended, dry mortar mix in moisture-resistant containers. Store preblended, dry mortar mix in delivery containers on elevated platforms in a dry location or in covered weatherproof dispensing silos.
- E. Store masonry accessories, including metal items, to prevent corrosion and accumulation of dirt and oil.

1.9 FIELD CONDITIONS

A. Protection of Masonry: During construction, cover tops of walls, projections, and sills with waterproof sheeting at end of each day's work. Cover partially completed masonry when construction is not in progress.

Increase extent of cover in first subparagraph below as needed to suit local climatic conditions.

- 1. Extend cover a minimum of 24 inches (600 mm) down both sides of walls, and hold cover securely in place.
- 2. Where one wythe of multiwythe masonry walls is completed in advance of other wythes, secure cover a minimum of 24 inches (600 mm) down face next to unconstructed wythe, and hold cover in place.
- B. Do not apply uniform floor or roof loads for at least 12 hours and concentrated loads for at least three days after building masonry walls or columns.
- C. Stain Prevention: Prevent grout, mortar, and soil from staining the face of masonry to be left exposed or painted. Immediately remove grout, mortar, and soil that come in contact with such masonry.
 - 1. Protect base of walls from rain-splashed mud and from mortar splatter by spreading coverings on ground and over wall surface.
 - 2. Protect sills, ledges, and projections from mortar droppings.
 - 3. Protect surfaces of window and door frames, as well as similar products with painted and integral finishes, from mortar droppings.

- 4. Turn scaffold boards near the wall on edge at the end of each day to prevent rain from splashing mortar and dirt onto completed masonry.
- D. Cold-Weather Requirements: Do not use frozen materials or materials mixed or coated with ice or frost. Do not build on frozen substrates. Remove and replace unit masonry damaged by frost or by freezing conditions. Comply with cold-weather construction requirements contained in TMS 602/ACI 530.1/ASCE 6.
 - 1. Cold-Weather Cleaning: Use liquid cleaning methods only when air temperature is 40 deg F (4 deg C) and higher and will remain so until masonry has dried, but not less than seven days after completing cleaning.
- E. Hot-Weather Requirements: Comply with hot-weather construction requirements contained in TMS 602/ACI 530.1/ASCE 6.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Source Limitations for Masonry Units: Obtain exposed masonry units of a uniform texture and color, or a uniform blend within the ranges accepted for these characteristics, from single source from single manufacturer for each product required.
- B. Source Limitations for Mortar Materials: Obtain mortar ingredients of a uniform quality, including color for exposed masonry, from single manufacturer for each cementitious component and from single source or producer for each aggregate.

2.2 PERFORMANCE REQUIREMENTS

Retain this article for masonry designed by analytical methods when specifying masonry compressive strength rather than specifying compressive strength of masonry units and mortar. Revise paragraph below and insert required compressive strength of masonry if not indicated on Drawings. If retaining option, indicate on Drawings extent of structural unit masonry and nonstructural unit masonry.

A. Provide structural unit masonry that develops indicated net-area compressive strengths at 28 days.

Retain one of two subparagraphs below.

- 1. Determine net-area compressive strength of masonry from average net-area compressive strengths of masonry units and mortar types (unit-strength method) according to TMS 602/ACI 530.1/ASCE 6.
- 2. Determine net-area compressive strength of masonry by testing masonry prisms according to ASTM C1314.

2.3 UNIT MASONRY, GENERAL

- A. Masonry Standard: Comply with TMS 602/ACI 530.1/ASCE 6, except as modified by requirements in the Contract Documents.
- B. Defective Units: Referenced masonry unit standards may allow a certain percentage of units to contain chips, cracks, or other defects exceeding limits stated. Do not use units where such defects are exposed in the completed Work].

2.4 CONCRETE MASONRY UNITS

- A. Shapes: Provide shapes indicated and as follows, with exposed surfaces matching exposed faces of adjacent units unless otherwise indicated.
 - 1. Provide special shapes for lintels, corners, jambs, sashes, movement joints, headers, bonding, and other special conditions.
 - 2. Provide bullnose units for outside corners unless otherwise indicated.

B. CMUs: ASTM C90.

Usually retain "Unit Compressive Strength" Subparagraph below only for masonry designed by analytical methods; delete if retaining "Performance Requirements" Article. Also delete below if compressive strength specified in ASTM C90, which is 1900 psi (13.1 MPa), is acceptable. See the Evaluations.

- 1. Unit Compressive Strength: Provide units with minimum average net-area compressive strength of 1500 psi.
- 2. Density Classification: Normal weight unless otherwise indicated.

Retain "Exposed Faces" Subparagraph below if color and texture of faces are critical. ASTM C90 requires at least four units for sample, representing the range of color and texture permitted.

3. Exposed Faces: Provide color and texture matching the range represented by Architect's sample.

2.5 MASONRY LINTELS

- A. General: Provide one of the following:
- B. Masonry Lintels: Prefabricated or built-in-place masonry lintels made from bond beam CMUs matching adjacent CMUs in color, texture, and density classification, with reinforcing bars placed as indicated and filled with coarse grout. Cure precast lintels before handling and installing. Temporarily support built-in-place lintels until cured.

2.6 BRICK

A. General: Provide shapes indicated and as follows, with exposed surfaces matching finish and color of exposed faces of adjacent units:

1. For ends of sills and caps and for similar applications that would otherwise expose unfinished brick surfaces, provide units without cores or frogs and with exposed surfaces finished.

On Drawings, show details of special conditions and special shapes required. Revise three subparagraphs below to suit Project.

- 2. Provide special shapes for applications where stretcher units cannot accommodate special conditions, including those at corners, movement joints, bond beams, sashes, and lintels.
- 3. Provide special shapes for applications requiring brick of size, form, color, and texture on exposed surfaces that cannot be produced by sawing.
- 4. Provide special shapes for applications where shapes produced by sawing would result in sawed surfaces being exposed to view.

Retain third option in "Clay Face Brick" Paragraph below if hollow bricks are acceptable. Hollow bricks use less material and energy to make and require less energy to transport.

- B. Clay Face Brick: Facing brick complying with ASTM C216.
 - 1. Grade: SW.
 - 2. Type: FBX
 - 3. Initial Rate of Absorption: Less than 30 g/30 sq. in. (30 g/194 sq. cm) per minute when tested according to ASTM C67.
 - 4. Efflorescence: Provide brick that has been tested according to ASTM C67 and is rated "not effloresced."
 - 5. Size (Actual Dimensions): 3-5/8 inches (92 mm) wide by 2-1/4 inches (57 mm) high by 7-5/8 inches (194 mm) long.
 - 6. Application: Use where brick is exposed unless otherwise indicated.
 - 7. Colors and Textures: As indicated on the drawings.
 - a. Two masonry colors as indicated on drawings as B.1 and B.2

2.7 MORTAR AND GROUT MATERIALS

Coordinate requirements in this article with those in "Mortar and Grout Mixes" Article.

- A. Portland Cement: ASTM C150/C150M, Type I or II, except Type III may be used for cold-weather construction. Provide natural color or white cement as required to produce mortar color indicated.
 - 1. Alkali content shall not be more than 0.1 percent when tested according to ASTM C114.
- B. Hydrated Lime: ASTM C207, Type S.
- C. Portland Cement-Lime Mix: Packaged blend of portland cement and hydrated lime containing no other ingredients.
- D. Mortar Cement: ASTM C1329/C1329M.

Mixes in "Colored Cement Products" Paragraph below allow better control of color than job-mixed colored mortar. If retaining, also retain paragraphs above that specify materials included in the mixes retained below.

- E. Colored Cement Products: Packaged blend made from portland cement and hydrated lime, all complying with specified requirements, and containing no other ingredients.
 - 1. Colored Portland Cement-Lime Mix:
 - 2. Formulate blend as required to produce color indicated or, if not indicated, as selected from manufacturer's standard colors.
- F. Aggregate for Mortar: ASTM C144.
 - 1. For mortar that is exposed to view, use washed aggregate consisting of natural sand or crushed stone.
 - 2. For joints less than 1/4 inch (6 mm) thick, use aggregate graded with 100 percent passing the No. 16 (1.18-mm) sieve.
 - 3. White-Mortar Aggregates: Natural white sand or crushed white stone.
 - Colored-Mortar Aggregates: Natural sand or crushed stone of color necessary to produce required mortar color. Color indicated on drawings, or if not indicated as selected by Architect.
- G. Aggregate for Grout: ASTM C404.
- H. Cold-Weather Admixture: Nonchloride, noncorrosive, accelerating admixture complying with ASTM C494/C494M, Type C, and recommended by manufacturer for use in masonry mortar of composition indicated.
- I. Water: Potable.

2.8 REINFORCEMENT

Retain "Uncoated-Steel Reinforcing Bars" Paragraph below for reinforcing bars in grouted cells. Revise if another grade of steel is required. Revise to specify epoxy-coated, stainless steel, or galvanized bars if required.

- A. Uncoated-Steel Reinforcing Bars: ASTM A615/A615M or ASTM A996/A996M, Grade 60 (Grade 420).
- B. Reinforcing Bar Positioners: Wire units designed to fit into mortar bed joints spanning masonry unit cells and to hold reinforcing bars in center of cells. Units are formed from 0.148-inch (3.77-mm) steel wire, hot-dip galvanized after fabrication. Provide units designed for number of bars indicated.

Standard in "Masonry-Joint Reinforcement, General" Paragraph below includes requirements for mill-galvanized carbon steel, hot-dip galvanized carbon steel, and stainless steel. Specifying these materials separately is unnecessary.

C. Masonry-Joint Reinforcement, General: ASTM A951/A951M.

Mill-galvanized coating is not as thick as hot-dip galvanized coating. According to ASTM A951/A951M, mill-galvanized coating may be applied to wire before fabricating, but hot-dip galvanized coating must be applied after fabricating.

- 1. Interior Walls: Hot-dip galvanized carbon steel.
- 2. Exterior Walls: Hot-dip galvanized carbon steel.
- 3. Wire Size for Side Rods: 0.148-inch (3.77-mm) diameter.
- 4. Wire Size for Cross Rods: 0.148-inch (3.77-mm) diameter.

First option in "Wire Size for Veneer Ties" Subparagraph below is minimum wire size for tab-type ties and for eye units in adjustable ties; second option is minimum for pintle units in adjustable ties.

- 5. Wire Size for Veneer Ties: 0.148-inch (3.77-mm) diameter.
- 6. Spacing of Cross Rods, Tabs, and Cross Ties: Not more than 16 inches (407 mm) o.c.
- 7. Provide in lengths of not less than 10 feet (3 m), with prefabricated corner and tee units.

Where grouted cells contain reinforcing bars, ladder-type reinforcement works better than truss type.

- D. Masonry-Joint Reinforcement for Single-Wythe Masonry: Ladder type with single pair of side rods.
- E. Masonry-Joint Reinforcement for Multiwythe Masonry:

Retain one or more of three subparagraphs below and coordinate with requirements in Part 3. More than one type may be needed; "Composite Masonry" and "Cavity Walls" articles specify types required for various applications.

- 1. Ladder type with one side rod at each face shell of hollow masonry units more than 4 inches (100 mm) wide, plus two side rods at each wythe of masonry 4 inches (100 mm) wide or less.
- 2. Tab type, ladder design, with one side rod at each face shell of backing wythe and with rectangular tabs sized to extend at least halfway through facing wythe, but with at least 5/8-inch (16-mm) cover on outside face.
- 3. Adjustable (two-piece) type, either ladder design, with one side rod at each face shell of backing wythe and with separate adjustable ties with pintle-and-eye connections having a maximum horizontal play of 1/16 inch (1.5 mm) and maximum vertical adjustment of 1-1/4 inches (32 mm). Size ties to extend at least halfway through facing wythe but with at least 5/8-inch (16-mm) cover on outside face.
- F. Masonry-Joint Reinforcement for Veneers Anchored with Seismic Masonry-Veneer Anchors: Single 0.187-inch- (4.76-mm-) diameter, hot-dip galvanized carbon steel continuous wire.

2.9 TIES AND ANCHORS

- A. General: Ties and anchors shall extend at least 1-1/2 inches (38 mm) into veneer but with at least a 5/8-inch (16-mm) cover on outside face.
- B. Materials: Provide ties and anchors specified in this article that are made from materials that comply with the following unless otherwise indicated:

Retain subparagraphs below only for those materials referenced in subsequent paragraphs.

"Mill-Galvanized, Carbon-Steel Wire" Subparagraph below is allowed only for anchors and ties in interior walls where humidity is less than 75 percent.

- 1. Hot-Dip Galvanized, Carbon-Steel Wire: ASTM A82/A82M, with ASTM A153/A153M, Class B-2 coating.
- 2. Steel Sheet, Galvanized after Fabrication: ASTM A1008/A1008M, Commercial Steel, with ASTM A153/A153M, Class B coating.
- 3. Steel Plates, Shapes, and Bars: ASTM A36/A36M.
- C. Individual Wire Ties: Rectangular units with closed ends and not less than 4 inches (100 mm) wide.
 - 1. Z-shaped ties with ends bent 90 degrees to provide hooks not less than 2 inches (50 mm) long may be used for masonry constructed from solid units.
 - 2. Where wythes **do not align**, use adjustable ties with pintle-and-eye connections having a maximum adjustment of 1-1/4 inches (32 mm).

If retaining last option in "Wire" Subparagraph below, note that TMS 402/ACI 530/ASCE 5 does not allow ties made from mill-galvanized wire for interior use in spaces where humidity exceeds 75 percent.

- 3. Wire: Fabricate from 3/16-inch- (4.76-mm-) diameter, hot-dip galvanized steel wire.
- D. Adjustable Masonry-Veneer Anchors:
 - 1. General: Provide anchors that allow vertical adjustment but resist a 100-lbf (445-N) load in both tension and compression perpendicular to plane of wall without deforming or developing play in excess of 1/16 inch (1.5 mm).
 - 2. Fabricate sheet metal anchor sections and other sheet metal parts from 0.105-inch- (2.66-mm-) thick steel sheet, galvanized after fabrication.
 - 3. Fabricate wire ties from 0.187-inch- (4.76-mm-) diameter, **hot-dip galvanized-steel** wire unless otherwise indicated.

Usually retain "Contractors Option" Subparagraph below along with the acceptable types of anchors.

4. Contractor's Option: Unless otherwise indicated, provide any of the adjustable masonry-veneer anchors specified.

Anchors in first "Seismic Masonry-Veneer Anchors" Subparagraph below may be used for other than seismic conditions.

- 5. Seismic Masonry-Veneer Anchors: Connector section and rib-stiffened, sheet metal anchor section with screw holes top and bottom, with projecting tabs having slotted holes for inserting vertical leg of connector section. Connector section consists of a rib-stiffened, sheet metal bent plate with down-turned leg designed to fit in anchor section slot and with integral tabs designed to engage continuous wire.
 - **a.** < Double click here to find, evaluate, and insert list of manufacturers and products. >

Anchors in first "Seismic Masonry-Veneer Anchors" Subparagraph below may be used for other than seismic conditions.

- 6. Seismic Masonry-Veneer Anchors: Wire tie and a rib-stiffened, sheet metal anchor section with screw holes top and bottom, with projecting tabs having holes for inserting vertical legs of wire tie formed to fit anchor section. Wire tie has sheet metal clip welded to it with integral tabs designed to engage continuous wire.
 - a. < Double click here to find, evaluate, and insert list of manufacturers and products.>

Anchors in "Seismic Masonry-Veneer Anchors" Subparagraph below may be used for other than seismic conditions.

- 7. Seismic Masonry-Veneer Anchors: Connector section and a gasketed sheet metal anchor section, 1-1/4 inches (32 mm) wide by 6 inches (152 mm) long, with screw holes top and bottom; top and bottom ends bent to form pronged legs of length to match thickness of insulation or sheathing; and raised rib-stiffened strap, 5/8 inch (16 mm) wide by 6 inches (152 mm) long, stamped into center to provide a slot between strap and base for inserting connector section. Self-adhering, modified bituminous gasket fits behind anchor plate and extends beyond pronged legs. Connector section consists of a triangular wire tie and rigid PVC extrusion with snap-in grooves for inserting continuous wire. Fabricate wire connector sections from [0.187-inch- (4.76-mm-)] [0.25-inch- (6.35-mm-)] diameter, hot-dip galvanized, carbon steel wire.
 - a. < Double click here to find, evaluate, and insert list of manufacturers and products.>

2.10 EMBEDDED FLASHING MATERIALS

See the Evaluations for discussion of flashing materials before revising this article.

A. Metal Flashing: Provide metal flashing complying with SMACNA's "Architectural Sheet Metal Manual" and as follows:

Insert terne-coated stainless steel or lead-coated copper if required.

- 1. Stainless Steel: ASTM A240/A240M or ASTM A666, Type 304, 0.016 inch (0.40 mm) thick.
- 2. Fabricate continuous flashings in sections 96 inches (2400 mm) long minimum, but not exceeding 12 feet (3.7 m). Provide splice plates at joints of formed, smooth metal flashing.

Delete first subparagraph below if plain (flat) sheet metal flashing is acceptable. Revise if dovetail pattern is required for interlocking bond.

3. Fabricate through-wall metal flashing embedded in masonry from **stainless steel**, with ribs at 3-inch (76-mm) intervals along length of flashing to provide an integral mortar bond

Usually retain one or both of first two subparagraphs below if metal through-wall flashing is used. See the Evaluations.

4. Fabricate through-wall flashing with drip edge **unless otherwise** indicated. Fabricate by extending flashing 1/2 inch (13 mm) out from wall, with outer edge bent down 30 degrees **and hemmed**.

Retain first subparagraph below if either of last two subparagraphs above is used with ribbed metal flashing.

- 5. Solder metal items at corners.
- B. Application: Unless otherwise indicated, use the following:
 - 1. Where flashing is indicated to receive counterflashing, use metal flashing.
 - 2. Where flashing is indicated to be turned down at or beyond the wall face, use metal flashing.
 - 3. Where flashing is partly exposed and is indicated to terminate at the wall face, use metal flashing with a drip edge.
 - 4. Where flashing is fully concealed, use **metal flashing**.
- C. Solder and Sealants for Sheet Metal Flashings: As specified in Section 076200 "Sheet Metal Flashing and Trim."
- D. Adhesives, Primers, and Seam Tapes for Flashings: Flashing manufacturer's standard products or products recommended by flashing manufacturer for bonding flashing sheets to each other and to substrates.

2.11 MISCELLANEOUS MASONRY ACCESSORIES

- A. Compressible Filler: Premolded filler strips complying with ASTM D1056, Grade 2A1; compressible up to 35 percent; of width and thickness indicated; formulated from **neoprene**, **urethane or PVC**.
- B. Preformed Control-Joint Gaskets: Made from styrene-butadiene-rubber compound, complying with ASTM D2000, Designation M2AA-805 or PVC, complying with ASTM D2287, Type PVC-65406 and designed to fit standard sash block and to maintain lateral stability in masonry wall; size and configuration as indicated.
- C. Bond-Breaker Strips: Asphalt-saturated felt complying with ASTM D226/D22M, Type I (No. 15 asphalt felt).
- D. Weep Products: Use **one of** the following unless otherwise indicated:
 - 1. Cellular Plastic Weep: One-piece, flexible extrusion made from UV-resistant polypropylene copolymer, full height and width of head joint and depth 1/8 inch (3 mm) less than depth of outer wythe, in color selected from manufacturer's standard.
 - 2. Mesh Weep: Free-draining mesh; made from polyethylene strands, full height and width of head joint and depth 1/8 inch (3 mm) less than depth of outer wythe; in color selected from manufacturer's standard.
- E. Cavity Drainage Material: Free-draining mesh, made from polymer strands that will not degrade within the wall cavity.

- 1. Configuration: Provide one of the following:
 - a. Strips, full depth of cavity and 10 inches (250 mm) high, with dovetail-shaped notches 7 inches (175 mm) deep that prevent clogging with mortar droppings.
 - b. Strips, not less than 3/4 inch (19 mm) thick and 10 inches (250 mm) high, with dimpled surface designed to catch mortar droppings and prevent weep holes from clogging with mortar.

2.12 MASONRY CLEANERS

A. Proprietary Acidic Cleaner: Manufacturer's standard-strength cleaner designed for removing mortar/grout stains, efflorescence, and other new construction stains from new masonry without discoloring or damaging masonry surfaces. Use product expressly approved for intended use by cleaner manufacturer and manufacturer of masonry units being cleaned.

2.13 MORTAR AND GROUT MIXES

- A. General: Do not use admixtures, including pigments, air-entraining agents, accelerators, retarders, water-repellent agents, antifreeze compounds, or other admixtures unless otherwise indicated.
 - 1. Do not use calcium chloride in mortar or grout.
 - 2. Use **portland cement-lime or mortar cement** mortar unless otherwise indicated.
 - 3. Add cold-weather admixture (if used) at same rate for all mortar that will be exposed to view, regardless of weather conditions, to ensure that mortar color is consistent.
- B. Preblended, Dry Mortar Mix: Furnish dry mortar ingredients in form of a preblended mix. Measure quantities by weight to ensure accurate proportions, and thoroughly blend ingredients before delivering to Project site.
- C. Mortar for Unit Masonry: Comply with ASTM C270. Provide the following types of mortar for applications stated unless another type is indicated **or needed to provide required compressive strength of masonry**.
 - 1. For masonry below grade or in contact with earth, use Type M.
 - 2. For reinforced masonry, use **Type S**.
 - 3. For mortar parge coats, use **Type S**
 - 4. For exterior, above-grade, load-bearing and nonload-bearing walls and parapet walls; for interior load-bearing walls; for interior nonload-bearing partitions; and for other applications where another type is not indicated, use Type N.
 - 5. For interior nonload-bearing partitions, Type O may be used instead of Type N.
- D. Pigmented Mortar: Use colored cement product or select and proportion pigments with other ingredients to produce color required. Do not add pigments to colored cement products.
 - 1. Pigments shall not exceed 10 percent of portland cement by weight.
 - 2. Pigments shall not exceed 5 percent of **mortar cement** by weight.
 - 3. Mix to match Architect's sample.
 - 4. Application: Use pigmented mortar for exposed mortar joints with the following units:

- a. Clay face brick.
- E. Colored-Aggregate Mortar: Produce required mortar color by using colored aggregates and natural color or white cement as necessary to produce required mortar color.
 - 1. Mix to match Architect's sample.
 - 2. Application: Use colored-aggregate mortar for exposed mortar joints with the following units:
 - a. Clay face brick.
- F. Grout for Unit Masonry: Comply with ASTM C476.
 - 1. Use grout of type indicated or, if not otherwise indicated, of type (fine or coarse) that will comply with TMS 602/ACI 530.1/ASCE 6 for dimensions of grout spaces and pour height.
 - 2. Proportion grout in accordance with ASTM C476, **Table 1 or paragraph 4.2.2 for specified 28-day compressive strength indicated, but not less than 2500 psi (17 MPa)**.
 - 3. Provide grout with a slump of **8 to 11 inches** (**200 to 280 mm**) as measured according to ASTM C143/C143M.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
 - 1. For the record, prepare written report, endorsed by Installer, listing conditions detrimental to performance of the Work.
 - 2. Verify that foundations are within tolerances specified.
 - 3. Verify that reinforcing dowels are properly placed.
 - 4. Verify that substrates are free of substances that impair mortar bond.
- B. Before installation, examine rough-in and built-in construction for piping systems to verify actual locations of piping connections.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION, GENERAL

- A. Thickness: Build cavity and other masonry construction to full thickness shown. Build single-wythe walls to actual widths of masonry units, using units of widths indicated.
- B. Build chases and recesses to accommodate items specified in this and other Sections.

- C. Leave openings for equipment to be installed before completing masonry. After installing equipment, complete masonry to match construction immediately adjacent to opening.
- D. Use full-size units without cutting if possible. If cutting is required to provide a continuous pattern or to fit adjoining construction, cut units with motor-driven saws; provide clean, sharp, unchipped edges. Allow units to dry before laying unless wetting of units is specified. Install cut units with cut surfaces and, where possible, cut edges concealed.
- E. Select and arrange units for exposed unit masonry to produce a uniform blend of colors and textures. Mix units from several pallets or cubes as they are placed.

3.3 TOLERANCES

A. Dimensions and Locations of Elements:

- 1. For dimensions in cross section or elevation, do not vary by more than plus 1/2 inch (12 mm) or minus 1/4 inch (6 mm).
- 2. For location of elements in plan, do not vary from that indicated by more than plus or minus 1/2 inch (12 mm).
- 3. For location of elements in elevation, do not vary from that indicated by more than plus or minus 1/4 inch (6 mm) in a story height or 1/2 inch (12 mm) total.

B. Lines and Levels:

- 1. For bed joints and top surfaces of bearing walls, do not vary from level by more than 1/4 inch in 10 feet (6 mm in 3 m), or 1/2-inch (12-mm) maximum.
- 2. For conspicuous horizontal lines, such as lintels, sills, parapets, and reveals, do not vary from level by more than 1/8 inch in 10 feet (3 mm in 3 m), 1/4 inch in 20 feet (6 mm in 6 m), or 1/2-inch (12-mm) maximum.
- 3. For vertical lines and surfaces, do not vary from plumb by more than 1/4 inch in 10 feet (6 mm in 3 m), 3/8 inch in 20 feet (9 mm in 6 m), or 1/2-inch (12-mm) maximum.
- 4. For conspicuous vertical lines, such as external corners, door jambs, reveals, and expansion and control joints, do not vary from plumb by more than 1/8 inch in 10 feet (3 mm in 3 m), 1/4 inch in 20 feet (6 mm in 6 m), or 1/2-inch (12-mm) maximum.
- 5. For lines and surfaces, do not vary from straight by more than 1/4 inch in 10 feet (6 mm in 3 m), 3/8 inch in 20 feet (9 mm in 6 m), or 1/2-inch (12-mm) maximum.
- 6. For vertical alignment of exposed head joints, do not vary from plumb by more than 1/4 inch in 10 feet (6 mm in 3 m), or 1/2-inch (12-mm) maximum.

If using Type FBS Rough brick or Type FBA brick, revise tolerance in subparagraph below to allow for variation in brick size.

7. For faces of adjacent exposed masonry units, do not vary from flush alignment by more than 1/16 inch (1.5 mm) except due to warpage of masonry units within tolerances specified for warpage of units.

C. Joints:

If using Type FBS Rough brick or Type FBA brick, revise tolerances in five subparagraphs below to allow for variation in brick size. Consider restricting tolerances if Type FBX brick is used.

- 1. For bed joints, do not vary from thickness indicated by more than plus or minus 1/8 inch (3 mm), with a maximum thickness limited to 1/2 inch (12 mm).
- 2. For exposed bed joints, do not vary from bed-joint thickness of adjacent courses by more than 1/8 inch (3 mm).
- 3. For head and collar joints, do not vary from thickness indicated by more than plus 3/8 inch (9 mm) or minus 1/4 inch (6 mm).
- 4. For exposed head joints, do not vary from thickness indicated by more than plus or minus 1/8 inch (3 mm). Do not vary from adjacent bed-joint and head-joint thicknesses by more than 1/8 inch (3 mm).
- 5. For exposed bed joints and head joints of stacked bond, do not vary from a straight line by more than 1/16 inch (1.5 mm) from one masonry unit to the next.

3.4 LAYING MASONRY WALLS

- A. Lay out walls in advance for accurate spacing of surface bond patterns with uniform joint thicknesses and for accurate location of openings, movement-type joints, returns, and offsets. Avoid using less-than-half-size units, particularly at corners, jambs, and, where possible, at other locations.
- B. Bond Pattern for Exposed Masonry: Unless otherwise indicated, lay exposed masonry in **running bond**; do not use units with less-than-nominal 4-inch (100-mm) horizontal face dimensions at corners or jambs.
- C. Lay concealed masonry with all units in a wythe in running bond or bonded by lapping not less than **2 inches** (**50 mm**). Bond and interlock each course of each wythe at corners. Do not use units with less-than-nominal **4-inch** (100-mm) horizontal face dimensions at corners or jambs.
- D. Stopping and Resuming Work: Stop work by stepping back units in each course from those in course below; do not tooth. When resuming work, clean masonry surfaces that are to receive mortar, remove loose masonry units and mortar, and wet brick if required before laying fresh masonry.
- E. Built-in Work: As construction progresses, build in items specified in this and other Sections. Fill in solidly with masonry around built-in items.
- F. Fill space between steel frames and masonry solidly with mortar unless otherwise indicated.
- G. Where built-in items are to be embedded in cores of hollow masonry units, place a layer of metal lath, wire mesh, or plastic mesh in the joint below, and rod mortar or grout into core.
- H. Fill cores in hollow CMUs with grout 24 inches (600 mm) under bearing plates, beams, lintels, posts, and similar items unless otherwise indicated.
- I. Build nonload-bearing interior partitions full height of story to underside of solid floor or roof structure above unless otherwise indicated.

Retain one or more of first three subparagraphs below or revise to suit Project. Coordinate with firestopping requirements. Retain first subparagraph if live-load deflection of structure above will produce stress in masonry. Indicate on Drawings or insert descriptive requirements in this Section for

building walls around steel joists and similar construction if required. Indicate joint-filler thickness on Drawings as well as details of connection required if structure acts as lateral support for partitions.

1. Install compressible filler in joint between top of partition and underside of structure above.

Spacing in first subparagraph below is an example only.

- 2. Fasten partition top anchors to structure above and build into top of partition. Grout cells of CMUs solidly around plastic tubes of anchors and push tubes down into grout to provide 1/2-inch (13-mm) clearance between end of anchor rod and end of tube. Space anchors 48 inches (1200 mm) o.c. unless otherwise indicated.
- 3. Wedge nonload-bearing partitions against structure above with small pieces of tile, slate, or metal. Fill joint with mortar after dead-load deflection of structure above approaches final position.

3.5 MORTAR BEDDING AND JOINTING

If hollow bricks are used, retain appropriate option in either of first two paragraphs below. Hollow through-wall bricks are laid similarly to hollow CMUs, whereas, according to the BIA, hollow face bricks are full-bedded in same manner as solid face bricks.

A. Lay **CMUs** as follows:

- 1. Bed face shells in mortar and make head joints of depth equal to bed joints.
- 2. Bed webs in mortar in all courses of piers, columns, and pilasters.
- 3. Bed webs in mortar in grouted masonry, including starting course on footings.
- 4. Fully bed entire units, including areas under cells, at starting course on footings where cells are not grouted.
- 5. Fully bed units and fill cells with mortar at anchors and ties as needed to fully embed anchors and ties in mortar.
- B. Lay solid masonry units with completely filled bed and head joints; butter ends with sufficient mortar to fill head joints and shove into place. Do not deeply furrow bed joints or slush head joints.
- C. Tool exposed joints slightly concave when thumbprint hard, using a jointer larger than joint thickness unless otherwise indicated.
- D. Cut joints flush where indicated to receive **cavity wall insulation** or **air barriers** unless otherwise indicated.

3.6 CAVITY WALLS

Delete first paragraph below and retain second paragraph if bonding system is indicated on Drawings.

A. Bond wythes of cavity walls together using one of the following methods:

Retain one or more bonding methods in "Individual Metal Ties," "Masonry-Joint Reinforcement," "Header Bonding," and "Masonry-Veneer Anchors" subparagraphs below; revise methods retained to suit Project and office practice.

- 1. Masonry-Joint Reinforcement: Installed in horizontal mortar joints.
 - a. Where bed joints of both wythes align, use ladder-type reinforcement extending across both wythes or tab-type reinforcement.
 - b. Where bed joints of wythes do not align, use adjustable-type (two-piece-type) reinforcement.
- 2. Masonry-Veneer Anchors: Comply with requirements for anchoring masonry veneers.

Attempting to remove mortar fins from cavity or to trowel them flat against brick usually results in increased mortar droppings at base of cavity.

B. Keep cavities clean of mortar droppings and other materials during construction. Bevel beds away from cavity, to minimize mortar protrusions into cavity. Do not attempt to trowel or remove mortar fins protruding into cavity.

Revise "Installing Cavity Wall Insulation" Paragraph below if adhesive is not used.

- C. Installing Cavity Wall Insulation: Place small dabs of adhesive, spaced approximately 12 inches (300 mm) o.c. both ways, on inside face of insulation boards, or attach with plastic fasteners designed for this purpose. Fit courses of insulation between wall ties and other confining obstructions in cavity, with edges butted tightly both ways. Press units firmly against inside wythe of masonry or other construction as shown.
 - 1. Fill cracks and open gaps in insulation with crack sealer compatible with insulation and masonry.

3.7 ANCHORED MASONRY VENEERS

- A. Anchor masonry veneers to **masonry backup** with [seismic] masonry-veneer anchors to comply with the following requirements:
 - 1. Fasten [screw-attached] [and] [seismic] anchors to concrete and masonry backup with metal fasteners of type indicated. Use two fasteners unless anchor design only uses one fastener.
 - 2. Embed [tie sections] [connector sections and continuous wire] in masonry joints.
 - 3. Locate anchor sections to allow maximum vertical differential movement of ties up and down.

Retain one of three subparagraphs below to suit Project. First subparagraph below is BIA recommendation for metal-stud construction. Second subparagraph below is based on TMS 402/ACI 530/ASCE 5 requirement for less than 40-psf (1.92-kPa) wind load. First option is for adjustable two-piece anchors, wire anchors 0.148 inch (3.77 mm) in diameter, and corrugated sheet metal anchors; second is for all other anchors. Third subparagraph below is based on TMS 402/ACI 530/ASCE 5 requirement for 40- to 55-psf (1.92- to 2.63-kPa) wind load for adjustable two-piece anchors, wire anchors 0.148 inch (3.77 mm) in diameter, and corrugated sheet metal anchors.

Revise spacing to suit coursing, comply with requirements of authorities having jurisdiction, or comply with structural requirements imposed by wind or seismic forces.

4. Space anchors as indicated, but not more than 16 inches (406 mm) o.c. vertically and 25 inches (635 mm) o.c. horizontally, with not less than one anchor for each 2.67 sq. ft. (0.25 sq. m) of wall area. Install additional anchors within 12 inches (305 mm) of openings and at intervals, not exceeding 36 inches (914 mm), around perimeter.

BIA Technical Notes 28B recommends 2 inches (50 mm) of airspace. Wider airspaces require closer tie spacing.

- B. Provide not less than 2 inches (50 mm) of airspace between back of masonry veneer and face of insulation.
 - 1. Keep airspace clean of mortar droppings and other materials during construction. Bevel beds away from airspace, to minimize mortar protrusions into airspace. Do not attempt to trowel or remove mortar fins protruding into airspace.

3.8 MASONRY-JOINT REINFORCEMENT

A. General: Install entire length of longitudinal side rods in mortar with a minimum cover of 5/8 inch (16 mm) on exterior side of walls, 1/2 inch (13 mm) elsewhere. Lap reinforcement a minimum of 6 inches (150 mm).

Revise three subparagraphs below if different spacing is required; delete if shown on Drawings.

- 1. Space reinforcement not more than 16 inches (406 mm) o.c.
- 2. Space reinforcement not more than 8 inches (203 mm) o.c. in foundation walls and parapet walls.
- 3. Provide reinforcement not more than 8 inches (203 mm) above and below wall openings and extending 24 inches (610 mm) beyond openings in addition to continuous reinforcement.
- B. Interrupt joint reinforcement at control and expansion joints unless otherwise indicated.

First paragraph below can be deleted if rigid anchors are used to bond walls at intersections.

- C. Provide continuity at wall intersections by using prefabricated T-shaped units.
- D. Provide continuity at corners by using prefabricated L-shaped units.

3.9 CONTROL JOINTS

A. General: Install control- and expansion-joint materials in unit masonry as masonry progresses. Do not allow materials to span control and expansion joints without provision to allow for inplane wall or partition movement.

Show locations of joints on Drawings.

B. Form control joints in concrete masonry using one of the following methods:

- 1. Fit bond-breaker strips into hollow contour in ends of CMUs on one side of control joint. Fill resultant core with grout, and rake out joints in exposed faces for application of sealant
- 2. Install preformed control-joint gaskets designed to fit standard sash block.
- 3. Install interlocking units designed for control joints. Install bond-breaker strips at joint. Keep head joints free and clear of mortar, or rake out joint for application of sealant.
- 4. Install temporary foam-plastic filler in head joints, and remove filler when unit masonry is complete for application of sealant.

3.10 LINTELS

- A. Install steel lintels where indicated.
- B. Provide **masonry** lintels where shown and where openings of more than 12 inches (305 mm) for brick-size units and 24 inches (610 mm) for block-size units are shown without structural steel or other supporting lintels.
- C. Provide minimum bearing of 8 inches (200 mm) at each jamb unless otherwise indicated.

3.11 FLASHING AND WEEP HOLES

- A. General: Install embedded flashing and weep holes in masonry at shelf angles, lintels, ledges, other obstructions to downward flow of water in wall, and where indicated.
- B. Install flashing as follows unless otherwise indicated:
 - 1. Prepare masonry surfaces so they are smooth and free from projections that could puncture flashing. Where flashing is within mortar joint, place through-wall flashing on sloping bed of mortar and cover with mortar. Before covering with mortar, seal penetrations in flashing with adhesive, sealant, or tape **as recommended by flashing manufacturer**.

Retain any of nine subparagraphs below and revise to suit wall configurations used. Arrangement of flashing can be communicated better by detailing on Drawings rather than by relying on any of the nine subparagraphs.

Retain last subparagraph above or first subparagraph below if multiwythe masonry walls are used. NCMA recommends against extending flashing through inner wythe. Delete last option in subparagraph below if metal is not used.

- 2. At multiwythe masonry walls, including cavity walls, extend flashing through outer wythe, turned up a minimum of 8 inches (200 mm), and 1-1/2 inches (38 mm) into the inner wythe. Form 1/4-inch (6-mm) hook in edge of flashing embedded in inner wythe.
- 3. At lintels and shelf angles, extend flashing a minimum of 6 inches (150 mm) into masonry at each end. At heads and sills, extend flashing 6 inches (150 mm) at ends and turn up not less than 2 inches (50 mm) to form end dams.
- C. Install weep holes in exterior wythes and veneers in head joints of first course of masonry immediately above embedded flashing.

- 1. Use **specified weep/cavity vent products** to form weep holes.
- 2. Space weep holes 24 inches (600 mm) o.c. unless otherwise indicated.
- 3. Cover cavity side of weep holes with plastic insect screening at cavities insulated with loose-fill insulation.
- D. Place pea gravel in cavities as soon as practical to a height equal to height of first course above top of flashing, but not less than 2 inches (50 mm), to maintain drainage.
- E. Place cavity drainage material in **airspace behind veneers** to comply with configuration requirements for cavity drainage material in "Miscellaneous Masonry Accessories" Article.

3.12 REINFORCED UNIT MASONRY INSTALLATION

Usually retain "Temporary Formwork and Shores" Paragraph below only if reinforced masonry beams, slabs, soffits, and similarly formed elements are required.

- A. Temporary Formwork and Shores: Construct formwork and shores as needed to support reinforced masonry elements during construction.
 - 1. Construct formwork to provide shape, line, and dimensions of completed masonry as indicated. Make forms sufficiently tight to prevent leakage of mortar and grout. Brace, tie, and support forms to maintain position and shape during construction and curing of reinforced masonry.
 - 2. Do not remove forms and shores until reinforced masonry members have hardened sufficiently to carry their own weight and that of other loads that may be placed on them during construction.
- B. Placing Reinforcement: Comply with requirements in TMS 602/ACI 530.1/ASCE 6.
- C. Grouting: Do not place grout until entire height of masonry to be grouted has attained enough strength to resist grout pressure.
 - 1. Comply with requirements in TMS 602/ACI 530.1/ASCE 6 for cleanouts and for grout placement, including minimum grout space and maximum pour height.
 - 2. Limit height of vertical grout pours to not more than 60 inches (1520 mm).

3.13 FIELD QUALITY CONTROL

A. Testing and Inspecting: Owner will engage special inspectors to perform tests and inspections and prepare reports. Allow inspectors access to scaffolding and work areas as needed to perform tests and inspections. Retesting of materials that fail to comply with specified requirements shall be done at Contractor's expense.

Level B special inspections are required for masonry in nonessential facilities designed by either analytical method and for essential facilities designed by empirical method; Level C for masonry in essential facilities (IBC Occupancy Category IV) designed by either analytical method.

B. Inspections: Special inspections according to Level **B** in TMS 402/ACI 530/ASCE 5.

Revise subparagraphs below to suit level of inspection required, based on occupancy category and design method.

- 1. Begin masonry construction only after inspectors have verified proportions of siteprepared mortar.
- 2. Place grout only after inspectors have verified compliance of grout spaces and of grades, sizes, and locations of reinforcement.
- 3. Place grout only after inspectors have verified proportions of site-prepared grout.

Retain "Testing Prior to Construction" Paragraph below for masonry in nonessential facilities designed by either analytical method and for essential facilities designed by empirical method.

C. Testing Prior to Construction: One set of tests.

Testing frequency in "Testing Frequency" Paragraph below is requirement for masonry in essential facilities (IBC Occupancy Category IV) designed by either analytical method.

D. Testing Frequency: One set of tests for each 5000 sq. ft. (464 sq. m) of wall area or portion thereof.

Retain "Clay Masonry Unit Test" and "Concrete Masonry Unit Test" paragraphs below, as applicable, if unit-strength method is used. Delete both paragraphs if retaining prism-test method.

- E. Clay Masonry Unit Test: For each type of unit provided, according to ASTM C67 for compressive strength.
- F. Concrete Masonry Unit Test: For each type of unit provided, according to ASTM C140 for compressive strength.

TMS 402/ACI 530/ASCE 5 requires verification of compliance of proportions for site-prepared mortar. Mortar aggregate ratio test in "Mortar Aggregate Ratio Test (Proportion Specification)" Paragraph below verifies ratio of aggregate to cementitious materials but does not indicate what cementitious materials are used. Observation of actual mortar mixing procedures as part of inspection program would provide better quality control.

G. Mortar Aggregate Ratio Test (Proportion Specification): For each mix provided, according to ASTM C780.

"Mortar Test (Property Specification)" Paragraph below may be deleted if mortar is specified to comply with proportion specification or if retaining prism test. Testing for mortar air content is especially desirable for reinforced masonry. Testing for compressive strength is required if the property specification for mortar is used. Note that ASTM C780 states, "Strength values for mortars obtained through these testing procedures are not required, nor expected, to meet strength requirements of laboratory Specification C 270 mortars."

H. Mortar Test (Property Specification): For each mix provided, according to ASTM C780. Test mortar for **compressive strength**.

"Grout Test (Compressive Strength)" Paragraph below may be deleted if grout is specified by proportions stated in ASTM C476 rather than by compressive strength or if retaining prism test.

I. Grout Test (Compressive Strength): For each mix provided, according to ASTM C1019.

Usually retain appropriate test methods in "Clay Masonry Unit Test," "Concrete Masonry Unit Test," "Mortar Aggregate Ratio Test (Proportion Specification)," "Mortar Test (Property Specification)," and "Grout Test (Compressive Strength)" paragraphs above and delete "Prism Test" Paragraph below. Delete test methods above and retain below only if prism test is specified in "Performance Requirements" Article for determining compressive strength of masonry.

J. Prism Test: For each type of construction provided, according to ASTM C1314 at 28 days.

3.14 REPAIRING, POINTING, AND CLEANING

- A. Remove and replace masonry units that are loose, chipped, broken, stained, or otherwise damaged or that do not match adjoining units. Install new units to match adjoining units; install in fresh mortar, pointed to eliminate evidence of replacement.
- B. Pointing: During the tooling of joints, enlarge voids and holes, except weep holes, and completely fill with mortar. Point up joints, including corners, openings, and adjacent construction, to provide a neat, uniform appearance. Prepare joints for sealant application, where indicated.
- C. In-Progress Cleaning: Clean unit masonry as work progresses by dry brushing to remove mortar fins and smears before tooling joints.
- D. Final Cleaning: After mortar is thoroughly set and cured, clean exposed masonry as follows:
 - 1. Remove large mortar particles by hand with wooden paddles and nonmetallic scrape hoes or chisels.
 - 2. Test cleaning methods on sample wall panel; leave one-half of panel uncleaned for comparison purposes. Obtain Architect's approval of sample cleaning before proceeding with cleaning of masonry.

Delete first two subparagraphs below if cleaners are not specified in Part 2 or if cleaners are not allowed.

- 3. Protect adjacent stone and nonmasonry surfaces from contact with cleaner by covering them with liquid strippable masking agent or polyethylene film and waterproof masking tape.
- 4. Wet wall surfaces with water before applying cleaners; remove cleaners promptly by rinsing surfaces thoroughly with clear water.
- 5. Clean brick by bucket-and-brush hand-cleaning method described in BIA Technical Notes 20.
- 6. Clean concrete masonry by applicable cleaning methods indicated in NCMA TEK 8-4A.

Retain either or both of last two subparagraphs above, or retain first subparagraph below. Coordinate with products retained in Part 2. If high-pressure water cleaning or other methods are acceptable, delete or revise subparagraph below and insert applicable requirements.

7. Clean masonry with a proprietary acidic cleaner applied according to manufacturer's written instructions.

3.15 MASONRY WASTE DISPOSAL

A. Salvageable Materials: Unless otherwise indicated, excess masonry materials are Contractor's property. At completion of unit masonry work, remove from Project site.

Retain "Waste Disposal as Fill Material" Paragraph below if clean masonry waste can be used as fill in footing trenches, etc. This diverts some material from waste stream, conserving landfill space and energy required to haul waste away.

- B. Waste Disposal as Fill Material: Dispose of clean masonry waste, including excess or soil-contaminated sand, waste mortar, and broken masonry units, by crushing and mixing with fill material as fill is placed.
 - 1. Crush masonry waste to less than 4 inches (100 mm) in each dimension.
 - 2. Mix masonry waste with at least two parts of specified fill material for each part of masonry waste. Fill material is specified in Section 312000 "Earth Moving."

Generally, retain subparagraph below. If required, increase limit if acid-soil plants are used for foundation plantings.

- 3. Do not dispose of masonry waste as fill within 18 inches (450 mm) of finished grade.
- C. Masonry Waste Recycling: Return broken CMUs not used as fill to manufacturer for recycling.
- D. Excess Masonry Waste: Remove excess clean masonry waste that cannot be used as fill, as described above or recycled, and other masonry waste, and legally dispose of off Owner's property.

END OF SECTION 042000

SECTION 051000 - STRUCTURAL STEEL

PART 1 - GENERAL

1.1 SECTION INCLUDES

A. Section includes fabrication and erection of structural steel indicated in the Contract Documents or otherwise required for proper completion of the work.

1.2 RELATED SECTIONS

- A. Section 013330 Structural Submittals.
- B. Section 014525 Structural Testing/Inspection Agency Services.
- C. Section 052000 Steel Joists.
- D. Section 053000 Metal Decking.

1.3 REFERENCES

- A. AISC Code of Standard Practice for Steel Buildings and Bridges.
- B. AISC Standard Specification for Structural Steel Buildings, 14th Edition.
- C. AISC Specifications of Structural Joints using ASTM A325 or A490 Bolts approved by the Research Council in Structural Connections.
- D. AWS D1.1 Structural Welding Code.
- E. AWS A5.1 Specification for Carbon Steel Electrodes for Shield Metal Arc Welding.
- F. AWS A5.5 Specification for Low-Alloy Steel Covered Arc Welding Electrodes.
- G. AWS A5.17 Specification for Carbon Steel Electrodes and Fluxes for Submerged Arc Welding.
- H. AWS A5.20 Specification for Carbon Steel Electrodes for Flux Cored Arc Welding.
- I. SSPC Steel Structures Painting Manual.
- J. ASTM A36 Standard Specification for Structural Steel.
- K. ASTM A123 Standard Specification for Zinc (Hot-Dip Galvanized) Coatings on Iron and Steel Products.
- L. ASTM A153 Standard Specification for Zinc Coating (Hot-Dip) on Iron and Steel Hardware.

- M. ASTM A780 Standard Practice for Repair of Damaged and Uncoated Areas of Hot-Dip Galvanized Coatings.
- N. ASTM A307 Standard Specification for Carbon Steel Bolts and Studs, 60,000 PSI Tensile Strength.
- O. ASTM A325 Standard Specification for Structural Bolts, Heat Treated, 120/105 KSI Minimum Tensile Strength.
- P. ASTM A490 Standard Specification for Heat-Treated Steel Structural Bolts, 150 KSI Minimum Tensile Strength.
- Q. ASTM A500 Standard Specification for Cold-Formed Welded and Seamless Carbon Steel Tubing in Rounds and Shapes.
- R. ASTM A501 Standard Specification for Hot-Formed Welded and Seamless Carbon Steel Structural Tubing.
- S. ASTM A992 Standard Specification for Steel for Structural Shapes For Use in Building Framing
- T. ASTM F436 Standard Specification for Hardened Steel Washers.
- U. ASTM F844 Standard Specification for Washers, Steel, Plain (Flat), Unhardened for General Use.

1.4 SUBMITTALS

- A. Contact Design Professional prior to detailing structural steel shop drawings.
- B. Reproduction of Structural Drawings for shop drawings is not permitted. Electronic drawing files will not be provided to the Contractor.
- C. Submit shop drawings for review.
- D. Shop drawings shall clearly indicate the profiles, sizes, ASTM Grade, spacings and locations of all structural steel members, including connections, attachments, anchorages, framed openings, sizes and types of fasteners, method of tightening fasteners, cambers, and the number, type and spacing of the headed shear connectors.
- E. For connections and elements designed by the contractor, submit shop drawings and calculations sealed by an engineer licensed in the project state.
- F. For record only, submit written welding procedures for each type of welded joint used in accordance with Appendix E of the AWS Structural Welding Code.
- G. Maintain at construction office mill certification that the steel supplied meets the specifications.
- H. Maintain at construction office certification that high strength bolts supplied meet the specifications.

- I. Submit certification that the fabricator meets the required qualifications. If fabricator must have an independent testing agency to inspect fabrication as required by these specifications, submit the name and qualifications of the independent testing agency.
- J. For each approved fabricator that is exempt from Special Inspections of shop fabrications and implementation procedures in accordance with Section 1704.2 of the Building Code, submit "Fabricator's Certificate of Compliance". Provide copies of fabricator's certification or building code evaluation services report and fabricator's quality control manual.
- K. Submit certification that the erector meets the required qualifications.
- L. Upon request, submit the erection sequence and procedures to be used by the steel erector.
- M. Manufacturer's recommendations for expansion anchor installation.
- N. Manufacturer's recommendations for adhesive anchor installation.

1.5 QUALITY ASSURANCE

- A. Structural Testing/Inspection Agency shall perform the following quality related items:
 - 1. Anchor Bolts
 - a. Anchor bolt size, configuration, and embedment shall be verified prior to placement of concrete.
 - 2. Welded Connections
 - a. Inspection shall be in accordance with AWS Structural Welding Code.
 - b. Visually inspect all field welded connections. Visual inspection of welded joints includes periodic examination of fit-up.
 - c. Ultrasonically inspect 100% of the complete penetration welds.
 - 3. Bolted Connections
 - a. Inspection and testing shall be in accordance with AISC Specifications for Structural Joints using ASTM A325 or A490 Bolts.
 - b. Prior to visual and physical testing, tension testing using a calibration device (Skidmore-Wilhelm) must indicate tensions at least 5% in excess of the AISC minimum. Structural steel erector shall supply the tension calibration device.
 - c. Test a minimum of 10% of the bolted connections.
- B. The Structural Testing / Inspection Agency shall provide special inspections as required by Chapter 17 of the building code as required by Specification 01 4525.

1.6 FABRICATOR'S QUALIFICATIONS

- A. Steel fabricator shall be certified by the American Institute of Steel Construction (AISC) Quality Certification Program for Conventional Steel Buildings (Sbd).
- B. Fabricator not certified by the AISC Quality Certification Program shall have fabrication procedures and fabricated steel tested and inspected by an independent testing agency. Payment of these tests and inspections shall be by the fabricator. Tests and inspections shall be performed by AWS Certified Welding Inspectors. Prior to delivery of structural steel to the project, submit copies of the inspection reports to the Design Professional. The purpose of this inspection is to enable the testing/inspection agency to verify that, in general, the steel is being fabricated in accordance with the Contract Documents. A minimum of one trip per week is recommended. The first trip should be scheduled in the early stages of fabrication. Contact Design Professional prior to initial inspection. Tests and inspections shall include the following:
 - 1. Examine mill test reports and verify that material being used is the same as the mill test reports.
 - 2. Review the fabricator's written welding procedures. Verify that the fabricator's welding procedures are being followed. Verify that welders are certified with current papers and that they demonstrate proper techniques.
 - 3. Observe high strength bolting procedures. Verify that shop installation of high strength bolts conforms to AISC specifications.
 - 4. Examine joint preparation for complete penetration joints. Ultrasonically inspect 100% of the complete penetration welds.
 - 5. Examine fillet welds for proper size, profile, throat, porosity and end returns.
 - 6. Examine steel members for lamellar tearing. Spot check dimensions and hole sizes.
 - 7. Examine bolted areas for burrs.

1.7 ERECTOR'S QUALIFICATION

- A. Erector shall be experienced in erecting structural systems similar in complexity to this project as evidenced by 10 completed projects.
- B. Erector shall have a minimum of 5 years experience in the erection of structural steel or is an AISC Certified Advanced Steel Erector.

1.8 STORAGE

A. Store materials off ground to permit easy access for inspection and identification. Store steel members and packaged items in a manner that provides protection against contact with deleterious materials.

PART 2 - PRODUCTS

2.1 ANCHOR ROD

- A. Anchor rods shall conform to ASTM F1554 and shall be a headed rod or threaded rod with a heavy hexagonal nut welded to the bottom of the threaded rod.
- B. Provide two hexagonal nuts and two plain steel washers for each anchor rod conforming to ASTM F844.
- C. Provide 3/8-inch thick plate washers (4-inch x 4-inch) in lieu of top steel washer on base plates with oversized holes.

2.2 ROLLED STEEL WIDE FLANGE AND WT SHAPES

A. Rolled steel wide flange shapes shall conform to ASTM A992.

2.3 ROLLED STEEL SHAPES, PLATES, AND BARS, EXCEPT WIDE FLANGE AND WT SHAPES

A. Rolled steel shapes, plates, and bars, except wide flange and WT shapes, shall conform to ASTM A36.

2.4 ROUND STRUCTURAL STEEL TUBING

A. Round structural steel tubing shall conform to ASTM 500, Grade B, 42 ksi minimum yield strength.

2.5 SHAPED STRUCTURAL STEEL TUBING

A. Shaped structural steel tubing shall conform to ASTM A500, Grade B, 46 ksi minimum yield strength.

2.6 HIGH-STRENGTH FASTENERS

- A. High-strength bolts shall conform to ASTM A325 or ASTM A490 as noted on the Structural Drawings.
- B. Provide 3/4-inch minimum diameter bolts, unless noted otherwise.
- C. Hardened steel washers shall conform to ASTM F436.
- D. Spline-type tension control bolts, plain hardened washers and suitable nuts are an acceptable alternate design bolt assembly.
- E. Do not use load indicating washers.

2.7 EXPANSION ANCHORS

A. Expansion anchors shall have been evaluated by the ICC Evaluation Services, Inc. (ICC-ES) with a published evaluation report. Anchors shall be evaluated by ICC-ES Acceptance Criteria 193 and be specifically approved for use in cracked concrete. All anchors shall be approved for resisting wind and seismic loads.

2.8 ADHESIVE ANCHORS

- A. Adhesive anchors shall consist of:
 - 1. An all-thread steel anchor conforming to ASTM A307, Grade A or ASTM A36, zinc plated in accordance with ASTM B633, unless noted otherwise on the Structural Drawings, and
 - 2. An adhesive conforming to ASTM C881-02, Type IV, Grade 3, CLASS A, B, & C except gel times and epoxy content. Adhesive shall consist of a two-component adhesive system contained in side by side packaging connected to a mixing nozzle which thoroughly mixes the components as it is injected into the hole. Adhesive shall have passed ICC Evaluation Services, Inc. Acceptance Criteria 308 for long term creep and be specifically approved for use in cracked concrete.

2.9 WELD ELECTRODES

- A. E-70 series low hydrogen electrodes shall conform to AWS A5.1, A5.5, A5.17, or A5.20.
- B. Properly store electrodes to maintain flux quality.

2.10 PAINT

- A. Oxide primer shall conform to AISC Specifications, Code of Standard Practice, and SSPC Steel Structure Painting Manual, unless indicated otherwise.
- B. Paint primer shall be free of lead and chromate and shall comply with State and Federal volatile organic compound (VOC) requirements.
- C. Paint primer shall be compatible with finish coating.

2.11 GALVANIZING

- A. Galvanized coating shall conform to ASTM A123.
- B. Galvanize bolts, nuts, and washers in accordance with ASTM A153 when used to connect steel members that are specified to be galvanized.
- C. Expansion anchors or adhesive anchors specified to be galvanized shall be mechanically galvanized in accordance with ASTM B695, Class 65, Type I.

PART 3 - EXECUTION

3.1 GENERAL

- A. Fabricate and erect structural steel in accordance with AISC Specifications and Code of Standard Practice.
- B. Notify Design Professional and Structural Testing/Inspection Agency at least 48 hours prior to structural steel fabrication and erection.

3.2 ANCHOR BOLT SETTING

- A. Provide templates for setting anchor bolts. Position anchor bolts by using templates with two nuts to secure in place prior to placement of concrete.
- B. Do not erect steel where anchor bolt nuts will not have full threads.

3.3 CONNECTIONS

- A. Provide a minimum of two fasteners at each bolted connection.
- B. Ensure fasteners are lubricated prior to installation.
- C. Provide high-strength bolted connections in accordance with AISC Specifications for Structural Joints using ASTM A325 or A490 Bolts.
- D. Provide connections for expansion and contraction where steel beams connect to concrete walls or concrete columns and at expansion joints. Secure nuts on bolts against loosening. (Dent threads with a chisel.)

3.4 FASTENER INSTALLATION

- A. Bolts shall be installed in holes of the connection and brought to snug tight condition. Tighten connection progressing systematically from the most rigid part to the free edges of the connection to minimize relaxation of the bolts.
- B. High-strength bolts installed shall have a hardened washer under the element turned in tightening.
- C. Installation and tightening of bolts shall conform to the AISC Specifications for Structural Joints.

3.5 EXPANSION ANCHOR INSTALLATION

- A. Install in accordance with manufacturer's recommendation.
- B. Minimum embedment shall be equal to 4.5 times the anchor diameter unless noted otherwise.

3.6 ADHESIVE ANCHOR INSTALLATION

- A. Install in accordance with manufacturer's recommendation.
- B. Minimum embedment shall be equal to 4.5 times the anchor diameter unless noted otherwise.

3.7 WELDING

- A. Comply with AWS Structural Welding Code. Use prequalified weld procedures.
- B. Provide end returns where fillet welds terminate at end or sides. Returns shall be continuous for a distance of not less than two times the nominal size of the weld.
- C. Complete penetration joints shall be back gouged to sound metal before the second side is welded or have 1/4-inch root opening with 3/16 x 1 inch backing bar. Access holes are required. Filling access holes is not required.
- D. Remove all slag and weld splatter from deposited weld metal.

3.8 SPLICING

- A. Splice members only where indicated unless authorized in writing by the Design Professional.
- B. Provide shim plates at bottom flange splice at continuous beam splices with different depths.

3.9 CUTTING

- A. Do not use flame cutting to correct errors unless authorized in writing.
- B. Re-entrant corners shall have a minimum radius of one inch and be free of notches. Notches and gouges resulting from flame cutting shall be finished to a smooth appearance.

3.10 MILL SCALE

A. Remove loose mill scale.

3.11 BOLT HOLES

A. Cut, drill, or punch holes perpendicular to metal surfaces. Do not enlarge holes by burning. Drill or punch holes in bearing plates. Remove burrs.

3.12 PAINTING

- A. Paint steel that is not encased in concrete, plaster, or sprayed fireproofing. Do not shop paint in areas to be field welded, contact surfaces of slip critical connections, or areas to receive special finishes.
- B. Field paint as required steel that has been welded or that is unpainted after connections have been tightened.

3.13.1 GALVANIZING

- A. Galvanize shelf angles that support the exterior building veneer, for example brick shelf angles.
- B. Galvanize environmentally exposed steel, for example mechanical equipment supports.
- C. Touch-up welds and abrasions in galvanized members in accordance with ASTM A780.

END OF SECTION 051000

SECTION 052000 - STEEL JOISTS AND JOIST GIRDERS

PART 1 - GENERAL

1.1 SECTION INCLUDES

A. Section includes the manufacture and erection of steel joists shown on the Drawings.

1.2 RELATED SECTIONS

- A. Section 013330 Structural Submittals.
- B. Section 014525 Structural Testing/Inspection Agency Services.
- C. Section 051000 Structural Steel.
- D. Section 053000 Metal Decking.

1.3 REFERENCES

- A. ASTM A307 Standard Specification for Carbon Steel Bolts and Studs, 60,000 PSI Tensile Strength.
- B. AWS D1.1 Structural Welding Code.
- C. SJI Standard Specifications for Open Web Steel Joists, K-Series.

1.4 DESIGN REQUIREMENTS

- A. Steel joists and bridging shall be designed by an engineer licensed in the project state.
- B. Design joists and bridging in accordance with the Steel Joist Institute (SJI) Standard Specifications.
- C. Refer to Drawings for special design requirements, if any.
- D. Design VS-Series, KCS-Series, and SLH-series joists to conform to the load tables published by Vulcraft.

1.5 SUBMITTALS

- A. Submit certification letter stating compliance with SJI specifications.
- B. Submit detailed shop drawings sealed by the design engineer showing layout of joist units, special connections, and accessories. Include the mark, number, type, location, and spacing of joists and bridging.

- C. Upon request, submit mill test certificates.
- D. Upon request, submit written welding procedures for each type of welded joint used. Use prequalified joints.
- E. Upon request, submit the erection sequence and procedures to be used by the steel erector.

1.6 QUALITY ASSURANCE

- A. Structural Testing/Inspection Agency shall perform the following quality related items:
 - 1. Visual inspection of bolted and welded connections.
 - 2. Verify installation of bridging or braces.
 - 3. Verify connections for top and bottom chords.
 - 4. Verify reinforcement of members for concentrated loads.
 - 5. Verify proper bearing.
- B. The Structural Testing / Inspection Agency shall provide special inspections as required by Chapter 17 of the building code as required by Specification 01 4525.

1.7 QUALIFICATIONS

A. Manufacturer shall verify that design and manufacture of joists conforms with SJI Standard Specifications.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Store and handle joists as recommended in SJI Standard Specifications.

PART 2 - PRODUCTS

2.1 ROLLED STEEL PLATES, SHAPES, AND BARS

A. Steel shall conform to SJI Standard Specifications.

2.2 UNFINISHED BOLTS, WASHERS, AND NUTS

A. Unfinished bolts shall conform to ASTM A307, Grade A, 60 ksi minimum tensile strength. Provide compatible hexagonal nuts and plain washers.

2.3 WELD ELECTRODES

- A. E-70 series low hydrogen electrodes conforming to AWS A5.1 or A5.5, A5.17 or A5.20.
- B. Provide proper storage for electrodes to maintain flux quality.

2.4 PAINT

A. Primer shall conform to AISC Specifications and Code of Standard Practice and SSPC Steel Structures Painting Manual.

PART 3 - EXECUTION

3.1 MANUFACTURE AND ERECTION

- A. Manufacture and erect joists in accordance with SJI Standard Specifications.
- B. Members shall have parallel top and bottom chords unless otherwise indicated.
- C. Fabricate bearings which rest on sloped surfaces with a slope which conforms to that of the support unless otherwise approved.
- D. Provide for connections of kickers and hangers to members.
- E. Provide bottom chord extensions at columns and as indicated by the Contract Drawings. Weld bottom chords to members after dead loads have been applied.
- F. Provide ceiling extensions in areas having ceilings attached directly to joist bottom chord (not suspended ceilings). Extend ends to within 1/2 inch of the finished wall surface unless otherwise indicated.
- G. Camber joists according to SJI Standard Specifications. Negative camber and bent joists are unacceptable.
- H. Do not erect joists until supporting work is secured.
- I. Provide bridging complying with SJI Standard Specifications. Provide for connections where bridging terminates.

3.2 CONCENTRATED LOADS ON JOISTS

A. Concentrated loads not shown on Drawings must be verified by joist manufacturer for adequacy of joist design. The necessity of any reinforcement required for concentrated loads applied to either the top or bottom chord shall be designed by joist manufacturer.

3.3 HEADER UNITS

A. Provide header units to support openings in floor or roof system not framed with steel shapes.

3.4 SHOP PAINTING

- A. Remove loose scale, heavy rust, and other foreign materials from joists and accessories before application of shop paint.
- B. Apply one shop coat of steel joist primer paint to joists and accessories, by spray, dipping, or other method to provide a continuous dry paint film thickness of not less than 1.50 mil.

3.5 BEARING

- A. Extend ends of steel joists not less than 4 inches over masonry and concrete supports. Extend ends of joists not less than 2-1/2 inches over steel supports. Positive attachment to support shall be made by welding or bolting. In such cases where a shorter end bearing length must be used, such condition must be designed.
- B. "U" type anchors are not acceptable unless authorized in writing.

3.6 WELDING

- A. Perform welding in accordance with AWS D1.1 "Structural Welding Code". Use AWS Certified Welders.
- B. Weld ends of joists resting on steel supports with the minimum weld specified by the SJI standard specifications, unless otherwise indicated on Contract Drawings.
- C. Remove all slag and weld splatter from deposited weld material.

3.7 BRIDGING INSTALLATION

- A. Permanently fasten bridging before the application of loads.
- B. In areas where joists will be exposed to view, align bridging in straight rows to create uniform appearance.

3.8 PROTECTION

- A. Provide means for adequate distribution of concentrated loads so that carrying capacity of joists is not exceeded during construction.
- B. Provide temporary bridging, bracing, connections, and anchors to ensure lateral stability during construction.
- C. Joists damaged during construction shall be replaced or repaired with procedures submitted by the joist manufacturer.

3.9 CUTTING

A. Do not field cut or apply heat to joists or joist girders unless authorized in writing.

END OF SECTION 052000

SECTION 053000 - METAL DECKING

PART 1 - GENERAL

1.1 SECTION INCLUDES

A. Section includes metal decking as indicated on Drawings, specified herein, and needed for a complete and proper installation.

1.2 RELATED SECTIONS

- A. Section 013330 Structural Submittals.
- B. Section 014525 Structural Testing/Inspection Agency Services.
- C. Section 051000 Structural Steel.
- D. Section 052000 Steel Joists.

1.3 REFERENCES

- A. AISI Specifications for the Design of Cold-Formed Steel Structural Members.
- B. AWS D1.1 Structural Welding Code.
- C. AWS A5.5 Specifications For Low Alloy Steel Covered Arc-Welding.
- D. SDI Basic Design Specifications.
- E. SDI Steel Roof Deck Design Manual.
- F. ASTM A653 Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy Coated (Galvannealed) by the Hot Dip Process.

1.4 SUBMITTALS

- A. Notify the Design Professional prior to detailing shop drawings.
- B. Submit detailed shop drawings showing layout and types of deck panels, weld sizes, weld patterns and conditions requiring closure panels, finishes, supplementary framing, sump pans, cant strips, cut openings, special jointing or other accessories. Include calculations and required information if not completely covered by load tables and products data.
- C. Submit mill certification that the steel supplied meets the required specifications.
- D. Submit written welding procedures.

- E. Submit manufacturer's specifications, section properties, load tables, diaphragm shear tables, noise reduction coefficients (if applicable) and installation instructions for each type of decking and accessories. Include manufacturer's certifications to show compliance with supplementary framing, sump pans, cant strips, curb openings, special jointing and other accessories.
- F. A full width sample of acoustical deck shall be submitted as requested to verify compliance with the specifications and the level of quality.

1.5 QUALITY ASSURANCE

- A. Structural Testing/Inspection Agency shall perform the following quality related items:
 - 1. Verify placement of deck for alignment and proper lap.
 - 2. Verify welds for size and pattern.

1.6 STORAGE

- A. Store materials off ground to permit easy access for inspection and identification. Store steel members and packaged items in a manner that provides protection against contact with deleterious materials.
- B. Panels shall be protected from damage during delivery, storage, and handling.
- C. If storage at the jobsite is required, panels shall be elevated above the ground, sloped to provide drainage, and protected from the weather with a ventilated covering.

1.7 DEFINITIONS

A. Epicore Acoustical Deck – The design is based on ER3.5 acoustical roof deck / ceiling panels as manufactured by EPIC METALS CORPORATION, Rankin, PA. Roof deck panels shall have a continuous dovetail shaped ribs spaced 8 inches on center and shall be minimum 3.5" deep. Acoustical roof deck and ceiling system shall serve as a structural roof deck and a finished ceiling as indicated on the contract drawings. The acoustical roof deck and ceiling system shall provide an exposed bottom surface that is substantially flat. The narrow rib openings of the acoustical roof deck and ceiling system shall provide the appearance of a linear ceiling. Fasteners for sidelaps and overlying roofing materials shall be concealed within the depth of the dovetail shaped ribs.

PART 2 - PRODUCTS

2.1 GENERAL

A. Provide metal deck sheets of three spans minimum wherever possible.

B. Metal deck shall be designed to resist the design loads provided in the Contract Documents. The design of the metal deck shall be the sole responsibility of the deck supplier and its design engineer, licensed in the project state.

2.2 DECK ATTACHMENT

- A. Use E-60 series electrodes conforming to AWS A5.5.
- B. Provide weld washers for material thinner than 22 gage.

2.3 ROOF DECK

- A. Metal roof deck formed from steel sheets shall conform to ASTM A653 structural quality (SQ). Provide roof deck types, minimum grades and gages as indicated on Drawings.
- B. Before forming, the steel sheets shall receive a hot-dip protective coating of zinc conforming to ASTM A924 with the following minimum coating class, as defined in ASTM A653:
 - 1. All locations G60

Provide accessories, clips, and other items as required.

- C. Roof deck that will be painted in the field (coordinate with Design Professional), shall comply with these additional requirements:
 - 1. Before fabrication of the panel, all surfaces of the galvanized sheet steel shall be processed through a continuous coil coating line, designed to degrease and clean the metal, followed by a chemical conversion coating to etch the surface for proper bond characteristics. The roof deck shall then be coated with a 0.2 mil epoxy primer, oven baked and recoated with a 0.5 mil polyester primer and rebaked. This coil coated prime finish shall be applied to both sides of the material.
 - 2. For deck within aggressive environments, after fabrication or assembly of the panel, the exposed surface and the inside periphery of the perforations shall receive the factory applied epoxy primer. The primer shall be oven cured to enhance adhesion and durability characteristics.

Compatibility of all field applied finish paint with the factory applied primer shall be the responsibility of the painting contractor.

- D. Provide roof deck units with flush, nested 2-inch end laps and nested side laps, unless otherwise indicated or specified. Provide deck configurations complying with SDI "Basic Design Specifications".
- E. Provide acoustical roof deck where indicated on the Drawings with a minimum NRC rating of 0.90. Deck shall have perforated acoustical decking with white factory finish and glass fiber flute insulation strips.

F. Flute Insulation - Furnish glass fiber acoustical sound absorbing strips for flutes (installed by roofing subcontractor).

2.4 EPICORE ACOUSTICAL DECK

- A. Provide Epicore acoustical dovetail roof deck where indicated on the Drawings with a minimum NRC rating of 0.95. Acoustic elements shall be located above the perforations in the bottom flat area between the dovetail shaped ribs. These acoustic elements shall be supported on metal spacers to facilitate field painting.
- B. The acoustical panels shall be cold-formed from steel coils conforming to ASTM A653, structural quality, with minimum yield strength of 40 ksi.
- C. Before forming, the steel coils shall have received a hot-dip protective coating of zinc conforming to ASTM A924, Class G60, as defined in ASTM A653.
- D. The minimum uncoated thickness of the steel furnished shall not be less than 95% of the design thickness.
- E. The acoustical roof deck and ceiling system panels shall have continuous dovetail shaped ribs. The deck shall be minimum 3.5" deep.
- F. The acoustical roof deck and ceiling system panels shall have full depth positive registering sidelaps that can be fastened by welds or screws.
- G. The acoustical roof deck and ceiling system panels shall be fabricated with perforations. The perforated areas shall be located in the bottom flat areas between the dovetail shaped ribs. A minimum NRC value of .95 shall be provided. This value shall be established by sound absorption tests without the use of fiberglass insulation above the panels.
- H. The top and bottom surfaces of the acoustical panels shall be prime painted with manufacturer's standard two coat off-white primer at the factory. Before painting, the galvanized steel shall be chemically cleaned, pretreated with an acid wash, and coated with a 0.2 mil epoxy primer, oven cured then followed by a second coat of a minimum 0.4 mil polyester prime paint then oven cured. Compatibility of field applied finish paint with factory applied prime paint shall be the responsibility of the painting contractor.
- I. Hanging devices shall be installable and relocatable along the length of the interior ribs of the acoustical roof deck panels. The manufacturer's product data shall be consulted for minimum spacing, load capacities, and proper installation procedure of the hanging devices.
- J. The manufacturer's standard ridge plates, valley plates, transition plates, and closures shall be provided as indicated on the structural drawings.
- K. Openings and reinforcement for openings noted specifically by the deck manufacturer on the structural drawings shall be provided. Access panels shall be provided at locations to be coordinated between the Architect, Engineer, Contractor, and Manufacturer. Access panels shall not be allowed adjacent to the sidelap of any deck sheet.

L. Acoustic elements shall be provided for installation above the perforations in the bottom flat area between the dovetail shaped ribs. To facilitate field painting of the perforated surfaces, the sound absorbing elements shall be supported above the surface by spacers. Sound absorbing elements and spacers shall be furnished under this specification section for installation by the roofing contractor.

PART 3 - EXECUTION

3.1 GENERAL

- A. Load conditions shall be in accordance with Steel Deck Institute sequential loading formulas.
- B. Installer must examine the areas and conditions under which metal decking is to be installed and notify the Contractor in writing of conditions detrimental to the proper and timely completion of the work. Do not proceed with the work until unsatisfactory conditions have been corrected in a manner acceptable to the Installer.

3.2 PLACEMENT

A. Place steel deck units on supporting steel framework and adjust to final position before permanently fastening. Install deck units and accessories in accordance with manufacturer's recommendations and the Drawings, and as specified herein.

3.3 CUTTING

A. Cut holes in deck indicated by the Drawings. Other holes required shall be supplied by those requiring them. Obtain written authorization for additional holes and cutting not indicated on erection drawings.

3.4 WELDING

- A. Perform welding in accordance with AWS Structural Welding Code.
- B. Provide weld washers for deck thinner than 22 gage.

3.5 CONCENTRATED LOADS

A. Do not hang concentrated loads exceeding 50 pounds from the deck.

3.6 DECK SUPPORTS

A. Fasten deck to steel framework at ends and at each intermediate support by welding according to manufacturer's specifications unless indicated otherwise on structural drawings or otherwise specified herein. Do not weld deck in place until all bolted and

welded connections for the structural frame are complete. A minimum of one floor over the area to be decked is to be bolted and welded prior to welding deck in place.

3.7 ROOF DECK

- A. Place roof deck in straight alignment. Lap ends of sheets two inches.
- B. Attach side laps of roof deck with as shown on the Drawings. Fasteners for side laps and overlying roofing material in dovetail deck shall be concealed within the depth of the dovetail shaped ribs. Within aggressive environments, fasteners shall be stainless steel.
- C. Fasten roof deck in place as shown on the Drawings.

3.8 EPICORE ACOUSTICAL DECK

- A. The acoustical roof deck and ceiling system shall be installed in strict accordance with the manufacturer's instructions, approved erection drawings, and all applicable safety regulations. Coordinate length of fasteners for roofing and thermal insulation to avoid penetrating the lower surface of the deck / ceiling.
- B. The supporting frame and other work relating to the acoustical roof deck shall be examined to determine if this work has been properly completed.
- C. Bundles of material shall be located on the supporting frame in such a manner that overloading of any individual framing members does not occur.
- D. Before being permanently fastened, the acoustical panels shall be placed on the supporting frame and adjusted to final position with ends accurately aligned and adequately bearing on the supporting frame. Consistent coverage shall be maintained so that panels located in adjacent bays will be properly aligned.
- E. Cutting of the acoustical panels to suit jobsite conditions shall be performed in a neat and professional manner. Only those openings indicated on the structural drawings shall be cut. Other openings shall be cut and reinforced by those requiring the openings as approved by the structural engineer.
- F. Construction loads shall not be applied to the acoustical panels until after the panels are permanently fastened to supporting members, and sidelaps are attached. The construction loads shall not exceed the capacity of the panels.
- G. Items such as ceilings, light fixtures, conduit, pipe and ductwork shall not be suspended from the acoustical panels without specific approval of the structural engineer.
- H. Sump pans, ridge plates, valley plates, transition plates, eave plates, and supplied reinforcement for small openings shall be fastened as indicated on the manufacturer's erection drawings.

- I. Construction loads that could damage the acoustical roof deck such as heavy concentrated loads and impact loads shall be avoided. Planking shall be used in all high traffic areas.
- J. Galvanizing and other coatings that are damaged must be field repaired using appropriate methods and shall be the responsibility of the contractor.
- K. Cleaning the bottom surface of the acoustical roof deck for field painting shall be the responsibility of the contractor.

END OF SECTION 053000

SECTION 054000 - COLD-FORMED METAL FRAMING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Exterior non-load-bearing wall framing.
- 2. Interior non-load-bearing wall framing exceeding height limitations of standard, nonstructural metal framing.
- 3. Ceiling joist framing.
- 4. Soffit framing.

B. Related Requirements:

- 1. Section 055000 "Metal Fabrications" for miscellaneous steel shapes, masonry shelf angles, and connections used with cold-formed metal framing.
- 2. Section 092216 "Non-Structural Metal Framing" for standard, interior non-load-bearing, metal-stud framing, with height limitations and ceiling-suspension assemblies.

1.3 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings:

- 1. Include layout, spacings, sizes, thicknesses, and types of cold-formed steel framing; fabrication; and fastening and anchorage details, including mechanical fasteners.
- 2. Indicate reinforcing channels, opening framing, supplemental framing, strapping, bracing, bridging, splices, accessories, connection details, and attachment to adjoining work.
- C. Delegated-Design Submittal: For cold-formed steel framing.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For testing agency.
- B. Welding certificates.
- C. Product Certificates: For each type of code-compliance certification for study and tracks.
- D. Product Test Reports: For each listed product, for tests performed by manufacturer and witnessed by a qualified testing agency.
 - 1. Steel sheet.
 - 2. Expansion anchors.
 - 3. Power-actuated anchors.
 - 4. Mechanical fasteners.
 - 5. Vertical deflection clips.
 - 6. Horizontal drift deflection clips
 - 7. Miscellaneous structural clips and accessories.
- E. Evaluation Reports: For nonstandard cold-formed steel framing, power-actuated fasteners, from ICC-ES or other qualified testing agency acceptable to authorities having jurisdiction.

1.6 QUALITY ASSURANCE

- A. Testing Agency Qualifications: Qualified according to ASTM E329 for testing indicated.
- B. Product Tests: Mill certificates or data from a qualified independent testing agencyindicating steel sheet complies with requirements, including base-metal thickness, yield strength, tensile strength, total elongation, chemical requirements, and metallic-coating thickness.
- C. Code-Compliance Certification of Studs and Tracks: Provide documentation that framing members are certified according to the product-certification program of the Steel Stud Manufacturers Association.
- D. Welding Qualifications: Qualify procedures and personnel according to the following:
 - 1. AWS D1.1/D1.1M, "Structural Welding Code Steel."
 - 2. AWS D1.3/D1.3M, "Structural Welding Code Sheet Steel."
- E. Comply with AISI S230 "Standard for Cold-Formed Steel Framing Prescriptive Method for One and Two Family Dwellings."

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. <u>1. AllSteel & Gypsum Products, Inc.</u>
 - 2. Clark Dietrich
 - 3. Nuconsteel, A Nucor Company

- 4. Custom Stud
- 5. Formetal Co. Inc.
- 6. Steel Construction Systems
- 7. Steel Structural Systems

2.2 PERFORMANCE REQUIREMENTS

- A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design cold-formed steel framing.
- B. Structural Performance: Provide cold-formed steel framing capable of withstanding design loads within limits and under conditions indicated.
 - 1. Design Loads: As indicated on Drawings
 - 2. Deflection Limits: Design framing systems to withstand design loads without deflections greater than the following:
 - a. Exterior Non-Load-Bearing Framing: Horizontal deflection of 1/600 of the wall height.
 - b. Interior Non-Load-Bearing Framing: Horizontal deflection of 1/360 of the wall height under a horizontal load of 5 lbf/sq. ft. (239 Pa).
 - c. Ceiling Joist Framing: Vertical deflection of 1/360 of the span for live loads and 1/240 for total loads of the span.
 - 3. Design framing systems to provide for movement of framing members located outside the insulated building envelope without damage or overstressing, sheathing failure, connection failure, undue strain on fasteners and anchors, or other detrimental effects when subject to a maximum ambient temperature change of 120 deg F (67 deg C).
 - 4. Design framing system to maintain clearances at openings, to allow for construction tolerances, and to accommodate live load deflection of primary building structure as follows:
 - a. Upward and downward movement of $\frac{1}{2}$ inch (13 mm)
 - 5. Design exterior non-load-bearing wall framing to accommodate horizontal deflection without regard for contribution of sheathing materials.
- C. Cold-Formed Steel Framing Standards: Unless more stringent requirements are indicated, framing shall comply with AISI S100, AISI S200, and the following:
 - 1. Floor and Roof Systems: AISI S210.
 - 2. Wall Studs: AISI S211.
 - 3. Headers: AISI S212.
 - 4. Lateral Design: AISI S213.
- D. Fire-Resistance Ratings: Comply with ASTM E119; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 - 1. Indicate design designations from UL's "Fire Resistance Directory" or from the listings of another qualified testing agency acceptable to authorities having jurisdiction.

2.3 COLD-FORMED STEEL FRAMING MATERIALS

- A. Steel Sheet: ASTM A1003/A1003M, Structural Grade, Type H, metallic coated, of grade and coating designation as follows:
 - 1. Grade: As required by structural performance.
 - 2. Coating: G60 (Z180).
- B. Steel Sheet for Vertical Deflection Clips: ASTM A653/A653M, structural steel, zinc coated, of grade and coating as follows:
 - 1. Grade: As required by structural performance.
 - 2. Coating: G60 (Z180).

2.4 EXTERIOR NON-LOAD-BEARING WALL FRAMING

- A. Steel Studs: Manufacturer's standard C-shaped steel studs, of web depths indicated, punched, with stiffened flanges, and as follows:
 - 1. Minimum Base-Metal Thickness: 0.0428 inch (1.09 mm)
 - 2. Flange Width: 1-5/8 inches (41 mm)
- B. Steel Track: Manufacturer's standard U-shaped steel track, of web depths indicated, unpunched, with unstiffened flanges, and as follows:
 - 1. Minimum Base-Metal Thickness: Matching steel studs
 - 2. Flange Width: 1-1/4 inches (32 mm)
- C. Vertical Deflection Clips: Manufacturer's standard head clips, capable of accommodating upward and downward vertical displacement of primary structure through positive mechanical attachment to stud web.

1. AllSteel & Gypsum Products, Inc.

- 1. Clark Dietrich
- 2. Nuconsteel, A Nucor Company
- 3. Custom Stud
- 4. Formetal Co. Inc.
- 5. Steel Construction Systems
- 6. Steel Structural Systems
- D. Single Deflection Track: Manufacturer's single, deep-leg, U-shaped steel track; unpunched, with unstiffened flanges, of web depth to contain studs while allowing free vertical movement, with flanges designed to support horizontal loads and transfer them to the primary structure, and as follows:
 - 1. Minimum Base-Metal Thickness: 0.0428 inch (1.09 mm)
 - 2. Flange Width: 1 inch (25 mm) plus the design gap for one-story structures

2.5 INTERIOR NON-LOAD-BEARING WALL FRAMING

- A. Steel Studs: Manufacturer's standard C-shaped steel studs, of web depths indicated, punched, with stiffened flanges, and as follows:
 - 1. Minimum Base-Metal Thickness: 0.0329 inch (0.84 mm)
 - 2. Flange Width: 1-3/8 inches (35 mm)
- B. Steel Track: Manufacturer's standard U-shaped steel track, of web depths indicated, unpunched, with unstiffened flanges, and as follows:
 - 1. Minimum Base-Metal Thickness: Matching steel studs
 - 2. Flange Width: 1-1/4 inches (32 mm)
- C. Vertical Deflection Clips: Manufacturer's standard head clips, capable of accommodating upward and downward vertical displacement of primary structure through positive mechanical attachment to stud web.

1. AllSteel & Gypsum Products, Inc.

- 1. Clark Dietrich
- 2. Nuconsteel, A Nucor Company
- 3. Custom Stud
- 4. Formetal Co. Inc.
- 5. Steel Construction Systems
- 6. Steel Structural Systems
- D. Single Deflection Track: Manufacturer's single, deep-leg, U-shaped steel track; unpunched, with unstiffened flanges, of web depth to contain studs while allowing free vertical movement, with flanges designed to support horizontal loads and transfer them to the primary structure, and as follows:
 - 1. Minimum Base-Metal Thickness: 0.0428 inch (1.09 mm)
 - 2. Flange Width: 1 inch (25 mm) plus the design gap for one-story structures

2.6 CEILING JOIST FRAMING

- A. Steel Ceiling Joists: Manufacturer's standard C-shaped steel sections, of web depths indicated, punched with standard holes, with stiffened flanges, and as follows:
 - 1. Minimum Base-Metal Thickness: 0.0329 inch (0.84 mm).
 - 2. Flange Width: 1-5/8 inches (41 mm), minimum.

2.7 FRAMING ACCESSORIES

- A. Fabricate steel-framing accessories from ASTM A1003/A1003M, Structural Grade, Type H, metallic coated steel sheet, of same grade and coating designation used for framing members.
- B. Provide accessories of manufacturer's standard thickness and configuration, unless otherwise indicated, as follows:

- 1. Supplementary framing.
- 2. Bracing, bridging, and solid blocking.
- 3. Web stiffeners.
- 4. Anchor clips.
- 5. End clips.
- 6. Foundation clips.
- 7. Gusset plates.
- 8. Stud kickers and knee braces.
- 9. Joist hangers and end closures.
- 10. Hole-reinforcing plates.
- 11. Backer plates.

2.8 ANCHORS, CLIPS, AND FASTENERS

- A. Steel Shapes and Clips: ASTM A36/A36M, zinc coated by hot-dip process according to ASTM A123/A123M.
- B. Power-Actuated Anchors: Fastener systems with working capacity greater than or equal to the design load, according to an evaluation report acceptable to authorities having jurisdiction, based on ICC-ES AC70.
- C. Mechanical Fasteners: ASTM C1513, corrosion-resistant-coated, self-drilling, self-tapping, steel drill screws.
 - 1. Head Type: Low-profile head beneath sheathing; manufacturer's standard elsewhere.
- D. Welding Electrodes: Comply with AWS standards.

2.9 MISCELLANEOUS MATERIALS

- A. Cement Grout: Portland cement, ASTM C150/C150M, Type I; and clean, natural sand, ASTM C404. Mix at ratio of 1 part cement to 2-1/2 parts sand, by volume, with minimum water required for placement and hydration.
- B. Nonmetallic, Nonshrink Grout: Factory-packaged, nonmetallic, noncorrosive, nonstaining grout, complying with ASTM C1107/C1107M, and with a fluid consistency and 30-minute working time.
- C. Shims: Load-bearing, high-density, multimonomer, nonleaching plastic; or cold-formed steel of same grade and metallic coating as framing members supported by shims.
- D. Sealer Gaskets: Closed-cell neoprene foam, 1/4 inch (6 mm) thick, selected from manufacturer's standard widths to match width of bottom track or rim track members as required.

2.10 FABRICATION

- A. Fabricate cold-formed steel framing and accessories plumb, square, and true to line, and with connections securely fastened, according to referenced AISI's specifications and standards, manufacturer's written instructions, and requirements in this Section.
 - 1. Fabricate framing assemblies using jigs or templates.
 - 2. Cut framing members by sawing or shearing; do not torch cut.
 - 3. Fasten cold-formed steel framing members by welding, screw fastening, clinch fastening, pneumatic pin fastening, or riveting as standard with fabricator. Wire tying of framing members is not permitted.
 - a. Comply with AWS D1.3/D1.3M requirements and procedures for welding, appearance and quality of welds, and methods used in correcting welding work.
 - b. Locate mechanical fasteners and install according to Shop Drawings, with screws penetrating joined members by no fewer than three exposed screw threads.
 - 4. Fasten other materials to cold-formed steel framing by welding, bolting, pneumatic pin fastening, or screw fastening, according to Shop Drawings.
- B. Reinforce, stiffen, and brace framing assemblies to withstand handling, delivery, and erection stresses. Lift fabricated assemblies by means that prevent damage or permanent distortion.
- C. Tolerances: Fabricate assemblies level, plumb, and true to line to a maximum allowable variation of 1/8 inch in 10 feet (1:960) and as follows:
 - 1. Spacing: Space individual framing members no more than plus or minus 1/8 inch (3 mm) from plan location. Cumulative error shall not exceed minimum fastening requirements of sheathing or other finishing materials.
 - 2. Squareness: Fabricate each cold-formed steel framing assembly to a maximum out-of-square tolerance of 1/8 inch (3 mm).

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, conditions, and abutting structural framing for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Before sprayed fire-resistive materials are applied, attach continuous angles, supplementary framing, or tracks to structural members indicated to receive sprayed fire-resistive materials.
- B. After applying sprayed fire-resistive materials, remove only as much of these materials as needed to complete installation of cold-formed framing without reducing thickness of fire-

- resistive materials below that required to obtain fire-resistance ratings indicated. Protect remaining fire-resistive materials from damage.
- C. Install load-bearing shims or grout between the underside of load-bearing wall bottom track and the top of foundation wall or slab at locations with a gap larger than 1/4 inch (6 mm) to ensure a uniform bearing surface on supporting concrete or masonry construction.
- D. Install sealer gaskets at the underside of wall bottom track or rim track and at the top of foundation wall or slab at stud or joist locations.

3.3 INSTALLATION, GENERAL

- A. Cold-formed steel framing may be shop or field fabricated for installation, or it may be field assembled.
- B. Install cold-formed steel framing according to AISI S200, AISI S202, and manufacturer's written instructions unless more stringent requirements are indicated.
- C. Install shop- or field-fabricated, cold-formed framing and securely anchor to supporting structure.
 - 1. Screw, bolt, or weld wall panels at horizontal and vertical junctures to produce flush, even, true-to-line joints with maximum variation in plane and true position between fabricated panels not exceeding 1/16 inch (1.6 mm).
- D. Install cold-formed steel framing and accessories plumb, square, and true to line, and with connections securely fastened.
 - 1. Cut framing members by sawing or shearing; do not torch cut.
 - 2. Fasten cold-formed steel framing members by welding, screw fastening, clinch fastening, or riveting. Wire tying of framing members is not permitted.
 - a. Comply with AWS D1.3/D1.3M requirements and procedures for welding, appearance and quality of welds, and methods used in correcting welding work.
 - b. Locate mechanical fasteners, install according to Shop Drawings, and comply with requirements for spacing, edge distances, and screw penetration.
- E. Install framing members in one-piece lengths unless splice connections are indicated for track or tension members.
- F. Install temporary bracing and supports to secure framing and support loads equal to those for which structure was designed. Maintain braces and supports in place, undisturbed, until entire integrated supporting structure has been completed and permanent connections to framing are secured.
- G. Do not bridge building expansion joints with cold-formed steel framing. Independently frame both sides of joints.

- H. Install insulation, specified in Section 072100 "Thermal Insulation," in framing-assembly members, such as headers, sills, boxed joists, and multiple studs at openings, that are inaccessible on completion of framing work.
- I. Fasten hole-reinforcing plate over web penetrations that exceed size of manufacturer's approved or standard punched openings.

3.4 EXTERIOR NON-LOAD-BEARING WALL INSTALLATION

- A. Install continuous tracks sized to match studs. Align tracks accurately and securely anchor to supporting structure.
- B. Fasten both flanges of studs to top and bottom track unless otherwise indicated. Space studs as follows:
 - 1. Stud Spacing: 16 inches (406 mm)
- C. Set studs plumb, except as needed for diagonal bracing or required for nonplumb walls or warped surfaces and similar requirements.
- D. Isolate non-load-bearing steel framing from building structure to prevent transfer of vertical loads while providing lateral support.
 - 1. Install single deep-leg deflection tracks and anchor to building structure.
 - 2. Install double deep-leg deflection tracks and anchor outer track to building structure.
 - 3. Connect vertical deflection clips to infill studs and anchor to building structure.
 - 4. Connect drift clips to cold-formed steel framing and anchor to building structure.
- E. Install horizontal bridging in wall studs, spaced vertically in rows indicated on Shop Drawings but not more than 48 inches (1220 mm) apart. Fasten at each stud intersection.
 - 1. Channel Bridging: Cold-rolled steel channel, welded or mechanically fastened to webs of punched studs.
 - 2. Strap Bridging: Combination of flat, taut, steel sheet straps of width and thickness indicated and stud-track solid blocking of width and thickness to match studs. Fasten flat straps to stud flanges and secure solid blocking to stud webs or flanges.
 - 3. Bar Bridging: Proprietary bridging bars installed according to manufacturer's written instructions.
- F. Top Bridging for Single Deflection Track: Install row of horizontal bridging within 12 inches (305 mm) of single deflection track. Install a combination of bridging and stud or stud-track solid blocking of width and thickness matching studs, secured to stud webs or flanges.
 - 1. Install solid blocking at centers indicated on Shop Drawings.
- G. Install miscellaneous framing and connections, including stud kickers, web stiffeners, clip angles, continuous angles, anchors, and fasteners, to provide a complete and stable wall-framing system.

3.5 INTERIOR NON-LOAD-BEARING WALL INSTALLATION

- A. Install continuous tracks sized to match studs. Align tracks accurately and securely anchor to supporting structure.
- B. Fasten both flanges of studs to top and bottom track unless otherwise indicated. Space studs as follows:
 - 1. Stud Spacing: 16 inches (406 mm).
- C. Set studs plumb, except as needed for diagonal bracing or required for nonplumb walls or warped surfaces and similar requirements.
- D. Isolate non-load-bearing steel framing from building structure to prevent transfer of vertical loads while providing lateral support.
 - 1. Install single deep-leg deflection tracks and anchor to building structure.
 - 2. Install double deep-leg deflection tracks and anchor outer track to building structure.
 - 3. Connect vertical deflection clips to studs and anchor to building structure.
 - 4. Connect drift clips to cold-formed steel metal framing and anchor to building structure.
- E. Install horizontal bridging in wall studs, spaced vertically in rows indicated on Shop Drawings but not more than 48 inches (1220 mm) apart. Fasten at each stud intersection.
 - 1. Channel Bridging: Cold-rolled steel channel, welded or mechanically fastened to webs of punched studs.
 - 2. Strap Bridging: Combination of flat, taut, steel sheet straps of width and thickness indicated and stud-track solid blocking of width and thickness to match studs. Fasten flat straps to stud flanges and secure solid blocking to stud webs or flanges.
 - 3. Bar Bridging: Proprietary bridging bars installed according to manufacturer's written instructions.
- F. Top Bridging for Single Deflection Track: Install row of horizontal bridging within 12 inches (305 mm) of single deflection track. Install a combination of bridging and stud or stud-track solid blocking of width and thickness matching studs, secured to stud webs or flanges.
 - 1. Install solid blocking at centers indicated on Shop Drawings.
- G. Install miscellaneous framing and connections, including stud kickers, web stiffeners, clip angles, continuous angles, anchors, and fasteners, to provide a complete and stable wall-framing system.

3.6 ERECTION TOLERANCES

- A. Install cold-formed steel framing level, plumb, and true to line to a maximum allowable tolerance variation of 1/8 inch in 10 feet (1:960) and as follows:
 - 1. Space individual framing members no more than plus or minus 1/8 inch (3 mm) from plan location. Cumulative error shall not exceed minimum fastening requirements of sheathing or other finishing materials.

3.7 FIELD QUALITY CONTROL

- A. Testing: Owner will engage a qualified independent testing and inspecting agency to perform field tests and inspections and prepare test reports.
- B. Field and shop welds will be subject to testing and inspecting.
- C. Testing agency will report test results promptly and in writing to Contractor and Architect.
- D. Cold-formed steel framing will be considered defective if it does not pass tests and inspections.
- E. Additional testing and inspecting, at Contractor's expense, will be performed to determine compliance of replaced or additional work with specified requirements.

3.8 REPAIRS AND PROTECTION

- A. Galvanizing Repairs: Prepare and repair damaged galvanized coatings on fabricated and installed cold-formed steel framing with galvanized repair paint according to ASTM A780/A780M and manufacturer's written instructions.
- B. Provide final protection and maintain conditions, in a manner acceptable to manufacturer and Installer, that ensure that cold-formed steel framing is without damage or deterioration at time of Substantial Completion.

END OF SECTION 054000

SECTION 055000 - METAL FABRICATIONS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Steel framing and supports for operable partitions.
- 2. Steel framing and supports for mechanical and electrical equipment.
- 3. Steel framing and supports for applications where framing and supports are not specified in other Sections.
- 4. Shelf angles.
- 5. Metal ladders.
- 6. Slotted channel framing.
- 7. Loose bearing and leveling plates for applications where they are not specified in other Sections.
- 8. Metal bollards.
- B. Products furnished, but not installed, under this Section include the following:
 - 1. Loose steel lintels.
 - 2. Anchor bolts, steel pipe sleeves, slotted-channel inserts, and wedge-type inserts indicated to be cast into concrete or built into unit masonry.
 - 3. Steel weld plates and angles for casting into concrete for applications where they are not specified in other Sections.

C. Related Requirements:

- 1. Section 033000 "Cast-in-Place Concrete" for installing anchor bolts, steel pipe sleeves, slotted-channel inserts, wedge-type inserts, and other items cast into concrete.
- 2. Section 042000 "Unit Masonry" for installing loose lintels, anchor bolts, and other items built into unit masonry.
- 3. Section 051200 "Structural Steel Framing."

1.3 COORDINATION

A. Coordinate selection of shop primers with topcoats to be applied over them. Comply with paint and coating manufacturers' written recommendations to ensure that shop primers and topcoats are compatible with one another.

B. Coordinate installation of metal fabrications that are anchored to or that receive other work. Furnish setting drawings, templates, and directions for installing anchorages, including sleeves, concrete inserts, anchor bolts, and items with integral anchors, that are to be embedded in concrete or masonry. Deliver such items to Project site in time for installation.

1.4 ACTION SUBMITTALS

- A. Product Data: For the following:
 - 1. Paint products.
 - 2. Grout.
- B. Shop Drawings: Show fabrication and installation details. Include plans, elevations, sections, and details of metal fabrications and their connections. Show anchorage and accessory items. Provide Shop Drawings for the following:
 - 1. Steel framing and supports for operable partitions.
 - 2. Steel framing and supports for applications where framing and supports are not specified in other Sections.
 - 3. Shelf angles.
 - 4. Metal ladders.
 - 5. Loose steel lintels.
 - 6. Metal Bollards
- C. Delegated-Design Submittal: For ladders, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For professional engineer.
- B. Welding certificates.
- C. Paint Compatibility Certificates: From manufacturers of topcoats applied over shop primers, certifying that shop primers are compatible with topcoats.
- D. Research/Evaluation Reports: For post-installed anchors, from ICC-ES.

1.6 QUALITY ASSURANCE

- A. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- B. Welding Qualifications: Qualify procedures and personnel according to the following:
 - 1. AWS D1.1/D1.1M, "Structural Welding Code Steel."
 - 2. AWS D1.2/D1.2M, "Structural Welding Code Aluminum."
 - 3. AWS D1.6/D1.6M, "Structural Welding Code Stainless Steel."

1.7 FIELD CONDITIONS

A. Field Measurements: Verify actual locations of walls and other construction contiguous with metal fabrications by field measurements before fabrication.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design ladders.
- B. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes acting on exterior metal fabrications by preventing buckling, opening of joints, overstressing of components, failure of connections, and other detrimental effects.
 - 1. Temperature Change: 120 deg F (67 deg C), ambient; 180 deg F (100 deg C), material surfaces.

2.2 METALS

- A. Metal Surfaces, General: Provide materials with smooth, flat surfaces unless otherwise indicated. For metal fabrications exposed to view in the completed Work, provide materials without seam marks, roller marks, rolled trade names, or blemishes.
- B. Steel Plates, Shapes, and Bars: ASTM A36/A36M.
- C. Stainless-Steel Sheet, Strip, and Plate: ASTM A240/A240M or ASTM A666, Type 304.
- D. Stainless-Steel Bars and Shapes: ASTM A276, Type 304.
- E. Rolled-Steel Floor Plate: ASTM A786/A786M, rolled from plate complying with ASTM A36/A36M or ASTM A283/A283M, Grade C or D.
- F. Steel Tubing: ASTM A500/A500M, cold-formed steel tubing.
- G. Steel Pipe: ASTM A53/A53M, Standard Weight (Schedule 40) unless otherwise indicated.
- H. Zinc-Coated Steel Wire Rope: ASTM A741.
 - 1. Wire-Rope Fittings: Hot-dip galvanized-steel connectors with capability to sustain, without failure, a load equal to minimum breaking strength of wire rope with which they are used.
- I. Cast Iron: Either gray iron, ASTM A48/A48M, or malleable iron, ASTM A47/A47M, unless otherwise indicated.
- J. Aluminum Plate and Sheet: ASTM B209 (ASTM B209M), Alloy 6061-T6.

- K. Aluminum Extrusions: ASTM B221 (ASTM B221M), Alloy 6063-T6.
- L. Aluminum-Alloy Rolled Tread Plate: ASTM B632/B632M, Alloy 6061-T6.
- M. Aluminum Castings: ASTM B26/B26M, Alloy 443.0-F.
- N. Bronze Extrusions: ASTM B455, Alloy UNS No. C38500 (extruded architectural bronze).
- O. Slotted Channel Framing: Cold-formed metal box channels (struts) complying with MFMA-4.
 - 1. Size of Channels: 1-5/8 by 1-5/8 inches (41 by 41 mm).
 - 2. Material: Galvanized steel, ASTM A653/A653M, commercial steel, Type B, with G90 (Z275) coating; 0.064-inch (1.6-mm) nominal thickness.

2.3 FASTENERS

- A. General: Unless otherwise indicated, provide Type 304 stainless-steel fasteners for exterior use and zinc-plated fasteners with coating complying with ASTM B633 or ASTM F1941 (ASTM F1941M), Class Fe/Zn 5, at exterior walls. Select fasteners for type, grade, and class required.
 - 1. Provide stainless-steel fasteners for fastening aluminum.
 - 2. Provide stainless-steel fasteners for fastening stainless steel.
- B. Steel Bolts and Nuts: Regular hexagon-head bolts, ASTM A307, Grade A (ASTM F568M, Property Class 4.6); with hex nuts, ASTM A563 (ASTM A563M); and, where indicated, flat washers.
- C. High-Strength Bolts, Nuts, and Washers: ASTM F3125/F3125M, Grade A325 (Grade A325M), Type 3, heavy-hex steel structural bolts; ASTM A563, Grade DH3, (ASTM A563M, Class 10S3) heavy-hex carbon-steel nuts; and where indicated, flat washers.
- D. Stainless-Steel Bolts and Nuts: Regular hexagon-head annealed stainless-steel bolts, ASTM F593 (ASTM F738M); with hex nuts, ASTM F594 (ASTM F836M); and, where indicated, flat washers; Alloy Group 1 (A1).
- E. Anchor Bolts: ASTM F1554, Grade 36, of dimensions indicated; with nuts, ASTM A563 (ASTM A563M); and, where indicated, flat washers.
 - 1. Hot-dip galvanize or provide mechanically deposited, zinc coating where item being fastened is indicated to be galvanized.
- F. Anchors, General: Anchors capable of sustaining, without failure, a load equal to six times the load imposed when installed in unit masonry and four times the load imposed when installed in concrete, as determined by testing according to ASTM E488/E488M, conducted by a qualified independent testing agency.
- G. Cast-in-Place Anchors in Concrete: Either threaded type or wedge type unless otherwise indicated; galvanized ferrous castings, either ASTM A47/A47M malleable iron or ASTM A27/A27M cast steel. Provide bolts, washers, and shims as needed, all hot-dip galvanized per ASTM F2329.

- H. Post-Installed Anchors: Torque-controlled expansion anchors or chemical anchors.
 - 1. Material for Interior Locations: Carbon-steel components zinc plated to comply with ASTM B633 or ASTM F1941 (ASTM F1941M), Class Fe/Zn 5, unless otherwise indicated.
 - 2. Material for Exterior Locations and Where Stainless Steel Is Indicated: Alloy Group 1 (A1) stainless-steel bolts, ASTM F593 (ASTM F738M), and nuts, ASTM F594 (ASTM F836M).
- I. Slotted-Channel Inserts: Cold-formed, hot-dip galvanized-steel box channels (struts) complying with MFMA-4, 1-5/8 by 7/8 inches (41 by 22 mm) by length indicated with anchor straps or studs not less than 3 inches (75 mm) long at not more than 8 inches (200 mm) o.c. Provide with temporary filler and tee-head bolts, complete with washers and nuts, all zinc-plated to comply with ASTM B633, Class Fe/Zn 5, as needed for fastening to inserts.

2.4 MISCELLANEOUS MATERIALS

- A. Shop Primers: Provide primers that comply with Section 099113 "Exterior Painting," Section 099123 Interior Painting," and Section 099600 "High-Performance Coatings."
- B. Universal Shop Primer: Fast-curing, lead- and chromate-free, universal modified-alkyd primer complying with MPI#79 and compatible with topcoat.
 - 1. Use primer containing pigments that make it easily distinguishable from zinc-rich primer.
- C. Water-Based Primer: Emulsion type, anticorrosive primer for mildly corrosive environments that is resistant to flash rusting when applied to cleaned steel, complying with MPI#107 and compatible with topcoat.
- D. Epoxy Zinc-Rich Primer: Complying with MPI#20 and compatible with topcoat.
- E. Shop Primer for Galvanized Steel: Primer formulated for exterior use over zinc-coated metal and compatible with finish paint systems indicated.
- F. Galvanizing Repair Paint: High-zinc-dust-content paint complying with SSPC-Paint 20 and compatible with paints specified to be used over it.
- G. Bituminous Paint: Cold-applied asphalt emulsion complying with ASTM D1187/D1187M.
- H. Nonshrink, Nonmetallic Grout: Factory-packaged, nonstaining, noncorrosive, nongaseous grout complying with ASTM C1107/C1107M. Provide grout specifically recommended by manufacturer for interior and exterior applications.

2.5 FABRICATION, GENERAL

A. Shop Assembly: Preassemble items in the shop to greatest extent possible. Disassemble units only as necessary for shipping and handling limitations. Use connections that maintain structural value of joined pieces. Clearly mark units for reassembly and coordinated installation.

- B. Cut, drill, and punch metals cleanly and accurately. Remove burrs and ease edges to a radius of approximately 1/32 inch (1 mm) unless otherwise indicated. Remove sharp or rough areas on exposed surfaces.
- C. Form bent-metal corners to smallest radius possible without causing grain separation or otherwise impairing work.
- D. Form exposed work with accurate angles and surfaces and straight edges.
- E. Weld corners and seams continuously to comply with the following:
 - 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 - 2. Obtain fusion without undercut or overlap.
 - 3. Remove welding flux immediately.
 - 4. At exposed connections, finish exposed welds and surfaces smooth and blended so no roughness shows after finishing and contour of welded surface matches that of adjacent surface.
- F. Form exposed connections with hairline joints, flush and smooth, using concealed fasteners or welds where possible. Where exposed fasteners are required, use Phillips flat-head (countersunk) fasteners unless otherwise indicated. Locate joints where least conspicuous.
- G. Fabricate seams and other connections that are exposed to weather in a manner to exclude water. Provide weep holes where water may accumulate.
- H. Cut, reinforce, drill, and tap metal fabrications as indicated to receive finish hardware, screws, and similar items.
- I. Provide for anchorage of type indicated; coordinate with supporting structure. Space anchoring devices to secure metal fabrications rigidly in place and to support indicated loads.
- J. Where units are indicated to be cast into concrete or built into masonry, equip with integrally welded steel strap anchors, 1/8 by 1-1/2 inches (3.2 by 38 mm), with a minimum 6-inch (150-mm) embedment and 2-inch (50-mm) hook, not less than 8 inches (200 mm) from ends and corners of units and 24 inches (600 mm) o.c., unless otherwise indicated.

2.6 MISCELLANEOUS FRAMING AND SUPPORTS

- A. General: Provide steel framing and supports not specified in other Sections as needed to complete the Work.
- B. Fabricate units from steel shapes, plates, and bars of welded construction unless otherwise indicated. Fabricate to sizes, shapes, and profiles indicated and as necessary to receive adjacent construction.
 - 1. Fabricate units from slotted channel framing where indicated.
 - 2. Furnish inserts for units installed after concrete is placed.

- C. Fabricate supports for operable partitions from continuous steel beams of sizes indicated or, if not indicated, as recommended by partition manufacturer with attached bearing plates, anchors, and braces as indicated or as recommended by partition manufacturer. Drill or punch bottom flanges of beams to receive partition track hanger rods; locate holes where indicated on operable partition Shop Drawings.
- D. Galvanize miscellaneous framing and supports where indicated.
- E. Prime miscellaneous framing and supports with primer specified in Section 099600 "High-Performance Coatings" where indicated.

2.7 SHELF ANGLES

- A. Fabricate shelf angles from steel angles of sizes indicated. Provide horizontally slotted holes to receive 3/4-inch (19-mm) bolts, spaced not more than 6 inches (150 mm) from ends and 24 inches (600 mm) o.c., unless otherwise indicated.
 - 1. Provide mitered and welded units at corners.
 - 2. Provide open joints in shelf angles at expansion and control joints. Make open joint approximately 2 inches (50 mm) larger than expansion or control joint.
- B. For cavity walls, provide vertical channel brackets to support angles from backup masonry.
- C. Galvanize and prime shelf angles located in exterior walls.
- D. Prime shelf angles located in exterior walls with primer specified in Section 099600 "High-Performance Coatings."

2.8 METAL LADDERS

- A. General:
 - 1. Comply with ANSI A14.3.
- B. Steel Ladders:
 - 1. Space siderails 18 inches (457 mm) apart unless otherwise indicated.
 - 2. Siderails: Continuous, 3/8-by-2-1/2-inch (9.5-by-64-mm) steel flat bars, with eased edges.
 - 3. Rungs: 3/4-inch- (19-mm-) diameter, steel bars.
 - 4. Fit rungs in centerline of siderails; plug-weld and grind smooth on outer rail faces.
 - 5. Provide nonslip surfaces on top of each rung, either by coating rung with aluminum-oxide granules set in epoxy-resin adhesive or by using a type of manufactured rung filled with aluminum-oxide grout.
 - 6. Provide platforms as indicated fabricated from welded or pressure-locked steel bar grating, supported by steel angles. Limit openings in gratings to no more than 3/4 inch (19 mm) in least dimension.
 - 7. Support each ladder at top and bottom and not more than 60 inches (1500 mm) o.c. with welded or bolted steel brackets.

8. Prime exterior ladders, including brackets and fasteners, with zinc-rich primer specified in Section 099600 "High-Performance Coatings."

2.9 MISCELLANEOUS STEEL TRIM

- A. Unless otherwise indicated, fabricate units from steel shapes, plates, and bars of profiles shown with continuously welded joints and smooth exposed edges. Miter corners and use concealed field splices where possible.
- B. Provide cutouts, fittings, and anchorages as needed to coordinate assembly and installation with other work.
 - 1. Provide with integrally welded steel strap anchors for embedding in concrete or masonry construction.
- C. Prime exterior miscellaneous steel trim with primer specified in Section 099600 "High-Performance Coatings."

2.10 METAL BOLLARDS

- A. Fabricate metal bollards from Schedule 40 steel pipe.
- B. Prime steel bollards with primer specified in Section 099600 "High-Performance Coatings."

2.11 LOOSE STEEL LINTELS

- A. Fabricate loose steel lintels from steel angles and shapes of size indicated for openings and recesses in masonry walls and partitions at locations indicated. Fabricate in single lengths for each opening unless otherwise indicated. Weld adjoining members together to form a single unit where indicated.
- B. Size loose lintels to provide bearing length at each side of openings equal to 1/12 of clear span, but not less than 8 inches (200 mm) unless otherwise indicated.
- C. Galvanize and prime loose steel lintels located in exterior walls.

2.12 STEEL WELD PLATES AND ANGLES

A. Provide steel weld plates and angles not specified in other Sections, for items supported from concrete construction as needed to complete the Work. Provide each unit with no fewer than two integrally welded steel strap anchors for embedding in concrete.

2.13 FINISHES, GENERAL

A. Finish metal fabrications after assembly.

B. Finish exposed surfaces to remove tool and die marks and stretch lines, and to blend into surrounding surface.

2.14 STEEL AND IRON FINISHES

- A. Galvanizing: Hot-dip galvanize items as indicated to comply with ASTM A153/A153M for steel and iron hardware and with ASTM A123/A123M for other steel and iron products.
 - 1. Do not quench or apply post galvanizing treatments that might interfere with paint adhesion.
- B. Preparation for Shop Priming Galvanized Items: After galvanizing, thoroughly clean railings of grease, dirt, oil, flux, and other foreign matter, and treat with metallic phosphate process.
- C. Shop prime iron and steel items not indicated to be galvanized unless they are to be embedded in concrete, or masonry, or unless otherwise indicated.
 - 1. Shop prime with universal shop primer unless primers specified in Section 099600 "High-Performance Coatings" are indicated.
- D. Preparation for Shop Priming: Prepare surfaces to comply with requirements indicated below:
 - 1. Exterior Items: SSPC-SP 6/NACE No. 3, "Commercial Blast Cleaning."
 - 2. Items Indicated to Receive Zinc-Rich Primer: SSPC-SP 6/NACE No. 3, "Commercial Blast Cleaning."
 - 3. Items Indicated to Receive Primers Specified in Section 099600 "High-Performance Coatings": SSPC-SP 6/NACE No. 3, "Commercial Blast Cleaning."
 - 4. Other Items: SSPC-SP 3, "Power Tool Cleaning."
- E. Shop Priming: Apply shop primer to comply with SSPC-PA 1, "Paint Application Specification No. 1: Shop, Field, and Maintenance Painting of Steel," for shop painting.
 - 1. Stripe paint corners, crevices, bolts, welds, and sharp edges.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

- A. Cutting, Fitting, and Placement: Perform cutting, drilling, and fitting required for installing metal fabrications. Set metal fabrications accurately in location, alignment, and elevation; with edges and surfaces level, plumb, true, and free of rack; and measured from established lines and levels.
- B. Fit exposed connections accurately together to form hairline joints. Weld connections that are not to be left as exposed joints but cannot be shop welded because of shipping size limitations. Do not weld, cut, or abrade surfaces of exterior units that have been hot-dip galvanized after fabrication and are for bolted or screwed field connections.
- C. Field Welding: Comply with the following requirements:

- 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
- 2. Obtain fusion without undercut or overlap.
- 3. Remove welding flux immediately.
- 4. At exposed connections, finish exposed welds and surfaces smooth and blended so no roughness shows after finishing and contour of welded surface matches that of adjacent surface.
- D. Fastening to In-Place Construction: Provide anchorage devices and fasteners where metal fabrications are required to be fastened to in-place construction. Provide threaded fasteners for use with concrete and masonry inserts, toggle bolts, through bolts, lag screws, wood screws, and other connectors.
- E. Provide temporary bracing or anchors in formwork for items that are to be built into concrete, masonry, or similar construction.
- F. Corrosion Protection: Coat concealed surfaces of aluminum that come into contact with grout, concrete, masonry, wood, or dissimilar metals with the following:
 - 1. Cast Aluminum: Heavy coat of bituminous paint.
 - 2. Extruded Aluminum: Two coats of clear lacquer.

3.2 INSTALLING MISCELLANEOUS FRAMING AND SUPPORTS

- A. General: Install framing and supports to comply with requirements of items being supported, including manufacturers' written instructions and requirements indicated on Shop Drawings.
- B. Anchor supports for operable partitions securely to, and rigidly brace from, building structure.

3.3 INSTALLATION OF METAL BOLLARDS

- A. Fill metal-capped bollards solidly with concrete and allow concrete to cure seven days before installing.
- B. Anchor bollards in concrete in formed or core-drilled holes not less than 42 inches (1050 mm) deep and 3/4 inch (19 mm) larger than OD of bollard. Fill annular space around bollard solidly with shrinkage-resistant grout; mixed and placed to comply with grout manufacturer's written instructions. Slope grout up approximately 1/8 inch (3 mm) toward bollard.
- C. Anchor bollards in place with concrete footings. Center and align bollards in holes 3 inches (75 mm) above bottom of excavation. Place concrete and vibrate or tamp for consolidation. Support and brace bollards in position until concrete has cured.
- D. Fill bollards solidly with concrete, mounding top surface to shed water.
 - 1. Do not fill removable bollards with concrete.

3.4 ADJUSTING AND CLEANING

- A. Touchup Painting: Immediately after erection, clean field welds, bolted connections, and abraded areas. Paint uncoated and abraded areas with the same material as used for shop painting to comply with SSPC-PA 1 for touching up shop-painted surfaces.
 - 1. Apply by brush or spray to provide a minimum 2.0-mil (0.05-mm) dry film thickness.
- B. Touchup Painting: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint are specified in Section 099113 "Exterior Painting," Section 099123 Interior Painting," and Section 099600 "High-Performance Coatings."
- C. Galvanized Surfaces: Clean field welds, bolted connections, and abraded areas and repair galvanizing to comply with ASTM A780/A780M.

END OF SECTION 055000

SECTION 061053 - MISCELLANEOUS ROUGH CARPENTRY

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Wood blocking and nailers.
 - 2. Plywood backing panels.
- B. Related Requirements:
 - 1. Section 061600 "Sheathing" for exterior sheathing.

1.3 DEFINITIONS

- A. Boards or Strips: Lumber of less than 2 inches nominal (38 mm actual) size in least dimension.
- B. Dimension Lumber: Lumber of 2 inches nominal (38 mm actual) or greater size but less than 5 inches nominal (114 mm actual) size in least dimension.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of process and factory-fabricated product. Indicate component materials and dimensions and include construction and application details.
 - 1. Include data for wood-preservative treatment from chemical treatment manufacturer and certification by treating plant that treated materials comply with requirements. Indicate type of preservative used and net amount of preservative retained.
 - 2. Include data for fire-retardant treatment from chemical treatment manufacturer and certification by treating plant that treated materials comply with requirements. Include physical properties of treated materials based on testing by a qualified independent testing agency.
 - 3. For fire-retardant treatments, include physical properties of treated lumber both before and after exposure to elevated temperatures, based on testing by a qualified independent testing agency according to ASTM D5664.
 - 4. For products receiving a waterborne treatment, include statement that moisture content of treated materials was reduced to levels specified before shipment to Project site.

1.5 INFORMATIONAL SUBMITTALS

- A. Evaluation Reports: For the following, from ICC-ES:
 - 1. Preservative-treated wood.
 - 2. Fire-retardant-treated wood.
 - 3. Power-driven fasteners.

1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications: For testing agency providing classification marking for fireretardant-treated material, an inspection agency acceptable to authorities having jurisdiction that periodically performs inspections to verify that the material bearing the classification marking is representative of the material tested.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Stack lumber flat with spacers beneath and between each bundle to provide air circulation. Protect lumber from weather by covering with waterproof sheeting, securely anchored. Provide for air circulation around stacks and under coverings.

PART 2 - PRODUCTS

2.1 WOOD PRODUCTS, GENERAL

- A. Lumber: DOC PS 20 and applicable rules of grading agencies indicated. If no grading agency is indicated, provide lumber that complies with the applicable rules of any rules-writing agency certified by the ALSC Board of Review. Provide lumber graded by an agency certified by the ALSC Board of Review to inspect and grade lumber under the rules indicated.
 - 1. Factory mark each piece of lumber with grade stamp of grading agency.
 - 2. Dress lumber, S4S, unless otherwise indicated.
- B. Maximum Moisture Content of Lumber: 19 percent for 2-inch nominal (38-mm actual) thickness or less; no limit for more than 2-inch nominal (38-mm actual) thickness unless otherwise indicated.

2.2 WOOD-PRESERVATIVE-TREATED MATERIALS

- A. Preservative Treatment by Pressure Process: AWPA U1; Use Category UC2 for interior construction not in contact with ground, Use Category UC3b for exterior construction not in contact with ground, and Use Category UC4a for items in contact with ground.
 - 1. Preservative Chemicals: Acceptable to authorities having jurisdiction and containing no arsenic or chromium.

- B. Kiln-dry lumber after treatment to a maximum moisture content of 19 percent. Do not use material that is warped or does not comply with requirements for untreated material.
- C. Mark lumber with treatment quality mark of an inspection agency approved by the ALSC Board of Review.
- D. Application: Treat items indicated on Drawings, and the following:
 - 1. Wood nailers, curbs, equipment support bases, blocking, stripping, and similar members in connection with roofing, flashing, vapor barriers, and waterproofing.
 - 2. Wood sills, sleepers, blocking, and similar concealed members in contact with masonry or concrete.

2.3 FIRE-RETARDANT-TREATED MATERIALS

- A. General: Where fire-retardant-treated materials are indicated, materials shall comply with requirements in this article, that are acceptable to authorities having jurisdiction, and with fire-test-response characteristics specified as determined by testing identical products per test method indicated by a qualified testing agency.
- B. Fire-Retardant-Treated Lumber and Plywood by Pressure Process: Products with a flame-spread index of 25 or less when tested according to ASTM E84, and with no evidence of significant progressive combustion when the test is extended an additional 20 minutes, and with the flame front not extending more than 10.5 feet (3.2 m) beyond the centerline of the burners at any time during the test.
 - 1. Treatment shall not promote corrosion of metal fasteners.
 - 2. Interior Type A: Treated materials shall have a moisture content of 28 percent or less when tested according to ASTM D3201 at 92 percent relative humidity. Use where exterior type is not indicated.
- C. Kiln-dry lumber after treatment to a maximum moisture content of 19 percent. Kiln-dry plywood after treatment to a maximum moisture content of 15 percent.
- D. Identify fire-retardant-treated wood with appropriate classification marking of qualified testing agency.
- E. Application: Treat items indicated on Drawings, and the following:
 - 1. Plywood backing panels.

2.4 MISCELLANEOUS LUMBER

- A. General: Provide miscellaneous lumber indicated and lumber for support or attachment of other construction, including the following:
 - 1. Blocking.
 - 2. Nailers.
 - 3. Rooftop equipment bases and support curbs.

- 4. Cants.
- B. Dimension Lumber Items: Construction or No. 2 grade lumber of the following species:
 - 1. Mixed southern pine or southern pine; SPIB.
- C. Concealed Boards: 19 percent maximum moisture content of the following species and grades:
 - 1. Mixed southern pine or southern pine, No. 2 grade; SPIB.
- D. For blocking not used for attachment of other construction, Utility, Stud, or No. 3 grade lumber of any species may be used provided that it is cut and selected to eliminate defects that will interfere with its attachment and purpose.
- E. For blocking and nailers used for attachment of other construction, select and cut lumber to eliminate knots and other defects that will interfere with attachment of other work.

2.5 PLYWOOD BACKING PANELS

A. Equipment Backing Panels: Plywood, DOC PS 1, Exterior, A-C, fire-retardant treated, in thickness indicated or, if not indicated, not less than 3/4-inch (19-mm) nominal thickness.

2.6 FASTENERS

- A. General: Provide fasteners of size and type indicated that comply with requirements specified in this article for material and manufacture.
 - 1. Where carpentry is exposed to weather, in ground contact, pressure-preservative treated, or in area of high relative humidity, provide fasteners with hot-dip zinc coating complying with ASTM A153/A153M.
- B. Nails, Brads, and Staples: ASTM F1667.
- C. Screws for Fastening to Metal Framing: ASTM C1002 or ASTM C954, length as recommended by screw manufacturer for material being fastened.
- D. Power-Driven Fasteners: Fastener systems with an evaluation report acceptable to authorities having jurisdiction, based on ICC-ES AC70.
- E. Post-Installed Anchors: Fastener systems with an evaluation report acceptable to authorities having jurisdiction, based on ICC-ES AC01, ICC-ES AC58, ICC-ES AC193, or ICC-ES AC308 as appropriate for the substrate.
 - 1. Material: Carbon-steel components, zinc plated to comply with ASTM B633, Class Fe/Zn 5.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

- A. Set carpentry to required levels and lines, with members plumb true to line, cut, and fitted. Fit carpentry accurately to other construction. Locate nailers, blocking, and similar supports to comply with requirements for attaching other construction.
- B. Install plywood backing panels by fastening to studs; coordinate locations with utilities requiring backing panels. Install fire-retardant-treated plywood backing panels with classification marking of testing agency exposed to view.
- C. Provide blocking and framing as indicated and as required to support facing materials, fixtures, specialty items, and trim.
- D. Comply with AWPA M4 for applying field treatment to cut surfaces of preservative-treated lumber.
 - 1. Use inorganic boron for items that are continuously protected from liquid water.
 - 2. Use copper naphthenate for items not continuously protected from liquid water.
- E. Where wood-preservative-treated lumber is installed adjacent to metal decking, install continuous flexible flashing separator between wood and metal decking.
- F. Securely attach carpentry work to substrate by anchoring and fastening as indicated, complying with the following:
 - 1. Table 2304.9.1, "Fastening Schedule," in ICC's International Building Code.
 - 2. ICC-ES evaluation report for fastener.
- G. Use steel common nails unless otherwise indicated. Select fasteners of size that will not fully penetrate members where opposite side will be exposed to view or will receive finish materials. Make tight connections between members. Install fasteners without splitting wood. Drive nails snug but do not countersink nail heads unless otherwise indicated.

3.2 WOOD BLOCKING AND NAILER INSTALLATION

- A. Install where indicated and where required for attaching other work. Form to shapes indicated and cut as required for true line and level of attached work. Coordinate locations with other work involved.
- B. Attach items to substrates to support applied loading. Recess bolts and nuts flush with surfaces unless otherwise indicated.

END OF SECTION 061053

SECTION 061600 - SHEATHING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Wall sheathing.
- 2. Parapet sheathing.
- 3. Sheathing joint and penetration treatment.

B. Related Requirements:

1. Section 061053 "Miscellaneous Rough Carpentry" for plywood backing panels.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of process and factory-fabricated product. Indicate component materials and dimensions and include construction and application details.
 - 1. For air-barrier and water-resistant glass-mat gypsum sheathing, include manufacturer's technical data and tested physical and performance properties of products.
- B. Shop Drawings: For air-barrier and water-resistant glass-mat gypsum sheathing assemblies.
 - 1. Show locations and extent of sheathing, accessories, and assemblies specific to Project conditions.
 - 2. Include details for sheathing joints and cracks, counterflashing strips, penetrations, inside and outside corners, terminations, and tie-ins with adjoining construction.

1.4 INFORMATIONAL SUBMITTALS

A. Product Certificates: From air-barrier and water-resistant glass-mat gypsum sheathing manufacturer, certifying compatibility of sheathing accessory materials with Project materials that connect to or that come in contact with the sheathing.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Stack panels flat with spacers beneath and between each bundle to provide air circulation. Protect sheathing from weather by covering with waterproof sheeting, securely anchored. Provide for air circulation around stacks and under coverings.

PART 2 - PRODUCTS

2.1 WALL SHEATHING

- A. Glass-Mat Gypsum Sheathing: ASTM C1177/C1177M.
 - 1. Type and Thickness: Regular, 5/8 inch (16 mm) thick.
 - 2. Size: 48 by 96 inches (1219 by 2438 mm) for vertical installation.

2.2 PARAPET SHEATHING

- A. Glass-Mat Gypsum Sheathing: ASTM C1177/C1177M.
 - 1. Type and Thickness: Regular, 5/8 inch (16 mm) thick.
 - 2. Size: 48 by 96 inches (1219 by 2438 mm) for vertical installation.

2.3 FASTENERS

- A. General: Provide fasteners of size and type indicated that comply with requirements specified in this article for material and manufacture.
 - 1. For parapet and wall sheathing, provide fasteners with hot-dip zinc coating complying with ASTM A153/A153M.
- B. Nails, Brads, and Staples: ASTM F1667.
- C. Power-Driven Fasteners: Fastener systems with an evaluation report acceptable to authorities having jurisdiction, based on ICC-ES AC70.
- D. Screws for Fastening Gypsum Sheathing to Cold-Formed Metal Framing: Steel drill screws, in length recommended by sheathing manufacturer for thickness of sheathing to be attached.
 - 1. For steel framing less than 0.0329 inch (0.835 mm) thick, use screws that comply with ASTM C1002.
 - 2. For steel framing from 0.033 to 0.112 inch (0.84 to 2.84 mm) thick, use screws that comply with ASTM C954.

2.4 SHEATHING JOINT-AND-PENETRATION TREATMENT MATERIALS

A. Sealant for Glass-Mat Gypsum Sheathing: Elastomeric, medium-modulus, neutral-curing silicone joint sealant compatible with joint substrates formed by gypsum sheathing and other

materials, recommended by sheathing manufacturer for application indicated and complying with requirements for elastomeric sealants specified in Section 079200 "Joint Sealants."

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

- A. Do not use materials with defects that impair quality of sheathing or pieces that are too small to use with minimum number of joints or optimum joint arrangement. Arrange joints so that pieces do not span between fewer than three support members.
- B. Cut panels at penetrations, edges, and other obstructions of work; fit tightly against abutting construction unless otherwise indicated.
- C. Securely attach to substrate by fastening as indicated, complying with the following:
 - 1. Table 2304.9.1, "Fastening Schedule," in the ICC's International Building Code.
 - 2. ICC-ES evaluation report for fastener.
- D. Coordinate wall and parapet sheathing installation with flashing and joint-sealant installation so these materials are installed in sequence and manner that prevent exterior moisture from passing through completed assembly.
- E. Coordinate sheathing installation with installation of materials installed over sheathing so sheathing is not exposed to precipitation or left exposed at end of the workday when rain is forecast.

3.2 GYPSUM SHEATHING INSTALLATION

- A. Comply with GA-253 and with manufacturer's written instructions.
 - 1. Fasten gypsum sheathing to cold-formed metal framing with screws.
 - 2. Install panels with a 3/8-inch (9.5-mm) gap where non-load-bearing construction abuts structural elements.
 - 3. Install panels with a 1/4-inch (6.4-mm) gap where they abut masonry or similar materials that might retain moisture, to prevent wicking.
- B. Apply fasteners so heads bear tightly against face of sheathing, but do not cut into facing.
- C. Horizontal Installation: Install sheathing with V-grooved edge down and tongue edge up. Interlock tongue with groove to bring long edges in contact with edges of adjacent panels without forcing. Abut ends over centers of studs, and stagger end joints of adjacent panels not less than one stud spacing. Attach at perimeter and within field of panel to each stud.
 - 1. Space fasteners approximately 8 inches (200 mm) o.c. and set back a minimum of 3/8 inch (9.5 mm) from edges and ends of panels.

- D. Vertical Installation: Install vertical edges centered over studs. Abut ends and edges with those of adjacent panels. Attach at perimeter and within field of panel to each stud.
 - 1. Space fasteners approximately 8 inches (200 mm) o.c. and set back a minimum of 3/8 inch (9.5 mm) from edges and ends of panels.
- E. Seal sheathing joints according to sheathing manufacturer's written instructions.
 - 1. Apply glass-fiber sheathing tape to glass-mat gypsum sheathing joints and apply and trowel sealant to embed entire face of tape in sealant. Apply sealant to exposed fasteners with a trowel so fasteners are completely covered. Seal other penetrations and openings.

END OF SECTION 061600

SECTION 064116 - PLASTIC-LAMINATE-FACED ARCHITECTURAL CABINETS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Plastic-laminate-faced architectural cabinets.
- 2. Wood furring, blocking, shims, and hanging strips for installing plastic-laminate-faced architectural cabinets unless concealed within other construction before cabinet installation.
- 3. Fire-retardant-treated materials
- 4. Stainless Steel Countertops

B. Related Requirements:

- 1. Section 061000 "Rough Carpentry" for wood furring, blocking, shims, and hanging strips required for installing cabinets and concealed within other construction before cabinet installation.
- 2. Section 123611 "Simulated Stone Countertops".

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product, including,, high-pressure decorative laminate, adhesive for bonding plastic laminate,, and cabinet hardware and accessories.
 - 1. Include data for fire-retardant treatment from chemical-treatment manufacturer and certification by treating plant that treated materials comply with requirements.
- B. Shop Drawings: Show location of each item, dimensioned plans and elevations, large-scale details, attachment devices, and other components.
 - 1. Show details full size.
 - 2. Show locations and sizes of furring, blocking, and hanging strips, including concealed blocking and reinforcement specified in other Sections.
 - 3. Show locations and sizes of cutouts and holes for electrical switches and outlets and other items installed in architectural plastic-laminate cabinets.
 - 4. Apply WI Certified Compliance Program label to Shop Drawings.

1.4 QUALITY ASSURANCE

- A. Fabricator Qualifications: Shop that employs skilled workers who custom fabricate products similar to those required for this Project and whose products have a record of successful inservice performance. Shop is a certified participant in AWI's Quality Certification Program.
- B. Installer Qualifications: Fabricator of products Certified participant in AWI's Quality Certification Program.
- C. Testing Agency Qualifications: For testing agency providing classification marking for fireretardant-treated material, an inspection agency acceptable to authorities having jurisdiction that periodically performs inspections to verify that the material bearing the classification marking is representative of the material tested.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Do not deliver cabinets until painting and similar operations that could damage woodwork have been completed in installation areas. If cabinets must be stored in other than installation areas, store only in areas where environmental conditions comply with requirements specified in "Field Conditions" Article.

1.6 FIELD CONDITIONS

- A. Environmental Limitations: Do not deliver or install cabinets until building is enclosed, wet work is complete, and HVAC system is operating and maintaining temperature and relative humidity at occupancy levels during the remainder of the construction period.
- B. Environmental Limitations: Do not deliver or install cabinets until building is enclosed, wet work is complete, and HVAC system is operating and maintaining temperature between 60 and 90 deg F and relative humidity between 43 and 70 percent during the remainder of the construction period.
- C. Field Measurements: Where cabinets are indicated to fit to other construction, verify dimensions of other construction by field measurements before fabrication, and indicate measurements on Shop Drawings. Coordinate fabrication schedule with construction progress to avoid delaying the Work.
 - 1. Locate concealed framing, blocking, and reinforcements that support cabinets by field measurements before being enclosed, and indicate measurements on Shop Drawings.
- D. Established Dimensions: Where cabinets are indicated to fit to other construction, establish dimensions for areas where cabinets are to fit. Provide allowance for trimming at site, and coordinate construction to ensure that actual dimensions correspond to established dimensions.

1.7 COORDINATION

- A. Coordinate sizes and locations of framing, blocking, furring, reinforcements, and other related units of Work specified in other Sections to ensure that cabinets can be supported and installed as indicated.
- B. Hardware Coordination: Distribute copies of approved hardware schedule specified in Section 087111 "Door Hardware (Descriptive Specification)" to fabricator of architectural woodwork; coordinate Shop Drawings and fabrication with hardware requirements.

PART 2 - PRODUCTS

2.1 PLASTIC-LAMINATE-FACED ARCHITECTURAL CABINETS

- A. Quality Standard: Unless otherwise indicated, comply with the "Architectural Woodwork Standards" for grades of architectural plastic-laminate cabinets indicated for construction, finishes, installation, and other requirements.
 - 1. Provide labels and certificates from AWI certification program indicating that woodwork, including installation, complies with requirements of grades specified.
 - 2. The Contract Documents contain selections chosen from options in the quality standard and additional requirements beyond those of the quality standard. Comply with those selections and requirements in addition to the quality standard.
- B. Grade: Premium.
- C. Certified Wood: Plastic-laminate cabinets shall be made from wood products certified as "FSC Pure" or "FSC Mixed Credit" according to FSC STD-01-001, "FSC Principles and Criteria for Forest Stewardship," and FSC STD-40-004, "FSC Standard for Chain of Custody Certification."
- D. Type of Construction: Frameless.
- E. Cabinet, Door, and Drawer Front Interface Style: Flush overlay.
- F. High-Pressure Decorative Laminate: NEMA LD 3, grades as indicated or if not indicated, as required by woodwork quality standard.
 - 1. <u>Manufacturers</u> to compliance with requirements, provide products by one of the following: See finish legend on architectural drawings for manufacturers and finishes.
- G. Laminate Cladding for Exposed Surfaces:
 - 1. Horizontal Surfaces: Grade HGS.
 - 2. Vertical Surfaces: Grade VGS.
 - 3. Pattern Direction: Vertically for drawer fronts, doors, and fixed panels.
- H. Materials for Semiexposed Surfaces:

- 1. Surfaces Other Than Drawer Bodies: High-pressure decorative laminate, NEMA LD 3, Grade VGS.
 - a. Edges of Plastic-Laminate Shelves: PVC edge banding, 0.12 inch (3mm) thick, matching laminate in color, pattern, and finish.
 - b. For semiexposed backs of panels with exposed plastic-laminate surfaces, provide surface of high-pressure decorative laminate, NEMA LD 3, Grade CLS.
- 2. Drawer Sides and Backs: Solid-hardwood lumber.
- 3. Drawer Bottoms: Hardwood plywood.
- I. Dust Panels: 1/4-inch plywood or tempered hardboard above compartments and drawers unless located directly under tops.
- J. Concealed Backs of Panels with Exposed Plastic-Laminate Surfaces: High-pressure decorative laminate, NEMA LD 3, Grade BKL.
- K. Drawer Construction: Fabricate with exposed fronts fastened to subfront with mounting screws from interior of body.
 - 1. Join subfronts, backs, and sides with glued dovetail joints.
- L. Colors, Patterns, and Finishes: Provide materials and products that result in colors and textures of exposed laminate surfaces complying with the following requirements:
 - 1. As indicated by laminate manufacturer's designations.
 - 2. Match Architect's sample.
 - 3. As selected by Architect from laminate manufacturer's full range in the following categories:
 - a. Solid colors, matte finish.
 - b. Patterns, matte finish.

2.2 SOLID-SURFACING-MATERIAL COUNTERTOPS & WINDOW SILLS

- A. Solid-Surfacing-Material Thickness: 1/2 inch.
- B. Colors, Patterns, and Finishes: Provide materials and products that result in colors of solid-surfacing material complying with the following requirements:
 - 1. See Architectural Drawings
- C. Fabricate tops in one piece, unless otherwise indicated. Comply with solid-surfacing-material manufacturer's written recommendations for adhesives, sealers, fabrication, and finishing.
 - 1. Fabricate tops with shop-applied edges of materials and configuration indicated.
 - 2. Fabricate tops with shop-applied backsplashes.

PART 3 - STAINLESS STEEL COUNTERTOPS

- 3.1 MATERIAL: T304 Stainless Steel with a #4 finish unless otherwise specified.
 - A. Countertop Construction: Materials and Thickness:All exposed surfaces shall be 16-gauge stainless steel reinforced on the underside by 16- gaugegalvanized-steel channels, so spaced as to prevent twisting, oil-canning or buckling.
 - B. Construction: Exposed edges of tops shall be formed into a 1¼"-thick channel shape. Splash rails and curbs shall beformed from the same sheet as the top or so welded thereto that they form integral parts thereof. Top edges of curbs and splash-backs shall be formed into a channel shape. Where stainless-steel sinks are supplied, the sink bowl shall be so welded to the top as to form anintegral part thereof. All welds shall be ground smooth and polished to a uniform satin finish over the entire top and sink assembly. Soldering of the sinks, curbs or splash-rails to the top shall not be permitted. After fabrication and polishing, surfaces of the tops shall be given a strippable protective coating toprotect the tops during shipment and installation. Underside of tops and sinks shall be coated with a sound-deadener. This material shall be waterborneand non-flammable in its liquid state. Material to contain clay, which will act as a flame retardant. Material shall contain no volatile organic compounds (VOC).

3.2 WOOD MATERIALS

- A. Wood Products: Provide materials that comply with requirements of referenced quality standard for each type of woodwork and quality grade specified unless otherwise indicated.
 - 1. Wood Moisture Content: 5 to 10 percent.
- B. Composite Wood and Agrifiber Products: Provide materials that comply with requirements of referenced quality standard for each type of woodwork and quality grade specified unless otherwise indicated.
 - 1. Recycled Content of Medium-Density Fiberboard and Particleboard: Postconsumer recycled content plus one-half of preconsumer recycled content not less than 75 percent.
 - 2. Medium-Density Fiberboard: ANSI A208.2, Grade 130.

3.3 FIRE-RETARDANT-TREATED MATERIALS

- A. Fire-Retardant-Treated Materials, General: Where fire-retardant-treated materials are indicated, use materials complying with requirements in this article that are acceptable to authorities having jurisdiction and with fire-test-response characteristics specified as determined by testing identical products per test method indicated by a qualified testing agency.
 - 1. Use treated materials that comply with requirements of referenced woodworking standard. Do not use materials that are warped, discolored, or otherwise defective.
 - 2. Use fire-retardant-treatment formulations that do not bleed through or otherwise adversely affect finishes. Do not use colorants to distinguish treated materials from untreated materials.

3. Identify fire-retardant-treated materials with appropriate classification marking of qualified testing agency in the form of removable paper label or imprint on surfaces that will be concealed from view after installation.

3.4 CABINET HARDWARE AND ACCESSORIES

- A. General: Provide cabinet hardware and accessory materials associated with architectural cabinets except for items specified in Section 087111 "Door Hardware (Descriptive Specification)."
- B. Frameless Concealed Hinges (European Type): BHMA A156.9, B01602, 135 degrees of opening, self-closing.
- C. Handle Pulls: Back mounted, solid metal, Liberty Hardware P61200-SC-A Satin Chrome Individuals 4 Inch Center to Center Handle Cabinet Pull or approved equal.
- D. Adjustable Shelf Standards and Supports: BHMA A156.9, B04071; with shelf rests, B04081.
- E. Drawer Slides: BHMA A156.9.
 - 1. Grade 1 and Grade 2: Side mounted and extending under bottom edge of drawer; full-extension type; zinc-plated steel with polymer rollers.
 - 2. Grade 1HD-100 and Grade 1HD-200: Side mounted; full-extension type; zinc-plated-steel ball-bearing slides.
 - 3. For drawers not more than 3 inches high and not more than 24 inches wide, provideGrade
 - 4. For drawers more than 3 inches high but not more than 6 inches high and not more than 24 inches wide, provide Grade 1HD-100.
 - 5. For drawers more than 6 inches high or more than 24 inches wide, provide Grade 1HD-100.
 - 6. For computer keyboard shelves, provideGrade 1HD-100.
 - 7. For trash bins not more than 20 inches high and 16 inches wide, provide Grade 1HD-100.
- F. Door and Drawer Silencers: BHMA A156.16, L03011.
- G. Exposed Hardware Finishes: For exposed hardware, provide finish that complies with BHMA A156.18 for BHMA finish number indicated.
 - 1. Dark, Oxidized, Satin Bronze, Oil Rubbed: BHMA 613 for bronze base; BHMA 640 for steel base; match Architect's sample.
 - 2. Bright Brass, Clear Coated: BHMA 605 for brass base; BHMA 632 for steel base.
 - 3. Bright Brass, Vacuum Coated: BHMA 723 for brass base; BHMA 729 for zinc-coated-steel base.
 - 4. Satin Brass, Blackened, Bright Relieved, Clear Coated: BHMA 610 for brass base; BHMA 636 for steel base.
 - 5. Satin Chromium Plated: BHMA 626 for brass or bronze base; BHMA 652 for steel base.
 - 6. Bright Chromium Plated: BHMA 625 for brass or bronze base; BHMA 651 for steel base.
 - 7. Satin Stainless Steel: BHMA 630.

CONSTRUCTION DOCUMENTS 100% SUBMITTAL

H. For concealed hardware, provide manufacturer's standard finish that complies with product class requirements in BHMA A156.9.

3.5 MISCELLANEOUS MATERIALS

- A. Furring, Blocking, Shims, and Hanging Strips: Softwood or hardwood lumber, kiln dried to less than 15 percent moisture content.
- B. Anchors: Select material, type, size, and finish required for each substrate for secure anchorage. Provide metal expansion sleeves or expansion bolts for post-installed anchors. Use nonferrousmetal or hot-dip galvanized anchors and inserts at inside face of exterior walls and at floors.
- C. Adhesives: Do not use adhesives that contain urea formaldehyde.
- D. Adhesive for Bonding Plastic Laminate: Unpigmented contact cement.
 - 1. Adhesive for Bonding Edges: Hot-melt adhesive or adhesive specified above for faces.

3.6 FABRICATION

- A. Fabricate cabinets to dimensions, profiles, and details indicated.
- B. Complete fabrication, including assembly and hardware application, to maximum extent possible before shipment to Project site. Disassemble components only as necessary for shipment and installation. Where necessary for fitting at site, provide ample allowance for scribing, trimming, and fitting.
 - 1. Notify Architect seven days in advance of the dates and times woodwork fabrication will be complete.
 - 2. Trial fit assemblies at fabrication shop that cannot be shipped completely assembled. Install dowels, screws, bolted connectors, and other fastening devices that can be removed after trial fitting. Verify that various parts fit as intended and check measurements of assemblies against field measurements before disassembling for shipment.
- C. Shop-cut openings to maximum extent possible to receive hardware, appliances, electrical work, and similar items. Locate openings accurately and use templates or roughing-in diagrams to produce accurately sized and shaped openings. Sand edges of cutouts to remove splinters and burrs.

PART 4 - EXECUTION

4.1 PREPARATION

A. Before installation, condition cabinets to average prevailing humidity conditions in installation areas.

B. Before installing cabinets, examine shop-fabricated work for completion and complete work as required.

4.2 INSTALLATION

- A. Grade: Install cabinets to comply with same grade as item to be installed.
- B. Assemble cabinets and complete fabrication at Project site to the extent that it was not completed in the shop.
- C. Install cabinets level, plumb, true, and straight. Shim as required with concealed shims. Install level and plumb to a tolerance of 1/8 inch in 96 inches.
- D. Scribe and cut cabinets to fit adjoining work, refinish cut surfaces, and repair damaged finish at
- E. Anchor cabinets to anchors or blocking built in or directly attached to substrates. Secure with countersunk, concealed fasteners and blind nailing. Use fine finishing nails or finishing screws for exposed fastening, countersunk and filled flush with woodwork.
 - 1. Use filler matching finish of items being installed.
- F. Cabinets: Install without distortion so doors and drawers fit openings properly and are accurately aligned. Adjust hardware to center doors and drawers in openings and to provide unencumbered operation. Complete installation of hardware and accessory items as indicated.
 - 1. Install cabinets with no more than 1/8 inch in 96-inch sag, bow, or other variation from a straight line.
 - 2. Fasten wall cabinets through back, near top and bottom, and at ends not more than 16 inches o.c. with No. 10 wafer-head screws sized for not less than 1-1/2-inch penetration into wood framing, blocking, or hanging strips.
- G. Install simulated stone countertops per specification.

4.3 ADJUSTING AND CLEANING

- A. Repair damaged and defective cabinets, where possible, to eliminate functional and visual defects; where not possible to repair, replace woodwork. Adjust joinery for uniform appearance.
- B. Clean, lubricate, and adjust hardware.
- C. Clean cabinets on exposed and semiexposed surfaces.

END OF SECTION 064116

SECTION 06 61 16 SOLID POLYMER (SOLID SURFACING) FABRICATIONS

PART 1 GENERAL

1.1 REFERENCES

- 1.1.1 The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only. Unless otherwise noted, the latest published version and/or revision shall be used.
- 1.1.1.1 AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI)
 - a. ANSI/CTI A108/A118/A136.1 Specification for the Installation of Ceramic Tile
- 1.1.1.2 ASTM INTERNATIONAL (ASTM)

a.	ASTM D 2583	Indentation Hardness of Rigid Plastics by Means of a Barcol Impressor
b.	ASTM D 570	Standard Test Method for Water Absorption of Plastics
c.	ASTM D 638	Standard Test Method for Tensile Properties of Plastics

d. ASTM D 696 Standard Test Method for Coefficient of Linear Thermal Expansion of Plastics Between -30 degrees C and 30 degrees C

With a Vitreous Silica Dilatometer

e. ASTM E 84 Standard Test Method for Surface Burning Characteristics of

Building Materials

f. ASTM G 21 Determining Resistance of Synthetic Polymeric Materials to

Fungi

1.1.1.3 INTERNATIONAL ASSOCIATION OF PLUMBING AND MECHANICAL OFFICIALS (IAPMO)

a. IAPMO Z124.3 Plastic Lavatories

b. IAPMO Z124.6 Plastic Sinks

1.1.1.4 NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)

a. NEMA LD 3 Standard for High-Pressure Decorative Laminates

1.1.1.5 NSF INTERNATIONAL (NSF)

a. NSF 51 Food Equipment Materials

1.2 GENERAL DESCRIPTION

1.2.1 Work in this section includes Counter Tops and window sills, and other items utilizing solid polymer (solid surfacing) fabrication as shown on the drawings and as described in this specification. Do not change source of supply for materials after work has started, if the appearance of finished work would be affected. Variation in component size and location of openings to be plus or minus 1/8 inch.

1.3 SUBMITTALS

1.3.1 Government approval may be required on any of the following items. Items requiring submittals will be listed on the AF Form 66. Provide copies of all submittals per the requirements in Section 01 33 00, Submittal Procedures, or as listed on the AF Form 66.

1.3.1.1 SD-02 Shop Drawings

- a. Detail Drawings
- b. Installation
 - (1) Detail Drawings indicating locations, dimensions, component sizes, fabrication and joint details, attachment provisions, installation details, and coordination requirements with adjacent work.

1.3.1.2 SD-03 Product Data

- a. Solid polymer material
- b. Qualifications
- c. Fabrications
 - (1) Product data indicating product description, fabrication information, and compliance with specified performance requirements for solid polymer, joint adhesive, sealants, and heat reflective tape. Both the manufacturer of materials and the fabricator shall submit a detailed description of operations and processes in place that support efficient use of natural resources, energy efficiency, emissions of ozone depleting chemicals, management of water and operational waste, indoor environmental quality, and other production techniques supporting sustainable design and products.

1.3.1.3 SD-04 Samples

- a. Material
 - (1) A minimum 4 by 4 inch sample of each color and pattern for approval. Samples shall indicate full range of color and pattern variation. Approved samples shall be retained as a standard for this work.
- b. Counter and Vanity Tops
 - (1) A minimum 1 foot wide by 6 inch deep, full size sample for each type of counter top shown on the project drawings. The sample shall include the edge profile and backsplash as detailed on the project drawings. Solid polymer material shall be of a pattern and color as indicated on the drawings. Sample shall include at least one seam. Approved sample shall be retained as standard for this work.

1.3.1.4 SD-06 Test Reports

- a. Solid polymer material
 - (1) Test report results from an independent testing laboratory attesting that the submitted solid polymer material meets or exceeds each of the specified performance requirements.

1.3.1.5 SD-07 Certificates

- a. Fabrications
- b. Qualifications
 - (1) Solid polymer manufacturer's certification attesting to fabricator qualification approval.

1.3.1.6 SD-10 Operation and Maintenance Data

- a. Clean-up
 - (1) Maintenance data indicating manufacturer's care, repair and cleaning instructions.

 Maintenance video shall be provided, if available. Maintenance kit for matte finishes shall be submitted.

1.4 DELIVERY, STORAGE AND HANDLING

1.4.1 Materials shall not be delivered to project site until areas are ready for installation. Components and materials shall be delivered to the site undamaged, in containers clearly marked and labeled with manufacturer's name. Materials shall be stored indoors and adequate precautions taken to prevent damage to finished surfaces. Protective coverings shall be provided to prevent physical damage or staining following installation, for duration of project.

1.5 WARRANTY

1.5.1 Manufacturer's warranty of ten years against defects in materials, excluding damages caused by physical or chemical abuse or excessive heat, shall be provided. Warranty shall provide for material and labor for replacement or repair of defective material for a period of ten years after component installation.

1.6 QUALIFICATIONS

1.6.1 Fabricators shall have a minimum of 5 years of experience working with solid polymer materials.

1.7 MOCK-UP

1.7.1 The Contractor shall submit Detail Drawings as specified in the Submittals paragraph, under SD-02. Prior to final approval of shop drawings, a full-size mock-up shall be provided where multiple units are required. The mock-up shall include all solid polymer components required to provide a completed unit. The mock-up shall utilize finishes in patterns and colors indicated on the drawings. Should the mock-up not be approved, the Contractor shall re-work or remake it until approval is secured. Rejected units shall be removed from the jobsite. Approved mock-up may remain as part of the finished work.

PART 2 PRODUCTS

2.1 MATERIAL

2.1.1 Solid polymer material shall be a homogeneous filled solid polymer; not coated, laminated or of a composite construction; meeting IAPMO Z124.3 and IAPMO Z124.6 requirements. Material shall have minimum physical and performance properties specified. Superficial damage to a depth of 0.01 inch shall be repairable by sanding or polishing. Material thickness shall be as indicated on the drawings. In no case shall material be less than 1/4 inch in thickness.

2.1.1.1 Cast,100 Percent Acrylic Polymer Solid Surfacing Material

a. Cast, 100 percent acrylic solid polymer material shall be composed of acrylic polymer, mineral fillers, and pigments and shall meet the following minimum performance requirements:

PROPERTY	REQUIREMENT (min. or max.)	TEST PROCEDURE
Tensile Strength	5800 psi (min.)	ASTM D 638
Hardness	55-Barcol Impressor (min.)	ASTM D 2583
Thermal Expansion	000023 in/in/F (max.)	ASTM D 696
Boiling water Surface Resistance	No Change	NEMA LD 3-3.05
High Temperature Resistance	No Change	NEMA LD 3-3.06
Impact Resistance (Ball drop)		NEMA LD 3-303
1/4" sheet	36", 1/2 lb ball, no failure	
1/2" sheet	140", 1/2 lb ball, no failure	
3/4" sheet	200", 1/2 lb ball, no failure	
Mold & Mildew Growth	No growth	ASTM G 21
Bacteria Growth	No Growth	ASTM G 21
Liquid Absorption (Weight in 24 hrs.)	0.1% max.	ASTM D 570

Flammability ASTM E 84

Flame Spread 25 max. Smoke Developed 30 max.

Sanitation "Food Contact" approval NSF 51

2.1.1.2 Acrylic-modified Polymer Solid Surfacing Material

a. Cast, solid polymer material shall be composed of a formulation containing acrylic and polyester polymers, mineral fillers, and pigments. Acrylic polymer content shall be not less than 5 percent and not more than 10 percent in order to meet the following minimum performance requirements:

PROPERTY	REQUIREMENT (min. or max.)	TEST PROCEDURE
Tensile Strength	4100 psi (min.)	ASTM D 638
Hardness	50-Barcol Impressor (min.)	ASTM D 2583
Thermal Expansion	.000023 in/in/F (max.)	ASTM D 696
Boiling water Surface Resistance	No Change	NEMA LD 3-3.05
High Temperature Resistance	No Change	NEMA LD 3-3.06
Impact Resistance (Ball drop)		NEMA LD 3-303
1/4" sheet	36", 1/2 lb ball, no failure	
1/2" sheet	140", 1/2 lb ball, no failure	
3/4" sheet	200", 1/2 lb ball, no failure	
Mold & Mildew Growth	No growth	ASTM G 21
Bacteria Growth	No Growth	ASTM G 21
Liquid Absorption (Weight in 24 hrs.)	0.6% max.	ASTM D 570

Flammability ASTM E 84

Flame Spread 25 max. Smoke Developed 100 max

Sanitation "Food Contact" approval NSF 51

2.1.1.3 Material Patterns and Colors

a. Patterns and colors for all solid polymer components and fabrications shall be those indicated on the project drawings or as selected. Pattern and color shall occur, and shall be consistent in appearance, throughout the entire depth (thickness) of the solid polymer material.

2.1.1.4 Surface Finish

a. Exposed finished surfaces and edges shall receive a uniform appearance. Exposed surface finish shall be matte; gloss rating of 5-20; semigloss; gloss rating of 25-50 or polished; gloss rating of 55-80; as indicated on the color schedule.

2.2 ACCESSORY PRODUCTS

2.2.1 Accessory products, as specified below, shall be manufactured by the solid polymer manufacturer or shall be products approved by the solid polymer manufacturer for use with the solid polymer materials being specified.

2.2.1.1 Seam Adhesive

a. Seam adhesive shall be a two-part adhesive kit to create permanent, inconspicuous, non-porous, hard seams and joints by chemical bond between solid polymer materials and components to create a monolithic appearance of the fabrication. Adhesive shall be approved by the solid polymer manufacturer. Adhesive shall be color-matched to the surfaces being bonded where solid-colored, solid polymer materials are being bonded together. The seam adhesive shall be clear or color matched where particulate patterned, solid polymer materials are being bonded together.

2.2.1.2 Panel Adhesive

a. Panel adhesive shall be neoprene based panel adhesive meeting ANSI/CTI A108/A118/A136.1, Underwriter's Laboratories (UL) listed. This adhesive shall be used to bond solid polymer components to adjacent and underlying substrates.

2.2.1.3 Silicone Sealant

a. Sealant shall be a mildew-resistant, FDA and UL listed silicone sealant or caulk in a clear formulation. The silicone sealant shall be approved for use by the solid polymer manufacturer. Sealant shall be used to seal all expansion joints between solid polymer components and all joints between solid polymer components and other adjacent surfaces such as walls, floors, ceiling, and plumbing fixtures.

2.2.1.4 Conductive Tape

a. Conductive tape shall be manufacturer's standard foil tape, 4 mils thick, applied around the

edges of cut outs containing hot or cold appliances.

2.2.1.5 Insulating Felt Tape

a. Insulating tape shall be manufacturer's standard product for use with drop-in food wells used in commercial food service applications to insulate solid polymer surfaces from hot or cold appliances.

2.2.1.6 Heat Reflective Tape

a. Heat reflective tape as recommended by the solid polymer manufacturer for use with cutouts for heat sources.

2.2.1.7 Mounting Hardware

a. Provide mounting hardware, including sink/bowl clips, inserts and fasteners for attachment of undermount sinks and lavatories.

2.3 FABRICATIONS

2.3.1 Components shall be factory or shop fabricated to sizes and shapes indicated, to the greatest extent practical, in accordance with approved Shop Drawings and manufacturer's requirements. Factory cutouts shall be provided for sinks, lavatories, and plumbing fixtures where indicated on the drawings. Contours and radii shall be routed to template, with edges smooth. Defective and inaccurate work will be rejected.

2.3.1.1 Joints and Seams

a. Joints and seams shall be formed between solid polymer components using manufacturer's approved seam adhesive. Joints shall be inconspicuous in appearance and without voids to create a monolithic appearance.

2.3.1.2 Edge Finishing

a. Rout and finish component edges to a smooth, uniform appearance and finish. Edge shapes and treatments, including any inserts, shall be as detailed on the drawings. Rout all cutouts, and then sand all edges smooth. Repair or reject defective or inaccurate work.

2.3.1.3 Counter and Vanity Top Splashes

a. Backsplashes and end splashes shall be fabricated from 1/2 inch thick solid surfacing material and shall be 4 inches high unless indicated otherwise. Backsplashes and end splashes shall be provided for all counter tops and vanity tops with sinks. Backsplashes shall be shop fabricated.

(1) Permanently Attached Backsplash

(a) Permanently attached backsplashes shall be attached straight with seam adhesive to form a 90 degree transition.

(2) End Splashes

(a) End splashes shall be provided loose for installation at the jobsite after horizontal surfaces to which they are to be attached have been installed.

2.3.1.4 Shelving

a. Shelving and wall support brackets shall be fabricated from 1/2 inch minimum thickness solid surfacing, solid polymer material. Dimensions, edge shape, and other details shall be as indicated on the drawings.

2.3.1.5 Window Stools

a. Window stools shall be fabricated from 1/2 inch thick solid surfacing, solid polymer material. Dimensions, edge shape, and other details shall be selected from manufacturer's available prefabricated standards.

2.3.1.6 Counter and Vanity Tops

a. All solid surfacing, solid polymer counter top and vanity top components shall be fabricated from 1/2 inch thick material. Edge details, dimensions, locations, and quantities shall be as indicated on the Drawings. Counter tops shall be complete with 4 inch high backsplash and loose endsplashes where indicated on the drawings. Attach 2 inch wide reinforcing strip of polymer material under each horizontal counter top seam.

(1) Counter Top With Sink

- (a) Stainless Steel or Vitreous China Sink.
 - Countertops with sinks shall include cutouts to template as furnished by the sink
 manufacturer. Manufacturer's standard sink mounting hardware for installation
 shall be provided. Seam between sink and counter top shall be sealed with silicone
 sealant. Sink, faucet, and plumbing requirements shall be in accordance with
 Section 22 00 00 Plumbing, General Purpose.

(b) Solid Polymer Sink

1. Solid polymer sinks shall be a manufacturer's standard, pre-molded product specifically designed for attachment to solid polymer counter tops.

(2) Vanity Tops With Bowls

- (a) Vitreous China Bowl
 - 1. Countertops with vitreous china bowls shall include cutouts to template as furnished by the sink manufacturer. Manufacturer's standard sink mounting hardware for vitreous china rimless installation shall be provided. Seam between sink and counter top shall be sealed with silicone sealant. Sink, faucet, and plumbing requirements shall be in accordance with Section 22 00 00 Plumbing, General Purpose.

(b) Solid Polymer Bowl

1. Solid polymer bowls shall be a solid polymer manufacturer's standard, pre-molded product specifically designed for attachment to solid polymer counter tops.

(c) One-Piece Vanity Top and Bowl

1. One-piece vanity top and bowl fabrications shall be a standard pre-fabricated product provided by the solid polymer manufacturer. Each unit shall include a vanity top with integral backsplash and sink bowl.

(3) Cafeteria Counter Tops

(a) Cutouts for cold or hot appliances shall be made to templates furnished by the equipment manufacturers. Joints and cutouts shall be reinforced as recommended by

the solid polymer manufacturer. Insulation shall be provided between the solid polymer surface and all appliances, hot or cold. Hot applications shall be thermally isolated from cold applications in accordance with the solid polymer manufacturer's recommendations. Provide expansion joints as necessary to accommodate hot appliances. Where cabinets exist beneath counter tops, adequate ventilation shall be provided to prevent heat build-up.

2.3.1.7 Solid Polymer Sinks

a. Solid polymer sinks shall be a standard product of the solid polymer manufacturer, designed specifically to be installed in solid polymer countertops. Sinks shall be of the same polymer composition as the adjoining counter top. Sink design shall support a seam adhesive undermount or seam adhesive flush installation method. Sink dimensions shall be as indicated on the drawings.

2.3.1.8 Solid Polymer Vanity Bowls

a. Solid polymer vanity bowls shall be a standard product of the solid polymer manufacturer, designed specifically to be installed in solid polymer vanity tops. Bowls shall be of the same polymer composition as the adjoining counter top. Bowl design shall support a seam adhesive undermount or seam adhesive flush installation method. Bowl dimensions shall be as indicated on the drawings.

2.3.1.9 Tub/Shower Wall Panel System

a. Tub/shower wall enclosures shall provide a system of solid polymer components to include: panels, corner trim, soap dish, shampoo shelf, and panel edge trim. Dimensions of all components shall be as indicated on the drawings. Panels shall be formed from manufacturer's standard 1/4 inch thick sheet product. Panels shall be full width and height with seams occurring only at the inside corners of the enclosure. Soap dish and shampoo shelf shall be of a configuration, shape, and location as standard with the manufacturer's system.

2.3.1.10 Wall Cladding/Wainscoting

a. Solid polymer wall cladding or wainscoting shall be provided to dimensions and in locations as shown on the drawings. Panels shall be fabricated from manufacturer's standard 1/4 inch thick sheet product. Panels shall be provided to heights shown on the drawings with no horizontal seaming. Panels shall utilize the maximum panel dimension available to minimize vertical seams.

2.3.1.11 Toilet/Shower Partition System

a. Floor-mounted, solid polymer toilet or shower partition system shall be provided to dimensions and in locations as shown on the drawings. Panels and pilasters shall be fabricated from manufacturer's standard 1/2 inch thick sheet product. System shall include all necessary hardware for installation and mounting of panels, pilasters, and doors.

PART 3 EXECUTION

3.1 COORDINATION

3.1.1 In most instances, installation of solid polymer fabricated components and assemblies will require

strong, correctly located structural support provided by other trades. To provide a stable, sound, secure installation, close coordination is required between the solid polymer fabricator/installer and other trades to insure that necessary structural wall support, cabinet counter top structural support, proper clearances, and other supporting components are provided for the installation of wall panels, countertops, shelving, and all other solid polymer fabrications to the degree and extent recommended by the solid polymer manufacturer. Contractor shall appropriate staging areas for solid polymer fabrications.

3.2 INSTALLATION

3.2.1 Components

3.2.1.1 All components and fabricated units shall be installed plumb, level, and rigid. Field joints between solid polymer components to provide a monolithic appearance shall be made using solid polymer manufacturer's approved seam adhesives, with joints inconspicuous in the finished work. Metal or vitreous china sinks and lavatory bowls shall be attached to counter tops using solid polymer manufacturer's recommended clear silicone sealant and mounting hardware. Solid polymer sinks and bowls shall be installed using a color-matched seam adhesive. Plumbing connections to sinks and lavatories shall be made in accordance with Section 22 00 00 Plumbing, General Purpose.

a. Loose Counter Top Splashes

(1) Loose splashes shall be mounted in locations as noted on the drawings. Loose splashes shall be adhered to the counter top with a color matched silicone sealant when the solid polymer components are solid colors. Adhesion of particulate patterned solid polymer splashes to counter tops shall utilize a clear silicone sealant.

3.2.2 Silicone Sealant

3.2.2.1 A clear, silicone sealant or caulk shall be used to seal all expansion joints between solid polymer components and all joints between solid polymer components and other adjacent surfaces such as walls, floors, ceiling, and plumbing fixtures. Sealant bead shall be smooth and uniform in appearance and shall be the minimum size necessary to bridge any gaps between the solid surfacing material and the adjacent surface. Bead shall be continuous and run the entire length of the joint being sealed.

3.3 CLEAN-UP

3.3.1 Components shall be cleaned after installation and covered to protect against damage during completion of the remaining project items. Components damaged after installation by other trades will be repaired or replaced at the General Contractor's cost. The Contractor shall submit maintenance data as specified in the Submittals paragraph, under SD-10.

END OF SECTION 06 61 16

SECTION 072100 - THERMAL INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Extruded polystyrene foam-plastic board.
- 2. Polyisocyanurate foam-plastic board.
- 3. Glass-fiber blanket.

B. Related Requirements:

1. Section 075423 "Thermoplastic-Polyolefin (TPO) Roofing for insulation specified as part of roofing construction.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.4 INFORMATIONAL SUBMITTALS

- A. Product Test Reports: For each product, for tests performed by a qualified testing agency.
- B. Evaluation Reports: For foam-plastic insulation, from ICC-ES.

1.5 DELIVERY, STORAGE, AND HANDLING

- A. Protect insulation materials from physical damage and from deterioration due to moisture, soiling, and other sources. Store inside and in a dry location. Comply with manufacturer's written instructions for handling, storing, and protecting during installation.
- B. Protect foam-plastic board insulation as follows:
 - 1. Do not expose to sunlight except to necessary extent for period of installation and concealment.
 - 2. Protect against ignition at all times. Do not deliver foam-plastic board materials to Project site until just before installation time.

3. Quickly complete installation and concealment of foam-plastic board insulation in each area of construction.

PART 2 - PRODUCTS

2.1 EXTRUDED POLYSTYRENE FOAM-PLASTIC BOARD

- A. Extruded polystyrene boards in this article are also called "XPS boards." Roman numeral designators in ASTM C578 are assigned in a fixed random sequence, and their numeric order does not reflect increasing strength or other characteristics.
- B. Extruded Polystyrene Board, Type IV for underslab perimeter insulation: ASTM C578, Type IV, 25-psi (173-kPa) minimum compressive strength; unfaced; maximum flame-spread and smoke-developed indexes of 25 and 450, respectively, per ASTM E84.

2.2 POLYISOCYANURATE FOAM-PLASTIC BOARD

- A. Polyisocyanurate Board, Foil Faced: ASTM C1289, foil faced, Type I, Class 1 or 2.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. Atlas EPS; a Division of Atlas Roofing Corporation.
 - b. Carlisle Coatings & Waterproofing Inc.
 - c. <u>Dow Chemical Company (The)</u>.
 - d. <u>Firestone Building Products</u>.
 - e. Rmax, Inc.
 - 2. Fire Propagation Characteristics: Passes NFPA 285 testing as part of an approved assembly.

2.3 GLASS-FIBER BLANKET

- A. Glass-Fiber Blanket, Unfaced: ASTM C665, Type I; with maximum flame-spread and smokedeveloped indexes of 25 and 50, respectively, per ASTM E84; passing ASTM E136 for combustion characteristics.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. <u>CertainTeed Corporation</u>.
 - b. <u>Johns Manville</u>; a Berkshire Hathaway company.
 - c. Knauf Insulation.
 - d. Owens Corning.

2.4 INSULATION FASTENERS

- A. Adhesively Attached, Spindle-Type Anchors: Plate welded to projecting spindle; capable of holding insulation of specified thickness securely in position with self-locking washer in place.
 - 1. Plate: Perforated, galvanized carbon-steel sheet, 0.030 inch (0.762 mm) thick by 2 inches (50 mm) square.
 - 2. Spindle: Copper-coated, low-carbon steel; fully annealed; 0.105 inch (2.67 mm) in diameter; length to suit depth of insulation.
- B. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch- (0.41-mm-) thick galvanized-steel sheet, with beveled edge for increased stiffness, sized as required to hold insulation securely in place, but not less than 1-1/2 inches (38 mm) square or in diameter.
 - 1. Protect ends with capped self-locking washers incorporating a spring steel insert to ensure permanent retention of cap in the following locations:
 - a. Ceiling plenums.
- C. Anchor Adhesive: Product with demonstrated capability to bond insulation anchors securely to substrates without damaging insulation, fasteners, or substrates.

2.5 ACCESSORIES

- A. Insulation for Miscellaneous Voids:
 - 1. Glass-Fiber Insulation: ASTM C764, Type II, loose fill; with maximum flame-spread and smoke-developed indexes of 5, per ASTM E84.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean substrates of substances that are harmful to insulation, including removing projections capable of puncturing insulation or vapor retarders, or that interfere with insulation attachment.

3.2 INSTALLATION, GENERAL

- A. Comply with insulation manufacturer's written instructions applicable to products and applications.
- B. Install insulation that is undamaged, dry, and unsoiled and that has not been left exposed to ice, rain, or snow at any time.
- C. Extend insulation to envelop entire area to be insulated. Fit tightly around obstructions and fill voids with insulation. Remove projections that interfere with placement.

D. Provide sizes to fit applications and selected from manufacturer's standard thicknesses, widths, and lengths. Apply single layer of insulation units unless multiple layers are otherwise shown or required to make up total thickness or to achieve R-value.

3.3 INSTALLATION OF SLAB INSULATION

- A. On vertical slab edge and foundation surfaces, set insulation units using manufacturer's recommended adhesive according to manufacturer's written instructions.
 - 1. If not otherwise indicated, extend insulation a minimum of 24 inches (610 mm) below exterior grade line.
- B. On horizontal surfaces, loosely lay insulation units according to manufacturer's written instructions. Stagger end joints and tightly abut insulation units.
 - 1. If not otherwise indicated, extend insulation a minimum of 24 inches (610 mm) in from exterior walls.

3.4 INSTALLATION OF CAVITY-WALL INSULATION

- A. Foam-Plastic Board Insulation: Install pads of adhesive spaced approximately 24 inches (610 mm) o.c. both ways on inside face and as recommended by manufacturer. Fit courses of insulation between wall ties and other obstructions, with edges butted tightly in both directions. Press units firmly against inside substrates.
 - 1. Supplement adhesive attachment of insulation by securing boards with two-piece wall ties designed for this purpose and specified in Section 042000 "Unit Masonry."

3.5 INSTALLATION OF INSULATION IN FRAMED CONSTRUCTION

- A. Blanket Insulation: Install in cavities formed by framing members according to the following requirements:
 - 1. Use insulation widths and lengths that fill the cavities formed by framing members. If more than one length is required to fill the cavities, provide lengths that will produce a snug fit between ends.
 - 2. Place insulation in cavities formed by framing members to produce a friction fit between edges of insulation and adjoining framing members.
 - 3. Maintain 3-inch (76-mm) clearance of insulation around recessed lighting fixtures not rated for or protected from contact with insulation.
 - 4. For metal-framed wall cavities where cavity heights exceed 96 inches (2438 mm), support unfaced blankets mechanically and support faced blankets by taping flanges of insulation to flanges of metal studs.
- B. Miscellaneous Voids: Install insulation in miscellaneous voids and cavity spaces where required to prevent gaps in insulation using the following materials:

1. Glass-Fiber Insulation: Compact to approximately 40 percent of normal maximum volume equaling a density of approximately 2.5 lb/cu. ft. (40 kg/cu. m).

3.6 PROTECTION

A. Protect installed insulation from damage due to harmful weather exposures, physical abuse, and other causes. Provide temporary coverings or enclosures where insulation is subject to abuse and cannot be concealed and protected by permanent construction immediately after installation.

END OF SECTION 072100

SECTION 072726 - FLUID-APPLIED MEMBRANE AIR BARRIERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Vapor-retarding, fluid-applied air barriers.
- 2. Section 061600 "Sheathing" for wall sheathings and wall sheathing joint-and-penetration treatments.

1.3 DEFINITIONS

- A. Air-Barrier Material: A primary element that provides a continuous barrier to the movement of air.
- B. Air-Barrier Accessory: A transitional component of the air barrier that provides continuity.
- C. Air-Barrier Assembly: The collection of air-barrier materials and accessories applied to an opaque wall, including joints and junctions to abutting construction, to control air movement through the wall.

1.4 PREINSTALLATION MEETINGS

- A. Preinstallation Conference: Conduct conference at Project site.
 - 1. Review air-barrier requirements and installation, special details, air-leakage and bond testing, air-barrier protection, and work scheduling that covers air barriers.

1.5 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include manufacturer's written instructions for evaluating, preparing, and treating each substrate; technical data; dry film thickness; and tested physical and performance properties of products.
- B. Shop Drawings: For air-barrier assemblies.

- 1. Show locations and extent of air-barrier materials, accessories, and assemblies specific to Project conditions.
- 2. Include details for substrate joints and cracks, counterflashing strips, penetrations, inside and outside corners, terminations, and tie-ins with adjoining construction.
- 3. Include details of interfaces with other materials that form part of air barrier.

1.6 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For Installer. Include list of ABAA-certified installers and supervisors employed by Installer, who work on Project.
- B. Product Certificates: From air-barrier manufacturer, certifying compatibility of air barriers and accessory materials with Project materials that connect to or that come in contact with the barrier.
- C. Product Test Reports: For each air-barrier assembly, for tests performed by a qualified testing agency.
- D. Field quality-control reports.

1.7 QUALITY ASSURANCE

- A. Installer Qualifications: An entity that employs installers and supervisors who are trained and approved by manufacturer.
 - 1. Installer shall be licensed by ABAA according to ABAA's Quality Assurance Program and shall employ ABAA-certified installers and supervisors on Project.

1.8 DELIVERY, STORAGE, AND HANDLING

- A. Remove and replace liquid materials that cannot be applied within their stated shelf life.
- B. Protect stored materials from direct sunlight.

1.9 FIELD CONDITIONS

- A. Environmental Limitations: Apply air barrier within the range of ambient and substrate temperatures recommended in writing by air-barrier manufacturer.
 - 1. Protect substrates from environmental conditions that affect air-barrier performance.
 - 2. Do not apply air barrier to a damp or wet substrate or during snow, rain, fog, or mist.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Source Limitations: Obtain primary air-barrier materials and air-barrier accessories from single source from single manufacturer.

2.2 PERFORMANCE REQUIREMENTS

- A. Air-Barrier Performance: Air-barrier assembly and seals with adjacent construction shall be capable of performing as a continuous air barrier and as a liquid-water drainage plane flashed to discharge to the exterior incidental condensation or water penetration. Air-barrier assemblies shall be capable of accommodating substrate movement and of sealing substrate expansion and control joints, construction material changes, penetrations, and transitions at perimeter conditions without deterioration and air leakage exceeding specified limits.
- B. Air-Barrier Assembly Air Leakage: Maximum 0.04 cfm/sq. ft. of surface area at 1.57 lbf/sq. ft. (0.2 L/s x sq. m of surface area at 75 Pa), when tested according to ASTM E2357.

2.3 HIGH-BUILD AIR BARRIERS, VAPOR RETARDING

- A. High-Build, Vapor-Retarding Air Barrier: Modified bituminous or synthetic polymer membrane with an installed dry film thickness, according to manufacturer's written instructions, of 35 mils (0.9 mm) or thicker over smooth, void-free substrates.
 - 1. Modified Bituminous Type:
 - a. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1) <u>Carlisle Coatings & Waterproofing Inc.</u>
 - 2) Henry Company.
 - 3) <u>Tremco Incorporated</u>.
 - 4) W.R. Meadows, Inc.

2. Synthetic Polymer Type:

- a. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1) <u>Carlisle Coatings & Waterproofing Inc.</u>
 - 2) GCP Applied Technologies Inc.
 - 3) Henry Company.
 - 4) Hohmann & Barnard, Inc.
 - 5) Rubber Polymer Corporation, Inc.
 - 6) Sto Corp.
 - 7) W.R. Meadows, Inc.

3. Physical and Performance Properties:

- a. Air Permeance: Maximum 0.004 cfm/sq. ft. of surface area at 1.57-lbf/sq. ft. (0.02 L/s x sq. m of surface area at 75-Pa) pressure difference; ASTM E2178.
- b. Vapor Permeance: Maximum 0.1 perm (5.8 ng/Pa x s x sq. m); ASTM E96/E96M, Desiccant Method.
- c. Ultimate Elongation: Minimum 500 percent; ASTM D412, Die C.
- d. Adhesion to Substrate: Minimum 16 lbf/sq. in. (110 kPa) when tested according to ASTM D4541.

2.4 ACCESSORY MATERIALS

- A. Requirement: Provide primers, transition strips, termination strips, joint reinforcing fabric and strips, joint sealants, counterflashing strips, flashing sheets and metal termination bars, termination mastic, substrate patching materials, adhesives, tapes, foam sealants, lap sealants, and other accessory materials that are recommended in writing by air-barrier manufacturer to produce a complete air-barrier assembly and that are compatible with primary air-barrier material and adjacent construction to which they may seal.
- B. Primer: Liquid waterborne primer recommended for substrate by air-barrier material manufacturer.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements and other conditions affecting performance of the Work.
 - 1. Verify that substrates are sound and free of oil, grease, dirt, excess mortar, or other contaminants.
 - 2. Verify that substrates have cured and aged for minimum time recommended in writing by air-barrier manufacturer.
 - 3. Verify that substrates are visibly dry and free of moisture
 - 4. Verify that masonry joints are flush and completely filled with mortar.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 SURFACE PREPARATION

- A. Clean, prepare, treat, fill, and seal substrate and joints and cracks in substrate according to manufacturer's written instructions and details. Provide clean, dust-free, and dry substrate for air-barrier application.
- B. Mask off adjoining surfaces not covered by air barrier to prevent spillage and overspray affecting other construction.

- C. Remove grease, oil, bitumen, form-release agents, paints, curing compounds, and other penetrating contaminants or film-forming coatings from concrete.
- D. Remove fins, ridges, mortar, and other projections and fill honeycomb, aggregate pockets, holes, and other voids in concrete with substrate-patching material.
- E. Remove excess mortar from masonry ties, shelf angles, and other obstructions.
- F. At changes in substrate plane, apply sealant or termination mastic beads at sharp corners and edges to form a smooth transition from one plane to another.
- G. Cover gaps in substrate plane and form a smooth transition from one substrate plane to another with stainless-steel sheet mechanically fastened to structural framing to provide continuous support for air barrier.
- H. Bridge isolation joints and discontinuous wall-to-wall, deck-to-wall, and deck-to-deck joints with air-barrier accessory material that accommodates joint movement according to manufacturer's written instructions and details.

3.3 ACCESSORIES INSTALLATION

- A. Install accessory materials according to air-barrier manufacturer's written instructions and details to form a seal with adjacent construction and ensure continuity of air and water barrier.
 - 1. Coordinate the installation of air barrier with installation of roofing membrane and base flashing to ensure continuity of air barrier with roofing membrane.
 - 2. Install transition strip on roofing membrane or base flashing so that a minimum of 3 inches (75 mm) of coverage is achieved over each substrate.
 - 3. Unless manufacturer recommends in writing against priming, apply primer to substrates at required rate and allow it to dry.
 - 4. Apply primer to substrates at required rate and allow it to dry. Limit priming to areas that will be covered by air-barrier material on same day. Reprime areas exposed for more than 24 hours.
- B. Connect and seal exterior wall air-barrier material continuously to roofing-membrane air barrier, concrete below-grade structures, floor-to-floor construction, exterior glazing and window systems, glazed curtain-wall systems, storefront systems, exterior louvers, exterior door framing, and other construction used in exterior wall openings, using accessory materials.
- C. At end of each working day, seal top edge of strips and transition strips to substrate with termination mastic.
- D. Apply joint sealants forming part of air-barrier assembly within manufacturer's recommended application temperature ranges. Consult manufacturer when sealant cannot be applied within these temperature ranges.
- E. Wall Openings: Prime concealed, perimeter frame surfaces of windows, curtain walls, storefronts, and doors. Apply transition strip so that a minimum of 3 inches (75 mm) of coverage is achieved over each substrate. Maintain 3 inches (75 mm) of full contact over firm bearing to perimeter frames, with not less than 1 inch (25 mm) of full contact.

- 1. Transition Strip: Roll firmly to enhance adhesion.
- F. Fill gaps in perimeter frame surfaces of windows, curtain walls, storefronts, and doors, and miscellaneous penetrations of air-barrier material with foam sealant.
- G. Seal strips and transition strips around masonry reinforcing or ties and penetrations with termination mastic.
- H. Seal top of through-wall flashings to air barrier with an additional 6-inch- (150-mm-) wide, transition strip.
- I. Seal exposed edges of strips at seams, cuts, penetrations, and terminations not concealed by metal counterflashings or ending in reglets with termination mastic.
- J. Repair punctures, voids, and deficient lapped seams in strips and transition strips. Slit and flatten fishmouths and blisters. Patch with transition strips extending 6 inches (150 mm) beyond repaired areas in strip direction.

3.4 PRIMARY AIR-BARRIER MATERIAL INSTALLATION

- A. Apply air-barrier material to form a seal with strips and transition strips and to achieve a continuous air barrier according to air-barrier manufacturer's written instructions and details. Apply air-barrier material within manufacturer's recommended application temperature ranges.
 - 1. Unless manufacturer recommends in writing against priming, apply primer to substrates at required rate and allow it to dry.
 - 2. Limit priming to areas that will be covered by air-barrier material on same day. Reprime areas exposed for more than 24 hours.
 - 3. Where multiple prime coats are needed to achieve required bond, allow adequate drying time between coats.
- B. High-Build Air Barriers: Apply continuous unbroken air-barrier material to substrates according to the following thickness. Apply air-barrier material in full contact around protrusions such as masonry ties.
 - 1. Vapor-Retarding, High-Build Air Barrier: Total dry film thickness as recommended in writing by manufacturer to comply with performance requirements, but not less than 35 mils (0.9 mm).
- C. Do not cover air barrier until it has been tested and inspected by testing agency.
- D. Correct deficiencies in or remove air barrier that does not comply with requirements; repair substrates and reapply air-barrier components.

3.5 FIELD QUALITY CONTROL

A. ABAA Quality Assurance Program: Perform examinations, preparation, installation, testing, and inspections under ABAA's Quality Assurance Program.

- B. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- C. Inspections: Air-barrier materials, accessories, and installation are subject to inspection for compliance with requirements. Inspections shall include the following:
 - 1. Continuity of air-barrier system has been achieved throughout the building envelope with no gaps or holes.
 - 2. Air-barrier dry film thickness.
 - 3. Continuous structural support of air-barrier system has been provided.
 - 4. Masonry surfaces are smooth, clean, and free of cavities, protrusions, and mortar droppings.
 - 5. Site conditions for application temperature and dryness of substrates have been maintained.
 - 6. Maximum exposure time of materials to UV deterioration has not been exceeded.
 - 7. Surfaces have been primed, if applicable.
 - 8. Laps in strips and transition strips have complied with minimum requirements and have been shingled in the correct direction (or mastic has been applied on exposed edges), with no fishmouths.
 - 9. Termination mastic has been applied on cut edges.
 - 10. Strips and transition strips have been firmly adhered to substrate.
 - 11. Compatible materials have been used.
 - 12. Transitions at changes in direction and structural support at gaps have been provided.
 - 13. Connections between assemblies (air-barrier and sealants) have complied with requirements for cleanliness, surface preparation and priming, structural support, integrity, and continuity of seal.
 - 14. All penetrations have been sealed.
- D. Tests: As determined by testing agency from among the following tests:
 - 1. Air-Leakage-Location Testing: Air-barrier assemblies will be tested for evidence of air leakage according to ASTM E1186, chamber pressurization or depressurization with smoke tracers or ASTM E1186, chamber depressurization using detection liquids.
 - 2. Air-Leakage-Volume Testing: Air-barrier assemblies will be tested for air-leakage rate according to ASTM E783.
 - 3. Adhesion Testing: Air-barrier assemblies will be tested for required adhesion to substrate according to ASTM D4541 for each 600 sq. ft. (56 sq. m) of installed air barrier or part thereof.
- E. Air barriers will be considered defective if they do not pass tests and inspections.
 - 1. Apply additional air-barrier material, according to manufacturer's written instructions, where inspection results indicate insufficient thickness.
 - 2. Remove and replace deficient air-barrier components for retesting as specified above.
- F. Repair damage to air barriers caused by testing; follow manufacturer's written instructions.
- G. Prepare test and inspection reports.

3.6 CLEANING AND PROTECTION

- A. Protect air-barrier system from damage during application and remainder of construction period, according to manufacturer's written instructions.
 - 1. Protect air barrier from exposure to UV light and harmful weather exposure as recommended in writing by manufacturer. If exposed to these conditions for longer than recommended, remove and replace air barrier or install additional, full-thickness, air-barrier application after repairing and preparing the overexposed materials according to air-barrier manufacturer's written instructions.
 - 2. Protect air barrier from contact with incompatible materials and sealants not approved by air-barrier manufacturer.
- B. Clean spills, stains, and soiling from construction that would be exposed in the completed work using cleaning agents and procedures recommended in writing by manufacturer of affected construction.
- C. Remove masking materials after installation.

END OF SECTION 072726

SECTION 074213.23 - METAL COMPOSITE MATERIAL WALL PANELS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes metal composite material wall panels.

1.3 PREINSTALLATION MEETINGS

- A. Preinstallation Conference: Conduct conference at Project site.
 - 1. Meet with Owner, Architect, Owner's insurer if applicable, metal composite material panel Installer, metal composite material panel manufacturer's representative, structural-support Installer, and installers whose work interfaces with or affects metal composite material panels, including installers of doors, windows, and louvers.
 - 2. Review and finalize construction schedule and verify availability of materials, Installer's personnel, equipment, and facilities needed to make progress and avoid delays.
 - 3. Review methods and procedures related to metal composite material panel installation, including manufacturer's written instructions.
 - 4. Examine support conditions for compliance with requirements, including alignment between and attachment to structural members.
 - 5. Review flashings, special siding details, wall penetrations, openings, and condition of other construction that affect metal composite material panels.
 - 6. Review governing regulations and requirements for insurance, certificates, and tests and inspections if applicable.
 - 7. Review temporary protection requirements for metal composite material panel assembly during and after installation.
 - 8. Review procedures for repair of panels damaged after installation.
 - 9. Document proceedings, including corrective measures and actions required, and furnish copy of record to each participant.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for each type of panel and accessory.
- B. Shop Drawings:

- 1. Include fabrication and installation layouts of metal composite material panels; details of edge conditions, joints, panel profiles, corners, anchorages, attachment assembly, trim, flashings, closures, and accessories; and special details.
- 2. Accessories: Include details of the flashing, trim and anchorage, at a scale of not less than 1-1/2 inches per 12 inches (1:10).
- C. Samples for Verification: For each type of exposed finish required, prepared on Samples of size indicated below.
 - 1. Metal Composite Material Panels: 12 inches (305 mm) long by actual panel width. Include fasteners, closures, and other metal composite material panel accessories.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For Installer.
- B. Product Test Reports: For each product, tests performed by a qualified testing agency.
- C. Field quality-control reports.
- D. Sample Warranties: For special warranties.

1.6 CLOSEOUT SUBMITTALS

A. Maintenance Data: For metal composite material panels to include in maintenance manuals.

1.7 OUALITY ASSURANCE

A. Installer Qualifications: An entity that employs installers and supervisors who are trained and approved by manufacturer.

1.8 DELIVERY, STORAGE, AND HANDLING

- A. Deliver components, metal composite material panels, and other manufactured items so as not to be damaged or deformed. Package metal composite material panels for protection during transportation and handling.
- B. Unload, store, and erect metal composite material panels in a manner to prevent bending, warping, twisting, and surface damage.
- C. Stack metal composite material panels horizontally on platforms or pallets, covered with suitable weathertight and ventilated covering. Store metal composite material panels to ensure dryness, with positive slope for drainage of water. Do not store metal composite material panels in contact with other materials that might cause staining, denting, or other surface damage.
- D. Retain strippable protective covering on metal composite material panels during installation.

1.9 FIELD CONDITIONS

A. Weather Limitations: Proceed with installation only when existing and forecasted weather conditions permit assembly of metal composite material panels to be performed according to manufacturers' written instructions and warranty requirements.

1.10 COORDINATION

A. Coordinate metal composite material panel installation with rain drainage work, flashing, trim, construction of soffits, and other adjoining work to provide a leakproof, secure, and noncorrosive installation.

1.11 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of metal composite material panel systems that fail in materials or workmanship within specified warranty period.
 - 1. Failures include, but are not limited to, the following:
 - a. Structural failures including rupturing, cracking, or puncturing.
 - b. Deterioration of metals and other materials beyond normal weathering.
 - 2. Warranty Period: Two years from date of Substantial Completion.
- B. Special Warranty on Panel Finishes: Manufacturer's standard form in which manufacturer agrees to repair finish or replace metal composite material panels that show evidence of deterioration of factory-applied finishes within specified warranty period.
 - 1. Exposed Panel Finish: Deterioration includes, but is not limited to, the following:
 - a. Color fading more than 5 Hunter units when tested according to ASTM D2244.
 - b. Chalking in excess of a No. 8 rating when tested according to ASTM D4214.
 - c. Cracking, checking, peeling, or failure of paint to adhere to bare metal.
 - 2. Finish Warranty Period: 20 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Structural Performance: Provide metal composite material panel systems capable of withstanding the effects of the following loads, based on testing according to ASTM E330:
 - 1. Wind Loads: As indicated on Drawings.
 - 2. Other Design Loads: As indicated on Drawings.
 - 3. Deflection Limits: For wind loads, no greater than 1/180 of the span.

- B. Air Infiltration: Air leakage of not more than 0.06 cfm/sq. ft. (0.3 L/s per sq. m) when tested according to ASTM E283 at the following test-pressure difference:
 - 1. Test-Pressure Difference: 1.57 lbf/sq. ft. (75 Pa).
- C. Water Penetration under Static Pressure: No water penetration when tested according to ASTM E331 at the following test-pressure difference:
 - 1. Test-Pressure Difference: 6.24 lbf/sq. ft. (300 Pa).
- D. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes by preventing buckling, opening of joints, overstressing of components, failure of joint sealants, failure of connections, and other detrimental effects. Base calculations on surface temperatures of materials due to both solar heat gain and nighttime-sky heat loss.
 - 1. Temperature Change (Range): 120 deg F (67 deg C), ambient; 180 deg F (100 deg C), material surfaces.

2.2 METAL COMPOSITE MATERIAL WALL PANELS

- A. Metal Composite Material Wall Panel Systems: Provide factory-formed and -assembled, metal composite material wall panels fabricated from two metal facings that are bonded to a solid, extruded thermoplastic core; formed into profile for installation method indicated. Include attachment assembly components and accessories required for weathertight system.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. Alcoa Architectural Products (USA).
 - b. ALPOLIC Materials; Mitsubishi Plastics Composites America.
 - c. ALUCOBOND; 3A Composites USA, Inc.
 - d. CENTRIA Architectural Systems.
 - e. Firestone Metal Products, LLC.
- B. Aluminum-Faced Composite Wall Panels: Formed with 0.020-inch- (0.50-mm-) thick, coil-coated aluminum sheet facings.
 - 1. Basis of Design Product: Alucobond Plus Rainscreen System II with "naturAL" finish.
 - 2. Panel Thickness: 0.157 inch (4 mm).
 - 3. Core: Standard.
 - 4. Exterior Finish: Clear coat over pretreated natural and brushed aluminum substrate.
 - a. Color: Zinc. Metal grain always horizontal.
- C. Attachment Assembly Components: Formed from material compatible with panel facing.
- D. Attachment Assembly: Manufacturer's standard rainscreen principle system.

2.3 MISCELLANEOUS MATERIALS

- A. Miscellaneous Metal Subframing and Furring: ASTM C645, cold-formed, metallic-coated steel sheet ASTM A653/A653M, G90 (Z275 hot-dip galvanized) coating designation or ASTM A792/A792M, Class AZ50 (Class AZM150) aluminum-zinc-alloy coating designation unless otherwise indicated. Provide manufacturer's standard sections as required for support and alignment of metal composite material panel system.
- B. Panel Accessories: Provide components required for a complete, weathertight panel system including trim, copings, fasciae, mullions, sills, corner units, clips, flashings, sealants, gaskets, fillers, closure strips, and similar items. Match material and finish of metal composite material panels unless otherwise indicated.
- C. Flashing and Trim: Provide flashing and trim formed from same material as metal composite material panels as required to seal against weather and to provide finished appearance. Locations include, but are not limited to, bases, drips, sills, jambs, corners, endwalls, framed openings, rakes, fasciae, parapet caps, soffits, reveals, and fillers. Finish flashing and trim with same finish system as adjacent metal composite material panels.
- D. Panel Fasteners: Self-tapping screws designed to withstand design loads. Provide exposed fasteners with heads matching color of metal composite material panels by means of plastic caps or factory-applied coating. Provide EPDM or PVC sealing washers for exposed fasteners.
- E. Panel Sealants: ASTM C920; elastomeric polyurethane or silicone sealant; of type, grade, class, and use classifications required to seal joints in metal composite material panels and remain weathertight; and as recommended in writing by metal composite material panel manufacturer.

2.4 FABRICATION

- A. General: Fabricate and finish metal composite material panels and accessories at the factory, by manufacturer's standard procedures and processes, as necessary to fulfill indicated performance requirements demonstrated by laboratory testing. Comply with indicated profiles and with dimensional and structural requirements.
- B. Fabricate metal composite material panel joints with factory-installed captive gaskets or separator strips that provide a weathertight seal and prevent metal-to-metal contact, and that minimize noise from movements.
- C. Sheet Metal Flashing and Trim: Fabricate flashing and trim to comply with manufacturer's recommendations and recommendations in SMACNA's "Architectural Sheet Metal Manual" that apply to design, dimensions, metal, and other characteristics of item indicated.
 - 1. Form exposed sheet metal accessories that are without excessive oil canning, buckling, and tool marks and that are true to line and levels indicated, with exposed edges folded back to form hems.
 - 2. Seams for Aluminum: Fabricate nonmoving seams with flat-lock seams. Form seams and seal with epoxy seam sealer. Rivet joints for additional strength.
 - 3. Seams for Other Than Aluminum: Fabricate nonmoving seams in accessories with flat-lock seams. Tin edges to be seamed, form seams, and solder.

- 4. Sealed Joints: Form non-expansion, but movable, joints in metal to accommodate sealant and to comply with SMACNA standards.
- 5. Conceal fasteners and expansion provisions where possible. Exposed fasteners are not allowed on faces of accessories exposed to view.
- 6. Fabricate cleats and attachment devices from same material as accessory being anchored or from compatible, noncorrosive metal recommended in writing by metal panel manufacturer.
 - a. Size: As recommended by SMACNA's "Architectural Sheet Metal Manual" or metal wall panel manufacturer for application but not less than thickness of metal being secured.

2.5 FINISHES

- A. Protect mechanical and painted finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.
- B. Appearance of Finished Work: Variations in appearance of abutting or adjacent pieces are acceptable if they are within one-half of the range of approved Samples. Noticeable variations in same piece are not acceptable. Variations in appearance of other components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances, metal composite material panel supports, and other conditions affecting performance of the Work.
 - 1. Examine wall framing to verify that girts, angles, channels, studs, and other structural panel support members and anchorage have been installed within alignment tolerances required by metal composite material wall panel manufacturer.
 - 2. Examine wall sheathing to verify that sheathing joints are supported by framing or blocking and that installation is within flatness tolerances required by metal composite material wall panel manufacturer.
 - a. Verify that air- or water-resistive barriers have been installed over sheathing or backing substrate to prevent air infiltration or water penetration.
- B. Examine roughing-in for components and assemblies penetrating metal composite material panels to verify actual locations of penetrations relative to seam locations of metal composite material panels before installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Miscellaneous Supports: Install subframing, furring, and other miscellaneous panel support members and anchorages according to ASTM C754 and metal composite material panel manufacturer's written recommendations.

3.3 METAL COMPOSITE MATERIAL PANEL INSTALLATION

- A. General: Install metal composite material panels according to manufacturer's written instructions in orientation, sizes, and locations indicated on Drawings. Install panels perpendicular to supports unless otherwise indicated. Anchor metal composite material panels and other components of the Work securely in place, with provisions for thermal and structural movement.
 - 1. Shim or otherwise plumb substrates receiving metal composite material panels.
 - 2. Flash and seal metal composite material panels at perimeter of all openings. Fasten with self-tapping screws. Do not begin installation until air- or water-resistive barriers and flashings that will be concealed by metal composite material panels are installed.
 - 3. Install screw fasteners in predrilled holes.
 - 4. Locate and space fastenings in uniform vertical and horizontal alignment.
 - 5. Install flashing and trim as metal composite material panel work proceeds.
 - 6. Locate panel splices over, but not attached to, structural supports. Stagger panel splices and end laps to avoid a four-panel lap splice condition.
 - 7. Align bottoms of metal composite material panels and fasten with blind rivets, bolts, or self-tapping screws. Fasten flashings and trim around openings and similar elements with self-tapping screws.
 - 8. Provide weathertight escutcheons for pipe- and conduit-penetrating panels.

B. Fasteners:

- 1. Aluminum Panels: Use aluminum or stainless-steel fasteners for surfaces exposed to the exterior; use aluminum or galvanized-steel fasteners for surfaces exposed to the interior.
- C. Metal Protection: Where dissimilar metals contact each other or corrosive substrates, protect against galvanic action as recommended in writing by metal composite material panel manufacturer.
- D. Attachment Assembly, General: Install attachment assembly required to support metal composite material wall panels and to provide a complete weathertight wall system, including subgirts, perimeter extrusions, tracks, drainage channels, panel clips, and anchor channels.
 - 1. Include attachment to supports, panel-to-panel joinery, panel-to-dissimilar-material joinery, and panel-system joint seals.
- E. Installation: Attach metal composite material wall panels to supports at locations, spacings, and with fasteners recommended by manufacturer to achieve performance requirements specified.
 - 1. Wet Seal Systems: Seal horizontal and vertical joints between adjacent metal composite material wall panels with sealant backing and sealant. Install sealant backing and sealant according to requirements specified in Section 079200 "Joint Sealants."

- 2. Dry Seal Systems: Seal horizontal and vertical joints between adjacent metal composite material wall panels with manufacturer's standard gasket system.
- 3. Rainscreen Systems: Do not apply sealants to joints unless otherwise indicated.
- F. Clip Installation: Attach panel clips to supports at locations, spacings, and with fasteners recommended by manufacturer. Attach routed-and-returned flanges of wall panels to panel clips with manufacturer's standard fasteners.
 - 1. Seal horizontal and vertical joints between adjacent panels with sealant backing and sealant. Install sealant backing and sealant according to requirements specified in Section 079200 "Joint Sealants."
 - 2. Seal horizontal and vertical joints between adjacent metal composite material wall panels with manufacturer's standard gaskets.
- G. Rainscreen-Principle Installation: Install using manufacturer's standard assembly with vertical channel that provides support and secondary drainage assembly, draining at base of wall. Notch vertical channel to receive support pins. Install vertical channels supported by channel brackets or adjuster angles and at locations, spacings, and with fasteners recommended by manufacturer. Attach metal composite material wall panels by inserting horizontal support pins into notches in vertical channels and into flanges of panels. Leave horizontal and vertical joints with open reveal.
 - 1. Install wall panels to allow individual panels to be installed and removed without disturbing adjacent panels.
 - 2. Do not apply sealants to joints unless otherwise indicated.
- H. Accessory Installation: Install accessories with positive anchorage to building and weathertight mounting, and provide for thermal expansion. Coordinate installation with flashings and other components.
 - 1. Install components required for a complete metal composite material panel assembly including trim, copings, corners, seam covers, flashings, sealants, gaskets, fillers, closure strips, and similar items. Provide types indicated by metal composite material panel manufacturer; or, if not indicated, provide types recommended in writing by metal composite material panel manufacturer.
- I. Flashing and Trim: Comply with performance requirements, manufacturer's written installation instructions, and SMACNA's "Architectural Sheet Metal Manual." Provide concealed fasteners where possible, and set units true to line and level as indicated. Install work with laps, joints, and seams that are permanently watertight.
 - 1. Install exposed flashing and trim that is without buckling and tool marks and that is true to line and levels indicated, with exposed edges folded back to form hems. Install sheet metal flashing and trim to fit substrates and to result in waterproof performance.
 - 2. Expansion Provisions: Provide for thermal expansion of exposed flashing and trim. Space movement joints at a maximum of 10 feet (3 m) with no joints allowed within 24 inches (605 mm) of corner or intersection. Where lapped expansion provisions cannot be used or would not be sufficiently waterproof, form expansion joints of intermeshing hooked flanges, not less than 1 inch (25 mm) deep, filled with mastic sealant (concealed within joints).

3.4 ERECTION TOLERANCES

A. Installation Tolerances: Shim and align metal composite material wall panel units within installed tolerance of 1/4 inch in 20 feet (6 mm in 6 m), non-accumulative, on level, plumb, and location lines as indicated, and within 1/8-inch (3-mm) offset of adjoining faces and of alignment of matching profiles.

3.5 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified independent testing agency to perform field tests and inspections.
- B. Water-Spray Test: After installation, test area of for water penetration according to AAMA 508-05.
- C. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect completed metal composite material wall panel installation, including accessories.
- D. Metal composite material wall panels will be considered defective if they do not pass test and inspections.
- E. Additional tests and inspections, at Contractor's expense, are performed to determine compliance of replaced or additional work with specified requirements.
- F. Prepare test and inspection reports.

3.6 CLEANING AND PROTECTION

- A. Remove temporary protective coverings and strippable films, if any, as metal composite material panels are installed, unless otherwise indicated in manufacturer's written installation instructions. On completion of metal composite material panel installation, clean finished surfaces as recommended by metal composite material panel manufacturer. Maintain in a clean condition during construction.
- B. After metal composite material panel installation, clear weep holes and drainage channels of obstructions, dirt, and sealant.
- C. Replace metal composite material panels that have been damaged or have deteriorated beyond successful repair by finish touchup or similar minor repair procedures.

END OF SECTION 074213.23

SECTION 074633 PHENOLIC WALL PANELS (SIMULATED WOOD)

PART 1 – GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplemental General Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SECTION INCLUDES

- A. Exterior solid phenolic cladding factory fabricated panel system and accessories as required for a complete drained and back-ventilated rain screen system.
 - 1. Wall panels.
 - 2. Fascia.
 - 3. Horizontal soffits.
 - 4. Storefront panels.
- B. Interior solid phenolic cladding factory fabricated panel system and accessories.

1.3 RELATED SECTIONS

- A. Section 05 44 00 "Cold Formed Metal Framing" for support, clips, z-clips and accessories required for attachment of wall panel system.
- B. Section 05 50 00 Metal Fabrications; additional sub framing, Z girts to accommodate exterior insulation is not in the scope of Section 07.
- C. Section 07 00 00 Thermal and Moisture Barrier.

1.4 REFERENCES

- A. ASTM International (ASTM):
 - 1. ASTM D 1929 Standard Test Method for Ignition Temperature.
 - 2. ASTM E 84 Standard Test Method for Surface Burning Characteristics of Building Materials.
 - 3. ASTM E 119 Standard Test Method for Fire Rated or Fire Resistive Construction.

1.5 SUBMITTALS

- A. Product Data: Manufacturer's data sheets on each product to be used, including:
 - 1. Material Property Datasheet.
 - 2. Storage and handling requirements and recommendations.
 - 3. Installation Manual.
- B. Drawings: Submit plan, section, elevation and perspective drawings necessary to describe and convey the layout, profiles and product components, including edge conditions, panel joints, fixture location, anchorage, accessories, finish colors.

- C. Code Compliance: Documents showing product compliance with local building code shall be submitted prior to the bid. These documents shall include, but not be limited to, appropriate Evaluation Reports and/or test reports supporting the use of the product.
- D. Selection Samples: For each finish product specified, submit color chips representing manufacturer's full range of available colors and patterns.
- E. Operation and Maintenance Data: Submit operation, maintenance, and cleaning information for products covered under this section.
- F. Test Reports: Submit certified test reports showing compliance with specified performance characteristics and physical properties.
- G. Closeout Submittals: Submit the following:
 - Operation and Maintenance Data: Operation and maintenance data for installed products in accordance with Division Closeout Submittals (Maintenance Data and Operation Data) Section. Include methods for maintaining installed products and precautions against cleaning materials and methods detrimental to finishes and performance. Include maintenance information for the removal and replacement of panels.
 - 2. Warranty: Warranty documents specified herein.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Delivery:

- 1. During transportation, use stable, flat pallets that are at least the same dimension as the material.
- 2. Materials are packaged to minimize or eliminate the possibility of damage during shipping. Items such as wooden side boards, wooden lid, and spacers or protective sheeting between panels shall be used to protect the panels from surface and/or edge damage.

B. Storage:

- 1. Store products in an enclosed area protected from direct sunlight, moisture and heat. Maintain a consistent temperature and humidity.
- 2. Store products in manufacturer's unopened packaging until ready for installation.
- 3. Stack panels using protective dividers to avoid damage to decorative surface.
- 4. For horizontal storage, store on pallets of equal or greater size as the panels with a protective layer between the pallet and panel.
- 5. Do not store fabricated panels vertically.

C. Handling:

- 1. Remove protective film within 24 hours of the panels being removed from the pallet.
- 2. When moving panels, lift evenly to avoid dragging panels across each other and scratching the decorative surface.
- 3. Remove all labels and stickers immediately after installation.

1.7 PERFORMANCE REQUIREMENTS

A. General Performance: Solid phenolic exterior wall panel assemblies shall comply with performance requirements without failure due to defective manufacture, fabrication, installation, or other defects in construction.

- B. Wall Assembly shall meet requirements of NFPA 285. Refer to Division 01 "Testing Laboratory Services".
- C. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes by preventing buckling, opening of joints, overstressing of components, failure of joint sealants, failure of connections, and other detrimental effects. Base calculations on surface temperatures of materials due to both solar heat gain and nighttime-sky heat loss.
 - 1. Temperature Change (Range): 120 deg F, ambient; 180 deg F, material surfaces.

1.8 PRE-INSTALLATION CONFERENCE

- A. Pre-installation Conference: Conduct conference at Project Site.
 - 1. Review methods and procedures related to the work.
 - 2. Review substrate and adjacent work.
 - 3. Comply with requirements in Division 01 Section "Project Management and Coordination."
 - 4. Review methods and procedures related to the work.
 - 5. Review attachment and support requirements of other materials and systems to be attached.

1.9 PROJECT CONDITIONS

- A. Maintain environmental conditions (temperature, humidity, and ventilation) within limits recommended by manufacturer for optimum results. Do not install products under environmental conditions outside manufacturer's absolute limits.
- B. Field Measurements: Verify actual measurements/openings by field measurements performed by the installer. Recorded measurements to be indicated on drawings based on field measurements provided by the installer.

1.10 WARRANTY

A. Warranty: At project closeout, provide manufacturer's limited ten (10) year warranty covering defects in materials and improper installation.

PART 2 - PRODUCTS

2.1 MANUFACTURER AND BASIS OF DESIGN PRODUCTS

- A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 - 1. Available Manufacturers: Manufacturers offering products that may be incorporated into the Work include those manufacturers specified.
- C. Basis-of-Design Product specification: A specific manufacturer's product is named and accompanied by the words "basis-of-design product," including make or model number or other designation, to illustrate and establish significant qualities related to type, function, dimension, in-service performance, physical properties, appearance, and other characteristics

for purposes of evaluating comparable products of additional manufacturers named in the specification.

2.2 PHENOLIC WALL SIDING SYSTEM

- A. Products: Provide the following:
 - 1. Basis of Design": Trespa Pura by Trespa International as represented by Trespa North America, LTD., or Design Professional approved equal.
 - 2. Material: Solid panel manufactured using a combination of high pressure and temperature to create a flat panel created from thermosetting resins, homogenously reinforced with wood-based fibers and an integrated decorative surface.
 - 3. Siding System: Trespa Pura is a factory fabricated High Pressure Laminate material used in conjunction with siding accessories and components to provide a cladding for a drained and back ventilated rainscreen wall system.
 - 4. Color: As selected by the Design Professional from manufacturer's standard color palette.
 - 5. Finish: Matte sheen.
 - 6. Flush Siding System
 - 7. Panel Core: Fire retardant (FR) brown core.
 - 8. Panel Thickness: 5/16 inch (8 mm).
 - 9. Physical Properties:
 - a. Modulus of Elasticity: 1,300,000 psi (9000 N/mm2) minimum, ISO 178.
 - b. Tensile Strength: 10,100 psi (70 N/mm2) minimum, ISO 527-2.
 - c. Flexural Strength: 14,500psi (120 N/mm2) minimum, ISO 178.
 - 10. Fire Performance:
 - a. Flame Spread: Class A, ASTM E 84.
 - b.Smoke Development: Less than 450, ASTM E 84.
 - 11. Finish Performance: Electron Beam Cure resin in conformance with the following general requirements:
 - a. Color: As selected by the Design Professional from manufacturer's standard colors.
 - b. Resistance to Climactic Shock: EN 438-2:19.
 - c. Resistance to Artificial Weathering: EN 438-2:29.
 - d.Color Stability: decorative surface shall comply with, classification, 4 5 measured with the grey scale according to ISO 105 A02-93 according to test method EN 438-2:29.
 - e. Resistance to SO2: DIN 50018.
 - f. Microbial Characteristics: Will not support micro-organic growth (ISO 846).
- B. Mounting System:
 - 1. Flush Siding System.
- C. Sub Structure:
 - Sub-structure designed to withstand structural loading due to wind load and the dead load of the panel, painted as required to conceal behind the open joinery of the attachment system.

- 2. Extrusions, battens, including corner closures, joint closures and vent screens, formed members, clips, z-clips, sheet, and plate shall conform with the recommendations of the manufacturer.
- D. Fasteners (Concealed): Fasteners are non-corrosive. Exposed fasteners shall be colored to match panels where required by the Design Professional.

E. Accessories:

- 1. Extruded aluminum trim includes outside corners, inside corners, start profiles, j channel, and finish profiles.
- 2. Color to match siding color.

2.3 FABRICATION

- A. Panels: Solid phenolic impregnated kraft paper wall panels with no voids, air spaces or foamed insulation in the core material.
- B. Accessory Items: In accordance with manufacturer's recommendations and approved submittals.
- C. Panel edges: Factory fabricated to be used with the provided hardware system.
- D. Panel Weight: 8mm-5/16" (2.4lb/ft2)
- E. Panel Dimensions: Field fabrication shall be allowed where necessary, but shall be kept to an absolute minimum.
- F. Appearance: Panel lines, breaks, and angles shall be sharp, true, and surfaces free from warp and buckle.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Do not begin installation until substrates have been properly prepared.
- B. Surfaces to receive panels shall be even, smooth, dry, and free from defects detrimental to the installation of the panel system.
 - Notify Construction Professional in writing of conditions detrimental to proper and timely completion of the work.
- C. Confirm exterior sheathing is plumb and level, with no deflection greater than 1/4 inch (6 mm) in 20 feet (6096 mm).
- D. If substrate preparation is the responsibility of another installer, notify Design Professional of unsatisfactory preparation before proceeding.
 - Do not proceed with installation until unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Clean surfaces thoroughly prior to installation.
- B. Prepare surfaces using the methods recommended by the manufacturer for achieving the best result for the substrate under the project conditions.

3.3 INSTALLATION

- A. Install solid phenolic wall panels, clips, z-clips and sub-frame system in accordance with manufacturer's instructions.
- B. Clips shall be spaced 12 inches on center maximum.
- C. Install solid phenolic wall panels plumb and level and accurately spaced in accordance with manufacturer's recommendations and approved submittals and drawings.
- D. Anchor panels and sub-framing securely per engineering recommendations and in accordance with approved shop drawings to allow for necessary movement and structural support.
- E. Fasten solid phenolic wall panels with fasteners approved for use with supporting substrate.
- F. Do not install panels or component parts which are observed to be defective or damaged including, but not limited to: warped, bowed, abraded, scratched, and broken members.
- G. Do not cut or trim component parts during installation in a manner that would damage the
 finish, decrease the strength, or result in visual imperfection or a failure in performance.
 Return component parts with require alteration to the shop for re-fabrication or replacement.
- H. Install corner profiles and trim with fasteners appropriate for use with adjoining construction as indicated on the Contract Drawings and as recommended by manufacturer.

3.4 ADJUSTING AND CLEANING

- A. Remove masking or panel protection as soon as possible after installation. Any masking intentionally left in place after panel installation on an elevation, shall become the responsibility of the Construction Professional to remove.
- B. Adjust final panel installation so that all joints are true and even throughout the installation. Panels out of plane shall be adjusted with the surrounding panels to minimize any imperfection.
- C. Repair panels with minor damage. Remove and replace panels damaged beyond repair as a direct result of the panel installation.
 After installation, panel repair and replacement shall become the responsibility of the Construction Professional.
- D. Clean finished surfaces as recommended by panel manufacturer. After installation cleaning, cleaning during construction shall become the responsibility of the Construction Professional.

END OF SECTION 07 46 33

SECTION 075423 - THERMOPLASTIC-POLYOLEFIN (TPO) ROOFING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Adhered thermoplastic polyolefin (TPO) roofing system.
- 2. Roof insulation.
- 3. Cover board.
- 4. Walkways.

B. Related Requirements:

- 1. Section 061053 "Miscellaneous Rough Carpentry" for wood nailers, curbs, and blocking.
- 2. Section 072100 "Thermal Insulation" for insulation beneath the roof deck.
- 3. Section 076200 "Sheet Metal Flashing and Trim" for metal roof flashings and counterflashings.
- 4. Section 077100 "Roof Specialties" for manufactured copings and roof edge flashings.
- 5. Section 079200 "Joint Sealants" for joint sealants, joint fillers, and joint preparation.
- 6. Section 221423 "Storm Drainage Piping Specialties" for roof drains.

1.3 DEFINITIONS

A. Roofing Terminology: Definitions in ASTM D1079 and glossary in NRCA's "The NRCA Roofing Manual: Membrane Roof Systems" apply to Work of this Section.

1.4 PREINSTALLATION MEETINGS

- A. Preinstallation Roofing Conference: Conduct conference at Project site.
 - 1. Meet with Owner, Architect, Owner's insurer if applicable, testing and inspecting agency representative, roofing Installer, roofing system manufacturer's representative, deck Installer, air barrier Installer, and installers whose work interfaces with or affects roofing, including installers of roof accessories and roof-mounted equipment.
 - 2. Review methods and procedures related to roofing installation, including manufacturer's written instructions.
 - 3. Review and finalize construction schedule, and verify availability of materials, Installer's personnel, equipment, and facilities needed to make progress and avoid delays.

- 4. Examine deck substrate conditions and finishes for compliance with requirements, including flatness and fastening.
- 5. Review structural loading limitations of roof deck during and after roofing.
- 6. Review base flashings, special roofing details, roof drainage, roof penetrations, equipment curbs, and condition of other construction that affects roofing system.
- 7. Review governing regulations and requirements for insurance and certificates if applicable.
- 8. Review temporary protection requirements for roofing system during and after installation.
- 9. Review roof observation and repair procedures after roofing installation.

1.5 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. For insulation and roof system component fasteners, include copy of FM Approvals' RoofNav listing.
- B. Shop Drawings: Include roof plans, sections, details, and attachments to other work, including the following:
 - 1. Layout and thickness of insulation.
 - 2. Base flashings and membrane termination details.
 - 3. Flashing details at penetrations.
 - 4. Tapered insulation layout, thickness, and slopes.
 - 5. Roof plan showing orientation of steel roof deck and orientation of roof membrane, fastening spacings, and patterns for mechanically fastened roofing system.
 - 6. Insulation fastening patterns for corner, perimeter, and field-of-roof locations.
 - 7. Tie-in with adjoining air barrier.
- C. Samples for Verification: For the following products:
 - 1. Roof membrane and flashings, of color required.
 - 2. Walkway pads or rolls, of color required.
- D. Wind Uplift Resistance Submittal: For roofing system, indicating compliance with wind uplift performance requirements.

1.6 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For Installer, manufacturer and testing agency.
- B. Manufacturer Certificates:
 - 1. Performance Requirement Certificate: Signed by roof membrane manufacturer, certifying that roofing system complies with requirements specified in "Performance Requirements" Article.
 - a. Submit evidence of compliance with performance requirements.

- 2. Special Warranty Certificate: Signed by roof membrane manufacturer, certifying that all materials supplied under this Section are acceptable for special warranty.
- C. Product Test Reports: For roof membrane and insulation, for tests performed by a qualified testing agency, indicating compliance with specified requirements.
- D. Evaluation Reports: For components of roofing system, from ICC-ES.
- E. Field Test Reports:
 - 1. Fastener-pullout test results and manufacturer's revised requirements for fastener patterns.
- F. Field quality-control reports.
- G. Sample Warranties: For manufacturer's special warranties.

1.7 CLOSEOUT SUBMITTALS

- A. Maintenance Data: For roofing system to include in maintenance manuals.
- B. Certified statement from existing roof membrane manufacturer stating that existing roof warranty has not been affected by Work performed under this Section.

1.8 QUALITY ASSURANCE

- A. Manufacturer Qualifications: A qualified manufacturer that is UL listed or listed in FM Approvals' RoofNav for roofing system identical to that used for this Project.
- B. Installer Qualifications: A qualified firm that is approved, authorized, or licensed by roofing system manufacturer to install manufacturer's product and that is eligible to receive manufacturer's special warranty.

1.9 DELIVERY, STORAGE, AND HANDLING

- A. Deliver roofing materials to Project site in original containers with seals unbroken and labeled with manufacturer's name, product brand name and type, date of manufacture, approval or listing agency markings, and directions for storing and mixing with other components.
- B. Store liquid materials in their original undamaged containers in a clean, dry, protected location and within the temperature range required by roofing system manufacturer. Protect stored liquid material from direct sunlight.
 - 1. Discard and legally dispose of liquid material that cannot be applied within its stated shelf life.
- C. Protect roof insulation materials from physical damage and from deterioration by sunlight, moisture, soiling, and other sources. Store in a dry location. Comply with insulation manufacturer's written instructions for handling, storing, and protecting during installation.

D. Handle and store roofing materials, and place equipment in a manner to avoid permanent deflection of deck.

1.10 FIELD CONDITIONS

A. Weather Limitations: Proceed with installation only when existing and forecasted weather conditions permit roofing system to be installed according to manufacturer's written instructions and warranty requirements.

1.11 WARRANTY

- A. Special Warranty: Manufacturer agrees to repair or replace components of roofing system that fail in materials or workmanship within specified warranty period.
 - 1. Special warranty includes roof membrane, base flashings, roof insulation, fasteners, cover boards, roofing accessories, walkway products, and other components of roofing system.
 - 2. Warranty Period 20 years from date of Substantial Completion.
- B. Special Project Warranty: Submit roofing Installer's warranty, on warranty form at end of this Section, signed by Installer, covering the Work of this Section, including all components of roofing system such as roof membrane, base flashing, roof insulation, fasteners, cover boards roofing accessories, and walkway products, for the following warranty period:
 - 1. Warranty Period: Two years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. General Performance: Installed roofing system and flashings shall withstand specified uplift pressures, thermally induced movement, and exposure to weather without failure due to defective manufacture, fabrication, installation, or other defects in construction. Roof system and flashings shall remain watertight.
 - 1. Accelerated Weathering: Roof membrane shall withstand 2000 hours of exposure when tested according to ASTM G152, ASTM G154, or ASTM G155.
 - 2. Impact Resistance: Roof membrane shall resist impact damage when tested according to ASTM D3746, ASTM D4272, or the "Resistance to Foot Traffic Test" in FM Approvals 4470.
- B. Material Compatibility: Roofing materials shall be compatible with one another and adjacent materials under conditions of service and application required, as demonstrated by roof membrane manufacturer based on testing and field experience.
- C. Wind Uplift Resistance: Design roofing system to resist the components and cladding uplift pressures as indicated on the structural when tested according to FM Approvals 4474, UL 580, or UL 1897.

- D. FM Approvals' RoofNav Listing: Roof membrane, base flashings, and component materials shall comply with requirements in FM Approvals 4450 or FM Approvals 4470 as part of a roofing system, and shall be listed in FM Approvals' RoofNav for Class 1 or noncombustible construction, as applicable. Identify materials with FM Approvals Certification markings.
 - 1. Fire/Windstorm Classification: Class 1A-90.
 - 2. Hail-Resistance Rating: MH.
- E. ENERGY STAR Listing: Roofing system shall be listed on the DOE's ENERGY STAR "Roof Products Qualified Product List" for low-slope roof products.
- F. Energy Performance: Roofing system shall have an initial solar reflectance of not less than 0.70 and an emissivity of not less than 0.75 when tested according to CRRC-1.
- G. Exterior Fire-Test Exposure: ASTM E108 or UL 790, Class A; for application and roof slopes indicated; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.

2.2 THERMOPLASTIC POLYOLEFIN (TPO) ROOFING

- A. TPO Sheet: ASTM D6878/D6878M, internally fabric- or scrim-reinforced, fabric-backed TPO sheet.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Carlisle SynTec Incorporated</u>.
 - b. Firestone Building Products.
 - c. GAF.
 - d. Johns Manville; a Berkshire Hathaway company.
 - 2. Basis-of-Design Product: Firestone Building Products; UltraPly TPO roof system
 - 3. Source Limitations: Obtain components for roofing system from roof membrane manufacturer or manufacturers approved by roof membrane manufacturer.
 - 4. Thickness: 60 mils (1.5 mm), nominal.
 - 5. Exposed Face Color: White.

2.3 AUXILIARY ROOFING MATERIALS

- A. General: Auxiliary materials recommended by roofing system manufacturer for intended use and compatible with other roofing components.
 - 1. Adhesive and Sealants: Comply with VOC limits of authorities having jurisdiction.
- B. Sheet Flashing: Manufacturer's standard unreinforced TPO sheet flashing, 55 mils (1.4 mm) > thick, minimum, of same color as TPO sheet.
- C. Prefabricated Pipe Flashings: As recommended by roof membrane manufacturer.

- D. Bonding Adhesive: Manufacturer's standard, water based.
- E. Slip Sheet: ASTM D2178/D2178M, Type IV; glass fiber; asphalt-impregnated felt.
- F. Metal Termination Bars: Manufacturer's standard, predrilled stainless steel or aluminum bars, approximately 1 by 1/8 inch (25 by 3 mm) thick; with anchors.
- G. Metal Battens: Manufacturer's standard, aluminum-zinc-alloy-coated or zinc-coated steel sheet, approximately 1 inch wide by 0.05 inch thick (25 mm wide by 1.3 mm thick), prepunched.
- H. Fasteners: Factory-coated steel fasteners and metal or plastic plates complying with corrosion-resistance provisions in FM Approvals 4470, designed for fastening roofing components to substrate, and acceptable to roofing system manufacturer.
- I. Miscellaneous Accessories: Provide pourable sealers, preformed cone and vent sheet flashings, preformed inside and outside corner sheet flashings, T-joint covers, lap sealants, termination reglets, and other accessories.

2.4 ROOF INSULATION

- A. General: Preformed roof insulation boards manufactured or approved by TPO roof membrane manufacturer.
- B. Polyisocyanurate Board Insulation: ASTM C1289, Type II, Class 1, Grade 2, felt or glass-fiber mat facer on both major surfaces.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. Carlisle SynTec Incorporated.
 - b. <u>Firestone Building Products</u>.
 - c. GAF
 - d. Johns Manville; a Berkshire Hathaway company.
 - 2. Compressive Strength: 20 psi (138 kPa).
 - 3. Size: 48 by 96 inches (1219 by 2438 mm).
 - 4. Thickness: As required for the minimum R values indicated
- C. Tapered Insulation: Provide factory-tapered insulation boards.
 - 1. Material: Match roof insulation.
 - 2. Minimum Thickness: 1/4 inch (6.35 mm).
 - 3. Slope:
 - a. Roof Field: 1/4 inch per foot (1:48) unless otherwise indicated on Drawings.
 - b. Saddles and Crickets: 1/2 inch per foot (1:24) unless otherwise indicated on Drawings.

2.5 INSULATION ACCESSORIES

- A. General: Roof insulation accessories recommended by insulation manufacturer for intended use and compatibility with other roofing system components.
- B. Fasteners: Factory-coated steel fasteners with metal or plastic plates complying with corrosion-resistance provisions in FM Approvals 4470, designed for fastening roof insulation and cover boards to substrate, and acceptable to roofing system manufacturer.
- C. Insulation Adhesive: Insulation manufacturer's recommended adhesive formulated to attach roof insulation to substrate or to another insulation layer as follows:
 - 1. Full-spread, spray-applied, low-rise, two-component urethane adhesive.
- D. Cover Board: ASTM C1177/C1177M, glass-mat, water-resistant gypsum board or ASTM C1278/C1278M fiber-reinforced gypsum board.
 - 1. Thickness: 1/2 inch (13 mm).

2.6 WALKWAYS

- A. Flexible Walkways: Factory-formed, nonporous, heavy-duty, slip-resisting, surface-textured walkway pads or rolls, approximately 3/16 inch (5 mm) thick and acceptable to roofing system manufacturer.
 - 1. Size: Approximately 36 by 60 inches (914 by 1524 mm).
 - 2. Color: Contrasting with roof membrane.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements and other conditions affecting performance of the Work.
 - 1. Verify that roof openings and penetrations are in place, curbs are set and braced, and roof-drain bodies are securely clamped in place.
 - 2. Verify that wood blocking, curbs, and nailers are securely anchored to roof deck at penetrations and terminations and that nailers match thicknesses of insulation.
 - 3. Verify that surface plane flatness and fastening of steel roof deck complies with requirements in Section 053100 "Steel Decking."
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Clean substrate of dust, debris, moisture, and other substances detrimental to roofing system installation according to roofing system manufacturer's written instructions. Remove sharp projections.
- B. Prevent materials from entering and clogging roof drains and conductors and from spilling or migrating onto surfaces of other construction. Remove roof-drain plugs when no work is taking place or when rain is forecast.

3.3 ROOFING INSTALLATION, GENERAL

- A. Install roofing system according to roofing system manufacturer's written instructions.
- B. Complete terminations and base flashings and provide temporary seals to prevent water from entering completed sections of roofing system at end of workday or when rain is forecast. Remove and discard temporary seals before beginning Work on adjoining roofing.
- C. Coordinate installation and transition of roofing system component serving as an air barrier with air barrier specified under Section 072726 "Fluid-Applied Membrane Air Barriers."

3.4 INSULATION INSTALLATION

- A. Coordinate installing roofing system components so insulation is not exposed to precipitation or left exposed at end of workday.
- B. Comply with roofing system and roof insulation manufacturer's written instructions for installing roof insulation.

C. Installation Over Metal Decking:

- 1. Install base layer of insulation with joints staggered not less than 24 inches (610 mm) in adjacent rows.
 - a. Locate end joints over crests of decking.
 - b. Trim insulation neatly to fit around penetrations and projections, and to fit tight to intersecting sloping roof decks.
 - c. Make joints between adjacent insulation boards not more than 1/4 inch (6 mm) in width.
 - d. At internal roof drains, slope insulation to create a square drain sump with each side equal to the diameter of the drain bowl plus 24 inches (610 mm).
 - 1) Trim insulation so that water flow is unrestricted.
 - e. Fill gaps exceeding 1/4 inch (6 mm) with insulation.
 - f. Cut and fit insulation within 1/4 inch (6 mm) of nailers, projections, and penetrations.

- g. Mechanically attach base layer of insulation using mechanical fasteners specifically designed and sized for fastening specified board-type roof insulation to metal decks.
- 2. Install upper layers of insulation and tapered insulation with joints of each layer offset not less than 12 inches (305 mm) from previous layer of insulation.
 - a. Install with long joints continuous and with end joints staggered not less than 12 inches (305 mm) in adjacent rows.
 - b. Trim insulation neatly to fit around penetrations and projections, and to fit tight to intersecting sloping roof decks.
 - c. Make joints between adjacent insulation boards not more than 1/4 inch (6 mm) in width.
 - d. At internal roof drains, slope insulation to create a square drain sump with each side equal to the diameter of the drain bowl plus 24 inches (610 mm).
 - 1) Trim insulation so that water flow is unrestricted.
 - e. Fill gaps exceeding 1/4 inch (6 mm) with insulation.
 - f. Cut and fit insulation within 1/4 inch (6 mm) of nailers, projections, and penetrations.
 - g. Adhere each layer of insulation to substrate using adhesive according to FM Approvals' RoofNav assembly requirements and FM Global Property Loss Prevention Data Sheet 1-29 for specified Windstorm Resistance Classification, as follows:
 - 1) Set each layer of insulation in a uniform coverage of full-spread insulation adhesive, firmly pressing and maintaining insulation in place.

3.5 INSTALLATION OF COVER BOARDS

- A. Install cover boards over insulation with long joints in continuous straight lines with end joints staggered between rows. Offset joints of insulation below a minimum of 6 inches (150 mm) in each direction.
 - 1. Trim cover board neatly to fit around penetrations and projections, and to fit tight to intersecting sloping roof decks.
 - 2. At internal roof drains, conform to slope of drain sump.
 - a. Trim cover board so that water flow is unrestricted.
 - 3. Cut and fit cover board tight to nailers, projections, and penetrations.
 - 4. Adhere cover board to substrate using adhesive according to FM Approvals' RoofNav assembly requirements and FM Global Property Loss Prevention Data Sheet 1-29 for specified Windstorm Resistance Classification, as follows:
 - a. Set cover board in a solid mopping of hot roofing asphalt, applied within plus or minus 25 deg F (14 deg C) of equiviscous temperature.
 - b. Set cover board in a uniform coverage of full-spread insulation adhesive, firmly pressing and maintaining insulation in place.

3.6 ADHERED ROOFING INSTALLATION

- A. Adhere roof membrane over area to receive roofing according to roofing system manufacturer's written instructions.
- B. Unroll roof membrane and allow to relax before installing.
- C. Start installation of roofing in presence of roofing system manufacturer's technical personnel.
- D. Accurately align roof membrane and maintain uniform side and end laps of minimum dimensions required by manufacturer. Stagger end laps.
- E. Bonding Adhesive: Apply to substrate and underside of roof membrane at rate required by manufacturer, and allow to partially dry before installing roof membrane. Do not apply to splice area of roof membrane.
- F. Fabric-Backed Roof Membrane Adhesive: Apply to substrate at rate required by manufacturer, and install fabric-backed roof membrane.
- G. In addition to adhering, mechanically fasten roof membrane securely at terminations, penetrations, and perimeter of roofing.
- H. Apply roof membrane with side laps shingled with slope of roof deck where possible.
- I. Seams: Clean seam areas, overlap roof membrane, and hot-air weld side and end laps of roof membrane and sheet flashings, to ensure a watertight seam installation.
 - 1. Test lap edges with probe to verify seam weld continuity. Apply lap sealant to seal cut edges of roof membrane and sheet flashings.
 - 2. Verify field strength of seams a minimum of twice daily, and repair seam sample areas.
 - 3. Repair tears, voids, and lapped seams in roof membrane that do not comply with requirements.
- J. Spread sealant bed over deck-drain flange at roof drains, and securely seal roof membrane in place with clamping ring.

3.7 BASE FLASHING INSTALLATION

- A. Install sheet flashings and preformed flashing accessories, and adhere to substrates according to roofing system manufacturer's written instructions.
- B. Apply bonding adhesive to substrate and underside of sheet flashing at required rate, and allow to partially dry. Do not apply to seam area of flashing.
- C. Flash penetrations and field-formed inside and outside corners with cured or uncured sheet flashing.
- D. Clean seam areas, overlap, and firmly roll sheet flashings into the adhesive. Hot-air weld side and end laps to ensure a watertight seam installation.

E. Terminate and seal top of sheet flashings and mechanically anchor to substrate through termination bars.

3.8 WALKWAY INSTALLATION

A. Flexible Walkways:

- 1. Install flexible walkways at the following locations:
 - a. Retain one or more subparagraphs below. Revise to suit Project.
 - b. Perimeter of each rooftop unit.
 - c. Between each rooftop unit location, creating a continuous path connecting rooftop unit locations.
 - d. Between each roof hatch and each rooftop unit location or path connecting rooftop unit locations.
 - e. Top and bottom of each roof access ladder.
 - f. Between each roof access ladder and each rooftop unit location or path connecting rooftop unit locations.
 - g. Locations indicated on Drawings.
 - h. As required by roof membrane manufacturer's warranty requirements.
- 2. Provide 6-inch (76-mm) clearance between adjoining pads.
- 3. Heat weld to substrate or adhere walkway products to substrate with compatible adhesive according to roofing system manufacturer's written instructions.

3.9 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and to inspect substrate conditions, surface preparation, roof membrane application, sheet flashings, protection, and drainage components, and to furnish reports to Architect.
 - 1. Flood Testing: Flood test each roof area for leaks, according to recommendations in ASTM D5957, after completing roofing and flashing but before overlying construction is placed. Install temporary containment assemblies, plug or dam drains, and flood with potable water.
 - a. Perform tests before overlying construction is placed.
 - b. Flood to an average depth of 2-1/2 inches (65 mm) with a minimum depth of 1 inch (25 mm) and not exceeding a depth of 4 inches (100 mm). Maintain 2 inches (50 mm) of clearance from top of base flashing.
 - c. Flood each area for 48 hours.
 - d. After flood testing, repair leaks, repeat flood tests, and make further repairs until roofing and flashing installations are watertight.
 - 1) Cost of retesting is Contractor's responsibility.
 - e. Testing agency shall prepare survey report indicating locations of initial leaks, if any, and final survey report.

- Final Roof Inspection: Arrange for roofing system manufacturer's technical personnel to inspect B. roofing installation on completion, in presence of Architect, and to prepare inspection report.
- C. Repair or remove and replace components of roofing system where inspections indicate that they do not comply with specified requirements.
- Additional testing and inspecting, at Contractor's expense, will be performed to determine if D. replaced or additional work complies with specified requirements.

3.10 PROTECTING AND CLEANING

ROOFING INSTALLER'S WARRANTY

- Protect roofing system from damage and wear during remainder of construction period. When A. remaining construction does not affect or endanger roofing system, inspect roofing system for deterioration and damage, describing its nature and extent in a written report, with copies to Architect and Owner.
- B. Correct deficiencies in or remove roofing system that does not comply with requirements, repair substrates, and repair or reinstall roofing system to a condition free of damage and deterioration at time of Substantial Completion and according to warranty requirements.
- C. Clean overspray and spillage from adjacent construction using cleaning agents and procedures recommended by manufacturer of affected construction.

3.11	ROO	ROOFING INSTALLER'S WARRANTY			
A.	WH	HEREAS of	, herein		
		called the "Roofing Installer," has performed roofing and associated work ("work") on			
	follo	following project:			
	1.	Owner:			
	2.	Address:			
	3.	Building Name/Type:			
	4.	Address:			
	5.	Area of Work:			
	6.	Acceptance Date:			
	7.	Warranty Period:			
	0	Expiration Data:			

- B. AND WHEREAS Roofing Installer has contracted (either directly with Owner or indirectly as a subcontractor) to warrant said work against leaks and faulty or defective materials and workmanship for designated Warranty Period,
- C. NOW THEREFORE Roofing Installer hereby warrants, subject to terms and conditions herein set forth, that during Warranty Period Roofing Installer will, at Roofing Installer's own cost and expense, make or cause to be made such repairs to or replacements of said work as are necessary to correct faulty and defective work and as are necessary to maintain said work in a watertight condition.
- D. This Warranty is made subject to the following terms and conditions:

	100% SUBMITTAL			
1.	Specifically excluded from this Warranty are damages to work and other parts of the building, and to building contents, caused by:			
	 a. lightning; b. peak gust wind speed exceeding: mph (m/sec)>; c. fire; d. failure of roofing system substrate, including cracking, settlement, excessive deflection, deterioration, and decomposition; 			
	 e. faulty construction of parapet walls, copings, chimneys, skylights, vents, equipment supports, and other edge conditions and penetrations of the work; f. vapor condensation on bottom of roofing; and 			
	g. activity on roofing by others, including construction contractors, maintenance personnel, other persons, and animals, whether authorized or unauthorized by Owner.			
2.	When work has been damaged by any of foregoing causes, Warranty shall be null and void until such damage has been repaired by Roofing Installer and until cost and expense thereof have been paid by Owner or by another responsible party so designated. Roofing Installer is responsible for damage to work covered by this Warranty but is not liable for consequential damages to building or building contents resulting from leaks or faults or defects of work. During Warranty Period, if Owner allows alteration of work by anyone other than Roofing Installer, including cutting, patching, and maintenance in connection with penetrations, attachment of other work, and positioning of anything on roof, this Warranty shall become null and void on date of said alterations, but only to the extent said alterations affect work covered by this Warranty. If Owner engages Roofing Installer to perform said alterations, Warranty shall not become null and void unless Roofing Installer, before starting said work, shall have notified Owner in writing, showing reasonable cause for claim, that said alterations would likely damage or deteriorate work, thereby reasonably justifying a limitation or termination of this Warranty.			
3.				
4.				
5.	During Warranty Period, if original use of roof is changed and it becomes used for, but was not originally specified for, a promenade, work deck, spray-cooled surface, flooded basin, or other use or service more severe than originally specified, this Warranty shall become null and void on date of said change, but only to the extent said change affects work covered by this Warranty.			
6.	Owner shall promptly notify Roofing Installer of observed, known, or suspected leaks, defects, or deterioration and shall afford reasonable opportunity for Roofing Installer to inspect work and to examine evidence of such leaks, defects, or deterioration.			
7.	This Warranty is recognized to be the only warranty of Roofing Installer on said work and shall not operate to restrict or cut off Owner from other remedies and resources lawfully available to Owner in cases of roofing failure. Specifically, this Warranty shall not operate to relieve Roofing Installer of responsibility for performance of original work according to requirements of the Contract Documents, regardless of whether Contract was a contract directly with Owner or a subcontract with Owner's General Contractor.			

IN WITNESS THEREOF, this instrument has been duly executed this _____ day of

Authorized Signature:

Name: ______.

Title: ______.

E.

1. 2.

3.

1180510 TOBIE GRANT RECREATION CENTER 3/22/19

CONSTRUCTION DOCUMENTS 100% SUBMITTAL

END OF SECTION 075423

SECTION 076200 - SHEET METAL FLASHING AND TRIM

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Formed roof-drainage sheet metal fabrications.
- 2. Formed low-slope roof sheet metal fabrications.
- 3. Formed wall sheet metal fabrications.
- 4. Formed equipment support flashing.

B. Related Requirements:

- 1. Section 061053 "Miscellaneous Rough Carpentry" for wood nailers, curbs, and blocking.
- 2. Section 042000 "Unit Masonry" for materials and installation of manufactured sheet metal through-wall flashing and trim integral with masonry.
- 3. Section 075423 "Thermoplastic Polyolefin (TPO) Roofing" for materials and installation of sheet metal flashing and trim integral with roofing.
- 4. Section "074213.23 "Metal Composite Material Wall Panels" for sheet metal flashing and trim integral with metal wall panels.
- 5. Section 077100 "Roof Specialties for manufactured copings, roof-edge specialties, roof-edge drainage systems, reglets, and counterflashings.
- 6. Section 077200 "Roof Accessories" for set-on-type curbs, equipment supports, roof hatches, and other manufactured roof accessory units.

1.3 COORDINATION

- A. Coordinate sheet metal flashing and trim layout and seams with sizes and locations of penetrations to be flashed, and joints and seams in adjacent materials.
- B. Coordinate sheet metal flashing and trim installation with adjoining roofing and wall materials, joints, and seams to provide leakproof, secure, and noncorrosive installation.

1.4 PREINSTALLATION MEETINGS

- A. Preinstallation Conference: Conduct conference at Project site.
 - 1. Review construction schedule. Verify availability of materials, Installer's personnel, equipment, and facilities needed to make progress and avoid delays.

- 2. Review special roof details, roof drainage, roof-penetration flashing, equipment curbs, and condition of other construction that affect sheet metal flashing and trim.
- 3. Review requirements for insurance and certificates if applicable.
- 4. Review sheet metal flashing observation and repair procedures after flashing installation.

1.5 ACTION SUBMITTALS

- A. Product Data: For each of the following
 - 1. Underlayment materials.
 - 2. Elastomeric sealant.
 - 3. Butyl sealant.
 - 4. Epoxy seam sealer.
- B. Shop Drawings: For sheet metal flashing and trim.
 - 1. Include plans, elevations, sections, and attachment details.
 - 2. Detail fabrication and installation layouts, expansion-joint locations, and keyed details. Distinguish between shop- and field-assembled Work.
 - 3. Include identification of material, thickness, weight, and finish for each item and location in Project.
 - 4. Include details for forming, including profiles, shapes, seams, and dimensions.
 - 5. Include details for joining, supporting, and securing, including layout and spacing of fasteners, cleats, clips, and other attachments. Include pattern of seams.
 - 6. Include details of termination points and assemblies.
 - 7. Include details of expansion joints and expansion-joint covers, including showing direction of expansion and contraction from fixed points.
 - 8. Include details of roof-penetration flashing.
 - 9. Include details of edge conditions, including eaves, ridges, valleys, rakes, crickets, flashings, and counterflashings.
 - 10. Include details of special conditions.
 - 11. Include details of connections to adjoining work.
 - 12. Detail formed flashing and trim at scale of not less than 1-1/2 inches per 12 inches (1:10).
- C. Samples: For each exposed product and for each color and texture specified, 12 inches (300 mm) long by actual width.
- D. Samples for Initial Selection: For each type of sheet metal and accessory indicated with factory-applied finishes.
- E. Samples for Verification: For each type of exposed finish.
 - 1. Sheet Metal Flashing: 12 inches (300 mm) long by actual width of unit, including finished seam and in required profile. Include fasteners, cleats, clips, closures, and other attachments.
 - 2. Trim, Metal Closures, Expansion Joints, Joint Intersections, and Miscellaneous Fabrications: 12 inches (300 mm) long and in required profile. Include fasteners and other exposed accessories.
 - 3. Unit-Type Accessories and Miscellaneous Materials: Full-size Sample.

1.6 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For fabricator.
- B. Product Certificates: For each type of coping and roof edge flashing that is ANSI/SPRI/FM 4435/ES-1 tested.
- C. Product Test Reports: For each product, for tests performed by a qualified testing agency.
- D. Evaluation Reports: For copings and roof edge flashing, from an agency acceptable to authority having jurisdiction showing compliance with ANSI/SPRI/FM 4435/ES-1.
- E. Sample Warranty: For special warranty.

1.7 CLOSEOUT SUBMITTALS

- A. Maintenance Data: For sheet metal flashing and trim, and its accessories, to include in maintenance manuals.
- B. Special warranty.

1.8 QUALITY ASSURANCE

- A. Fabricator Qualifications: Employs skilled workers who custom fabricate sheet metal flashing and trim similar to that required for this Project and whose products have a record of successful in-service performance.
 - 1. For copings and roof edge flashings that are ANSI/SPRI/FM 4435/ES-1 tested, shop shall be listed as able to fabricate required details as tested and approved.

1.9 DELIVERY, STORAGE, AND HANDLING

- A. Do not store sheet metal flashing and trim materials in contact with other materials that might cause staining, denting, or other surface damage.
 - 1. Store sheet metal flashing and trim materials away from uncured concrete and masonry.
 - 2. Protect stored sheet metal flashing and trim from contact with water.
- B. Protect strippable protective covering on sheet metal flashing and trim from exposure to sunlight and high humidity, except to extent necessary for period of sheet metal flashing and trim installation.

1.10 WARRANTY

A. Special Warranty on Finishes: Manufacturer agrees to repair finish or replace sheet metal flashing and trim that shows evidence of deterioration of factory-applied finishes within specified warranty period.

- 1. Exposed Panel Finish: Deterioration includes, but is not limited to, the following:
 - a. Color fading more than 5 Delta units when tested in accordance with ASTM D2244.
 - b. Chalking in excess of a No. 8 rating when tested in accordance with ASTM D4214.
 - c. Cracking, checking, peeling,
- 2. Finish Warranty Period: 20 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. General: Sheet metal flashing and trim assemblies, including cleats, anchors, and fasteners, shall withstand wind loads, structural movement, thermally induced movement, and exposure to weather without failure due to defective manufacture, fabrication, installation, or other defects in construction. Completed sheet metal flashing and trim shall not rattle, leak, or loosen, and shall remain watertight.
- B. Sheet Metal Standard for Flashing and Trim: Comply with NRCA's "The NRCA Roofing Manual: Architectural Metal Flashing, Condensation and Air Leakage Control, and Reroofing" and SMACNA's "Architectural Sheet Metal Manual" requirements for dimensions and profiles shown unless more stringent requirements are indicated.
- C. SPRI Wind Design Standard: Manufacture and install copings and roof edge flashings tested in accordance with ANSI/SPRI/FM 4435/ES-1 and capable of resisting the following design pressure:
 - 1. Design Pressure: As indicated on Drawings.
- D. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes to prevent buckling, opening of joints, overstressing of components, failure of joint sealants, failure of connections, and other detrimental effects. Base calculations on surface temperatures of materials due to both solar heat gain and nighttime-sky heat loss.
 - 1. Temperature Change: 120 deg F (67 deg C), ambient; 180 deg F (100 deg C), material surfaces.

2.2 SHEET METALS

- A. General: Protect mechanical and other finishes on exposed surfaces from damage by applying strippable, temporary protective film before shipping.
- B. Aluminum Sheet: ASTM B209 (ASTM B209M), alloy as standard with manufacturer for finish required, with temper as required to suit forming operations and performance required; with smooth, flat surface.
 - 1. Exposed Coil-Coated Finish:

- a. Two-Coat Fluoropolymer: AAMA 2605. Fluoropolymer finish containing not less than 70 percent polyvinylidene fluoride (PVDF) resin by weight in color coat. Prepare, pretreat, and apply coating to exposed metal surfaces to comply with coating and resin manufacturers' written instructions.
- 2. Colors: As selected by Architect from manufacturer's full range. Sheet metal color may vary between items.
- 3. Concealed Finish: Pretreat with manufacturer's standard white or light-colored acrylic or polyester backer finish, consisting of prime coat and wash coat with minimum total dry film thickness of 0.5 mil (0.013 mm).
- C. Stainless Steel Sheet: ASTM A240/A240M, Type 304, dead soft, fully annealed; with smooth, flat surface.
 - 1. Finish: ASTM A480/A480M, No. 2D (dull, cold rolled).
 - a. Surface Preparation: Remove tool and die marks and stretch lines, or blend into finish.
- D. Lead Sheet: ASTM B749 lead sheet.

2.3 UNDERLAYMENT MATERIALS

- A. Felt: ASTM D226/D226M, Type II (No. 30), asphalt-saturated organic felt; nonperforated.
- B. Synthetic Underlayment: Laminated or reinforced, woven polyethylene or polypropylene, synthetic roofing underlayment; bitumen free; slip resistant; suitable for high temperatures over 220 deg F (111 deg C); and complying with physical requirements of ASTM D226/D226M for Type I and Type II felts.
- C. Self-Adhering, High-Temperature Sheet Underlayment: Minimum 30 mils (0.76 mm) thick, consisting of a slip-resistant polyethylene- or polypropylene-film top surface laminated to a layer of butyl- or SBS-modified asphalt adhesive, with release-paper backing; specifically designed to withstand high metal temperatures beneath metal roofing. Provide primer in accordance with underlayment manufacturer's written instructions.
 - 1. Low-Temperature Flexibility: ASTM D1970/D1970M; passes after testing at minus 20 deg F (29 deg C) or lower.
- D. Slip Sheet: Rosin-sized building paper, 3 lb/100 sq. ft. (0.16 kg/sq. m) minimum.

2.4 MISCELLANEOUS MATERIALS

A. General: Provide materials and types of fasteners, protective coatings, sealants, and other miscellaneous items as required for complete sheet metal flashing and trim installation and as recommended by manufacturer of primary sheet metal or manufactured item unless otherwise indicated.

- B. Fasteners: Wood screws, annular threaded nails, self-tapping screws, self-locking rivets and bolts, and other suitable fasteners designed to withstand design loads and recommended by manufacturer of primary sheet metal or manufactured item.
 - 1. General: Blind fasteners or self-drilling screws, gasketed, with hex-washer head.
 - a. Exposed Fasteners: Heads matching color of sheet metal using plastic caps or factory-applied coating. Provide metal-backed EPDM or PVC sealing washers under heads of exposed fasteners bearing on weather side of metal.
 - b. Blind Fasteners: High-strength aluminum or stainless steel rivets suitable for metal being fastened.
 - 2. Fasteners for Aluminum Sheet: Aluminum or Series 300 stainless steel.
 - 3. Fasteners for Stainless Steel Sheet: Series 300 stainless steel.
 - 4. Fasteners for Zinc-Coated (Galvanized) or Aluminum-Zinc Alloy-Coated Steel Sheet: Series 300 stainless steel or hot-dip galvanized steel in accordance with ASTM A153/A153M or ASTM F2329.

C. Solder:

- 1. For Stainless Steel: ASTM B32, Grade Sn60 or Grade Sn96, with acid flux of type recommended by stainless steel sheet manufacturer.
- 2. For Zinc-Coated (Galvanized) Steel: ASTM B32, Grade Sn50, 50 percent tin and 50 percent lead or Grade Sn60, 60 percent tin and 40 percent lead with maximum lead content of 0.2 percent.
- D. Sealant Tape: Pressure-sensitive, 100 percent solids, polyisobutylene compound sealant tape with release-paper backing. Provide permanently elastic, nonsag, nontoxic, nonstaining tape 1/2 inch (13 mm) wide and 1/8 inch (3 mm) thick.
- E. Elastomeric Sealant: ASTM C920, elastomeric polyurethane or silicone polymer sealant; of type, grade, class, and use classifications required to seal joints in sheet metal flashing and trim and remain watertight.
- F. Butyl Sealant: ASTM C1311, single-component, solvent-release butyl rubber sealant; polyisobutylene plasticized; heavy bodied for hooked-type expansion joints with limited movement.
- G. Epoxy Seam Sealer: Two-part, noncorrosive, aluminum seam-cementing compound, recommended by aluminum manufacturer for exterior nonmoving joints, including riveted joints.
- H. Bituminous Coating: Cold-applied asphalt emulsion in accordance with ASTM D1187/D1187M.
- I. Asphalt Roofing Cement: ASTM D4586, asbestos free, of consistency required for application.

2.5 FABRICATION, GENERAL

- A. Custom fabricate sheet metal flashing and trim to comply with details indicated and recommendations in cited sheet metal standard that apply to design, dimensions, geometry, metal thickness, and other characteristics of item required.
 - 1. Fabricate sheet metal flashing and trim in shop to greatest extent possible.
 - 2. Fabricate sheet metal flashing and trim in thickness or weight needed to comply with performance requirements, but not less than that specified for each application and metal.
 - 3. Verify shapes and dimensions of surfaces to be covered and obtain field measurements for accurate fit before shop fabrication.
 - 4. Form sheet metal flashing and trim to fit substrates without excessive oil-canning, buckling, and tool marks; true to line, levels, and slopes; and with exposed edges folded back to form hems.
 - 5. Conceal fasteners and expansion provisions where possible. Do not use exposed fasteners on faces exposed to view.

B. Fabrication Tolerances:

- 1. Fabricate sheet metal flashing and trim that is capable of installation to a tolerance of 1/4 inch in 20 feet (6 mm in 6 m) on slope and location lines indicated on Drawings and within 1/8-inch (3-mm) offset of adjoining faces and of alignment of matching profiles.
- 2. Fabricate sheet metal flashing and trim that is capable of installation to tolerances specified.
- C. Expansion Provisions: Form metal for thermal expansion of exposed flashing and trim.
 - 1. Form expansion joints of intermeshing hooked flanges, not less than 1 inch (25 mm) deep, filled with butyl sealant concealed within joints.
 - 2. Use lapped expansion joints only where indicated on Drawings.
- D. Sealant Joints: Where movable, nonexpansion-type joints are required, form metal in accordance with cited sheet metal standard to provide for proper installation of elastomeric sealant.
- E. Fabricate cleats and attachment devices from same material as accessory being anchored or from compatible, noncorrosive metal.
- F. Fabricate cleats and attachment devices of sizes as recommended by cited sheet metal standard for application, but not less than thickness of metal being secured.

G. Seams:

- 1. Fabricate nonmoving seams with flat-lock seams. Tin edges to be seamed, form seams, and solder.
- 2. Fabricate nonmoving seams with flat-lock seams. Form seams and seal with elastomeric sealant unless otherwise recommended by sealant manufacturer for intended use. Rivet joints where necessary for strength.
- 3. Seams for Aluminum: Fabricate nonmoving seams with flat-lock seams. Form seams and seal with epoxy seam sealer. Rivet joints where necessary for strength.

H. Do not use graphite pencils to mark metal surfaces.

2.6 ROOF-DRAINAGE SHEET METAL FABRICATIONS

A. Hanging Gutters:

- 1. Fabricate to cross section required, complete with end pieces, outlet tubes, and other accessories as required.
- 2. Fabricate in minimum 96-inch- (2400-mm-) long sections.
- 3. Furnish flat-stock gutter brackets and flat-stock gutter spacers and straps fabricated from same metal as gutters, of size recommended by cited sheet metal standard, but with thickness not less than twice the gutter thickness.
- 4. Fabricate expansion joints, expansion-joint covers, gutter bead reinforcing bars, and gutter accessories from same metal as gutters. Shop fabricate interior and exterior corners.
- 5. Expansion Joints: Butt type with cover plate.
- 6. Gutters with Girth up to 20 Inches (410 to 510 mm): Fabricate from the following materials:
 - a. Aluminum: 0.040 inch (1.02 mm) thick.
 - b. Galvanized Steel: 0.028 inch (0.71 mm) thick.
 - c. Aluminum-Zinc Alloy-Coated Steel: 0.028 inch (0.71 mm) thick.
- 7. Gutters with Girth 21 to 25 Inches (530 to 640 mm): Fabricate from the following materials:
 - a. Aluminum: 0.050 inch (1.27 mm) thick.
 - b. Galvanized Steel: 0.034 inch (0.86 mm) thick.
 - c. Aluminum-Zinc Alloy-Coated Steel: 0.034 inch (0.86 mm) thick.
- B. Downspouts: Fabricate rectangular downspouts to dimensions indicated on Drawings, complete with mitered elbows. Furnish with metal hangers from same material as downspouts and anchors. Shop fabricate elbows.
 - 1. Fabricate from the following materials:
 - a. Aluminum: 0.024 inch (0.61 mm) thick.
 - b. Galvanized Steel: 0.022 inch (0.56 mm) thick.
 - c. Aluminum-Zinc Alloy-Coated Steel: 0.022 inch (0.56 mm) thick.
- C. Splash Pans: Fabricate to dimensions and shape required and from the following materials:
 - 1. Aluminum: 0.040 inch (1.02 mm) thick.

2.7 LOW-SLOPE ROOF SHEET METAL FABRICATIONS

A. Roof Edge Flashing (Gravel Stop) and Fascia Cap: Fabricate in minimum 96-inch- (2400-mm-) long, but not exceeding 12-foot- (3.6-m-) long sections. Furnish with 6-inch- (150-mm-) wide, joint cover plates. Shop fabricate interior and exterior corners.

- 1. Joint Style: Butted with expansion space and 6-inch- (150-mm-) wide, exposed cover plate.
- 2. Fabricate from the following materials:
 - a. Aluminum: 0.050 inch (1.27 mm) thick.
 - b. Galvanized Steel: 0.028 inch (0.71 mm) thick.
 - c. Aluminum-Zinc Alloy-Coated Steel: 0.028 inch (0.71 mm)
- B. Copings: Fabricate in minimum 96-inch- (2400-mm-) long, but not exceeding 12-foot- (3.6-m-) long, sections. Fabricate joint plates of same thickness as copings. Furnish with continuous cleats to support edge of external leg and drill elongated holes for fasteners on interior leg. Miter corners, fasten and seal watertight. Shop fabricate interior and exterior corners.
 - 1. Joint Style: Butted with expansion space and 6-inch- (150-mm-) wide, exposed cover plate.
 - 2. Fabricate from the following materials:
 - a. Aluminum: 0.050 inch (1.27 mm) thick.
 - b. Galvanized Steel: 0.040 inch (1.02 mm) thick.
 - c. Aluminum-Zinc Alloy-Coated Steel: 0.040 inch (1.02 mm) thick.
- C. Base Flashing: Shop fabricate interior and exterior corners. Fabricate from the following materials:
 - 1. Aluminum: 0.040 inch (1.02 mm) thick.
 - 2. Galvanized Steel: 0.028 inch (0.71 mm) thick.
 - 3. Aluminum-Zinc Alloy-Coated Steel: 0.028 inch (0.71 mm) thick.
- D. Counterflashing: Shop fabricate interior and exterior corners. Fabricate from the following materials:
 - 1. Aluminum: 0.032 inch (0.81 mm) thick.
 - 2. Galvanized Steel: 0.022 inch (0.56 mm) thick.
 - 3. Aluminum-Zinc Alloy-Coated Steel: 0.022 inch (0.56 mm) thick.
- E. Flashing Receivers: Fabricate from the following materials:
 - 1. Aluminum: 0.032 inch (0.81 mm) thick.
 - 2. Galvanized Steel: 0.022 inch (0.56 mm) thick.
 - 3. Aluminum-Zinc Alloy-Coated Steel: 0.022 inch (0.56 mm) thick.
- F. Roof-Penetration Flashing: Fabricate from the following materials:
 - 1. Stainless Steel: 0.019 inch (0.48 mm) thick.
 - 2. Galvanized Steel: 0.028 inch (0.71 mm) thick.
 - 3. Aluminum-Zinc Alloy-Coated Steel: 0.028 inch (0.71 mm) thick.
- G. Roof-Drain Flashing: Fabricate from the following materials:
 - 1. Stainless Steel: 0.016 inch (0.40 mm) thick.

2.8 WALL SHEET METAL FABRICATIONS

- A. Through-Wall Flashing: Fabricate continuous flashings in minimum 96-inch- (2400-mm-) long, but not exceeding 12-foot- (3.6-m-) long, sections, under copings, and at shelf angles. Fabricate discontinuous lintel, sill, and similar flashings to extend 6 inches (150 mm) beyond each side of wall openings; and form with 2-inch- (50-mm-) high, end dams. Fabricate from the following materials:
 - 1. Stainless Steel: 0.016 inch (0.40 mm) thick.
- B. Opening Flashings in Frame Construction: Fabricate head, sill, and similar flashings to extend 4 inches (100 mm) beyond wall openings. Form head and sill flashing with 2-inch- (50-mm-) high, end dams. Fabricate from the following materials:
 - 1. Aluminum: 0.032 inch (0.81 mm) thick.
 - 2. Galvanized Steel: 0.022 inch (0.56 mm) thick.
 - 3. Aluminum-Zinc Alloy-Coated Steel: 0.022 inch (0.56 mm) thick.

2.9 MISCELLANEOUS SHEET METAL FABRICATIONS

- A. Equipment Support Flashing: Fabricate from the following materials:
 - 1. Stainless Steel: 0.019 inch (0.48 mm) thick.
 - 2. Galvanized Steel: 0.028 inch (0.71 mm) thick.
 - 3. Aluminum-Zinc Alloy-Coated Steel: 0.028 inch (0.71 mm) thick.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with installer present, for compliance with requirements for installation tolerances, substrate, and other conditions affecting performance of the Work.
 - 1. Verify compliance with requirements for installation tolerances of substrates.
 - 2. Verify that substrate is sound, dry, smooth, clean, sloped for drainage, and securely anchored.
 - 3. Verify that air- or water-resistant barriers have been installed over sheathing or backing substrate to prevent air infiltration or water penetration.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION OF UNDERLAYMENT

- A. Felt Underlayment: Install felt underlayment, wrinkle free, using adhesive to minimize use of mechanical fasteners under sheet metal flashing and trim.
 - 1. Install in shingle fashion to shed water.

- 2. Lap joints not less than 2 inches (50 mm).
- B. Synthetic Underlayment: Install synthetic underlayment, wrinkle free, in accordance with manufacturers' written instructions, and using adhesive where possible to minimize use of mechanical fasteners under sheet metal.
 - 1. Lap horizontal joints not less than 4 inches (100 mm).
 - 2. Lap end joints not less than 12 inches (300 mm).
- C. Self-Adhering, High-Temperature Sheet Underlayment:
 - 1. Install self-adhering, high-temperature sheet underlayment; wrinkle free.
 - 2. Prime substrate if recommended by underlayment manufacturer.
 - 3. Comply with temperature restrictions of underlayment manufacturer for installation; use primer for installing underlayment at low temperatures.
 - 4. Apply in shingle fashion to shed water, with end laps of not less than 6 inches (150 mm) staggered 24 inches (600 mm) between courses.
 - 5. Overlap side edges not less than 3-1/2 inches (90 mm). Roll laps and edges with roller.
 - 6. Roll laps and edges with roller.
 - 7. Cover underlayment within 14 days.
- D. Install slip sheet, wrinkle free, directly on substrate before installing sheet metal flashing and trim.
 - 1. Install in shingle fashion to shed water.
 - 2. Lap joints not less than 4 inches (100 mm).

3.3 INSTALLATION, GENERAL

- A. Install sheet metal flashing and trim to comply with details indicated and recommendations of cited sheet metal standard that apply to installation characteristics required unless otherwise indicated on Drawings.
 - 1. Install fasteners, solder, protective coatings, separators, sealants, and other miscellaneous items as required to complete sheet metal flashing and trim system.
 - 2. Install sheet metal flashing and trim true to line, levels, and slopes. Provide uniform, neat seams with minimum exposure of solder or sealant.
 - 3. Anchor sheet metal flashing and trim and other components of the Work securely in place, with provisions for thermal and structural movement.
 - 4. Install sheet metal flashing and trim to fit substrates and to result in watertight performance.
 - 5. Install continuous cleats with fasteners spaced not more than 12 inches (300 mm) o.c.
 - 6. Install exposed sheet metal flashing and trim with limited oil-canning, and free of buckling and tool marks.
 - 7. Do not field cut sheet metal flashing and trim by torch.
 - 8. Do not use graphite pencils to mark metal surfaces.
- B. Metal Protection: Where dissimilar metals contact each other, or where metal contacts pressuretreated wood or other corrosive substrates, protect against galvanic action or corrosion by

painting contact surfaces with bituminous coating or by other permanent separation as recommended by sheet metal manufacturer or cited sheet metal standard.

- 1. Coat concealed side of uncoated-aluminum sheet metal flashing and trim with bituminous coating where flashing and trim contact wood, ferrous metal, or cementitious construction.
- 2. Underlayment: Where installing sheet metal flashing and trim directly on cementitious or wood substrates, install underlayment and cover with slip sheet.
- C. Expansion Provisions: Provide for thermal expansion of exposed flashing and trim.
 - 1. Space movement joints at maximum of 10 feet (3 m) with no joints within 24 inches (600 mm) of corner or intersection.
 - 2. Form expansion joints of intermeshing hooked flanges, not less than 1 inch (25 mm) deep, filled with sealant concealed within joints.
- D. Conceal fasteners and expansion provisions where possible in exposed work and locate to minimize possibility of leakage. Cover and seal fasteners and anchors as required for a tight installation.
- E. Seal joints as required for watertight construction.
 - 1. Use sealant-filled joints unless otherwise indicated.
 - a. Embed hooked flanges of joint members not less than 1 inch (25 mm) into sealant.
 - b. Form joints to completely conceal sealant.
 - c. When ambient temperature at time of installation is between 40 and 70 deg F (4 and 21 deg C), set joint members for 50 percent movement each way.
 - d. Adjust setting proportionately for installation at higher ambient temperatures.
 - 1) Do not install sealant-type joints at temperatures below 40 deg F (4 deg C).
 - 2. Prepare joints and apply sealants to comply with requirements in Section 079200 "Joint Sealants."
- F. Soldered Joints: Clean surfaces to be soldered, removing oils and foreign matter.
 - 1. Pretin edges of sheets with solder to width of 1-1/2 inches (38 mm); however, reduce pretinning where pretinned surface would show in completed Work.
 - 2. Do not solder metallic-coated steel and aluminum sheet.
 - 3. Do not use torches for soldering.
 - 4. Heat surfaces to receive solder, and flow solder into joint.
 - a. Fill joint completely.
 - b. Completely remove flux and spatter from exposed surfaces.
 - 5. Stainless Steel Soldering:
 - a. Tin edges of uncoated sheets, using solder for stainless steel and acid flux.
 - b. Promptly remove acid-flux residue from metal after tinning and soldering.

- Comply with solder manufacturer's recommended methods for cleaning and
- G. Rivets: Rivet joints in uncoated aluminum where necessary for strength.

3.4 INSTALLATION OF ROOF-DRAINAGE SYSTEM

neutralization.

A. Install sheet metal roof-drainage items to produce complete roof-drainage system in accordance with cited sheet metal standard unless otherwise indicated. Coordinate installation of roof perimeter flashing with installation of roof-drainage system.

3.5 INSTALLATION OF ROOF FLASHINGS

- A. Install sheet metal flashing and trim to comply with performance requirements and cited sheet metal standard.
 - 1. Provide concealed fasteners where possible, and set units true to line, levels, and slopes.
 - 2. Install work with laps, joints, and seams that are permanently watertight and weather resistant.
- B. Roof Edge Flashing:
 - 1. Install roof edge flashings in accordance with ANSI/SPRI/FM 4435/ES-1.
- C. Copings:
 - 1. Install roof edge flashings in accordance with ANSI/SPRI/FM 4435/ES-1.
- D. Pipe or Post Counterflashing: Install counterflashing umbrella with close-fitting collar with top edge flared for elastomeric sealant, extending minimum of 4 inches (100 mm) over base flashing. Install stainless steel draw band and tighten.
- E. Counterflashing: Coordinate installation of counterflashing with installation of base flashing.
 - 1. Insert counterflashing in reglets or receivers and fit tightly to base flashing.
 - 2. Extend counterflashing 4 inches (100 mm) over base flashing.
 - 3. Lap counterflashing joints minimum of 4 inches (100 mm).
 - 4. Secure in waterproof manner by means of snap-in installation and sealant or lead wedges and sealant unless otherwise indicated.
- F. Roof-Penetration Flashing: Coordinate installation of roof-penetration flashing with installation of roofing and other items penetrating roof. Seal with elastomeric sealant and clamp flashing to pipes that penetrate roof.

3.6 INSTALLATION OF WALL FLASHINGS

A. Install sheet metal wall flashing to intercept and exclude penetrating moisture in accordance with cited sheet metal standard unless otherwise indicated. Coordinate installation of wall flashing with installation of wall-opening components such as windows, doors, and louvers.

B. Opening Flashings in Frame Construction: Install continuous head, sill, and similar flashings to extend 4 inches (100 mm) beyond wall openings.

3.7 INSTALLATION OF MISCELLANEOUS FLASHING

A. Equipment Support Flashing:

- 1. Coordinate installation of equipment support flashing with installation of roofing and equipment.
- 2. Weld or seal flashing with elastomeric sealant to equipment support member.

B. Overhead-Piping Safety Pans:

- 1. Suspend pans from structure above, independent of other overhead items such as equipment, piping, and conduit, unless otherwise indicated on Drawings.
- 2. Pipe and install drain line to plumbing waste or drainage system.

3.8 INSTALLATION TOLERANCES

A. Installation Tolerances: Shim and align sheet metal flashing and trim within installed tolerance of 1/4 inch in 20 feet (6 mm in 6 m) on slope and location lines indicated on Drawings and within 1/8-inch (3-mm) offset of adjoining faces and of alignment of matching profiles.

3.9 CLEANING

- A. Clean exposed metal surfaces of substances that interfere with uniform oxidation and weathering.
- B. Clean and neutralize flux materials. Clean off excess solder.
- C. Clean off excess sealants.

3.10 PROTECTION

- A. Remove temporary protective coverings and strippable films as sheet metal flashing and trim are installed unless otherwise indicated in manufacturer's written installation instructions.
- B. On completion of sheet metal flashing and trim installation, remove unused materials and clean finished surfaces as recommended in writing by sheet metal flashing and trim manufacturer.
- C. Maintain sheet metal flashing and trim in clean condition during construction.
- D. Replace sheet metal flashing and trim that have been damaged or that have deteriorated beyond successful repair by finish touchup or similar minor repair procedures, as determined by Architect.

END OF SECTION 076200

SECTION 077200 - ROOF ACCESSORIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplemental General Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Equipment supports.
- 2. Roof hatches.

B. Related Sections:

- 1. Section 055000 "Metal Fabrications" for ships' ladders.
- 2. Section 076200 "Sheet Metal Flashing and Trim" for shop- and field-formed metal flashing, roof-drainage systems, roof expansion-joint covers, and miscellaneous sheet metal trim and accessories.

1.3 COORDINATION

- A. Coordinate layout and installation of roof accessories with roofing membrane and base flashing and interfacing and adjoining construction to provide a leakproof, weathertight, secure, and noncorrosive installation.
- B. Coordinate dimensions with rough-in information or Shop Drawings of equipment to be supported.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of roof accessory.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes.
- B. Shop Drawings: For roof accessories.
 - 1. Include plans, elevations, keyed details, and attachments to other work. Indicate dimensions, loadings, and special conditions. Distinguish between plant- and field-assembled work.

C. Samples: For each exposed product and for each color and texture specified, prepared on Samples of size to adequately show color.

1.5 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Roof plans, drawn to scale, and coordinating penetrations and roof-mounted items. Show the following:
 - 1. Size and location of roof accessories specified in this Section.
 - 2. Method of attaching roof accessories to roof or building structure.
 - 3. Other roof-mounted items including mechanical and electrical equipment, ductwork, piping, and conduit.
 - 4. Required clearances.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For roof accessories to include in operation and maintenance manuals.

1.7 COORDINATION

- A. Coordinate layout and installation of roof accessories with roofing membrane and base flashing and interfacing and adjoining construction to provide a leakproof, weathertight, secure, and non-corrosive installation.
- B. Coordinate dimensions with rough-in information or Shop Drawings of equipment to be supported.

1.8 WARRANTY

- A. Special Warranty on Painted Finishes: Manufacturer's standard form in which manufacturer agrees to repair finishes or replace roof accessories that show evidence of deterioration of factory-applied finishes within specified warranty period.
 - 1. Fluoropolymer Finish: Deterioration includes, but is not limited to, the following:
 - a. Color fading more than 5 Hunter units when tested according to ASTM D 2244.
 - b. Chalking in excess of a No. 8 rating when tested according to ASTM D 4214.
 - c. Cracking, checking, peeling, or failure of paint to adhere to bare metal.
 - 2. Finish Warranty Period: 20 years from date of Material Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. General Performance: Roof accessories shall withstand exposure to weather and resist thermally induced movement without failure, rattling, leaking, or fastener disengagement due to defective manufacture, fabrication, installation, or other defects in construction.
- B. Wind-Restraint Performance: As indicated on Drawings.

2.2 ROOF CURBS

- A. Roof Curbs: Internally reinforced roof-curb units capable of supporting superimposed live and dead loads, including equipment loads and other construction indicated on Drawings, bearing continuously on roof structure, and capable of meeting performance requirements; with welded or mechanically fastened and sealed corner joints as recommended by roof membrane manufacturer and integrally formed deck-mounting flange at perimeter bottom.
 - 1. Available Manufacturers: Manufacturers offering products that may be incorporated into the Work include the following:
 - a. AES Industries, Inc.
 - b. Curbs Plus, Inc.
 - c. Custom Solution Roof and Metal Products.
 - d. Greenheck Fan Corporation.
 - e. LM Curbs.
 - f. Milcor Inc.; Commercial Products Group of Hart & Cooley, Inc.
 - g. Pate Company.
- B. Size: Coordinate dimensions with roughing-in information or Shop Drawings of equipment to be supported.
- C. Supported Load Capacity: Coordinate with mechanical equipment.
- D. Material: Zinc-coated (galvanized) steel sheet, 0.079 inch (2.01 mm) thick.
 - 1. Finish: Factory prime coating.
 - 2. Color: As indicated by manufacturer's designations.

E. Construction:

- 1. Curb Profile: Manufacturer's standard compatible with roofing system manufacturer's requirements.
- 2. On ribbed or fluted metal roofs, form deck-mounting flange at perimeter bottom to conform to roof profile.
- 3. Fabricate curbs to minimum height of 12 inches (305 mm) above roof membrane surface unless otherwise indicated.
- 4. Top Surface: Level top of curb, with roof slope accommodated by sloping deck-mounting flange or by use of leveler frame.

- 5. Sloping Roofs: Where roof slope exceeds 1:48, fabricate curb with perimeter curb height tapered to accommodate roof slope so that top surface of perimeter curb is level. Equip unit with water diverter or cricket on side that obstructs water flow.
- 6. Insulation: Factory insulated with 1-1/2-inch- (38-mm-) thick glass-fiber board insulation.
- 7. Liner: Same material as curb, of manufacturer's standard thickness and finish.
- 8. Nailer: Factory-installed wood nailer, continuous around curb perimeter.
- 9. Wind Restraint Straps and Base Flange Attachment: Provide wind restraint straps, welded strap connectors, and base flange attachment to roof structure at perimeter of curb, of size and spacing required to meet wind uplift requirements.
- 10. Platform Cap: Where portion of roof curb is not covered by equipment, provide weathertight platform cap formed from 3/4-inch (19-mm) thick plywood covered with metal sheet of same type, thickness, and finish as required for curb.
- 11. Metal Counterflashing: Manufacturer's standard, removable, fabricated of same metal and finish as curb.

2.3 EQUIPMENT SUPPORTS

- A. Equipment Supports: Internally reinforced perimeter metal equipment supports capable of supporting superimposed live and dead loads between structural supports, including equipment loads and other construction indicated on Drawings, spanning between structural supports; capable of meeting performance requirements; with welded or mechanically fastened and sealed corner joints, stepped integral metal cant raised the thickness of roof insulation, and integrally formed structure-mounting flange at bottom.
 - 1. Available Manufacturers: Manufacturers offering products that may be incorporated into the Work include
 - a. AES Industries, Inc.
 - b. Curbs Plus, Inc.
 - c. Custom Solution Roof and Metal Products.
 - d. Greenheck Fan Corporation.
 - e. LM Curbs.
 - f. Milcor Inc.; Commercial Products Group of Hart & Cooley, Inc.
 - g. Pate Company.
- B. Size: Coordinate dimensions with roughing-in information or Shop Drawings of equipment to be supported.
- C. Supported Load Capacity: Coordinate with mechanical equipment.
- D. Material: Zinc-coated (galvanized) steel sheet, 0.079 inch (2.01 mm) thick.
 - 1. Finish: Factory prime coating.
 - 2. Color: As selected by Design Professional from manufacturer's full range.

E. Construction:

1. Curb Profile: Manufacturer's standard compatible with roofing system manufacturer's requirements.

- 2. Insulation: Factory insulated with 1-1/2-inch- (38-mm-) thick glass-fiber board insulation.
- 3. Liner: Same material as equipment support, of manufacturer's standard thickness and finish.
- 4. Nailer: Factory-installed continuous wood nailers 3-1/2 inches (90 mm) wide on top flange of equipment supports or under top flange on side of curb, continuous around support perimeter.
- 5. Wind Restraint Straps and Base Flange Attachment: Provide wind restraint straps, welded strap connectors, and base flange attachment to roof structure at perimeter of curb of size and spacing required to meet wind uplift requirements.
- 6. Platform Cap: Where portion of equipment support is not covered by equipment, provide weathertight platform cap formed from 3/4-inch (19-mm) thick plywood covered with metal sheet of same type, thickness, and finish as required for curb.
- 7. Metal Counterflashing: Manufacturer's standard, removable, fabricated of same metal and finish as equipment support.
- 8. On ribbed or fluted metal roofs, form deck-mounting flange at perimeter bottom to conform to roof profile.
- 9. Fabricate equipment supports to minimum height of 12 inches (305 mm) above roofing surface unless otherwise indicated.
- 10. Sloping Roofs: Where slope or roof deck exceeds 1:48, fabricate curb with perimeter curb height that is tapered to accommodate roof slope so that top surfaces of perimeter curb are level. Equip hatch with water diverter or cricket on side that obstructs water flow.

2.4 ROOF HATCH

- A. Roof Hatches: Metal roof-hatch units with lids and insulated double-walled curbs, welded or mechanically fastened and sealed corner joints, continuous lid-to-curb counterflashing and weathertight perimeter gasketing and integrally formed deck-mounting flange at perimeter bottom.
 - 1. Available Manufacturers: Manufacturers offering products that may be incorporated into the Work include:
 - a. AES Industries, Inc.
 - b. Bilco Company.
 - c. Custom Solutions Roof and Metal Products.

Type and Size: Single-leaf insulating lid, 36 by 36 inches (1727 by 1118 mm) unless noted otherwise.

- B. Loads: Minimum 40-lbf/sq. ft. (1.9-kPa) external live load and 20-lbf/sq. ft. (0.95-kPa) internal uplift load.
- C. Hatch Material: Zinc-coated (galvanized) steel sheet.
 - 1. Thickness: 14 gage thick.
 - 2. Finish: Factory prime coating G-90.
 - 3. Color: As indicated by manufacturer's designations.

D. Construction:

- 1. Insulation: Glass-fiber board.
 - a. R-Value: 12.0 according to ASTM C 1363.
- 2. Nailer: Factory-installed wood nailer continuous around hatch perimeter.
- 3. Hatch Lid: Opaque, insulated, and double walled, with manufacturer's standard metal liner of same material and finish as outer metal lid.
- 4. Curb Liner: Manufacturer's standard, of same material and finish as metal curb.
- 5. Fabricate curbs to minimum height of 12 inches (305 mm) above roofing surface unless otherwise indicated.
- 6. Sloping Roofs: Where slope or roof deck exceeds 1:48, fabricate curb with perimeter curb height that is tapered to accommodate roof slope so that top surfaces of perimeter curb are level. Equip hatch with water diverter or cricket on side that obstructs water flow.
- E. Hardware: Spring operators, hold-open arm, stainless-steel spring latch with turn handles, stainless-steel butt- or pintle-type hinge system, and padlock hasps inside and outside.
- F. Ladder-Assist Post: Roof-hatch manufacturer's standard device for attachment to roof-access ladder.
 - 1. Operation: Post locks in place on full extension; release mechanism returns post to closed position.
 - 2. Height: 42 inches (1060 mm) above finished roof deck.
 - 3. Material: Steel tube.
 - 4. Post: 1-5/8-inch- (41-mm-) diameter pipe.
 - 5. Finish: Manufacturer's standard baked enamel or powder coat.
 - a. Color: As indicated by manufacturer's designations.

2.5 GENERAL FINISH REQUIREMENTS

- A. Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.
- B. Appearance of Finished Work: Noticeable variations in same piece are not acceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Installer present, to verify actual locations, dimensions, and other conditions affecting performance of the Work.
- B. Verify that substrate is sound, dry, smooth, clean, sloped for drainage, and securely anchored.

- C. Verify dimensions of roof openings for roof accessories.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. General: Install roof accessories according to manufacturer's written instructions.
 - 1. Install roof accessories level; plumb; true to line and elevation; and without warping, jogs in alignment, buckling, or tool marks.
 - 2. Anchor roof accessories securely in place so they are capable of resisting indicated loads.
 - 3. Use fasteners, separators, sealants, and other miscellaneous items as required to complete installation of roof accessories and fit them to substrates.
 - 4. Install roof accessories to resist exposure to weather without failing, rattling, leaking, or loosening of fasteners and seals.
 - 5. Coat concealed side of uncoated steel roof accessories with bituminous coating where in contact with wood, ferrous metal, or cementitious construction.
 - 6. Underlayment: Where installing roof accessories directly on cementitious or wood substrates, install a course of underlayment and cover with manufacturer's recommended slip sheet.
 - 7. Bed flanges in thick coat of asphalt roofing cement where required by manufacturers of roof accessories for waterproof performance.
- B. Roof Curb Installation: Install each roof curb so top surface is level.
- C. Equipment Support Installation: Install equipment supports so top surfaces are level with each other.
- D. Roof-Hatch Installation:
 - 1. Verify that roof hatch operates properly. Clean, lubricate, and adjust operating mechanism and hardware.
 - 2. Attach safety railing system to roof-hatch curb.
 - 3. Attach ladder-assist post according to manufacturer's written instructions.

3.3 REPAIR AND CLEANING

- A. Galvanized Surfaces: Clean field welds, bolted connections, and abraded areas and repair galvanizing according to ASTM A 780/A 780M.
- B. Touch up factory-primed surfaces with compatible primer ready for field painting according to Section 099113 "Exterior Painting."
- C. Clean exposed surfaces according to manufacturer's written instructions.
- D. Clean off excess sealants.
- E. Replace roof accessories that have been damaged or that cannot be successfully repaired by finish touchup or similar minor repair procedures.

1180510 TOBIE GRANT RECREATION CENTER 3/22/19

CONSTRUCTION DOCUMENTS 100% SUBMITTAL

END OF SECTION 077200

SECTION 079200 - JOINT SEALANTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Silicone joint sealants.
- 2. Nonstaining silicone joint sealants.
- 3. Urethane joint sealants.
- 4. Mildew-resistant joint sealants.
- 5. Butyl joint sealants.
- 6. Latex joint sealants.

1.3 ACTION SUBMITTALS

- A. Product Data: For each joint-sealant product.
- B. Samples for Initial Selection: Manufacturer's color charts consisting of strips of cured sealants showing the full range of colors available for each product exposed to view.
- C. Samples for Verification: For each kind and color of joint sealant required, provide Samples with joint sealants in 1/2-inch- (13-mm-) wide joints formed between two 6-inch- (150-mm-) long strips of material matching the appearance of exposed surfaces adjacent to joint sealants.
- D. Joint-Sealant Schedule: Include the following information:
 - 1. Joint-sealant application, joint location, and designation.
 - 2. Joint-sealant manufacturer and product name.
 - 3. Joint-sealant formulation.
 - 4. Joint-sealant color.

1.4 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For qualified testing agency.
- B. Field-Adhesion-Test Reports: For each sealant application tested.
- C. Sample Warranties: For special warranties.

1.5 QUALITY ASSURANCE

- A. Installer Qualifications: An authorized representative who is trained and approved by manufacturer.
- B. Product Testing: Test joint sealants using a qualified testing agency.
 - 1. Testing Agency Qualifications: Qualified according to ASTM C1021 to conduct the testing indicated.

1.6 FIELD CONDITIONS

- A. Do not proceed with installation of joint sealants under the following conditions:
 - 1. When ambient and substrate temperature conditions are outside limits permitted by joint-sealant manufacturer or are below 40 deg F (5 deg C).
 - 2. When joint substrates are wet.
 - 3. Where joint widths are less than those allowed by joint-sealant manufacturer for applications indicated.
 - 4. Where contaminants capable of interfering with adhesion have not yet been removed from joint substrates.

1.7 WARRANTY

- A. Special Installer's Warranty: Installer agrees to repair or replace joint sealants that do not comply with performance and other requirements specified in this Section within specified warranty period.
 - 1. Warranty Period: Two years from date of Substantial Completion.
- B. Special Manufacturer's Warranty: Manufacturer agrees to furnish joint sealants to repair or replace those joint sealants that do not comply with performance and other requirements specified in this Section within specified warranty period.
 - 1. Warranty Period: Five years from date of Substantial Completion.
- C. Special warranties specified in this article exclude deterioration or failure of joint sealants from the following:
 - 1. Movement of the structure caused by stresses on the sealant exceeding sealant manufacturer's written specifications for sealant elongation and compression.
 - 2. Disintegration of joint substrates from causes exceeding design specifications.
 - 3. Mechanical damage caused by individuals, tools, or other outside agents.
 - 4. Changes in sealant appearance caused by accumulation of dirt or other atmospheric contaminants.

PART 2 - PRODUCTS

2.1 JOINT SEALANTS, GENERAL

- A. Compatibility: Provide joint sealants, backings, and other related materials that are compatible with one another and with joint substrates under conditions of service and application, as demonstrated by joint-sealant manufacturer, based on testing and field experience.
- B. Colors of Exposed Joint Sealants: As selected by Architect from manufacturer's full range.

2.2 SILICONE JOINT SEALANTS

A. Silicone, S, NS, 50, NT: Single-component, nonsag, plus 50 percent and minus 50 percent movement capability, nontraffic-use, neutral-curing silicone joint sealant; ASTM C920, Type S, Grade NS, Class 50, Use NT.

2.3 NONSTAINING SILICONE JOINT SEALANTS

- A. Nonstaining Joint Sealants: No staining of substrates when tested according to ASTM C1248.
- B. Silicone, Nonstaining, S, NS, 50, NT: Nonstaining, single-component, nonsag, plus 50 percent and minus 50 percent movement capability, nontraffic-use, neutral-curing silicone joint sealant; ASTM C920, Type S, Grade NS, Class 50, Use NT.

2.4 URETHANE JOINT SEALANTS

- A. Urethane, S, NS, 25, NT: Single-component, nonsag, nontraffic-use, plus 25 percent and minus 25 percent movement capability, urethane joint sealant; ASTM C920, Type S, Grade NS, Class 25, Use NT.
- B. Urethane, S, P, 25, T, NT: Single-component, pourable, plus 25 percent and minus 25 percent movement capability, traffic- and nontraffic-use, urethane joint sealant; ASTM C920, Type S, Grade P, Class 25, Uses T and NT.
- C. Urethane, M, P, 50, T, NT: Multicomponent, pourable, plus 50 percent and minus 50 percent movement capability, traffic- and nontraffic-use, urethane joint sealant; ASTM C920, Type M, Grade P, Class 50, Uses T and NT.

2.5 MILDEW-RESISTANT JOINT SEALANTS

- A. Mildew-Resistant Joint Sealants: Formulated for prolonged exposure to humidity with fungicide to prevent mold and mildew growth.
- B. Silicone, Mildew Resistant, Acid Curing, S, NS, 25, NT: Mildew-resistant, single-component, nonsag, plus 25 percent and minus 25 percent movement capability, nontraffic-use, acid-curing silicone joint sealant; ASTM C920, Type S, Grade NS, Class 25, Use NT.

2.6 BUTYL JOINT SEALANTS

A. Butyl-Rubber-Based Joint Sealants: ASTM C1311.

2.7 LATEX JOINT SEALANTS

A. Acrylic Latex: Acrylic latex or siliconized acrylic latex, ASTM C834, Type OP, Grade NF.

2.8 JOINT-SEALANT BACKING

- A. Sealant Backing Material, General: Nonstaining; compatible with joint substrates, sealants, primers, and other joint fillers; and approved for applications indicated by sealant manufacturer based on field experience and laboratory testing.
- B. Cylindrical Sealant Backings: ASTM C1330, Type C (closed-cell material with a surface skin) and of size and density to control sealant depth and otherwise contribute to producing optimum sealant performance.
- C. Bond-Breaker Tape: Polyethylene tape or other plastic tape recommended by sealant manufacturer for preventing sealant from adhering to rigid, inflexible joint-filler materials or joint surfaces at back of joint. Provide self-adhesive tape where applicable.

2.9 MISCELLANEOUS MATERIALS

- A. Primer: Material recommended by joint-sealant manufacturer where required for adhesion of sealant to joint substrates indicated, as determined from preconstruction joint-sealant-substrate tests and field tests.
- B. Cleaners for Nonporous Surfaces: Chemical cleaners acceptable to manufacturers of sealants and sealant backing materials, free of oily residues or other substances capable of staining or harming joint substrates and adjacent nonporous surfaces in any way, and formulated to promote optimum adhesion of sealants to joint substrates.
- C. Masking Tape: Nonstaining, nonabsorbent material compatible with joint sealants and surfaces adjacent to joints.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine joints indicated to receive joint sealants, with Installer present, for compliance with requirements for joint configuration, installation tolerances, and other conditions affecting performance of the Work.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Surface Cleaning of Joints: Clean out joints immediately before installing joint sealants to comply with joint-sealant manufacturer's written instructions and the following requirements:
 - 1. Remove all foreign material from joint substrates that could interfere with adhesion of joint sealant, including dust, paints (except for permanent, protective coatings tested and approved for sealant adhesion and compatibility by sealant manufacturer), old joint sealants, oil, grease, waterproofing, water repellents, water, surface dirt, and frost.
 - 2. Clean porous joint substrate surfaces by brushing, grinding, mechanical abrading, or a combination of these methods to produce a clean, sound substrate capable of developing optimum bond with joint sealants. Remove loose particles remaining after cleaning operations above by vacuuming or blowing out joints with oil-free compressed air. Porous joint substrates include the following:
 - a. Concrete.
 - b. Masonry.
 - c. Unglazed surfaces of ceramic tile.
 - 3. Remove laitance and form-release agents from concrete.
 - 4. Clean nonporous joint substrate surfaces with chemical cleaners or other means that do not stain, harm substrates, or leave residues capable of interfering with adhesion of joint sealants. Nonporous joint substrates include the following:
 - a. Metal.
 - b. Glass.
 - c. Porcelain enamel.
 - d. Glazed surfaces of ceramic tile.
- B. Joint Priming: Prime joint substrates where recommended by joint-sealant manufacturer or as indicated by preconstruction joint-sealant-substrate tests or prior experience. Apply primer to comply with joint-sealant manufacturer's written instructions. Confine primers to areas of joint-sealant bond; do not allow spillage or migration onto adjoining surfaces.
- C. Masking Tape: Use masking tape where required to prevent contact of sealant or primer with adjoining surfaces that otherwise would be permanently stained or damaged by such contact or by cleaning methods required to remove sealant smears. Remove tape immediately after tooling without disturbing joint seal.

3.3 INSTALLATION OF JOINT SEALANTS

- A. General: Comply with joint-sealant manufacturer's written installation instructions for products and applications indicated, unless more stringent requirements apply.
- B. Sealant Installation Standard: Comply with recommendations in ASTM C1193 for use of joint sealants as applicable to materials, applications, and conditions indicated.
- C. Install sealant backings of kind indicated to support sealants during application and at position required to produce cross-sectional shapes and depths of installed sealants relative to joint widths that allow optimum sealant movement capability.

- 1. Do not leave gaps between ends of sealant backings.
- 2. Do not stretch, twist, puncture, or tear sealant backings.
- 3. Remove absorbent sealant backings that have become wet before sealant application, and replace them with dry materials.
- D. Install bond-breaker tape behind sealants where sealant backings are not used between sealants and backs of joints.
- E. Install sealants using proven techniques that comply with the following and at the same time backings are installed:
 - 1. Place sealants so they directly contact and fully wet joint substrates.
 - 2. Completely fill recesses in each joint configuration.
 - 3. Produce uniform, cross-sectional shapes and depths relative to joint widths that allow optimum sealant movement capability.
- F. Tooling of Nonsag Sealants: Immediately after sealant application and before skinning or curing begins, tool sealants according to requirements specified in subparagraphs below to form smooth, uniform beads of configuration indicated; to eliminate air pockets; and to ensure contact and adhesion of sealant with sides of joint.
 - 1. Remove excess sealant from surfaces adjacent to joints.
 - 2. Use tooling agents that are approved in writing by sealant manufacturer and that do not discolor sealants or adjacent surfaces.
 - 3. Provide concave joint profile per Figure 8A in ASTM C1193 unless otherwise indicated.

3.4 FIELD QUALITY CONTROL

- A. Field-Adhesion Testing: Field test joint-sealant adhesion to joint substrates as follows:
 - 1. Extent of Testing: Test completed and cured sealant joints as follows:
 - a. Perform 10 tests for the first 1000 feet (300 m) of joint length for each kind of sealant and joint substrate.
 - b. Perform one test for each 1000 feet (300 m) of joint length thereafter or one test per each floor per elevation.
 - 2. Test Method: Test joint sealants according to Method A, Field-Applied Sealant Joint Hand Pull Tab, in Appendix X1 in ASTM C1193 or Method A, Tail Procedure, in ASTM C1521.
 - a. For joints with dissimilar substrates, verify adhesion to each substrate separately; extend cut along one side, verifying adhesion to opposite side. Repeat procedure for opposite side.
 - 3. Inspect tested joints and report on the following:
 - a. Whether sealants filled joint cavities and are free of voids.
 - b. Whether sealant dimensions and configurations comply with specified requirements.

- c. Whether sealants in joints connected to pulled-out portion failed to adhere to joint substrates or tore cohesively. Include data on pull distance used to test each kind of product and joint substrate. Compare these results to determine if adhesion complies with sealant manufacturer's field-adhesion hand-pull test criteria.
- 4. Record test results in a field-adhesion-test log. Include dates when sealants were installed, names of persons who installed sealants, test dates, test locations, whether joints were primed, adhesion results and percent elongations, sealant material, sealant configuration, and sealant dimensions.
- 5. Repair sealants pulled from test area by applying new sealants following same procedures used originally to seal joints. Ensure that original sealant surfaces are clean and that new sealant contacts original sealant.
- B. Evaluation of Field-Adhesion-Test Results: Sealants not evidencing adhesive failure from testing or noncompliance with other indicated requirements will be considered satisfactory. Remove sealants that fail to adhere to joint substrates during testing or to comply with other requirements. Retest failed applications until test results prove sealants comply with indicated requirements.

3.5 CLEANING

A. Clean off excess sealant or sealant smears adjacent to joints as the Work progresses by methods and with cleaning materials approved in writing by manufacturers of joint sealants and of products in which joints occur.

3.6 PROTECTION

A. Protect joint sealants during and after curing period from contact with contaminating substances and from damage resulting from construction operations or other causes so sealants are without deterioration or damage at time of Substantial Completion. If, despite such protection, damage or deterioration occurs, cut out, remove, and repair damaged or deteriorated joint sealants immediately so installations with repaired areas are indistinguishable from original work.

3.7 JOINT-SEALANT SCHEDULE

- A. Joint-Sealant Application: Exterior joints in horizontal traffic surfaces JS-1.
 - 1. Joint Locations:
 - a. Isolation and contraction joints in cast-in-place concrete slabs.
 - b. Tile control and expansion joints.
 - c. Joints between different materials listed above.
 - d. Other joints as indicated on Drawings.
 - 2. Joint Sealant: Urethane, M, P, 50, T, NT.
 - 3. Joint-Sealant Color: As selected by Architect from manufacturer's full range of colors.

- B. Joint-Sealant Application: Exterior joints in vertical surfaces and horizontal nontraffic surfaces IS-2.
 - 1. Joint Locations:
 - a. Construction joints in cast-in-place concrete.
 - b. Control joints in unit masonry.
 - c. Joints between metal panels.
 - d. Joints between different materials listed above.
 - e. Perimeter joints between materials listed above and frames of doors, windows].
 - f. Control joints in ceilings and other overhead surfaces.
 - g. Other joints as indicated on Drawings.
 - 2. Joint Sealant: Silicone, nonstaining, S, NS, 50, NT.
 - 3. Joint-Sealant Color: As selected by Architect from manufacturer's full range of colors.
- C. Joint-Sealant Application: Interior joints in horizontal traffic surfaces JS-3.
 - 1. Joint Locations:
 - a. Isolation joints in cast-in-place concrete slabs.
 - b. Control joints in tile flooring.
 - c. Other joints as indicated on Drawings.
 - 2. Joint Sealant: Urethane, S, P, 25, T, NT.
 - 3. Joint-Sealant Color: As selected by Architect from manufacturer's full range of colors.
- D. Joint-Sealant Application: Interior joints in vertical surfaces and horizontal nontraffic surfaces JS-4.
 - 1. Joint Locations:
 - a. Control joints on exposed interior surfaces of exterior walls.
 - b. Tile control joints.
 - c. Vertical joints on exposed surfaces of unit masonry walls and partitions.
 - d. Other joints as indicated on Drawings.
 - 2. Joint Sealant: Urethane, S, NS, 25, NT.
 - 3. Joint-Sealant Color: As selected by Architect from manufacturer's full range of colors.
- E. Joint-Sealant Application: Interior joints in vertical surfaces and horizontal nontraffic surfaces not subject to significant movement JS-5.
 - 1. Joint Locations:
 - a. Control joints on exposed interior surfaces of exterior walls.
 - b. Perimeter joints between interior wall surfaces and frames of interior doors and windows.
 - c. Other joints as indicated on Drawings.
 - 2. Joint Sealant: Acrylic latex.

- 3. Joint-Sealant Color: As selected by Architect from manufacturer's full range of colors.
- F. Joint-Sealant Application: Mildew-resistant interior joints in vertical surfaces and horizontal nontraffic surfaces JS-6.
 - 1. Joint Locations:
 - a. Joints between plumbing fixtures and adjoining walls, floors, and counters.
 - b. Tile control joints where indicated.
 - c. Other joints as indicated on Drawings.
 - 2. Joint Sealant: Silicone, mildew resistant, acid curing, S, NS, 25, NT.
 - 3. Joint-Sealant Color: As selected by Architect from manufacturer's full range of colors.
- G. Joint-Sealant Application: Concealed mastics JS7.
 - 1. Joint Locations:
 - a. Aluminum thresholds.
 - b. Sill plates.
 - c. Other joints as indicated on Drawings.
 - 2. Joint Sealant: Butyl-rubber based.
 - 3. Joint-Sealant Color: As selected by Architect from manufacturer's full range of colors.

END OF SECTION 079200

SECTION 081113 - HOLLOW METAL DOORS AND FRAMES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes:

- 1. Interior standard steel doors and frames.
- 2. Exterior standard steel doors and frames.

B. Related Requirements:

1. Section 087100 "Door Hardware for door hardware for hollow-metal doors.

1.3 DEFINITIONS

A. Minimum Thickness: Minimum thickness of base metal without coatings according to NAAMM-HMMA 803 or SDI A250.8.

1.4 COORDINATION

- A. Coordinate anchorage installation for hollow-metal frames. Furnish setting drawings, templates, and directions for installing anchorages, including sleeves, concrete inserts, anchor bolts, and items with integral anchors. Deliver such items to Project site in time for installation.
- B. Coordinate requirements for installation of door hardware, electrified door hardware, and access control and security systems.

1.5 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.6 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, core descriptions and finishes.

- B. Shop Drawings: Include the following:
 - 1. Elevations of each door type.
 - 2. Details of doors, including vertical- and horizontal-edge details and metal thicknesses.
 - 3. Frame details for each frame type, including dimensioned profiles and metal thicknesses.
 - 4. Locations of reinforcement and preparations for hardware.
 - 5. Details of each different wall opening condition.
 - 6. Details of electrical raceway and preparation for electrified hardware, access control systems, and security systems.
 - 7. Details of anchorages, joints, field splices, and connections.
 - 8. Details of accessories.
 - 9. Details of moldings, removable stops, and glazing.
- C. Product Schedule: For hollow-metal doors and frames, prepared by or under the supervision of supplier, using same reference numbers for details and openings as those on Drawings. Coordinate with final door hardware schedule.

1.7 INFORMATIONAL SUBMITTALS

- A. Product Test Reports: For each type of thermally rated door assemblies for tests performed by a qualified testing agency indicating compliance with performance requirements.
- B. Field quality control reports.

1.8 DELIVERY, STORAGE, AND HANDLING

- A. Deliver hollow-metal doors and frames palletized, packaged, or crated to provide protection during transit and Project-site storage. Do not use nonvented plastic.
 - 1. Provide additional protection to prevent damage to factory-finished units.
- B. Deliver welded frames with two removable spreader bars across bottom of frames, tack welded to jambs and mullions.
- C. Store hollow-metal doors and frames vertically under cover at Project site with head up. Place on minimum 4-inch- (102-mm-) high wood blocking. Provide minimum 1/4-inch (6-mm) space between each stacked door to permit air circulation.

PART 2 - PRODUCTS

2.1 INTERIOR STANDARD STEEL DOORS AND FRAMES

- A. Construct hollow-metal doors and frames to comply with standards indicated for materials, fabrication, hardware locations, hardware reinforcement, tolerances, and clearances, and as specified.
- B. Heavy-Duty Doors and Frames: SDI A250.8, Level 2; SDI A250.4, Level B.

1. Doors:

- a. Type: As indicated in the Door and Frame Schedule.
- b. Thickness: 1-3/4 inches (44.5 mm).
- c. Face: Uncoated steel sheet, minimum thickness of 0.042 inch (1.0 mm).
- d. Edge Construction: Model 1, Full Flush.
- e. Edge Bevel: Provide manufacturer's standard beveled or square edges.
- f. Core: Manufacturer's standard.

2. Frames:

- a. Materials: Uncoated steel sheet, minimum thickness of 0.053 inch (1.3 mm).
- b. Construction: Full profile welded.
- 3. Exposed Finish: Prime.

2.2 EXTERIOR STANDARD STEEL DOORS AND FRAMES

- A. Construct hollow-metal doors and frames to comply with standards indicated for materials, fabrication, hardware locations, hardware reinforcement, tolerances, and clearances, and as specified.
- B. Extra-Heavy-Duty Doors and Frames: SDI A250.8, Level 3; SDI A250.4, Level A.
 - 1. Doors:
 - a. Type: As indicated in the Door and Frame Schedule.
 - b. Thickness: 1-3/4 inches (44.5 mm).
 - c. Face: Metallic-coated steel sheet, minimum thickness of 0.053 inch (1.3 mm), with minimum A60 (ZF120) coating.
 - d. Edge Construction: Model 1, Full Flush
 - e. Edge Bevel: Provide manufacturer's standard beveled or square edges.
 - f. Top Edge Closures: Close top edges of doors with flush closures of same material as face sheets. Seal joints against water penetration.
 - g. Bottom Edges: Close bottom edges of doors where required for attachment of weather stripping with end closures or channels of same material as face sheets. Provide weep-hole openings in bottoms of exterior doors to permit moisture to escape.
 - h. Core: Manufacturer's standard insulating core.

2. Frames:

- a. Materials: Metallic-coated steel sheet, minimum thickness of 0.053 inch (1.3 mm), with minimum A60 (ZF120) coating.
- b. Construction: Full profile welded.
- 3. Exposed Finish: Prime

2.3 FRAME ANCHORS

A. Jamb Anchors:

- 1. Type: Anchors of minimum size and type required by applicable door and frame standard, and suitable for performance level indicated.
- 2. Quantity: Minimum of three anchors per jamb, with one additional anchor for frames with no floor anchor. Provide one additional anchor for each 24 inches (610 mm) of frame height above 7 feet (2.1 m).
- 3. Postinstalled Expansion Anchor: Minimum 3/8-inch- (9.5-mm-) diameter bolts with expansion shields or inserts, with manufacturer's standard pipe spacer.
- B. Floor Anchors: Provide floor anchors for each jamb and mullion that extends to floor.
- C. Material: ASTM A879/A879M, Commercial Steel (CS), 04Z (12G) coating designation; mill phosphatized.
 - 1. For anchors built into exterior walls, steel sheet complying with ASTM A1008/A1008M or ASTM A1011/A1011M; hot-dip galvanized according to ASTM A153/A153M, Class B.

2.4 MATERIALS

- A. Cold-Rolled Steel Sheet: ASTM A1008/A1008M, Commercial Steel (CS), Type B; suitable for exposed applications.
- B. Hot-Rolled Steel Sheet: ASTM A1011/A1011M, Commercial Steel (CS), Type B; free of scale, pitting, or surface defects; pickled and oiled.
- C. Metallic-Coated Steel Sheet: ASTM A653/A653M, Commercial Steel (CS), Type B.
- D. Inserts, Bolts, and Fasteners: Hot-dip galvanized according to ASTM A153/A153M.
- E. Power-Actuated Fasteners in Concrete: Fastener system of type suitable for application indicated, fabricated from corrosion-resistant materials, with clips or other accessory devices for attaching hollow-metal frames of type indicated.
- F. Mineral-Fiber Insulation: ASTM C665, Type I (blankets without membrane facing); consisting of fibers manufactured from slag or rock wool; with maximum flame-spread and smokedeveloped indexes of 25 and 50, respectively; passing ASTM E136 for combustion characteristics.
- G. Glazing: Comply with requirements in Section 088000 "Glazing."

2.5 FABRICATION

A. Hollow-Metal Frames: Fabricate in one piece except where handling and shipping limitations require multiple sections. Where frames are fabricated in sections, provide alignment plates or angles at each joint, fabricated of metal of same or greater thickness as frames.

- 1. Provide countersunk, flat- or oval-head exposed screws and bolts for exposed fasteners unless otherwise indicated.
- 2. Door Silencers: Except on weather-stripped frames, drill stops to receive door silencers as follows. Keep holes clear during construction.
 - a. Single-Door Frames: Drill stop in strike jamb to receive three door silencers.
 - b. Double-Door Frames: Drill stop in head jamb to receive two door silencers.
- B. Hardware Preparation: Factory prepare hollow-metal doors and frames to receive templated mortised hardware, and electrical wiring; include cutouts, reinforcement, mortising, drilling, and tapping according to SDI A250.6, the Door Hardware Schedule, and templates.
 - 1. Reinforce doors and frames to receive nontemplated, mortised, and surface-mounted door hardware.
 - 2. Comply with BHMA A156.115 for preparing hollow-metal doors and frames for hardware.

2.6 STEEL FINISHES

- A. Prime Finish: Clean, pretreat, and apply manufacturer's standard primer.
 - 1. Shop Primer: Manufacturer's standard, fast-curing, lead- and chromate-free primer complying with SDI A250.10; recommended by primer manufacturer for substrate; compatible with substrate and field-applied coatings despite prolonged exposure.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Remove welded-in shipping spreaders installed at factory. Restore exposed finish by grinding, filling, and dressing, as required to make repaired area smooth, flush, and invisible on exposed faces. Touch up factory-applied finishes where spreaders are removed.
- B. Drill and tap doors and frames to receive nontemplated, mortised, and surface-mounted door hardware.

3.2 INSTALLATION

- A. General: Install hollow-metal doors and frames plumb, rigid, properly aligned, and securely fastened in place. Comply with approved Shop Drawings and with manufacturer's written instructions.
- B. Hollow-Metal Frames: Comply with SDI A250.11.

- 1. Set frames accurately in position; plumbed, aligned, and braced securely until permanent anchors are set. After wall construction is complete, remove temporary braces without damage to completed Work.
 - a. Where frames are fabricated in sections, field splice at approved locations by welding face joint continuously; grind, fill, dress, and make splice smooth, flush, and invisible on exposed faces. Touch-up finishes.
 - b. Install frames with removable stops located on secure side of opening.
- 2. Floor Anchors: Secure with postinstalled expansion anchors.
 - a. Floor anchors may be set with power-actuated fasteners instead of postinstalled expansion anchors if so indicated and approved on Shop Drawings.
- 3. Solidly pack mineral-fiber insulation inside frames.
- 4. Masonry Walls: Coordinate installation of frames to allow for solidly filling space between frames and masonry with grout or mortar.
- 5. Installation Tolerances: Adjust hollow-metal frames to the following tolerances:
 - a. Squareness: Plus or minus 1/16 inch (1.6 mm), measured at door rabbet on a line 90 degrees from jamb perpendicular to frame head.
 - b. Alignment: Plus or minus 1/16 inch (1.6 mm), measured at jambs on a horizontal line parallel to plane of wall.
 - c. Twist: Plus or minus 1/16 inch (1.6 mm), measured at opposite face corners of jambs on parallel lines, and perpendicular to plane of wall.
 - d. Plumbness: Plus or minus 1/16 inch (1.6 mm), measured at jambs at floor.
- C. Hollow-Metal Doors: Fit and adjust hollow-metal doors accurately in frames, within clearances specified below.
 - 1. Steel Doors: Comply with SDI A250.8.
- D. Glazing: Comply with installation requirements in Section 088000 "Glazing" and with hollow-metal manufacturer's written instructions.

3.3 FIELD QUALITY CONTROL

- A. Inspection Agency: Engage a qualified inspector to perform inspections and to furnish reports to Architect.
- B. Inspections:
 - 1. Egress Door Inspections: Inspect each door equipped with panic hardware, each door located in an exit enclosure, each electrically controlled egress door, and each door equipped with special locking arrangements according to NFPA 101, section 7.2.1.15.
- C. Repair or remove and replace installations where inspections indicate that they do not comply with specified requirements.
- D. Reinspect repaired or replaced installations to determine if replaced or repaired door assembly installations comply with specified requirements.

3.4 CLEANING AND TOUCHUP

- A. Prime-Coat Touchup: Immediately after erection, sand smooth rusted or damaged areas of prime coat and apply touchup of compatible air-drying, rust-inhibitive primer.
- B. Metallic-Coated Surface Touchup: Clean abraded areas and repair with galvanizing repair paint according to manufacturer's written instructions.
- C. Touchup Painting: Cleaning and touchup painting of abraded areas of paint are specified in painting Sections.

END OF SECTION 081113

SECTION 083113 - ACCESS DOORS AND FRAMES.

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes access doors and frames for walls and ceilings.
- B. Related Requirements:
 - 1. Section 077200 "Roof Accessories" for roof hatches.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes.
- B. Samples: For each type of access door and frame and for each finish specified, complete assembly minimum 6 by 6 inches (150 by 150 mm) in size.
- C. Product Schedule: For access doors and frames.

PART 2 - PRODUCTS

2.1 ACCESS DOORS AND FRAMES

- A. Flush Access Doors with Exposed Flanges:
 - 1. Description: Face of door flush with frame, with exposed flange and concealed hinge.
 - 2. Locations: Wall and ceiling.
 - 3. Door Size: As indicated or, if not indicated, as required to properly access the item served.
 - 4. Metallic-Coated Steel Sheet for Door: Nominal 0.064 inch (1.63 mm), 16 gage, factory primed.
 - 5. Frame Material: Same material, thickness, and finish as door.
 - 6. Latch and Lock: Cam latch, screwdriver operated.

2.2 MATERIALS

- A. Steel Plates, Shapes, and Bars: ASTM A36/A36M.
- B. Steel Sheet: Uncoated or electrolytic zinc coated, ASTM A879/A879M, with cold-rolled steel sheet substrate complying with ASTM A1008/A1008M, Commercial Steel (CS), exposed.
- C. Metallic-Coated Steel Sheet: ASTM A653/A653M, Commercial Steel (CS), Type B; with minimum G60 (Z180) or A60 (ZF180) metallic coating.
- D. Frame Anchors: Same material as door face.
- E. Inserts, Bolts, and Anchor Fasteners: Hot-dip galvanized steel according to ASTM A153/A153M or ASTM F2329.

2.3 FABRICATION

- A. General: Provide access door and frame assemblies manufactured as integral units ready for installation.
- B. Metal Surfaces: For metal surfaces exposed to view in the completed Work, provide materials with smooth, flat surfaces without blemishes. Do not use materials with exposed pitting, seam marks, roller marks, rolled trade names, or roughness.
- C. Doors and Frames: Grind exposed welds smooth and flush with adjacent surfaces. Furnish mounting holes, attachment devices and fasteners of type required to secure access doors to types of supports indicated.
 - 1. For concealed flanges with drywall bead, provide edge trim for gypsum panels securely attached to perimeter of frames.

2.4 FINISHES

- A. Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.
- B. Protect mechanical finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.
- C. Appearance of Finished Work: Noticeable variations in same piece are not acceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.
- D. Painted Finishes: Comply with coating manufacturer's written instructions for cleaning, conversion coating, and applying and baking finish.
 - 1. Factory Primed: Apply manufacturer's standard, lead- and chromate-free, universal primer immediately after surface preparation and pretreatment.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Comply with manufacturer's written instructions for installing access doors and frames.

3.3 FIELD QUALITY CONTROL

- A. Inspection Agency: Engage a qualified inspector to perform inspections and to furnish reports to Architect.
- B. Repair or remove and replace installations where inspections indicate that they do not comply with specified requirements.
- C. Reinspect repaired or replaced installations to determine if replaced or repaired door assembly installations comply with specified requirements.

3.4 ADJUSTING

A. Adjust doors and hardware, after installation, for proper operation.

END OF SECTION 083113

SECTION 083313 - COILING COUNTER DOORS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Counter doors.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type and size of coiling counter door and accessory.
 - 1. Include construction details, material descriptions, dimensions of individual components, profiles for slats, and finishes.
 - 2. Include operating characteristics and furnished accessories.
- B. Shop Drawings: For each installation and for special components not dimensioned or detailed in manufacturer's product data.
 - 1. Include plans, elevations, sections, and mounting details.
 - 2. Include details of equipment assemblies, and indicate dimensions, required clearances, method of field assembly, components, and location and size of each field connection.
 - 3. Include points of attachment and their corresponding static and dynamic loads imposed on structure.
 - 4. Show locations of locking devices and other accessories.

1.4 CLOSEOUT SUBMITTALS

A. Maintenance Data: For coiling counter doors to include in maintenance manuals.

1.5 QUALITY ASSURANCE

A. Installer Qualifications: An entity that employs installers and supervisors who are trained and approved by manufacturer for both installation and maintenance of units required for this Project.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations: Obtain coiling counter doors from single source from single manufacturer.

2.2 COUNTER DOOR ASSEMBLY

- A. Counter Door: Coiling counter door formed with curtain of interlocking metal slats.
- B. Operation Cycles: Door components and operators capable of operating for not less than 10,000. One operation cycle is complete when a door is opened from the closed position to the fully open position and returned to the closed position.
- C. Door Curtain Material: Stainless steel.
- D. Door Curtain Slats: Curved or Flat slats of 1-1/4-inch (32-mm) or 1-1/2-inch (38-mm) center-to-center height.
- E. Bottom Bar: Manufacturer's standard continuous channel or tubular shape, fabricated stainless steel and finished to match door.
- F. Curtain Jamb Guides: Stainless steel with exposed finish matching curtain slats.
- G. Hood: Match curtain material and finish.
 - 1. Shape: Manufacturer's standard.
 - 2. Mounting: Face of wall.
- H. Integral Frame, Hood, and Fascia: Stainless steel.
 - 1. Mounting: Face of wall.
- I. Sill Configuration: No sill.
- J. Locking Devices: Equip door with locking device assembly.
 - 1. Locking Device Assembly: Cremone-type, both jamb sides locking bars, operable from inside with thumbturn.
- K. Manual Door Operator: Push-up operation or Manufacturer's standard crank operator.
 - 1. Provide operator with through-wall shaft operation.
 - 2. Provide operator with manufacturer's standard removable operating arm.
- L. Curtain Accessories: Equip door with astragal and push/pull handles.
- M. Door Finish:
 - 1. Stainless Steel Finish: ASTM A480/A480M No. 4 (polished directional satin).

2. Interior Curtain-Slat Facing: Match finish of exterior curtain-slat face.

2.3 DOOR CURTAIN MATERIALS AND CONSTRUCTION

- A. Door Curtains: Fabricate coiling counter door curtain of interlocking metal slats in a continuous length for width of door without splices. Unless otherwise indicated, provide slats of thickness and mechanical properties recommended by door manufacturer for performance, size, and type of door indicated, and as follows:
 - 1. Stainless Steel Door Curtain Slats: ASTM A666, Type 304; sheet thickness of 0.025 inch (0.64 mm); and as required.
 - 2. Metal Interior Curtain-Slat Facing: Match metal of exterior curtain-slat face.
- B. Curtain Jamb Guides: Manufacturer's standard angles or channels and angles of same material and finish as curtain slats unless otherwise indicated, with sufficient depth and strength to retain curtain, to allow curtain to operate smoothly, and to withstand loading. Slot bolt holes for guide adjustment. Provide removable stops on guides to prevent overtravel of curtain.

2.4 HOODS

- A. General: Form sheet metal hood to entirely enclose coiled curtain and operating mechanism at opening head. Contour to fit end brackets to which hood is attached. Roll and reinforce top and bottom edges for stiffness. Form closed ends for surface-mounted hoods and fascia for any portion of between-jamb mounting that projects beyond wall face. Equip hood with intermediate support brackets as required to prevent sagging.
 - 1. Stainless Steel: 0.025-inch- (0.64-mm-) thick, stainless steel sheet, Type 304, complying with ASTM A666.
- B. Integral Frame, Hood, and Fascia: Welded sheet metal assembly of the following sheet metal(s):
 - 1. Stainless Steel: Type 304, complying with ASTM A666.
- C. Removable Metal Soffit: Formed or extruded from same metal and with same finish as curtain if hood is mounted above ceiling unless otherwise indicated.

2.5 LOCKING DEVICES

- A. Slide Bolt: Fabricate with side-locking bolts to engage through slots in tracks for locking by padlock, located on both left and right jamb sides, operable from coil side.
- B. Locking Device Assembly: Fabricate with cylinder lock, spring-loaded dead bolt, operating handle, cam plate, and adjustable locking bars to engage through slots in tracks.
 - 1. Lock Cylinders: As specified in Section 087100 "Door Hardware.

2.6 CURTAIN ACCESSORIES

- A. Astragal: Equip each door bottom bar with a replaceable, adjustable, continuous, compressible gasket of flexible vinyl, rubber, or neoprene as a cushion bumper.
- B. Push/Pull Handles: Equip each push-up-operated or emergency-operated door with lifting handles on each side of door, finished to match door.

2.7 COUNTERBALANCE MECHANISM

- A. General: Counterbalance doors by means of manufacturer's standard mechanism with an adjustable-tension, steel helical torsion spring mounted around a steel shaft and contained in a spring barrel connected to top of curtain with barrel rings. Use grease-sealed bearings or self-lubricating graphite bearings for rotating members.
- B. Counterbalance Barrel: Fabricate spring barrel of manufacturer's standard hot-formed, structural-quality, seamless carbon-steel pipe, of sufficient diameter and wall thickness to support rolled-up curtain without distortion of slats and to limit barrel deflection to not more than 0.03 in./ft. (2.5 mm/m) of span under full load.
- C. Counterbalance Spring: One or more oil-tempered, heat-treated steel helical torsion springs. Size springs to counterbalance weight of curtain, with uniform adjustment accessible from outside barrel. Secure ends of springs to barrel and shaft with cast-steel barrel plugs.
- D. Torsion Rod for Counterbalance Shaft: Fabricate of manufacturer's standard cold-rolled steel, sized to hold fixed spring ends and carry torsional load.
- E. Brackets: Manufacturer's standard mounting brackets of either cast iron or cold-rolled steel plate.

2.8 MANUAL DOOR OPERATORS

- A. General: Equip door with manual door operator by door manufacturer.
- B. Push-up Door Operation: Design counterbalance mechanism so that required lift or pull for door operation does not exceed 25 lbf (111 N).
- C. Crank Operator: Consisting of crank and crank gearbox, steel crank drive shaft, and gear-reduction unit, of type indicated. Size gears to require not more than [25-lbf (111-N)] [30-lbf (133-N) force to turn crank. Fabricate gearbox to be oiltight and to completely enclose operating mechanism. Provide manufacturer's standard crank-locking device.

2.9 GENERAL FINISH REQUIREMENTS

A. Comply with NAAMM/NOMMA 500 for recommendations for applying and designating finishes.

B. Appearance of Finished Work: Noticeable variations in same piece are not acceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

2.10 STAINLESS STEEL FINISHES

- A. Surface Preparation: Remove tool and die marks and stretch lines, or blend into finish.
- B. Polished Finishes: Grind and polish surfaces to produce uniform finish, free of cross scratches.
 - 1. Run grain of directional finishes with long dimension of each piece.
 - 2. When polishing is completed, passivate and rinse surfaces. Remove embedded foreign matter and leave surfaces chemically clean.
 - 3. Directional Satin Finish: ASTM A480/A480M No. 4.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates areas and conditions, with Installer present, for compliance with requirements for substrate construction and other conditions affecting performance of the Work.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install coiling counter doors with necessary hardware, anchors, inserts, hangers, and equipment supports; according to manufacturer's written instructions and as specified.
- B. Install coiling counter doors and hoods at the mounting locations indicated for each door.

3.3 FIELD QUALITY CONTROL

- A. Repair or remove and replace installations where inspections indicate that they do not comply with specified requirements.
- B. Reinspect repaired or replaced installations to determine if replaced or repaired door assembly installations comply with specified requirements.

3.4 ADJUSTING

- A. Adjust hardware and moving parts to function smoothly so that doors operate easily, free of warp, twist, or distortion.
- B. Lubricate bearings and sliding parts as recommended by manufacturer.

3.5 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain coiling counter doors.

END OF SECTION 083313

SECTION 084113 - ALUMINUM-FRAMED ENTRANCES AND STOREFRONTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Storefront framing.
 - 2. Manual-swing entrance doors.

1.3 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes.
- B. Shop Drawings: For aluminum-framed entrances and storefronts. Include plans, elevations, sections, full-size details, and attachments to other work.
 - 1. Include details of provisions for assembly expansion and contraction and for draining moisture occurring within the assembly to the exterior.
 - 2. Include full-size isometric details of each type of vertical-to-horizontal intersection of aluminum-framed entrances and storefronts, showing the following:
 - a. Joinery, including concealed welds.
 - b. Anchorage.
 - c. Glazing.
 - d. Flashing and drainage.
 - 3. Show connection to and continuity with adjacent thermal, weather, air, and vapor barriers.
 - 4. Include point-to-point wiring diagrams showing the following:
 - a. Power requirements for each electrically operated door hardware.

- b. Location and types of switches, signal device, conduit sizes, and number and size of wires.
- C. Samples for Verification: For each type of exposed finish required, in manufacturer's standard sizes.
- D. Fabrication Sample: Of each vertical-to-horizontal intersection of assemblies, made from 12-inch (300-mm) lengths of full-size components and showing details of the following:
 - 1. Joinery, including concealed welds.
 - 2. Anchorage.
 - 3. Expansion provisions.
 - 4. Glazing.
 - 5. Flashing and drainage.
- E. Entrance Door Hardware Schedule: Prepared by or under supervision of supplier, detailing fabrication and assembly of entrance door hardware, as well as procedures and diagrams. Coordinate final entrance door hardware schedule with doors, frames, and related work to ensure proper size, thickness, hand, function, and finish of entrance door hardware.
- F. Delegated-Design Submittal: For aluminum-framed entrances and storefronts indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For Installer and field testing agency.
- B. Energy Performance Certificates: For aluminum-framed exterior entrances and storefronts, accessories, and components, from manufacturer.
 - 1. Basis for Certification: NFRC-certified energy performance values for each aluminum-framed entrance and storefront.
- C. Product Test Reports: For aluminum-framed entrances and storefronts, for tests performed by a qualified testing agency.
- D. Source quality-control reports.
- E. Field quality-control reports.
- F. Sample Warranties: For special warranties.

1.6 CLOSEOUT SUBMITTALS

A. Maintenance Data: For aluminum-framed entrances and storefronts to include in maintenance manuals.

1.7 QUALITY ASSURANCE

- A. Installer Qualifications: An entity that employs installers and supervisors who are trained and approved by manufacturer.
- B. Testing Agency Qualifications: Qualified according to ASTM E699 for testing indicated.
- C. Product Options: Information on Drawings and in Specifications establishes requirements for aesthetic effects and performance characteristics of assemblies. Aesthetic effects are indicated by dimensions, arrangements, alignment, and profiles of components and assemblies as they relate to sightlines, to one another, and to adjoining construction.
 - 1. Do not change intended aesthetic effects, as judged solely by Architect, except with Architect's approval. If changes are proposed, submit comprehensive explanatory data to Architect for review.

1.8 WARRANTY

- A. Special Warranty: Manufacturer agrees to repair or replace components of aluminum-framed entrances and storefronts that do not comply with requirements or that fail in materials or workmanship within specified warranty period.
 - 1. Failures include, but are not limited to, the following:
 - a. Structural failures, including, but not limited to, excessive deflection.
 - b. Noise or vibration created by wind and thermal and structural movements.
 - c. Deterioration of metals and other materials beyond normal weathering.
 - d. Water penetration through fixed glazing and framing areas.
 - e. Failure of operating components.
 - 2. Warranty Period: Five years from date of Substantial Completion.
- B. Special Finish Warranty: Standard form in which manufacturer agrees to repair finishes or replace aluminum that shows evidence of deterioration of factory-applied finishes within specified warranty period.
 - 1. Warranty Period: 20 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations: Obtain all components of aluminum-framed entrance and storefront system, including framing and accessories, from single manufacturer.

2.2 PERFORMANCE REQUIREMENTS

- A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design aluminum-framed entrances and storefronts.
- B. General Performance: Comply with performance requirements specified, as determined by testing of aluminum-framed entrances and storefronts representing those indicated for this Project without failure due to defective manufacture, fabrication, installation, or other defects in construction.
 - 1. Aluminum-framed entrances and storefronts shall withstand movements of supporting structure, including, but not limited to, twist, column shortening, long-term creep, and deflection from uniformly distributed and concentrated live loads.
 - 2. Failure also includes the following:
 - a. Thermal stresses transferring to building structure.
 - b. Glass breakage.
 - c. Noise or vibration created by wind and thermal and structural movements.
 - d. Loosening or weakening of fasteners, attachments, and other components.
 - e. Failure of operating units.

C. Structural Loads:

- 1. Wind Loads: As indicated on Drawings.
- 2. Other Design Loads: As indicated on Drawings.
- D. Deflection of Framing Members: At design wind pressure, as follows:
 - 1. Deflection Normal to Wall Plane: Limited to edge of glass in a direction perpendicular to glass plane not exceeding 1/175 of the glass edge length for each individual glazing lite or an amount that restricts edge deflection of individual glazing lites to 3/4 inch (19.1 mm), whichever is less.
 - 2. Deflection Parallel to Glazing Plane: Limited to 1/360 of clear span or 1/8 inch (3.2 mm), whichever is smaller.
- E. Structural: Test according to ASTM E330/E330M as follows:
 - 1. When tested at positive and negative wind-load design pressures, storefront assemblies, including entrance doors, do not evidence deflection exceeding specified limits.
 - 2. When tested at 150 percent of positive and negative wind-load design pressures, storefront assemblies, including entrance doors and anchorage, do not evidence material failures, structural distress, or permanent deformation of main framing members exceeding 0.2 percent of span.
 - 3. Test Durations: As required by design wind velocity, but not less than 10seconds.
- F. Air Infiltration: Test according to ASTM E283 for infiltration as follows:
 - 1. Fixed Framing and Glass Area:
 - a. Maximum air leakage of 0.06 cfm/sq. ft. (0.30 L/s per sq. m) at a static-air-pressure differential of 6.24 lbf/sq. ft. (300 Pa).

2. Entrance Doors:

- a. Single Doors: Maximum air leakage of 0.5 cfm/sq. ft. (2.54 L/s per sq. m) at a static-air-pressure differential of 1.57 lbf/sq. ft. (75 Pa).
- G. Water Penetration under Static Pressure: Test according to ASTM E331 as follows:
 - 1. No evidence of water penetration through fixed glazing and framing areas, including entrance doors, when tested according to a minimum static-air-pressure differential of 20 percent of positive wind-load design pressure, but not less than 6.24 lbf/sq. ft. (300 Pa).
- H. Seismic Performance: Aluminum-framed entrances and storefronts shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 - 1. Seismic Drift Causing Glass Fallout: Complying with criteria for passing based on building occupancy type when tested according to AAMA 501.6 at design displacement.
- I. Energy Performance: Certify and label energy performance according to NFRC as follows:
 - 1. Thermal Transmittance (U-factor): Fixed glazing and framing areas as a system shall have U-factor of not more than 0.45 Btu/sq. ft. x h x deg F (2.55 W/sq. m x K) as determined according to NFRC 100.
 - 2. Condensation Resistance: Fixed glazing and framing areas as a system shall have an NFRC-certified condensation resistance rating of no less 75 as determined according to NFRC 500.
- J. Thermal Movements: Allow for thermal movements resulting from ambient and surface temperature changes.
 - 1. Temperature Change: 120 deg F (67 deg C), ambient; 180 deg F (100 deg C), material surfaces.

2.3 STOREFRONT SYSTEMS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>EFCO Corporation</u>.
 - 2. <u>Kawneer North America, an Arconic company</u>.
 - 3. Oldcastle Building EnvelopeTM.
 - 4. <u>U.S. Aluminum; a brand of C.R. Laurence</u>.
 - 5. YKK AP America Inc.
- B. Framing Members: Manufacturer's extruded-aluminum framing members of thickness required and reinforced as required to support imposed loads.
 - 1. Basis of design exterior storefront is YKK AP Series YES 600 as manufactured by YKK AP America Inc. Nominal design size of 1-3/4 inch sightline by 4-1/2 inch depth.
 - 2. Basis of design interior storefront is YKK AP Series YES 40 FS as manufactured by YKK AP America Inc.

- 3. Exterior Framing Construction: Thermally broken.
- 4. Interior Framing Construction: Nonthermal.
- 5. Glazing System: Retained mechanically with gaskets on four sides.
- 6. Glazing Plane: Front.
- 7. Finish: Clear anodic finish.
- 8. Fabrication Method: Field-fabricated stick system.
- 9. Aluminum: Alloy and temper recommended by manufacturer for type of use and finish indicated.
- 10. Steel Reinforcement: As required by manufacturer.
- C. Backer Plates: Manufacturer's standard, continuous backer plates for framing members, if not integral, where framing abuts adjacent construction.
- D. Brackets and Reinforcements: Manufacturer's standard high-strength aluminum with nonstaining, nonferrous shims for aligning system components.

2.4 ENTRANCE DOOR SYSTEMS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>EFCO Corporation</u>.
 - 2. Kawneer North America, an Arconic company.
 - 3. Oldcastle BuildingEnvelopeTM.
 - 4. U.S. Aluminum; a brand of C.R. Laurence.
 - 5. YKK AP America Inc.
- B. Entrance Doors: Manufacturer's standard glazed entrance doors for manual-swing or automatic operation.
 - 1. Door Construction: 1-3/4-inch (44.5-mm) overall thickness, with minimum 0.125-inch-(3.2-mm-) thick, extruded-aluminum tubular rail and stile members. Mechanically fasten corners with reinforcing brackets that are deeply penetrated and fillet welded or that incorporate concealed tie rods.
 - a. Thermal Construction: High-performance plastic connectors separate aluminum members exposed to the exterior from members exposed to the interior.
 - 2. Door Design: Wide stile; 5-inch (127-mm) nominal width.
 - 3. Glazing Stops and Gaskets: Square, snap-on, extruded-aluminum stops and preformed gaskets.
 - a. Provide nonremovable glazing stops on outside of door.

2.5 ENTRANCE DOOR HARDWARE

A. Entrance Door Hardware: Hardware is specified in Section 087100 "Door Hardware."

2.6 GLAZING

- A. Glazing: Comply with Section 088000 "Glazing."
- B. Glazing Gaskets: Manufacturer's standard sealed-corner pressure-glazing system of black, resilient elastomeric glazing gaskets, setting blocks, and shims or spacers. Comply with Section 088000 "Glazing."
- C. Glazing Sealants: As recommended by manufacturer.

2.7 MATERIALS

- A. Sheet and Plate: ASTM B209 (ASTM B209M).
- B. Extruded Bars, Rods, Profiles, and Tubes: ASTM B221 (ASTM B221M).
- C. Extruded Structural Pipe and Tubes: ASTM B429/B429M.
- D. Structural Profiles: ASTM B308/B308M.
- E. Steel Reinforcement:
 - 1. Structural Shapes, Plates, and Bars: ASTM A36/A36M.
 - 2. Cold-Rolled Sheet and Strip: ASTM A1008/A1008M.
 - 3. Hot-Rolled Sheet and Strip: ASTM A1011/A1011M.
 - 4. Primer: Manufacturer's standard zinc-rich, corrosion-resistant primer complying with SSPC-PS Guide No. 12.00; applied immediately after surface preparation and pretreatment. Select surface preparation methods according to recommendations in SSPC-SP COM, and prepare surfaces according to applicable SSPC standard.

2.8 ACCESSORIES

- A. Fasteners and Accessories: Manufacturer's standard corrosion-resistant, nonstaining, nonbleeding fasteners and accessories compatible with adjacent materials.
 - 1. Use self-locking devices where fasteners are subject to loosening or turning out from thermal and structural movements, wind loads, or vibration.
 - 2. Reinforce members as required to receive fastener threads.
 - 3. Use exposed fasteners with countersunk Phillips screw heads fabricated from 300 series stainless steel.
- B. Anchors: Three-way adjustable anchors with minimum adjustment of 1 inch (25.4 mm) that accommodate fabrication and installation tolerances in material and finish compatible with adjoining materials and recommended by manufacturer.
 - 1. Concrete and Masonry Inserts: Hot-dip galvanized cast-iron, malleable-iron, or steel inserts complying with ASTM A123/A123M or ASTM A153/A153M requirements.

- C. Concealed Flashing: Manufacturer's standard corrosion-resistant, nonstaining, nonbleeding flashing compatible with adjacent materials.
- D. Bituminous Paint: Cold-applied asphalt-mastic paint containing no asbestos, formulated for 30-mil (0.762-mm) thickness per coat.
- E. Rigid PVC Filler.

2.9 FABRICATION

- A. Form or extrude aluminum shapes before finishing.
- B. Weld in concealed locations to greatest extent possible to minimize distortion or discoloration of finish. Remove weld spatter and welding oxides from exposed surfaces by descaling or grinding.
- C. Fabricate components that, when assembled, have the following characteristics:
 - 1. Profiles that are sharp, straight, and free of defects or deformations.
 - 2. Accurately fitted joints with ends coped or mitered.
 - 3. Physical and thermal isolation of glazing from framing members.
 - 4. Accommodations for thermal and mechanical movements of glazing and framing to maintain required glazing edge clearances.
 - 5. Provisions for field replacement of glazing from exterior.
 - 6. Fasteners, anchors, and connection devices that are concealed from view to greatest extent possible.
- D. Mechanically Glazed Framing Members: Fabricate for flush glazing without projecting stops.
- E. Entrance Door Frames: Reinforce as required to support loads imposed by door operation and for installing entrance door hardware.
 - 1. At interior and exterior doors, provide compression weather stripping at fixed stops.
- F. Entrance Doors: Reinforce doors as required for installing entrance door hardware.
 - 1. At pairs of exterior doors, provide sliding-type weather stripping retained in adjustable strip and mortised into door edge.
 - 2. At exterior doors, provide weather sweeps applied to door bottoms.
- G. Entrance Door Hardware Installation: Factory install entrance door hardware to the greatest extent possible. Cut, drill, and tap for factory-installed entrance door hardware before applying finishes.
- H. After fabrication, clearly mark components to identify their locations in Project according to Shop Drawings.

2.10 ALUMINUM FINISHES

A. Clear Anodic Finish: AAMA 612, AA-M12C22A41, Class I, 0.018 mm or thicker.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. General:

- 1. Comply with manufacturer's written instructions.
- 2. Do not install damaged components.
- 3. Fit joints to produce hairline joints free of burrs and distortion.
- 4. Rigidly secure nonmovement joints.
- 5. Install anchors with separators and isolators to prevent metal corrosion and electrolytic deterioration and to prevent impeding movement of moving joints.
- 6. Seal perimeter and other joints watertight unless otherwise indicated.

B. Metal Protection:

- 1. Where aluminum is in contact with dissimilar metals, protect against galvanic action by painting contact surfaces with materials recommended by manufacturer for this purpose or by installing nonconductive spacers.
- 2. Where aluminum is in contact with concrete or masonry, protect against corrosion by painting contact surfaces with bituminous paint.
- C. Set continuous sill members and flashing in full sealant bed, as specified in Section 079200 "Joint Sealants," to produce weathertight installation.
- D. Install components plumb and true in alignment with established lines and grades.
- E. Install glazing as specified in Section 088000 "Glazing."
- F. Entrance Doors: Install doors to produce smooth operation and tight fit at contact points.
 - 1. Exterior Doors: Install to produce weathertight enclosure and tight fit at weather stripping.
 - 2. Field-Installed Entrance Door Hardware: Install surface-mounted entrance door hardware according to entrance door hardware manufacturers' written instructions using concealed fasteners to greatest extent possible.

3.3 ERECTION TOLERANCES

- A. Erection Tolerances: Install aluminum-framed entrances and storefronts to comply with the following maximum tolerances:
 - 1. Plumb: 1/8 inch in 10 feet (3.2 mm in 3 m); 1/4 inch in 40 feet (6.35 mm in 12.2 m).
 - 2. Level: 1/8 inch in 20 feet (3.2 mm in 6 m); 1/4 inch in 40 feet (6.35 mm in 12.2 m).
 - 3. Alignment:
 - a. Where surfaces abut in line or are separated by reveal or protruding element up to 1/2 inch (12.7 mm) wide, limit offset from true alignment to 1/16 inch (1.6 mm).
 - b. Where surfaces are separated by reveal or protruding element from 1/2 to 1 inch (12.7 to 25.4 mm) wide, limit offset from true alignment to 1/8 inch (3.2 mm).
 - c. Where surfaces are separated by reveal or protruding element of 1 inch (25.4 mm) wide or more, limit offset from true alignment to 1/4 inch (6 mm).
 - 4. Location: Limit variation from plane to 1/8 inch in 12 feet (3.2 mm in 3.6 m); 1/2 inch (12.7 mm) over total length.

3.4 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Field Quality-Control Testing: Perform the following test on representative areas of aluminum-framed entrances and storefronts.
 - 1. Water-Spray Test: Before installation of interior finishes has begun, areas designated by Architect shall be tested according to AAMA 501.2 and shall not evidence water penetration.
 - a. Perform a minimum of three tests in areas as directed by Architect.
 - 2. Air Infiltration: ASTM E783 at 1.5 times the rate specified for laboratory testing in "Performance Requirements" Article but not more than 0.09 cfm/sq. ft. (0.45 L/s per sq. m) at a static-air-pressure differential of 1.57 lbf/sq. ft. (75 Pa).
 - a. Perform a minimum of three tests in areas as directed by Architect.
 - 3. Water Penetration: ASTM E1105 at a minimum uniform and cyclic static-air-pressure differential of 0.67 times the static-air-pressure differential specified for laboratory testing in "Performance Requirements" Article, but not less than 6.24 lbf/sq. ft. (300 Pa), and shall not evidence water penetration.
- C. Aluminum-framed entrances and storefronts will be considered defective if they do not pass tests and inspections.
- D. Prepare test and inspection reports.

3.5 MAINTENANCE SERVICE

A. Entrance Door Hardware:

- 1. Maintenance Tools and Instructions: Furnish a complete set of specialized tools and maintenance instructions as needed for Owner's continued adjustment, maintenance, and removal and replacement of entrance door hardware.
- 2. Initial Maintenance Service: Beginning at Substantial Completion, provide six months' full maintenance by skilled employees of entrance door hardware Installer. Include quarterly preventive maintenance, repair or replacement of worn or defective components, lubrication, cleaning, and adjusting as required for proper entrance door hardware operation at rated speed and capacity. Use parts and supplies that are the same as those used in the manufacture and installation of original equipment.

END OF SECTION 084113

SECTION 084229.23 - SLIDING AUTOMATIC ENTRANCES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes interior, sliding, power-operated automatic entrances.
- B. Related Requirements:
 - 1. Section 033000 "Cast-in-Place Concrete" for installing recessed metal frames for control mats in concrete and forming recesses in concrete for recessed thresholds.

1.3 DEFINITIONS

- A. AAADM: American Association of Automatic Door Manufacturers.
- B. Activation Device: A control that, when actuated, sends an electrical signal to the door operator to open the door.
- C. IBC: International Building Code.
- D. Safety Device: A control that, to avoid injury, prevents a door from opening or closing.
- E. For automatic door terminology, refer to BHMA A156.10 for definitions of terms.

1.4 COORDINATION

- A. Coordinate sizes and locations of recesses in concrete floors for recessed sliding tracks and recessed control mats that control automatic entrances. Concrete, reinforcement, and formwork requirements are specified elsewhere.
- B. Templates: Distribute for doors, frames, and other work specified to be factory prepared for installing automatic entrances.
- C. Coordinate hardware with doors, frames, and related work to ensure proper size, thickness, hand, function, and finish. Coordinate hardware for automatic entrances with hardware required for rest of Project.
- D. Electrical System Roughing-in: Coordinate layout and installation of automatic entrances with connections to power supplies.

- E. System Integration: Integrate sliding automatic entrances with other systems as required for a complete working installation.
 - 1. Provide electrical interface control capability for activation of sliding automatic entrances by security access system on doors with electric locking.
 - 2. Provide electrical interface to deactivate door operators on activation of fire alarm system.
 - 3. Provide electrical interface to allow for remote monitoring of automatic entrance door panel status.

1.5 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for automatic entrances.
 - 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
- B. Shop Drawings: For sliding automatic entrances.
 - 1. Include plans, elevations, sections, hardware mounting heights, and attachment details.
 - 2. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 3. Include diagrams for power, signal, and control wiring.
 - 4. Indicate locations of activation and safety devices.
 - 5. Include hardware schedule and indicate hardware types, functions, quantities, and locations.
- C. Delegated-Design Submittal: For automatic entrances.

1.6 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For Installer, manufacturer, and Certified Inspector.
- B. Product Certificates: For each type of automatic entrance. Include emergency-exit features of automatic entrances serving as a required means of egress.
- C. Product Test Reports: For each type of automatic entrance, for tests performed by a qualified testing agency.
- D. Field quality-control reports.
- E. Sample Warranties: For manufacturer's special warranties.

1.7 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For automatic entrances, safety devices, and control systems to include in operation and maintenance manuals.

1.8 QUALITY ASSURANCE

- A. Manufacturer Qualifications: A manufacturer with Company Certificate issued by AAADM indicating that manufacturer has a Certified Inspector on staff.
- B. Installer Qualifications: Manufacturer's authorized representative who is trained and approved for installation and maintenance of units required for this Project and who employs a Certified Inspector.
 - 1. Maintenance Proximity: Not more than two hours' normal travel time from Installer's place of business to Project site.
- C. Certified Inspector Qualifications: Certified by AAADM.

1.9 WARRANTY

- A. Special Warranty: Manufacturer agrees to repair or replace components of automatic entrances that fail in materials or workmanship within specified warranty period.
 - 1. Failures include, but are not limited to, the following:
 - a. Structural failures including, but not limited to, excessive deflection.
 - b. Faulty operation of operators, controls, and hardware.
 - c. Deterioration of metals, metal finishes, and other materials beyond normal weathering and use.
 - 2. Warranty Period: Two years from date of Substantial Completion.
- B. Special Finish Warranty: Manufacturer agrees to repair or replace components on which finishes fail in materials or workmanship within specified warranty period.
 - 1. Deterioration includes, but is not limited to, the following:
 - a. Color fading more than 5 Hunter units when tested according to ASTM D2244.
 - b. Chalking in excess of a No. 8 rating when tested according to ASTM D4214.
 - c. Cracking, checking, peeling, or failure of paint to adhere to bare metal.
 - 2. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 AUTOMATIC ENTRANCE ASSEMBLIES

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Power-Operated Door Standard: BHMA A156.10.

2.2 PERFORMANCE REQUIREMENTS

- A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design automatic entrances.
- B. Structural Performance: Automatic entrances shall withstand the effects of gravity loads and the following loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.
 - 1. Seismic Loads: As indicated in the drawings

C. Opening Force:

- 1. Power-Operated Doors: Not more than 50 lbf (222 N) required to manually set door in motion if power fails, and not more than 15 lbf (67 N) required to open door to minimum required width.
- 2. Breakaway Device for Power-Operated Doors: Not more than 50 lbf (222 N) required for a breakaway door or panel to open.

D. Entrapment-Prevention Force:

1. Power-Operated Sliding Doors: Not more than 30 lbf (133 N) required to prevent stopped door from closing.

2.3 SLIDING AUTOMATIC ENTRANCES

- A. General: Provide manufacturer's standard automatic entrances, including doors, sidelites, framing, headers, carrier assemblies, roller tracks, door operators, controls, and accessories required for a complete installation.
- B. Sliding Automatic Entrance:
 - 1. Bi-parting-Sliding Units:
 - a. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1) <u>Besam Entrance Solutions; ASSA ABLOY; Basis-of-Design Model SL500</u> Sliding Automatic Doors.

- 2) DORMA USA, Inc.
- 3) Horton Automatics; a division of Overhead Door Corporation.
- 4) Stanley Access Technologies.
- 2. Configuration: Biparting, four equal panel door unit with two operable sliding leaves and two fixed sidelites.
 - a. Traffic Pattern: Two way.
 - b. Emergency Breakaway Capability: Sliding leaves only
 - c. Mounting: Overhead header installed between jambs.
- 3. Operator Features:
 - a. Power opening and closing.
 - b. Drive System: Chain or belt.
 - c. Adjustable opening and closing speeds.
 - d. Adjustable hold-open time between zero and 30 seconds.
 - e. Obstruction recycle.
 - f. On-off/hold-open switch to control electric power to operator, key operated.
- 4. Sliding-Door Carrier Assemblies and Overhead Roller Tracks: Carrier assembly that allows vertical adjustment; consisting of nylon- or delrin-covered, ball-bearing-center steel wheels operating on a continuous roller track, or ball-bearing-center steel wheels operating on a nylon- or delrin-covered, continuous roller track. Support doors from carrier assembly by cantilever and pivot assembly.
 - a. Rollers: Minimum of two ball-bearing roller wheels and two antirise rollers for each active leaf.
- 5. Sliding-Door Threshold: Threshold members and bottom-guide-track system with stainless-steel, ball-bearing-center roller wheels.
 - a. Configuration: No threshold across door opening and surface-mounted guide-track system at sidelites.
- 6. Controls: Activation and safety device saccording to BHMA standards.
- 7. Finish: Finish framing, door(s), and header with Class I, clear anodic finish matching adjacent storefront.

2.4 ENTRANCE COMPONENTS

- A. Framing Members: Extruded aluminum, minimum 0.125 inch (3.2 mm) thick and reinforced as required to support imposed loads.
 - 1. Nominal Size: 1-3/4 by 4-1/2 inches (45 by 115 mm).
 - 2. Extruded Glazing Stops and Applied Trim: Minimum 0.062-inch (1.6-mm) wall thickness.

- B. Stile and Rail Doors: 1-3/4-inch- (45-mm-) thick, glazed doors with minimum 0.125-inch- (3.2-mm-) thick, extruded-aluminum tubular stile and rail members. Mechanically fasten corners with reinforcing brackets that are welded, or incorporate concealed tie-rods that span full length of top and bottom rails.
 - 1. Glazing Stops and Gaskets: Square, snap-on, extruded-aluminum stops and preformed gaskets.
 - 2. Stile Design: Wide stile, 5-inch (125-mm) nominal width.
 - 3. Rail Design: 10-inch (254-mm) nominal height.
- C. Sidelite(s): 1-3/4-inch- (45-mm-) deep sidelite(s) with minimum 0.125-inch- (3.2-mm-) thick, extruded-aluminum tubular stile and rail members matching door design.
 - 1. Glazing Stops and Gaskets: Same materials and design as for stile and rail door.
 - 2. Glazing Stops and Gaskets: Square, snap-on, extruded-aluminum stops and preformed gaskets.
- D. Headers: Fabricated from minimum 0.125-inch- (3.2-mm-) thick extruded aluminum and extending full width of automatic entrance units to conceal door operators and controls. Provide hinged or removable access panels for service and adjustment of door operators and controls. Secure panels to prevent unauthorized access.
 - 1. Mounting: Surface mounted.
 - 2. Capacity: Capable of supporting doors of up to 175 lb (79 kg) per leaf over spans of up to 14 feet (4.3 m) without intermediate supports.
 - a. Provide sag rods for spans exceeding 14 feet (4.3 m).
- E. Brackets and Reinforcements: High-strength aluminum with nonstaining, nonferrous shims for aligning system components.
- F. Signage: As required by cited BHMA standard.
 - 1. Application Process: Decals.
 - 2. Provide sign materials with instructions for field application after glazing is installed.

2.5 MATERIALS

- A. Aluminum: Alloy and temper recommended by manufacturer for type of use and finish indicated.
 - 1. Extrusions: ASTM B221 (ASTM B221M).
 - 2. Sheet: ASTM B209 (ASTM B209M).
- B. Steel Reinforcement: Reinforcement with corrosion-resistant primer complying with SSPC-PS Guide No. 12.00 applied immediately after surface preparation and pretreatment. Use surface preparation methods according to recommendations in SSPC-SP COM and prepare surfaces according to applicable SSPC standard.

- C. Glazing: As specified in Section 088000 "Glazing." Sealants and Joint Fillers: As specified in Section 079200 "Joint Sealants."
- D. Nonmetallic, Shrinkage-Resistant Grout: Premixed, nonmetallic, noncorrosive, nonstaining grout; complying with ASTM C1107/C1107M; of consistency suitable for application.
- E. Bituminous Coating: Cold-applied asphalt emulsion complying with ASTM D1187/D1187M.
- F. Fasteners and Accessories: Corrosion-resistant, nonstaining, nonbleeding fasteners and accessories compatible with adjacent materials.

2.6 DOOR OPERATORS AND CONTROLS

- A. General: Provide operators and controls, which include activation and safety devices, according to BHMA standards, for condition of exposure, and for long-term, maintenance-free operation under normal traffic load for type of occupancy indicated.
- B. Door Operators: Provide door operators of size recommended by manufacturer for door size, weight, and movement.
 - 1. Electromechanical Operators: Concealed, self-contained, overhead units powered by fractional-horsepower, permanent-magnet dc motor; with closing speed controlled mechanically by gear train and dynamically by braking action of electric motor; with solid-state microprocessor controller; complying with UL 325; and with manual operation with power off.
- C. Motion Sensors: Self-contained, K-band-frequency, microwave-scanner units; fully enclosed by their plastic housings; adjustable to provide detection-field sizes and functions required by BHMA A156.10.
 - 1. Provide capability for switching between bi- and unidirectional detection.
- D. Presence Sensors: Self-contained, active-infrared scanner units; adjustable to provide detection-field sizes and functions required by BHMA A156.10. Sensors shall remain active at all times.
- E. Photoelectric Beams: Pulsed infrared, sender-receiver assembly for recessed mounting. Beams shall not be active when doors are fully closed.
- F. Key Switch: Recess-mounted, door-control switch with key-controlled actuator; enclosed in 2-by-4-inch (50-by-100-mm) junction box. Provide faceplate engraved with letters indicating switch functions.
 - 1. Faceplate Material: Stainless steel, as selected by Architect from manufacturer's full range.
 - 2. Functions: Two-way automatic, hold open, one-way exit, off, full open, and partial open.
 - 3. Mounting: Recess mounted in door jamb.
- G. Electrical Interlocks: Unless units are equipped with self-protecting devices or circuits, provide electrical interlocks to prevent activation of operator when door is locked, latched, or bolted.

2.7 HARDWARE

- A. General: Provide units in sizes and types recommended by automatic entrance and hardware manufacturers for entrances and uses indicated. Finish exposed parts to match door finish.
- B. Breakaway Device for Power-Operated Doors: Device that allows door to swing out in direction of egress to full 90 degrees from any operating position. Maximum force to open door shall be as stipulated in "Performance Requirements" Article. Interrupt powered operation of door operator while in breakaway mode.
 - 1. Include two adjustable detent devices mounted in each breakaway panel; one top mounted and one bottom mounted to control breakaway force.
 - a. Limit Arms: Limit swing to 90 degrees, spring loaded with adjustable friction damping.
- C. Deadlocks: Deadbolt operated by exterior cylinder and interior thumb turn, with minimum 1-inch- (25-mm-) long throw bolt; BHMA A156.5, Grade 1.
 - 1. Cylinders: As specified in Section 087100 "Door Hardware."
 - 2. Deadbolts: Laminated-steel hook, mortise type, BHMA A156.5, Grade 1.
 - 3. Two-Point Locking for Stile and Rail Sliding Doors: Mechanism in stile of active door leaf that automatically extends second lockbolt into threshold.
 - 4. Lock/Unlock Indicator: Lock position indicators integrated with locking system. Stile is mounted on secure side of door. Visual display of lock position as follows: "OPEN" in black letters when unlocked, and "LOCKED" in red letters when locked.
 - 5. Armored Strike: Reinforced security strike plate.
- D. Weather Stripping: Replaceable components.
 - 1. Sliding Type: AAMA 701/702, made of wool, polypropylene, or nylon woven pile with nylon-fabric or aluminum-strip backing.

2.8 FABRICATION

- A. General: Factory fabricate automatic entrance components to designs, sizes, and thicknesses indicated and to comply with indicated standards.
 - 1. Form aluminum shapes before finishing.
 - 2. Weld in concealed locations to greatest extent possible to minimize distortion or discoloration of finish. Remove weld spatter and welding oxides from exposed surfaces by descaling or grinding.
 - 3. Use concealed fasteners to greatest extent possible. Where exposed fasteners are required, use countersunk Phillips flat-head machine screws, fabricated from stainless steel.
 - a. Where fasteners are subject to loosening or turning out from thermal and structural movements, wind loads, or vibration, use self-locking devices.
 - b. Reinforce members as required to receive fastener threads.

- 4. Where aluminum will contact dissimilar metals, protect against galvanic action by painting contact surfaces with primer or by applying sealant or tape recommended by manufacturer for this purpose.
- B. Framing: Provide automatic entrances as prefabricated assemblies. Complete fabrication, assembly, finishing, hardware application, and other work before shipment to Project site.
 - 1. Fabricate tubular and channel frame assemblies with welded or mechanical joints. Provide subframes and reinforcement as required for a complete system to support required loads.
 - 2. Perform fabrication operations in manner that prevents damage to exposed finish surfaces.
 - 3. Form profiles that are sharp, straight, and free of defects or deformations.
 - 4. Provide components with concealed fasteners and anchor and connection devices.
 - 5. Fabricate components with accurately fitted joints, with ends coped or mitered to produce hairline joints free of burrs and distortion.
- C. Doors: Factory fabricated and assembled in profiles indicated. Reinforce as required to support imposed loads and for installing hardware.
- D. Door Operators: Factory fabricated and installed in headers, including adjusting and testing.
- E. Glazing: Fabricate framing with minimum glazing edge clearances for thickness and type of glazing indicated, according to GANA's "Glazing Manual."
- F. Hardware: Factory install hardware to greatest extent possible; remove only as required for final finishing operation and for delivery to and installation at Project site. Cut, drill, and tap for factory-installed hardware before applying finishes.
 - 1. Provide sliding-type weather stripping, mortised into door, at perimeter of doors.

G. Controls:

- 1. General: Factory install activation and safety devices in doors and headers as required by BHMA A156.10 for type of door and direction of travel.
- 2. Install photoelectric beams in vertical jambs of sidelites, with dimension above finished floor as follows:

a. Top Beam: 48 inches (1219 mm).

b. Bottom Beam: 24 inches (610 mm).

2.9 GENERAL FINISH REQUIREMENTS

- A. Protect mechanical finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.
- B. Apply organic and anodic finishes to formed metal after fabrication unless otherwise indicated.

C. Appearance of Finished Work: Noticeable variations in same piece are unacceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

2.10 ALUMINUM FINISHES

A. Clear Anodic Finish: AAMA 611, AA-M12C22A41, Class I, 0.018 mm or thicker.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine conditions, with Installer present, for compliance with requirements for installation tolerances, header support, and other conditions affecting performance of automatic entrances.
- B. Examine roughing-in for electrical systems to verify actual locations of power connections before automatic entrance installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. General: Install automatic entrances according to manufacturer's written instructions and cited BHMA A156.10 for direction of pedestrian travel, including signage, controls, wiring, and connection to the building's power supply.
 - 1. Do not install damaged components. Fit frame joints to produce hairline joints free of burrs and distortion. Rigidly secure nonmovement joints. Seal joints watertight.
 - 2. Where aluminum will contact dissimilar metals, protect against galvanic action by painting contact surfaces with primer or by applying sealant or tape recommended by manufacturer for this purpose.
 - 3. Where aluminum will contact concrete or masonry, protect against corrosion by painting contact surfaces with bituminous coating.
- B. Entrances: Install automatic entrances plumb and true in alignment with established lines and grades without warp or rack of framing members and doors. Anchor securely in place.
 - 1. Install surface-mounted hardware using concealed fasteners to greatest extent possible.
 - 2. Set headers, carrier assemblies, tracks, operating brackets, and guides level and true to location with anchorage for permanent support.
 - 3. Level recesses for recessed thresholds using nonshrink grout.
- C. Door Operators: Connect door operators to electrical power distribution system.
- D. Controls: Install and adjust activation and safety devices according to manufacturer's written instructions and cited BHMA standard for direction of pedestrian travel. Connect control wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

- E. Glazing: Install glazing as specified in Section 088000 "Glazing."
- F. Sealants: Comply with requirements specified in Section 079200 "Joint Sealants" to provide weathertight installation.
 - 1. Set bottom-guide-track system, framing members and flashings in full sealant bed.
 - 2. Seal perimeter of framing members with sealant.
- G. Signage: Apply signage on both sides of each door, as required by cited BHMA standard for direction of pedestrian travel.
- H. Wiring within Automatic Entrance Enclosures: Bundle, lace, and train conductors to terminal points with no excess and without exceeding manufacturer's written limitations on bending radii. Provide and use lacing bars and distribution spools.

3.3 FIELD QUALITY CONTROL

- A. Certified Inspector: Engage a Certified Inspector to test and inspect components, assemblies, and installations, including connections.
- B. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
 - 1. Test and inspect each automatic entrance, using AAADM inspection forms, to determine compliance of installed systems with applicable BHMA standards.
- C. Automatic entrances will be considered defective if they do not pass tests and inspections.
- D. Prepare test and inspection reports.

3.4 ADJUSTING

- A. Adjust hardware, moving parts, door operators, and controls to function smoothly, and lubricate as recommended by manufacturer; comply with requirements of applicable BHMA standards.
- B. Readjust door operators and controls after repeated operation of completed installation equivalent to three days' use by normal traffic (100 to 300 cycles).
- C. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.

3.5 CLEANING

- A. Clean glass and metal surfaces promptly after installation. Remove excess glazing and sealant compounds, dirt, and other substances. Repair damaged finish to match original finish.
 - 1. Comply with requirements in Section 088000 "Glazing" for cleaning and maintaining glass.

3.6 MAINTENANCE SERVICE

- A. Initial Maintenance Service: Beginning at Substantial Completion, maintenance service shall include 12 months' full maintenance by skilled employees of automatic entrance Installer. Include quarterly preventive maintenance, repair or replacement of worn or defective components, lubrication, cleaning, and adjusting as required for proper automatic entrance operation. Parts and supplies shall be manufacturer's authorized replacement parts and supplies.
 - 1. Engage a Certified Inspector to perform safety inspection after each adjustment or repair and at end of maintenance period. Furnish completed inspection reports to Owner.
 - 2. Perform maintenance, including emergency callback service, during normal working hours.
 - 3. Include 24-hour-per-day, 7-day-per-week emergency callback service.

3.7 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain automatic entrances.

END OF SECTION 084229.23

SECTION 08 7100 - DOOR HARDWARE

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Commercial door hardware for the following:
 - a. Swinging doors.
 - b. Non-fire-rated sliding doors.
 - c. Non-fire-rated folding doors.
 - d. Other doors to the extent indicated.
 - 2. Cylinders for doors specified in other Sections.
 - 3. Electrified door hardware.
- B. Related Sections include the following:
 - 1. Division 8 Section "Standard Steel Doors and Frames"
 - 2. Division 8 Section "Sliding Automatic Entrance Doors" for entrance door hardware, except cylinders.
 - 3. Division 16 Sections for connections to electrical power system and for low-voltage wiring work.
- C. Products furnished, but not installed, under this Section include the following. Coordinating, purchasing, delivering, and scheduling remain requirements of this Section.
 - 1. Permanent cores to be installed by Owner.

1.3 SUBMITTALS

- A. Product Data: Include construction and installation details, material descriptions, dimensions of individual components and profiles, and finishes.
- B. Shop Drawings: Details of electrified door hardware, indicating the following:
 - 1. Wiring Diagrams: Power, signal, and control wiring. Include the following:
 - a. System schematic.
 - b. Point-to-point wiring diagram.

- c. Riser diagram.
- d. Elevation of each door.
- 2. Detail interface between electrified door hardware and fire alarm, access control, security & building control system.
- 3. Operation Narrative: Describe the operation of doors controlled by electrified door hardware.
- C. Samples for Initial Selection: For each finish, color, and texture required for each type of door hardware indicated.
- D. Samples for Verification: For exposed door hardware of each type, in specified finish, full size. Tag with full description for coordination with the door hardware sets. Submit Samples before, or concurrent with, submission of the final door hardware sets.
 - 1. Samples will be returned to Contractor. Units that are acceptable and remain undamaged through submittal, review, and field comparison process may, after final check of operation, be incorporated into the Work, within limitations of keying requirements.
- E. Product Certificates: For electrified door hardware, signed by product manufacturer.
 - 1. Certify that door hardware approved for use on types and sizes of labeled fire doors complies with listed fire door assemblies.
- F. Qualification Data: For Architectural Hardware Consultant.
- G. Product Test Reports: Based on evaluation of comprehensive tests performed by manufacturer and witnessed by a qualified testing agency.
- H. Maintenance Data: For each type of door hardware to include in maintenance manuals. Include final hardware and keying schedule.
- I. Warranty: Special warranty specified in this Section.
- J. Other Action Submittals:
 - 1. Door Hardware Sets: Prepared by or under the supervision of Architectural Hardware Consultant, detailing fabrication and assembly of door hardware, as well as procedures and diagrams. Coordinate the final door hardware sets with doors, frames, and related work to ensure proper size, thickness, hand, function, and finish of door hardware.
 - a. Format: Comply with scheduling sequence and vertical format in DHI's "Sequence and Format for the Hardware Schedule."
 - b. Format: Use same scheduling sequence and format and use same door numbers as in the Contract Documents.
 - c. Content: Include the following information:
 - 1) Identification number, location, hand, fire rating, and material of each door and frame.
 - 2) Type, style, function, size, quantity, and finish of each door hardware item. Include description and function of each lockset and exit device.

- 3) Complete designations of every item required for each door or opening including name and manufacturer.
- 4) Fastenings and other pertinent information.
- 5) Location of each door hardware set, cross-referenced to Drawings, both on floor plans and in door and frame schedule.
- 6) Explanation of abbreviations, symbols, and codes contained in schedule.
- 7) Mounting locations for door hardware.
- 8) Door and frame sizes and materials.
- 9) Description of each electrified door hardware function, including location, sequence of operation, and interface with other building control systems.
 - a) Sequence of Operation: Include description of component functions that occur in the following situations: authorized person wants to enter; authorized person wants to exit; unauthorized person wants to enter; unauthorized person wants to exit.
- 10) List of related door devices specified in other Sections for each door and frame.
- 11) Cut Sheets of each product in the Submittal.
- d. Submittal Sequence: Submit the final door hardware sets at earliest possible date, particularly where approval of the door hardware sets must precede fabrication of other work that is critical in Project construction schedule. Include Product Data, Samples, Shop Drawings of other work affected by door hardware, and other information essential to the coordinated review of the door hardware sets.
- 2. Keying Schedule: Prepared by or under the supervision of Architectural Hardware Consultant, detailing Owner's final keying instructions for locks. Include schematic keying diagram and index each key set to unique door designations.

1.4 QUALITY ASSURANCE

- A. Installer Qualifications: An employer of workers trained and approved by lock manufacturer.
 - Supplier's responsibilities may include furnishing and installing door hardware and providing a qualified Architectural Hardware Consultant available during the course of the Work to consult with Contractor, Architect, and Owner about door hardware and keying.
 - 2. Engineering Responsibility: Preparation of data for electrified door hardware, including Shop Drawings, based on testing and engineering analysis of manufacturer's standard units in assemblies similar to those indicated for this Project.
- B. Architectural Hardware Consultant Qualifications: A person who is currently certified by DHI as an Architectural Hardware Consultant and who is experienced in providing consulting services for door hardware installations that are comparable in material, design, and extent to that indicated for this Project.
 - 1. Electrified Door Hardware Consultant Qualifications: A qualified Architectural Hardware Consultant who is experienced in providing consulting services for electrified door hardware installations.

- C. Source Limitations: Obtain each type and variety of door hardware from a single manufacturer, unless otherwise indicated.
 - 1. Provide electrified door hardware from same manufacturer as mechanical door hardware, unless otherwise indicated. Manufacturers that perform electrical modifications and that are listed by a testing and inspecting agency acceptable to authorities having jurisdiction are acceptable.
- D. Electrified Door Hardware: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- E. Keying Conference: Conduct conference at Project site to comply with requirements in Division 1 Section "Project Management and Coordination." In addition to the Architectural Hardware Consultant other decision makers shall be in attendance. Incorporate keying conference decisions into final keying schedule after reviewing door hardware keying system including, but not limited to, the following:
 - 1. Function of building, flow of traffic, purpose of each area, degree of security required, and plans for future expansion.
 - 2. Preliminary key system schematic diagram.
 - 3. Requirements for key control system.
 - 4. Address for delivery of keys.
- F. Preinstallation Conference: Conduct conference at Project site to comply with requirements in Division 1 Section "Project Management and Coordination." Review methods and procedures related to electrified door hardware including, but not limited to, the following:
 - 1. Inspect and discuss electrical roughing-in and other preparatory work performed by other trades.
 - 2. Review sequence of operation for each type of electrified door hardware.
 - 3. Review and finalize construction schedule and verify availability of materials, Installer's personnel, equipment, and facilities needed to make progress and avoid delays.
 - 4. Review required testing, inspecting, and certifying procedures.

1.5 DELIVERY, STORAGE, AND HANDLING

- A. Inventory door hardware on receipt and provide secure lock-up for door hardware delivered to Project site.
- B. Tag each item or package separately with identification related to the final door hardware sets, and include basic installation instructions, templates, and necessary fasteners with each item or package.
- C. Deliver keys to manufacturer of key control system for subsequent delivery to Owner as required.
- D. Deliver keys and permanent cores to Owner.

1.6 COORDINATION

- A. Coordinate layout and installation of recessed pivots and floor closers with floor construction. Cast anchoring inserts into concrete. Concrete, reinforcement, and formwork requirements are specified in Division 3.
- B. Templates: Distribute door hardware templates for doors, frames, and other work specified to be factory prepared for installing door hardware. Check Shop Drawings of other work to confirm that adequate provisions are made for locating and installing door hardware to comply with indicated requirements.
- C. Electrical System Roughing-in: Coordinate layout and installation of electrified door hardware with connections to power supplies, fire alarm system and detection devices, access control system, security system & building control systems as necessary.

1.7 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of door hardware that fail in materials or workmanship within specified warranty period.
 - 1. Failures include, but are not limited to, the following:
 - a. Structural failures including excessive deflection, cracking, or breakage.
 - b. Faulty operation of operators and door hardware.
 - c. Deterioration of metals, metal finishes, and other materials beyond normal weathering and use.
 - 2. Warranty Period: Three years from date of Substantial Completion, except as follows:
 - a. Bored Locksets: 7 years from date of Substantial Completion.
 - b. Mortise Locksets: 10 years from date of Substantial Completion.
 - c. Exit Devices: 5 years from date of Substantial Completion.
 - d. Manual Closers: 10 years from date of Substantial Completion.

1.8 MAINTENANCE SERVICE

- A. Maintenance Tools and Instructions: Furnish a complete set of specialized tools and maintenance instructions as needed for Owner's continued adjustment, maintenance, and removal and replacement of door hardware.
- B. Maintenance Service: Beginning at Substantial Completion, provide six months' full maintenance by skilled employees of door hardware Installer.

1.9 EXTRA MATERIALS

A. Furnish full-size units of door hardware described below, before installation begins, that match products installed and that are packaged with protective covering for storage and identified with labels describing contents as listed in Part 3.

PART 2 - PRODUCTS

2.1 SCHEDULED DOOR HARDWARE

- A. General: Provide door hardware for each door to comply with requirements in this Section and door hardware sets indicated in Part 3 "Door Hardware Sets" Article.
 - 1. Door Hardware Sets: Provide quantity, item, size, finish or color indicated, and named manufacturers' products.
 - 2. Sequence of Operation: Provide electrified door hardware function, sequence of operation, and interface with other building control systems indicated.
- B. Designations: Requirements for design, grade, function, finish, size, and other distinctive qualities of each type of door hardware are indicated in Part 3 "Door Hardware Sets" Article. Products are identified by using door hardware designations, as follows:
 - 1. Named Manufacturers' Products: Manufacturer and product designation are listed for each door hardware type required for the purpose of establishing minimum requirements.

 Manufacturers' names are abbreviated in Part 3 "Door Hardware Sets" Article.
- C. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include manufacturers listed as "Approved Manufacturers" in this Section.

2.2 HINGES, GENERAL

- A. Quantity: Provide the following, unless otherwise indicated:
 - 1. Two Hinges: For doors with heights up to 60 inches.
 - 2. Three Hinges: For doors with heights 61 to 90 inches.
 - 3. Four Hinges: For doors with heights 91 to 120 inches.
 - 4. For doors with heights more than 120 inches, provide 4 hinges, plus 1 hinge for every 30 inches of door height greater than 120 inches.
- B. Template Requirements: Except for hinges and pivots to be installed entirely (both leaves) into wood doors and frames, provide only template-produced units.
- C. Hinge Weight: Unless otherwise indicated, provide the following:
 - 1. Exterior Doors: Antifriction-bearing heavy-weight non-ferrous hinges.
 - 2. Doors with Closers: Antifriction-bearing hinges.
 - 3. Interior Doors: As specified
- D. Hinge Base Metal: Unless otherwise indicated, provide the following:
 - 1. Exterior Hinges: Stainless steel, with stainless-steel pin.
 - 2. Interior Hinges: Steel, with steel pin or as specified.

- E. Hinge Options: Where indicated in door hardware sets or on Drawings:
- F. Electrified Functions for Hinges: Comply with the following:
 - 1. Power Transfer: Concealed PTFE-jacketed wires, secured at each leaf and continuous through hinge knuckle.
 - 2. Monitoring: Concealed electrical monitoring switch.
 - 3. Power Transfer and Monitoring: Concealed PTFE-jacketed wires, secured at each leaf and continuous through hinge knuckle, and with concealed electrical monitoring switch.
- G. Fasteners: Comply with the following:
 - 1. Machine Screws: For metal doors and frames (drilled and tapped holes).
 - 2. Wood Screws: For wood doors and frames (drilled pilot holes).
 - 3. Threaded-to-the-Head Wood Screws: For all wood doors including fire-rated wood doors.
 - 4. Screws: Phillips flat-head Machine screws (drilled and tapped holes) for metal doors. Wood screws for wood doors and frames (drilled pilot holes). Finish screw heads to match surface of hinges.

2.3 HINGES

- A. Butts and Hinges: BHMA A156.1 Listed under Category A in BHMA's "Certified Product Directory."
- B. Template Hinge Dimensions: BHMA A156.7.
- C. Approved Manufacturers:
 - 1. Bommer Industries, Inc. (BOM).
 - 2. Hager Companies (HAG).
 - 3. McKinney Products Company; an ASSA ABLOY Group company (MCK).
 - 4. Stanley Hardware; Div. of dormakaba, USA (STN).

2.4 CONTINUOUS HINGES

- A. Standard: BHMA A156.26.
 - 1. Listed under Category N in BHMA's "Certified Product Directory."
- B. Continuous, Barrel-Type Hinges: Hinge with knuckles formed around a pin that extends entire length of hinge.
 - 1. Base Metal for Exterior Hinges: Stainless steel.
 - 2. Base Metal for Interior Hinges: As specified.
 - 3. Approved Manufacturers:
 - a. Hager Companies (HAG).
 - b. Markar Architectural Products, Inc.; an ASSA ABLOY Group company (MAR).
 - c. McKinney Products Company; an ASSA ABLOY Group company (MCK).

- d. Stanley Hardware; Div. of dormakaba, USA (STN).
- C. Continuous, Gear-Type Hinges: Extruded-aluminum, pinless, geared hinge leaves; joined by a continuous extruded-aluminum channel cap; with concealed, self-lubricating thrust bearings.
 - 1. Approved Manufacturers:
 - a. Hager Companies (HAG).
 - b. McKinney Products Company; an ASSA ABLOY Group company (MCK).
 - c. Pemko Manufacturing Co. (PEM).
 - d. National Guard Company, Inc. (NGP).
 - e. Stanley Hardware; Div. of dormakaba, USA (STN).

2.5 LOCKS AND LATCHES, GENERAL

- A. Accessibility Requirements: Where indicated to comply with accessibility requirements, comply with the U.S. Architectural & Transportation Barriers Compliance Board's "Americans with Disabilities Act (ADA), Accessibility Guidelines for Buildings and Facilities (ADAAG)" and ANSI A117.1.
 - 1. Provide operating devices that do not require tight grasping, pinching, or twisting of the wrist and that operate with a force of not more than 5 lbf.
- B. Latches and Locks for Means of Egress Doors: Comply with NFPA 101. Latches shall not require more than 15 lbf to release the latch. Locks shall not require use of a key, tool, or special knowledge for operation.
- C. Electrified Locking Devices: BHMA A156.25.
- D. Lock Trim:
 - 1. Levers: As Specified.
 - 2. Escutcheons (Roses): As Specified.
 - 3. Dummy Trim: Match lock trim and escutcheons.
- E. Lock Throw: Comply with testing requirements for length of bolts required for labeled fire doors, and as follows:
 - 1. Bored Locks: Minimum 1/2-inch latchbolt throw.
 - 2. Mortise Locks: Minimum 3/4-inch latchbolt throw.
 - 3. Deadbolts: Minimum 1-inch bolt throw.
- F. Backset: 2-3/4 inches, unless otherwise indicated.
- G. Strikes: Manufacturer's standard strike with strike box for each latchbolt or lock bolt, with curved lip extended to protect frame, finished to match door hardware set, and as follows:
 - 1. Strikes for Bored Locks and Latches: BHMA A156.2.
 - 2. Strikes for Mortise Locks and Latches: BHMA A156.13.
 - 3. Strikes for Interconnected Locks and Latches: BHMA A156.12.
 - 4. Strikes for Auxiliary Deadlocks: BHMA A156.5.

5. Extra-Long-Lip Strikes: For locks used on frames with applied wood casing trim.

2.6 MECHANICAL LOCKS AND LATCHES

- A. Lock Functions: Function numbers and descriptions indicated in door hardware sets comply with the following:
 - 1. Bored Locks: BHMA A156.2.
 - 2. Mortise Locks: BHMA A156.13.
- B. Bored Locks: BHMA A156.2, Grade as Specified Listed under Category F in BHMA's "Certified Product Directory."
 - 1. Approved Manufacturers:
 - a. Best Access Systems; Div. of The Stanley Works (BAS).
 - b. SARGENT Manufacturing Company; an ASSA ABLOY Group company (SGT).
 - c. Schlage Commercial Lock Division; an Ingersoll-Rand Company (SCH).
- C. Mortise Locks: Stamped steel case with steel or brass parts; BHMA A156.13 Listed under Category F in BHMA's "Certified Product Directory."
 - 1. Approved Manufacturers:
 - a. Best Access Systems; Div. of dormakaba, USA (BST).
 - b. SARGENT Manufacturing Company; an ASSA ABLOY Group company (SGT).
 - c. Schlage Commercial Lock Division; an Ingersoll-Rand Company (SCH).

2.7 AUXILIARY LOCKS AND LATCHES

- A. Auxiliary Locks: BHMA A156.5 Listed under Category E in BHMA's "Certified Product Directory."
 - 1. Approved Manufacturers:
 - a. Accurate Lock & Hardware Co. (ALH).
 - b. Adams Rite Manufacturing Co. (ARM).
 - c. Best Access Systems; Div. of dormakaba USA (BST).
 - d. Falcon Lock; an Ingersoll-Rand Company (FAL).
 - e. SARGENT Manufacturing Company; an ASSA ABLOY Group company (SGT).
 - f. Stanley Commercial Hardware, a Div. of dormakaba USA (STCH)

2.8 DOOR BOLTS

- A. Bolt Throw: Comply with testing requirements for length of bolts required for labeled fire doors, and as follows:
 - 1. Mortise Flush Bolts: Minimum 3/4-inch throw.

- B. Dustproof Strikes: BHMA A156.16.
- C. Surface Bolts: BHMA A156.16.
 - 1. Flush Bolt Heads: Minimum of 1/2-inch diameter rods of brass, bronze, or stainless steel with minimum 12-inch long rod for doors up to 84 inches in height. Provide longer rods as necessary for doors exceeding 84 inches.
 - 2. Approved Manufacturers:
 - a. Burns Manufacturing Incorporated (BRN).
 - b. Architectural Builders Hardware. (ABH).
 - c. Hager Companies (HAG).
 - d. Trimco (TRM).
- D. Manual Flush Bolts: BHMA A156.16; designed for mortising into door edge.
 - 1. Approved Manufacturers:
 - a. Burns Manufacturing Incorporated (BRN).
 - b. Architectural Builders Hardware. (ABH).
 - c. Hager Companies (HAG).
 - d. Trimco (TRM).
- E. Automatic and Self-Latching Flush Bolts: BHMA A156.3; designed for mortising into door edge.
 - 1. Approved Manufacturers:
 - a. Burns Manufacturing Incorporated (BRN).
 - b. Architectural Builders Hardware. (ABH).
 - c. Hager Companies (HAG).
 - d. Trimco (TRM).

2.9 EXIT DEVICES

- A. Exit Devices: BHMA A156.3 Listed under Category G in BHMA's "Certified Product Directory."
- B. Accessibility Requirements: Where handles, pulls, latches, locks, and other operating devices are indicated to comply with accessibility requirements, comply with the U.S. Architectural & Transportation Barriers Compliance Board's "Americans with Disabilities Act (ADA), Accessibility Guidelines for Buildings and Facilities (ADAAG)" and ANSI A117.1.
 - 1. Provide operating devices that do not require tight grasping, pinching, or twisting of the wrist and that operate with a force of not more than 5 lbf.
- C. Exit Devices for Means of Egress Doors: Comply with NFPA 101. Exit devices shall not require more than 15 lbf to release the latch. Locks shall not require use of a key, tool, or special knowledge for operation.

- D. Panic Exit Devices: Listed and labeled by a testing and inspecting agency acceptable to authorities having jurisdiction, for panic protection, based on testing according to UL 305.
- E. Removable Mullions: BHMA A156.3.
- F. Dummy Push Bar: Nonfunctioning push bar matching functional push bar.
 - 1. Operation: Rigid, Movable or Movable with monitor switch as specified.
- G. Outside Trim: Material and finish to match locksets, unless otherwise indicated.
- H. Approved Manufacturers:
 - 1. Precision; a Div. of dormakaba, USA. (PRI).
 - 2. DORMA Architectural Hardware; Div. of dormakaba, USA. (DOR).
 - 3. Sargent Manufacturing Co; a Div. of Assa Abloy (SGT).
 - 4. Von Duprin; a Div. of Allegion (VND).

2.10 LOCK CYLINDERS

- A. Standard Lock Cylinders: BHMA A156.5.
- B. High-Security Lock Cylinders: BHMA A156.30.
- C. Cylinders: Manufacturer's standard tumbler type, constructed from brass or bronze, stainless steel, or nickel silver, and complying with the following:
 - 1. Number of Pins: As required for this project or as specified.
 - 2. Mortise Type: Threaded cylinders with rings and straight- or clover-type cam.
 - 3. Rim Type: Cylinders with back plate, flat-type vertical or horizontal tailpiece, and raised trim ring.
 - 4. Bored-Lock Type: Cylinders with tailpieces to suit locks.
 - a. High-Security Grade: BHMA A156.5, Grade 1A, listed and labeled as complying with pick- and drill-resistant testing requirements in UL 437 (Suffix A).
- D. Permanent Cores: Manufacturer's standard; finish face to match lockset; complying with the following:
 - 1. Interchangeable Cores: Core insert, removable by use of a special key; usable with other manufacturers' cylinders.
- E. Construction Keying: Comply with the following:
 - 1. Construction Cores: Provide construction cores that are replaceable by permanent cores. Provide 10 construction master keys.
 - a. Replace construction cores with permanent cores as indicated in keying schedule or as directed by Owner.
 - b. Furnish permanent cores as directed for installation.

- F. Manufacturer: Same manufacturer as for locks and latches.
- G. Approved Manufacturers:
 - 1. Best Access Systems; Div. of dormakaba, USA (BST).
 - 2. SARGENT Manufacturing Company; an ASSA ABLOY Group company (SGT).
 - 3. Schlage Commercial Lock Division; an Ingersoll-Rand Company (SCH).

2.11 KEYING

- A. Keying System: Factory registered, complying with guidelines in BHMA A156.28, Appendix A. Incorporate decisions made in keying conference.
- B. Keys: Nickel silver.
 - 1. Stamping: Permanently inscribe each key as determined at Keying Conference.
 - 2. Quantity: In addition to one extra key blank for each lock, provide the following:
 - a. Cylinder Change Keys: Three.
 - b. Master Keys: Five.
 - c. Grand Master Keys: Five.
 - d. Great-Grand Master Keys: Five.

2.12 KEY CONTROL SYSTEM

- A. Key Control Cabinet: BHMA A156.5, Grade 1; Metal cabinet with baked-enamel finish; containing key-holding hooks, labels, 2 sets of key tags with self-locking key holders, key-gathering envelopes, and temporary and permanent markers; with key capacity of 150% of the number of locks.
 - 1. Wall-Mounted Cabinet: Cabinet with hinged-panel door equipped with key-holding panels and pin-tumbler cylinder door lock.
- B. Cross-Index System: Multiple-index system for recording key information. Include three receipt forms for each key-holding hook.
 - 1. Approved Manufacturers:
 - a. Key Control Systems, Inc. (KCS).
 - b. Lund Equipment Co., Inc. (LUN).
 - c. MMF Industries (MMF).
- C. Key Lock Boxes:
 - 1. Approved Manufacturers:
 - a. Knox Company (KNX).

2.13 ELECTRIC STRIKES

- A. Standard: BHMA A156.31.
- B. General: Use fail-secure electric strikes with fire-rated devices.
- C. Approved Manufacturers:
 - 1. Adams Rite Manufacturing Co. (ARM).
 - 2. Folger Adam Security Inc.; an ASSA ABLOY Group company (FAS).
 - 3. HES, Inc.; an ASSA ABLOY Group company (HES).
 - 4. Rutherford Controls Int'l. Corp. (RCI).

2.14 OPERATING TRIM

- A. Standard: BHMA A156.6.
- B. Approved Manufacturers:
 - 1. Burns Manufacturing Incorporated (BRN).
 - 2. Hager Companies (HAG).
 - 3. Rockwood Manufacturing Company (RM).
 - 4. Trimco (TBM).

2.15 CLOSERS

- A. Accessibility Requirements: Where handles, pulls, latches, locks, and other operating devices are indicated to comply with accessibility requirements, comply with the U.S. Architectural & Transportation Barriers Compliance Board's "Americans with Disabilities Act (ADA), Accessibility Guidelines for Buildings and Facilities (ADAAG)." ANSI A117.1.
- B. Comply with the following maximum opening-force requirements:
 - a. Interior, Non-Fire-Rated Hinged Doors: 5 lbf applied perpendicular to door.
 - b. Sliding or Folding Doors: 5 lbf applied parallel to door at latch.
- C. Door Closers for Means of Egress Doors: Comply with NFPA 101. Door closers shall not require more than 30 lbf to set door in motion and not more than 15 lbf to open door to minimum required width.
- D. Hold-Open Closers/Detectors: Coordinate and interface integral smoke detector and closer device with fire alarm system.
- E. Power-Assist Closers: As specified in Division 8 Section "Automatic Door Operators" for access doors for people with disabilities or where listed in the door hardware sets.
- F. Size of Units: Unless otherwise indicated, comply with manufacturer's written recommendations for size of door closers depending on size of door, exposure to weather, and anticipated frequency of use. Provide factory-sized closers, adjustable to meet field conditions and requirements for opening force.

- G. Surface Closers: BHMA A156.4 Listed under Category C in BHMA's "Certified Product Directory." Provide type of arm required for closer to be located on non-public side of door, unless otherwise indicated.
 - 1. Approved Manufacturers:
 - a. DORMA Architectural Hardware; Div. of dormakaba, USA. (DOR).
 - b. Stanley Door Closer. Div. of dormakaba, USA (SDC)
 - c. Stanley Commercial Hardware. Div. of dormakaba, USA (STCH)
 - d. LCN Closers; an Ingersoll-Rand Company (LCN).
 - e. SARGENT Manufacturing Company; an ASSA ABLOY Group company (SGT).
- H. Concealed Closers: BHMA A156.4 Listed under Category C in BHMA's "Certified Product Directory."
 - 1. Approved Manufacturers:
 - a. DORMA Architectural Hardware; Div. of dormakaba, USA. (DOR).
 - b. Stanley Door Closer. Div. of dormakaba, USA (SDC)
 - c. LCN Closers; an Ingersoll-Rand Company (LCN).
- I. Closer Holder Release Devices: BHMA A156.15. Listed under Category C in BHMA's "Certified Product Directory."
 - 1. Life-Safety Type: On release of hold open, door becomes self-closing. Automatic release is activated by smoke detection system or loss of power as necessary.
 - 2. Approved Manufacturers:
 - a. DORMA Architectural Hardware; Div. of dormakaba, USA. (DOR).
 - b. Stanley Door Closer. Div. of dormakaba, USA (SDC)
 - c. Stanley Commercial Hardware. Div. of dormakaba, USA (STCH)
 - d. LCN Closers; an Ingersoll-Rand Company (LCN).
 - e. SARGENT Manufacturing Company; an ASSA ABLOY Group company (SGT).

2.16 PROTECTIVE TRIM UNITS

- A. Size: 2 inches less than door width on push side and 1 inch less than door width on pull side, by height specified in door hardware sets.
- B. Fasteners: Manufacturer's standard machine or self-tapping screws, counter-sunk.
- C. Metal Protective Trim Units: BHMA A156.6; beveled 4 sides.
 - 1. Material: 050-inch thick.
 - 2. Approved Manufacturers:
 - a. Burns Manufacturing Incorporated (BM).
 - b. Hager Companies (HAG).
 - c. Rockwood Manufacturing Company (RM).
 - d. Trimco (TRM).

2.17 STOPS AND HOLDERS

- A. Stops and Bumpers: BHMA A156.16.
 - 1. Provide floor stops for doors unless wall or other type stops are scheduled or indicated. Do not mount floor stops where they will impede traffic. Where floor or wall stops are not appropriate, provide overhead holders.
- B. Electromagnetic Door Holders: BHMA A156.15. Listed under Category C in BHMA's "Certified Product Directory."
 - 1. Coordinate with fire detectors and interface with fire alarm system for labeled fire door assemblies.
- C. Silencers for Wood Door Frames: BHMA A156.16, Grade 1; neoprene or rubber.
- D. Silencers for Metal Door Frames: BHMA A156.16, Grade 1; neoprene or rubber.
- E. Approved Manufacturers:
 - 1. Burns Manufacturing Incorporated (BRN).
 - 2. Hager Companies (HAG).
 - 3. Rockwood Manufacturing Company (ROC).
 - 4. Trimco (TRM).

2.18 DOOR GASKETING

- A. Standard: BHMA A156.22. Listed under Category J in BHMA's "Certified Product Directory."
- B. General: Provide continuous weather-strip gasketing on exterior doors and provide smoke, light, or sound gasketing on interior doors where indicated or scheduled. Provide noncorrosive fasteners for exterior applications and elsewhere as indicated.
 - 1. Perimeter Gasketing: Apply to head and jamb, forming seal between door and frame.
 - 2. Meeting Stile Gasketing: Fasten to meeting stiles, forming seal when doors are closed.
 - 3. Door Bottoms: Apply to bottom of door, forming seal with threshold when door is closed.
- C. Sound-Rated Gasketing: Assemblies that are listed and labeled by a testing and inspecting agency, for sound ratings indicated, based on testing according to ASTM E 1408.
- D. Replaceable Seal Strips: Provide only those units where resilient or flexible seal strips are easily replaceable and readily available from stocks maintained by manufacturer.
- E. Approved Manufacturers:
 - 1. National Guard Products (NGP).
 - 2. Pemko Manufacturing Co. (PEM).
 - 3. Zero International (ZRO).

2.19 THRESHOLDS

- A. Standard: BHMA A156.21. Listed under Category J in BHMA's "Certified Product Directory."
- B. Accessibility Requirements: Where thresholds are indicated to comply with accessibility requirements.
 - 1. Bevel raised thresholds with a slope of not more than 1:2. Provide thresholds not more than 1/2 inch high.
 - 2. Thresholds for Means of Egress Doors: Comply with NFPA 101. Maximum 1/2 inch high.

C. Approved Manufacturers:

- 1. National Guard Products (NGP).
- 2. Pemko Manufacturing Co. (PEM).
- 3. Zero International (ZRO).

2.20 MISCELLANEOUS DOOR HARDWARE

A. Boxed Power Supplies: Modular unit in NEMA ICS 6, Type 4 enclosure; filtered and regulated; voltage rating and type matching requirements of door hardware served; and listed and labeled for use with fire alarm systems.

2.21 FABRICATION

- A. Base Metals: Produce door hardware units of base metal, fabricated by forming method indicated, using manufacturer's standard metal alloy, composition, temper, and hardness. Furnish metals of a quality equal to or greater than that of specified door hardware units and BHMA A156.18. Do not furnish manufacturer's standard materials or forming methods if different from specified standard.
- B. Fasteners: Provide door hardware manufactured to comply with published templates generally prepared for machine, wood, and sheet metal screws. Provide screws according to commercially recognized industry standards for application intended, except aluminum fasteners are not permitted. Provide Phillips flat-head screws with finished heads to match surface of door hardware, unless otherwise indicated.
 - Concealed Fasteners: For door hardware units that are exposed when door is closed, except for units already specified with concealed fasteners. Do not use through bolts for installation where bolt head or nut on opposite face is exposed unless it is the only means of securely attaching the door hardware. Where through bolts are used on hollow door and frame construction, provide sleeves for each through bolt.
 - 2. Spacers or Sex Bolts: For through bolting of hollow-metal doors.

2.22 FINISHES

- A. Standard: BHMA A156.18, as indicated in door hardware sets.
- B. Protect mechanical finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.
- C. Appearance of Finished Work: Variations in appearance of abutting or adjacent pieces are acceptable if they are within one-half of the range of approved Samples. Noticeable variations in the same piece are not acceptable. Variations in appearance of other components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine doors and frames, with Installer present, for compliance with requirements for installation tolerances, labeled fire door assembly construction, wall and floor construction, and other conditions affecting performance.
- B. Examine roughing-in for electrical power systems to verify actual locations of wiring connections before electrified door hardware installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Steel Doors and Frames: Comply with DHI A115 Series.
 - 1. Surface-Applied Door Hardware: Drill and tap doors and frames according to ANSI A250.6.

3.3 INSTALLATION

- A. Mounting Heights: Mount door hardware units at heights indicated on Drawings and as follows unless otherwise indicated or required to comply with governing regulations.
 - 1. Standard Steel Doors and Frames: DHI's "Recommended Locations for Architectural Hardware for Standard Steel Doors and Frames."
- B. Install each door hardware item to comply with manufacturer's written instructions. Where cutting and fitting are required to install door hardware onto or into surfaces that are later to be painted or finished in another way, coordinate removal, storage, and reinstallation of surface protective trim units with finishing work specified in Division 9 Sections. Do not install surface-mounted items until finishes have been completed on substrates involved.

- 1. Set units level, plumb, and true to line and location. Adjust and reinforce attachment substrates as necessary for proper installation and operation.
- 2. Drill and countersink units that are not factory prepared for anchorage fasteners. Space fasteners and anchors according to industry standards.
- C. Boxed Power Supplies: Locate power supplies as necessary for non-visible and functional operation.
 - 1. Configuration: Provide the least number of power supplies required to adequately serve doors with electrified door hardware.
- D. Thresholds: Set thresholds for exterior and acoustical doors in full bed of sealant complying with requirements specified in Division 7 Section "Joint Sealants."

3.4 ADJUSTING

- A. Initial Adjustment: Adjust and check each operating item of door hardware and each door to ensure proper operation or function of every unit. Replace units that cannot be adjusted to operate as intended. Adjust door control devices to compensate for final operation of heating and ventilating equipment and to comply with referenced accessibility requirements.
 - 1. Spring Hinges: Adjust to achieve positive latching when door is allowed to close freely from an open position of 30 degrees.
 - 2. Electric Strikes: Adjust horizontal and vertical alignment of keeper to properly engage lock bolt.
 - 3. Door Closers: Unless otherwise required by authorities having jurisdiction, adjust sweep period so that, from an open position of 70 degrees, the door will take at least 3 seconds to move to a point 3 inches from the latch, measured to the leading edge of the door.
- B. Occupancy Adjustment: Approximately Three months after date of Substantial Completion, Installer's Architectural Hardware Consultant shall examine and readjust, including adjusting operating forces, each item of door hardware as necessary to ensure function of doors, door hardware, and electrified door hardware.

3.5 CLEANING AND PROTECTION

- A. Clean adjacent surfaces soiled by door hardware installation.
- B. Clean operating items as necessary to restore proper function and finish.
- C. Provide final protection and maintain conditions that ensure that door hardware is without damage or deterioration at time of Substantial Completion.

3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain door hardware and door hardware finishes. Refer to Division 1 Section "Demonstration and Training."

3.7 DOOR HARDWARE SETS

{ PRIVATE tbl1}

HARDWARE SET # 01.0 - MAIN ENTRY, PERIMETER ENTR/EXIT (2-3072/ALDXALF/AC)

DOOR(S): 101A, 107, 112A, 112B, 129A,

EACH TO HAVE:

<u>QTY</u>	<u>UNIT</u>	<u>PRODUCT</u>	DESCRIPTION	<u>FINISH</u>	<u>MFG</u>
1	EA	CONT HINGE	661 HD X EPT X LAR (ACTIVE LEAF)	AL	STN
1	EA	CONT HINGE	661HD X LAR	AL	STN
1	EA	PWR TRANSFER	PT1000	AL	ABH
1	EA	CVR EXIT DEVICE	3RO MLR 2603 X 2903 B (LATCH RETRACTION) (STOREROOM)	626W	PHI
1	EA	CYLINDER	MEDECO NON-IC (RIM)	626	MED
1	EA	CVR EXIT DEVICE	3RO 2602 X 2902 B (DUMMY TRIM)	626W	PHI
2	EA	CLOSER	CLD-4550 CS SN (MOUNT PARALLEL ARM - PUSH SIDE)	689	SDC
2	EA	HD FLOOR STOP	1209 (MOUNT AT MAX SWING OF CLOSER)	630	TRM
2	EA	SWEEP	601A X LAR	AL	NGP
1	EA	THRESHOLD	513 X LAR X 1/4-20 SS MSEA	AL	NGP
1	EA	PWR SUPPLY	RPSMLR2-BB (BATTERY BACKUP)	N/A	PHI
1	EA	AC READER	BY SECURITY	N/A	B/O
1	EA	REQUEST TO EXIT	BY SECURITY	N/A	B/O

NOTE: BALANCE OF ALL WEATHERSEALS BY DOOR

MANUFACTURER

OPERATIONAL NARRATIVE:

VALID CREDENTIAL AT AC READER RETRACTS LATCH

AT EXIT DEVICE FOR INGRESS.

REQUEST TO EXIT, IF REQUIRED, BY SECURITY

CONTRACTOR.

FREE EGRESS AT ALL TIMES.

HARDWARE SET # 02.0 - VESTIBULE (2-3072/ALDXALF)

DOOR(S): 101B, 112C, 112D,

EACH TO HAVE:

<u>QTY</u> <u>UNIT</u> <u>PRODUCT</u> <u>DESCRIPTION</u> <u>FINISH</u> <u>MFG</u>

CONSTRUCTION DOCUMENTS 100% SUBMITTAL

2	EA	CONT HINGE	661 HD X LAR	AL	STN
2	EA	PUSH/PULL BAR	1731 X LAR	626W	PHI
2	EA	CLOSER	CLD-4550 SN (MOUNT REGULAR ARM - PULL SIDE)	689	SDC
2	EA	FLOOR STOP	1215CKU	626	TRM

HARDWARE SET # 03.0 - LIBRARY/READING/RESOURCE (6073/ALDXALF/AUTO SLIDING)

DOOR(S): 103A, EACH TO HAVE:

<u>QTY</u>	<u>UNIT</u>	<u>PRODUCT</u>	DESCRIPTION	<u>FINISH</u>	<u>MFG</u>
1	EA	CYLINDER	MEDECO NON-IC (RIM) OR (MORTISE) AS NEEDED	626	BST
		NOTE:	BALANCE OF ALL HARDWARE BY DOOR MANUFACTURER.		

HARDWARE SET # 04.0 - LIBRARY/READING/RESOURCE (3073/ALDXALF)

DOOR(S): 103B, EACH TO HAVE:

<u>QTY</u>	<u>UNIT</u>	<u>PRODUCT</u>	<u>DESCRIPTION</u>	<u>FINISH</u>	<u>MFG</u>
1	EA	CONT HINGE	661 HD X LAR	AL	STN
1	EA	RIM EXIT DEVICE	3RO 2408 X 2908 B (CLASSROOM)	630	PHI
1	EA	CYLINDER	MEDECO NON-IC (RIM)	626	MED
1	EA	CLOSER	CLD-4550 SN (MOUNT REGULAR ARM - PULL SIDE)	689	SDC
1	EA	WALL STOP	1270CX (CONVEX)	626	TRM
		NOTE:	BALANCE OF ALL SEALS BY DOOR MANUFACTURER.		

HARDWARE SET # 05.0 - LIBRARY, DANCE, ARTS, WEIGHT, GYM STORAGE (2-30710/HMDXHMF)

DOOR(S): 104, 134, 139A,

EACH TO HAVE:

<u>QTY</u>	<u>UNIT</u>	<u>PRODUCT</u>	<u>DESCRIPTION</u>	<u>FINISH</u>	<u>MFG</u>
8	EA	HINGE	FBB179 4.5 X 4.5 (NRP AT OUTSWING LOCKED OPNGS)	652	STN
1	EA	FLUSHBOLT	3917-24 (TOP)	626	TRM

CONSTRUCTION DOCUMENTS 100% SUBMITTAL

1	EA	FLUSHBOLT	3917-12 (BOTTOM)	626	TRM
1	EA	LOCKSET	45H0D16H LC (STOREROOM)	626	BST
1	EA	CYLINDER	MEDECO NON-IC MORTISE X CAM REQ'D	626	MED
2	EA	OVERHEAD STOP	4030 SERIES	626	ABH
2	EA	SILENCER	1229A (HM FRAME)	GREY	TRM

HARDWARE SET # 06.0 - TOILET, CHANGING ROOM (30710/HMDXHMF)

DOOR(S): 105, 106, 116, 117, 120, 121, 125, 141, 142

EACH TO HAVE:

<u>QTY</u>	<u>UNIT</u>	<u>PRODUCT</u>	<u>DESCRIPTION</u>	FINISH	<u>MFG</u>
4	EA	HINGE	FBB179 4.5 X 4.5 (NRP AT OUTSWING LOCKED OPNGS)	652	STN
1	EA	LOCKSET	45H0L16H (PRIVACY)	626	BST
1	EA	INDICATOR BOLT	QDB285 (INDICATOR BOLT)	626	STCH
1	EA	WALL STOP	1270CX (CONVEX)	626	TRM
3	EA	SILENCER	1229A (HM FRAME)	GREY	TRM

HARDWARE SET # 07.0 - MULTI-PURPOSE STORAGE, PANTRY, CHASE, JANITOR, $DANCE\ STOR\ (30710/HMDXHMF)$

DOOR(S): 108, 109, 110, 113, 118A, 118B, 126, 130, 135, 139B,

EACH TO HAVE:

<u>QTY</u>	<u>UNIT</u>	<u>PRODUCT</u>	<u>DESCRIPTION</u>	<u>FINISH</u>	<u>MFG</u>
4	EA	HINGE	FBB179 4.5 X 4.5 (NRP AT OUTSWING LOCKED OPNGS)	652	STN
1	EA	LOCKSET	45H0D16H LC (STOREROOM)	626	BST
1	EA	CYLINDER	MEDECO NON-IC MORTISE X CAM REQ'D	626	MED
1	EA	WALL STOP	1270CX (CONVEX)	626	TRM
3	EA	SILENCER	1229A (HM FRAME)	GREY	TRM

HARDWARE SET # 08.0 - MULTIPURPOSE EXTERIOR ENTR/EXIT (3072/ALDXALF)

DOOR(S): 111A, EACH TO HAVE:

<u>QTY</u>	<u>UNIT</u>	PRODUCT	DESCRIPTION	<u>FINISH</u>	<u>MFG</u>
1	EA	CONT HINGE	661 HD X LAR	AL	STN

CONSTRUCTION DOCUMENTS 100% SUBMITTAL

1	EA	RIM EXIT DEVICE	3RO 2401 (EXIT ONLY)	630	PHI
1	EA	CLOSER	CLD-4550 CS SN (MOUNT PARALLEL ARM - PUSH SIDE)	689	SDC
1	EA	HD FLOOR STOP	1209 (MOUNT AT MAX SWING OF CLOSER)	630	TRM
1	EA	SWEEP	601A X LAR	AL	NGP
1	EA	THRESHOLD	513 X LAR X 1/4-20 SS MSEA	AL	NGP

NOTE: BALANCE OF ALL WEATHERSEALS BY DOOR

MANUFACTURER.

HARDWARE SET # 09.0 - MULTIPURPOSE ENTR/EXIT (30710/HMDXHMF)

DOOR(S): 111B, 111C, 111D,

EACH TO HAVE:

<u>QTY</u>	<u>UNIT</u>	<u>PRODUCT</u>	<u>DESCRIPTION</u>	<u>FINISH</u>	<u>MFG</u>
4	EA	HINGE	FBB179 4.5 X 4.5 (NRP AT OUTSWING LOCKED OPNGS)	652	STN
1	EA	RIM EXIT DEVICE	3RO 2108 X 4908 B (CLASSROOM)	626	PHI
1	EA	CYLINDER	MEDECO NON-IC RIM	626	MED
1	EA	CLOSER	CLD-4550 SN (MOUNT PARALLEL ARM - PUSH SIDE)	689	SDC
1	EA	PROTECTION PLT	KO050 10" X 2" LDW B4E/CSK (KICK - PUSH SIDE)	630	TRM
1	EA	WALL STOP	1270CX (CONVEX)	626	TRM
3	EA	SILENCER	1229A (HM FRAME)	GREY	TRM

HARDWARE SET # 10.0 - W ENTR /EXIT (2-3072/ALDXALF)

DOOR(S): HARDWARE NOT USED

EACH TO HAVE:

<u>QTY</u>	<u>UNIT</u>	<u>PRODUCT</u>	<u>DESCRIPTION</u>	<u>FINISH</u>	<u>MFG</u>
2	EA	CONT HINGE	661HD X LAR	AL	STN
2	EA	CVR EXIT DEVICE	3RO 2602 X 2902 B (DUMMY TRIM)	626W	PHI
1	EA	CYLINDER	MEDECO NON-IC RIM	626	MED
2	EA	CLOSER	CLD-4550 CS SN (MOUNT PARALLEL ARM - PUSH SIDE)	689	SDC
2	EA	HD FLOOR STOP	1209 (MOUNT AT MAX SWING OF CLOSER)	630	TRM
2	EA	SWEEP	601A X LAR	AL	NGP
1	EA	THRESHOLD	513 X LAR X 1/4-20 SS MSEA	AL	NGP
		NOTE:	BALANCE OF ALL WEATHERSEALS BY DOOR		

BALANCE OF ALL WEATHERSEALS BY DOOR MANUFACTURER.

HARDWARE SET # 11.0 - CONCESSION EXTERIOR ENTR/EXIT (3070/HMDXHMF)

DOOR(S): 114A, EACH TO HAVE:

<u>QTY</u>	<u>UNIT</u>	PRODUCT	<u>DESCRIPTION</u>	<u>FINISH</u>	<u>MFG</u>
3	EA	HINGE	FBB191 4.5 X 4.5 NRP	630	STN
1	EA	LOCKSET	45H0D16H LC (STOREROOM)	626	BST
1	EA	CYLINDER	MEDECO NON-IC RIM	626	MED
1	EA	CLOSER	CLD-4550 CS SN (MOUNT PARALLEL ARM - PUSH SIDE)	689	SDC
1	EA	PROTECTION PLT	KO050 10" X 2" LDW B4E/CSK (KICK - PUSH SIDE)	630	TRM
1	EA	HD FLOOR STOP	1209 (MOUNT AT MAX SWING OF CLOSER)	630	TRM
1	EA	SEAL	5050C X LAR (HEAD/JAMBS)	CHAR	NGP
1	EA	SWEEP	601A X LAR	AL	NGP
1	EA	THRESHOLD	513 X LAR X 1/4-20 SS MSEA	AL	NGP

HARDWARE SET # 12.0 - CONCESSION INTERIOR ENTR/EXIT (30710/HMDXHMF)

DOOR(S): 114B, EACH TO HAVE:

<u>QTY</u>	<u>UNIT</u>	<u>PRODUCT</u>	<u>DESCRIPTION</u>	<u>FINISH</u>	<u>MFG</u>
4	EA	HINGE	FBB179 4.5 X 4.5 NRP	652	STN
1	EA	LOCKSET	45H0D16H LC (STOREROOM)	626	BST
1	EA	CYLINDER	MEDECO NON-IC RIM	626	MED
1	EA	CLOSER	CLD-4550 SN (MOUNT REGULAR ARM - PULL SIDE)	689	SDC
1	EA	PROTECTION PLT	KO050 10" X 2" LDW B4E/CSK (KICK - PUSH SIDE)	630	TRM
1	EA	WALL STOP	1270CX (CONVEX)	626	TRM
3	EA	SILENCER	1229A (HM FRAME)	GREY	TRM

HARDWARE SET # 13.0 - MENS/WOMENS RESTROOM (30710/HMDXHMF)

DOOR(S): 115, 119,

EACH TO HAVE:

<u>QTY</u>	<u>UNIT</u>	<u>PRODUCT</u>	<u>DESCRIPTION</u>	<u>FINISH</u>	<u>MFG</u>
4	EA	HINGE	FBB179 4.5 X 4.5	652	STN
1	EA	PUSH/PULL	1895-4 4" X 16"	630	TRM

CONSTRUCTION DOCUMENTS 100% SUBMITTAL

1	EA	CLOSER	CLD-4550 SN (MOUNT REGULAR ARM - PULL SIDE)	689	SDC
1	EA	PROTECTION PLT	KO050 10" X 2" LDW B4E/CSK (KICK - PUSH SIDE)	630	TRM
1	EA	PROTECTION PLT	KO050 6" X 1" LDW B4E/CSK (MOP - PULL SIDE)	630	TRM
1	EA	WALL STOP	1270CX (CONVEX)	626	TRM
3	EA	SILENCER	1229A (HM FRAME)	GREY	TRM

HARDWARE SET # 14.0 - OFFICE WORKROOM, ARTS/CRAFTS, DANCE, WEIGHT RM (30710/ALDXALF)

DOOR(S): 123, 133, 136, 138A, 138B,

EACH TO HAVE:

<u>QTY</u>	<u>UNIT</u>	<u>PRODUCT</u>	<u>DESCRIPTION</u>	<u>FINISH</u>	<u>MFG</u>
1	EA	CONT HINGE	661 HD X LAR	AL	STN
1	EA	DEADLOCK	MS1850	628	ADM
1	EA	CYLINDER	MEDECO NON-IC MORTISE CYL X CAM REQ'D	626	MED
1	EA	TT CYLINDER	1EA-7A4 (THUMBTURN CYL) X CAM REQ'D	626	BST
1	EA	PUSH/PULL BAR	1731 X LAR	626W	PHI
1	EA	CLOSER	CLD-4550 SN (MOUNT REGULAR ARM - PULL SIDE)	689	SDC
1	EA	SPACERS BRKTS	DROP PLATES, SPACERS AND BRACKETS AS REQUIRED FOR COMPLETE AND SECURE CLOSER INSTALLATION	689	SDC
1	EA	FLOOR STOP	1215CKU	626	TRM

NOTE: BALANCE OF ALL SEALS BY DOOR MANUFACTURER.

HARDWARE SET # 15.0 - OFFICE (30710/HMDXHMF)

DOOR(S): 127, EACH TO HAVE:

<u>QTY</u>	<u>UNIT</u>	PRODUCT	DESCRIPTION	<u>FINISH</u>	<u>MFG</u>
4	ΕA	HINGE	EDD 170 A 5 V A 5 (AIDD AT OUTSWING LOGVED ODNIGS)	650	CUENT
4	EA	HINGE	FBB179 4.5 X 4.5 (NRP AT OUTSWING LOCKED OPNGS)	652	STN
1	EA	LOCKSET	45H0A16H LC (OFFICE/ENTRY)	626	BST
1	EA	CYLINDER	MEDECO NON-IC RIM	626	MED
1	EA	WALL STOP	1270CX (CONVEX)	626	TRM
3	EA	SILENCER	1229A (HM FRAME)	GREY	TRM

HARDWARE SET # 16.0 - GYNASIUM EXTERIOR EXIT (2-3070/HMDXHMF)

DOOR(S): 128A, 128B,

CONSTRUCTION DOCUMENTS 100% SUBMITTAL

EACH TO HAVE:

<u>QTY</u>	<u>UNIT</u>	PRODUCT	DESCRIPTION	<u>FINISH</u>	<u>MFG</u>
2	EA	CONT HINGE	651HD X LAR	630	STN
1	EA	MULLION	KR822 X LAR	689	PHI
1	EA	CYLINDER	MEDECO NON-AC RIM (MULLION)	626	MED
2	EA	RIM EXIT DEVICE	3RO 2101 (EXIT ONLY)	626W	PHI
2	EA	CLOSER	CLD-4550 CS SN (MOUNT PARALLEL ARM - PUSH SIDE)	689	SDC
2	EA	PROTECTION PLT	KO050 10" X 2" LDW B4E/CSK (KICK - PUSH SIDE)	630	TRM
2	EA	HD FLOOR STOP	1209 (MOUNT AT MAX SWING OF CLOSER)	630	TRM
2	EA	SWEEP	601A X LAR	AL	NGP
1	EA	THRESHOLD	513 X LAR X 1/4-20 SS MSEA	AL	NGP

HARDWARE SET # 17.0 - GYMNASIUM (2-30710/HMDXHMF)

DOOR(S): 128C, 128D,

EACH TO HAVE:

<u>OTY</u>	<u>UNIT</u>	PRODUCT	<u>DESCRIPTION</u>	<u>FINISH</u>	<u>MFG</u>
2	EA	CONT HINGE	651HD X LAR	630	STN
2	EA	SVR EXIT DEVICE	3RO 2208 LBR X 4908 B (LESS BOTTOM ROD, CLASSROOM)	630	PHI
2	EA	CYLINDER	MEDECO NON-IC RIM	626	MED
2	EA	CLOSER	CLD-4550 SN (MOUNT PARALLEL ARM - PUSH SIDE)	689	SDC
2	EA	PROTECTION PLT	KO050 10" X 2" LDW B4E/CSK (KICK - PUSH SIDE)	630	TRM
2	EA	WALL STOP	1270CX (CONVEX)	626	TRM
2	EA	SILENCER	1229A (HM FRAME)	GREY	TRM

HARDWARE SET # 18.0 - CROSS CORRIDOR (2-30710/HMDXHMF)

DOOR(S): 129B, EACH TO HAVE:

<u>QTY</u>	<u>UNIT</u>	<u>PRODUCT</u>	<u>DESCRIPTION</u>	<u>FINISH</u>	<u>MFG</u>
2	EA	CONT HINGE	651HD X LAR	630	STN
2	EA	SVR EXIT DEVICE	3RO 2214 LBR X 4914 B (LESS BOTTOM ROD, PASSAGE)	630	PHI
2	EA	CLOSER	CLD-4550 SN (MOUNT PARALLEL ARM - PUSH SIDE)	689	SDC
2	EA	PROTECTION PLT	KO050 10" X 2" LDW B4E/CSK (KICK - PUSH SIDE)	630	TRM

CONSTRUCTION DOCUMENTS 100% SUBMITTAL

2	EA	WALL STOP	1270CX (CONVEX)	626	TRM
2	FA	SII FNCFR	1229A (HM FRAME)	GRFY	TRM

HARDWARE SET # 19.0 - IT/TELECOM (30710/HMDXHMF/AC)

DOOR(S): 131, EACH TO HAVE:

<u>QTY</u>	<u>UNIT</u>	<u>PRODUCT</u>	<u>DESCRIPTION</u>	<u>FINISH</u>	<u>MFG</u>
4	EA	HINGE	FBB179 4.5 X 4.5 (NRP AT OUTSWING LOCKED OPNGS)	652	STN
1	EA	LOCKSET	45H0D16H LC (STOREROOM)	626	BST
1	EA	CYLINDER	MEDECO NON-IC MORTISE	626	MED
1	EA	ELECTRIC STK	1006 X FACE PLATE REQ'D	630	HES
1	EA	CONTROLLER	2005M3 SMART Pac III	N/A	HES
1	EA	WALL STOP	1270CX (CONVEX)	626	TRM
3	EA	SILENCER	1229A (HM FRAME)	GREY	TRM
1	EA	AC READER	BY SECURITY	N/A	B/O
1	EA	REQUEST TO EXIT	BY SECURITY	N/A	B/O

OPERATIONAL NARRATIVE:

VALID CREDENTIAL AT AC READER RELEASES ELECTRIC STRIKE FOR INGRESS.

REQUEST TO EXIT, IF REQUIRED, BY SECURITY CONTRACTOR.

FREE EGRESS AT ALL TIMES.

HARDWARE SET # 20.0 - KILN ROOM (2-30710/HMDXHMF)

DOOR(S): 132, EACH TO HAVE:

<u>QTY</u>	<u>UNIT</u>	<u>PRODUCT</u>	<u>DESCRIPTION</u>	<u>FINISH</u>	<u>MFG</u>
8	EA	HINGE	FBB179 4.5 X 4.5 (NRP AT OUTSWING LOCKED OPNGS)	652	STN
1	EA	FLUSHBOLT	3917-24 (TOP)	626	TRM
1	EA	FLUSHBOLT	3917-12 (BOTTOM)	626	TRM
1	EA	LOCKSET	454H0R16H LC (CLASSROOM)	626	BST
1	EA	CYLINDER	MEDECO NON-IC RIM	626	MED

CONSTRUCTION DOCUMENTS 100% SUBMITTAL

2	EA	OVERHEAD STOP	4030 SERIES	626	ABH
2	EA	SILENCER	1229A (HM FRAME)	GREY	TRM

HARDWARE SET # 21.0 - ELECTRICAL (30710/HMDXHMF)

DOOR(S): 137, EACH TO HAVE:

<u>QTY</u>	<u>UNIT</u>	<u>PRODUCT</u>	DESCRIPTION	<u>FINISH</u>	<u>MFG</u>
4	EA	HINGE	FBB179 4.5 X 4.5 (NRP AT OUTSWING LOCKED OPNGS)	652	STN
1	EA	RIM EXIT DEVICE	3RO 2103 X 4903 B (STOREROOM)	630	PHI
1	EA	CYLINDER	MEDECO NON-IC RIM	626	MED
1	EA	CLOSER	CLD-4550 SN (MOUNT PARALLEL ARM - PUSH SIDE)	689	SDC
1	EA	PROTECTION PLT	KO050 10" X 2" LDW B4E/CSK (KICK - PUSH SIDE)	630	TRM
1	EA	WALL STOP	1270CX (CONVEX)	626	TRM
1	EA	SEAL	5050C X LAR (HEAD/JAMB)	CHAR	NGP

HARDWARE SET # 22.0 - RISER ROOM (2-3070/HMDXHMF)

DOOR(S): 140, EACH TO HAVE:

<u>QTY</u>	<u>UNIT</u>	<u>PRODUCT</u>	<u>DESCRIPTION</u>	<u>FINISH</u>	<u>MFG</u>
8	EA	HINGE	FBB191 4.5 X 4.5 (NRP AT OUTSWING LOCKED OPNGS)	630	STN
2	EA	FLUSHBOLT	3917-12	626	TRM
1	EA	LOCKSET	45H0D16H LC (STOREROOM)	626	BST
1	EA	CYLINDER	MEDECO NON-IC MORTISE	626	MED
2	EA	OVERHEAD STOP	N4030 SERIES	630	ABH
1	EA	SEAL	5050C X LAR (HEAD/JAMBS)	CHAR	NGP
2	EA	SWEEP	601A X LAR	AL	NGP
1	EA	THRESHOLD	513 X LAR X 1/4-20 SS MSEA	AL	NGP

HARDWARE SET # 23.0 - MISCELLANEOUS MATERIAL

DOOR(S): MISC, EACH TO HAVE:

QTY UNIT PRODUCT DESCRIPTION FINISH MFG

CONSTRUCTION DOCUMENTS 100% SUBMITTAL

1 EA KEY CABINET 2018-XX-003 SERIES X 150% CAPACITY N/A MMF 1 EA KNOX BOX 3200 SERIES BLK KNX

{ PRIVATE tbl2}

END OF SECTION 08710

SECTION 088000 - GLAZING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes:

- 1. Glass for doors, interior borrowed lites and storefront framing.
- 2. Glazing sealants and accessories.

B. Related Requirements:

1. Section 088300 "Mirrors."

1.3 DEFINITIONS

- A. Glass Manufacturers: Firms that produce primary glass, fabricated glass, or both, as defined in referenced glazing publications.
- B. Glass Thicknesses: Indicated by thickness designations in millimeters according to ASTM C1036.
- C. IBC: International Building Code.
- D. Interspace: Space between lites of an insulating-glass unit.

1.4 COORDINATION

A. Coordinate glazing channel dimensions to provide necessary bite on glass, minimum edge and face clearances, and adequate sealant thicknesses, with reasonable tolerances.

1.5 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Glass Samples: For each type of glass product other than clear monolithic vision glass; 12 inches (300 mm) square.
 - 1. Laminated glass.

- 2. Insulating glass.
- C. Glazing Schedule: List glass types and thicknesses for each size opening and location. Use same designations indicated on Drawings.
- D. Delegated-Design Submittal: For glass indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.6 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For Installer and for manufacturers of insulating-glass units with low-E coatings.
- B. Product Certificates: For glass.
- C. Product Test Reports: For insulating glass, for tests performed by a qualified testing agency.
- D. Sample Warranties: For special warranties.

1.7 QUALITY ASSURANCE

- A. Manufacturer Qualifications for Insulating-Glass Units with Low-E Coatings: A qualified insulating-glass manufacturer who is approved and certified by coated-glass manufacturer.
- B. Installer Qualifications: A qualified installer who employs glass installers for this Project who are certified under the National Glass Association's Certified Glass Installer Program.

1.8 DELIVERY, STORAGE, AND HANDLING

- A. Protect glazing materials according to manufacturer's written instructions. Prevent damage to glass and glazing materials from condensation, temperature changes, direct exposure to sun, or other causes.
- B. Comply with insulating-glass manufacturer's written instructions for venting and sealing units to avoid hermetic seal ruptures due to altitude change.

1.9 FIELD CONDITIONS

- A. Environmental Limitations: Do not proceed with glazing when ambient and substrate temperature conditions are outside limits permitted by glazing material manufacturers and when glazing channel substrates are wet from rain, frost, condensation, or other causes.
 - 1. Do not install glazing sealants when ambient and substrate temperature conditions are outside limits permitted by sealant manufacturer or are below 40 deg F (4.4 deg C).

1.10 WARRANTY

- A. Manufacturer's Special Warranty for Coated-Glass Products: Manufacturer agrees to replace coated-glass units that deteriorate within specified warranty period. Deterioration of coated glass is defined as defects developed from normal use that are not attributed to glass breakage or to maintaining and cleaning coated glass contrary to manufacturer's written instructions. Defects include peeling, cracking, and other indications of deterioration in coating.
 - 1. Warranty Period: 10 years from date of Substantial Completion.
- B. Manufacturer's Special Warranty for Laminated Glass: Manufacturer agrees to replace laminated-glass units that deteriorate within specified warranty period. Deterioration of laminated glass is defined as defects developed from normal use that are not attributed to glass breakage or to maintaining and cleaning laminated glass contrary to manufacturer's written instructions. Defects include edge separation, delamination materially obstructing vision through glass, and blemishes exceeding those allowed by referenced laminated-glass standard.
 - 1. Warranty Period: 10 years from date of Substantial Completion.
- C. Manufacturer's Special Warranty for Insulating Glass: Manufacturer agrees to replace insulating-glass units that deteriorate within specified warranty period. Deterioration of insulating glass is defined as failure of hermetic seal under normal use that is not attributed to glass breakage or to maintaining and cleaning insulating glass contrary to manufacturer's written instructions. Evidence of failure is the obstruction of vision by dust, moisture, or film on interior surfaces of glass.
 - 1. Warranty Period: 10 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Cardinal Glass Industries</u>.
 - 2. Guardian Glass; SunGuard.
 - 3. <u>Oldcastle BuildingEnvelopeTM</u>.
 - 4. <u>Pilkington North America</u>.
 - 5. Trulite Glass & Aluminum Solutions, LLC.
 - 6. <u>Vitro Architectural Glass</u>.
- B. Source Limitations for Glass: Obtain from single source from single manufacturer for each glass type.
 - 1. Obtain tinted glass from single source from single manufacturer.
 - 2. Obtain reflective-coated glass from single source from single manufacturer.

C. Source Limitations for Glazing Accessories: Obtain from single source from single manufacturer for each product and installation method.

2.2 PERFORMANCE REQUIREMENTS

- A. General: Installed glazing systems shall withstand normal thermal movement and wind and impact loads (where applicable) without failure, including loss or glass breakage attributable to the following: defective manufacture, fabrication, or installation; failure of sealants or gaskets to remain watertight and airtight; deterioration of glazing materials; or other defects in construction.
- B. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design glazing.
- C. Structural Performance: Glazing shall withstand the following design loads within limits and under conditions indicated determined according to the IBC and ASTM E1300.
 - 1. Design Wind Pressures: As indicated on Drawings.
 - 2. Maximum Lateral Deflection: For glass supported on all four edges, limit center-of-glass deflection at design wind pressure to not more than 1/50 times the short-side length or 1 inch (25 mm), whichever is less.
 - 3. Differential Shading: Design glass to resist thermal stresses induced by differential shading within individual glass lites.
- D. Safety Glazing: Where safety glazing is indicated, provide glazing that complies with 16 CFR 1201, Category II.
- E. Thermal and Optical Performance Properties: Provide glass with performance properties specified, as indicated in manufacturer's published test data, based on procedures indicated below:
 - 1. For monolithic-glass lites, properties are based on units with lites 6 mm thick.
 - 2. For laminated-glass lites, properties are based on products of construction indicated.
 - 3. For insulating-glass units, properties are based on units of thickness indicated for overall unit and for each lite.
 - 4. U-Factors: Center-of-glazing values, according to NFRC 100 and based on LBL's WINDOW 5.2 computer program, expressed as Btu/sq. ft. x h x deg F (W/sq. m x K).
 - 5. Solar Heat-Gain Coefficient and Visible Transmittance: Center-of-glazing values, according to NFRC 200 and based on LBL's WINDOW 5.2 computer program.
 - 6. Visible Reflectance: Center-of-glazing values, according to NFRC 300.

2.3 GLASS PRODUCTS, GENERAL

- A. Glazing Publications: Comply with published recommendations of glass product manufacturers and organizations below unless more stringent requirements are indicated. See these publications for glazing terms not otherwise defined in this Section or in referenced standards.
 - 1. GANA Publications: "Laminated Glazing Reference Manual" and "Glazing Manual."

- 2. IGMA Publication for Insulating Glass: SIGMA TM-3000, "North American Glazing Guidelines for Sealed Insulating Glass Units for Commercial and Residential Use."
- B. Safety Glazing Labeling: Where safety glazing is indicated, permanently mark glazing with certification label of the SGCC or another certification agency acceptable to authorities having jurisdiction. Label shall indicate manufacturer's name, type of glass, thickness, and safety glazing standard with which glass complies.
- C. Insulating-Glass Certification Program: Permanently marked either on spacers or on at least one component lite of units with appropriate certification label of IGCC.
- D. Thickness: Where glass thickness is indicated, it is a minimum. Provide glass that complies with performance requirements and is not less than the thickness indicated.
 - 1. Minimum Glass Thickness for Exterior Lites: 6 mm.
 - 2. Thickness of Tinted Glass: Provide same thickness for each tint color indicated throughout Project.
- E. Strength: Where annealed float glass is indicated, provide annealed float glass, heatstrengthened float glass, or fully tempered float glass as needed to comply with "Performance Requirements" Article. Where fully tempered float glass is indicated, provide fully tempered float glass.

2.4 GLASS PRODUCTS

- A. Clear Annealed Float Glass: ASTM C1036, Type I, Class 1 (clear), Quality-Q3.
- B. Tinted Annealed Float Glass: ASTM C1036, Type I, Class 2 (tinted), Quality-Q3.
- C. Fully Tempered Float Glass: ASTM C1048, Kind FT (fully tempered), Condition A (uncoated) unless otherwise indicated, Type I, Class 1 (clear) or Class 2 (tinted) as indicated, Quality-Q3.
 - 1. Fabrication Process: By horizontal (roller-hearth) process with roll-wave distortion parallel to bottom edge of glass as installed unless otherwise indicated.
- D. Heat-Strengthened Float Glass: ASTM C 1048, Kind HS (heat strengthened), Type I, Condition A (uncoated) unless otherwise indicated, Type I, Class 1 (clear) or Class 2 (tinted) as indicated, Quality-Q3.

2.5 LAMINATED GLASS

- A. Laminated Glass: ASTM C1172. Use materials that have a proven record of no tendency to bubble, discolor, or lose physical and mechanical properties after fabrication and installation.
 - 1. Construction: Laminate glass with polyvinyl butyral interlayer to comply with interlayer manufacturer's written instructions.
 - 2. Interlayer Thickness: Provide thickness not less than that indicated and as needed to comply with requirements.
 - 3. Interlayer Color: Clear unless otherwise indicated.

2.6 INSULATING GLASS

- A. Insulating-Glass Units: Factory-assembled units consisting of sealed lites of glass separated by a dehydrated interspace, qualified according to ASTM E2190.
 - 1. Sealing System: Dual seal, with manufacturer's standard primary and secondary sealants.
 - 2. Perimeter Spacer: Manufacturer's standard spacer material and construction.
 - 3. Desiccant: Molecular sieve or silica gel, or a blend of both.

2.7 GLAZING TAPES

- A. Back-Bedding Mastic Glazing Tapes: Preformed, butyl-based, 100 percent solids elastomeric tape; nonstaining and nonmigrating in contact with nonporous surfaces; with or without spacer rod as recommended in writing by tape and glass manufacturers for application indicated; and complying with ASTM C1281 and AAMA 800 for products indicated below:
 - 1. AAMA 806.3 tape, for glazing applications in which tape is subject to continuous pressure.
 - 2. AAMA 807.3 tape, for glazing applications in which tape is not subject to continuous pressure.
- B. Expanded Cellular Glazing Tapes: Closed-cell, PVC foam tapes; factory coated with adhesive on both surfaces; and complying with AAMA 800 for the following types:
 - 1. AAMA 810.1, Type 1, for glazing applications in which tape acts as the primary sealant.
 - 2. AAMA 810.1, Type 2, for glazing applications in which tape is used in combination with a full bead of liquid sealant.

2.8 MISCELLANEOUS GLAZING MATERIALS

- A. General: Provide products of material, size, and shape complying with referenced glazing standard, with requirements of manufacturers of glass and other glazing materials for application indicated, and with a proven record of compatibility with surfaces contacted in installation.
- B. Cleaners, Primers, and Sealers: Types recommended by sealant or gasket manufacturer.
- C. Setting Blocks: Type recommended by sealant or glass manufacturer.
- D. Spacers: Type recommended by sealant or glass manufacturer.
- E. Edge Blocks: Type recommended by sealant or glass manufacturer.
- F. Cylindrical Glazing Sealant Backing: ASTM C1330, Type O (open-cell material), of size and density to control glazing sealant depth and otherwise produce optimum glazing sealant performance.

2.9 FABRICATION OF GLAZING UNITS

- A. Fabricate glazing units in sizes required to fit openings indicated for Project, with edge and face clearances, edge and surface conditions, and bite complying with written instructions of product manufacturer and referenced glazing publications, to comply with system performance requirements.
 - 1. Allow for thermal movements from ambient and surface temperature changes acting on glass framing members and glazing components.
 - a. Temperature Change: 120 deg F (67 deg C), ambient; 180 deg F (100 deg C), material surfaces >.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine framing, glazing channels, and stops, with Installer present, for compliance with the following:
 - 1. Manufacturing and installation tolerances, including those for size, squareness, and offsets at corners.
 - 2. Presence and functioning of weep systems.
 - 3. Minimum required face and edge clearances.
 - 4. Effective sealing between joints of glass-framing members.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Clean glazing channels and other framing members receiving glass immediately before glazing. Remove coatings not firmly bonded to substrates.
- B. Examine glazing units to locate exterior and interior surfaces. Label or mark units as needed so that exterior and interior surfaces are readily identifiable. Do not use materials that leave visible marks in the completed Work.

3.3 GLAZING, GENERAL

- A. Comply with combined written instructions of manufacturers of glass, sealants, gaskets, and other glazing materials, unless more stringent requirements are indicated, including those in referenced glazing publications.
- B. Protect glass edges from damage during handling and installation. Remove damaged glass from Project site and legally dispose of off Project site. Damaged glass includes glass with edge damage or other imperfections that, when installed, could weaken glass, impair performance, or impair appearance.

- C. Apply primers to joint surfaces where required for adhesion of sealants, as determined by preconstruction testing.
- D. Install setting blocks in sill rabbets, sized and located to comply with referenced glazing publications, unless otherwise required by glass manufacturer. Set blocks in thin course of compatible sealant suitable for heel bead.
- E. Do not exceed edge pressures stipulated by glass manufacturers for installing glass lites.
- F. Provide spacers for glass lites where length plus width is larger than 50 inches (1270 mm).
 - 1. Locate spacers directly opposite each other on both inside and outside faces of glass. Install correct size and spacing to preserve required face clearances, unless gaskets and glazing tapes are used that have demonstrated ability to maintain required face clearances and to comply with system performance requirements.
 - 2. Provide 1/8-inch (3-mm) minimum bite of spacers on glass and use thickness equal to sealant width. With glazing tape, use thickness slightly less than final compressed thickness of tape.
- G. Provide edge blocking where indicated or needed to prevent glass lites from moving sideways in glazing channel, as recommended in writing by glass manufacturer and according to requirements in referenced glazing publications.
- H. Set glass lites in each series with uniform pattern, draw, bow, and similar characteristics.
- I. Set glass lites with proper orientation so that coatings face exterior or interior as specified.

3.4 TAPE GLAZING

- A. Position tapes on fixed stops so that, when compressed by glass, their exposed edges are flush with or protrude slightly above sightline of stops.
- B. Install tapes continuously, but not necessarily in one continuous length. Do not stretch tapes to make them fit opening.
- C. Cover vertical framing joints by applying tapes to heads and sills first, then to jambs. Cover horizontal framing joints by applying tapes to jambs, then to heads and sills.
- D. Place joints in tapes at corners of opening with adjoining lengths butted together, not lapped. Seal joints in tapes with compatible sealant approved by tape manufacturer.
- E. Do not remove release paper from tape until right before each glazing unit is installed.
- F. Center glass lites in openings on setting blocks, and press firmly against tape by inserting dense compression gaskets formed and installed to lock in place against faces of removable stops. Start gasket applications at corners and work toward centers of openings.

3.5 GASKET GLAZING (DRY)

- A. Cut compression gaskets to lengths recommended by gasket manufacturer to fit openings exactly, with allowance for stretch during installation.
- B. Insert soft compression gasket between glass and frame or fixed stop so it is securely in place with joints miter cut and bonded together at corners.
- C. Installation with Drive-in Wedge Gaskets: Center glass lites in openings on setting blocks, and press firmly against soft compression gasket by inserting dense compression gaskets formed and installed to lock in place against faces of removable stops. Start gasket applications at corners and work toward centers of openings. Compress gaskets to produce a weathertight seal without developing bending stresses in glass. Seal gasket joints with sealant recommended by gasket manufacturer.
- D. Installation with Pressure-Glazing Stops: Center glass lites in openings on setting blocks, and press firmly against soft compression gasket. Install dense compression gaskets and pressure-glazing stops, applying pressure uniformly to compression gaskets. Compress gaskets to produce a weathertight seal without developing bending stresses in glass. Seal gasket joints with sealant recommended by gasket manufacturer.
- E. Install gaskets so they protrude past face of glazing stops.

3.6 CLEANING AND PROTECTION

- A. Immediately after installation remove nonpermanent labels and clean surfaces.
- B. Protect glass from contact with contaminating substances resulting from construction operations. Examine glass surfaces adjacent to or below exterior concrete and other masonry surfaces at frequent intervals during construction, but not less than once a month, for buildup of dirt, scum, alkaline deposits, or stains.
 - 1. If, despite such protection, contaminating substances do come into contact with glass, remove substances immediately as recommended in writing by glass manufacturer. Remove and replace glass that cannot be cleaned without damage to coatings.
- C. Remove and replace glass that is damaged during construction period.
- D. Wash glass on both exposed surfaces not more than four days before date scheduled for inspections that establish date of Substantial Completion. Wash glass as recommended in writing by glass manufacturer.

3.7 MONOLITHIC SCHEDULE

- A. Glass Type GL-1: Clear fully tempered float glass.
 - 1. Minimum Thickness: 6 mm.
 - 2. Safety glazing required.

3.8 LAMINATED GLASS SCHEDULE

- A. Glass Type GL-4: Low-e coated, tinted laminated glass with two plies of heat-strengthened float glass with outer ply tinted and inner ply clear. Use at exterior aluminum storefront entrances.
 - 1. Basis-of-Design Product: Vitro Architectural Glass, Solarban 67 Optigray Low-e.
 - 2. Outer Ply: Tinted Low-e float glass
 - 3. Tint Color: Gray. Laminated glass lite intended to match the insulated glazing units specified.
 - 4. Minimum Thickness of Each Glass Ply: 6 mm.
 - 5. Interlayer Thickness: 0.060 inch (1.52 mm).
 - 6. Coating location: Second surface.
 - 7. Safety glazing required.

3.9 INSULATING GLASS SCHEDULE

- A. Glass Type GL-2: Low-E-coated, tinted insulating glass. Use at exterior aluminum storefront framing fixed insulated units, in non-safety glazing locations.
 - 1. Basis-of-Design Product: Vitro Architectural Glass, Solarban 67 (2) Optigray Low-e.
 - 2. Overall Unit Thickness: 1 inch (25 mm).
 - 3. Minimum Thickness of Each Glass Lite: 6 mm.
 - 4. Outdoor Lite: Tinted heat-strengthened float glass.
 - 5. Tint Color: Gray.
 - 6. Interspace Content: Air.
 - 7. Indoor Lite: Clear annealed float glass.
 - 8. Low-E Coating: Pyrolytic or sputtered on second surface.
 - 9. Winter Nighttime U-Factor: 0.29 maximum.
 - 10. Visible Light Transmittance: 38 percent minimum.
 - 11. Solar Heat Gain Coefficient: 0.24 maximum.
- B. Glass Type GL-3: Low-E-coated, fully tempered, tinted insulating glass. Use at exterior aluminum storefront framing fixed insulated units, where safety glazing is required.
 - 1. Basis-of-Design Product: Vitro Architectural Glass, Solarban 67 Optigray Low-e.
 - 2. Overall Unit Thickness: 1 inch (25 mm).
 - 3. Minimum Thickness of Each Glass Lite: 6 mm.
 - 4. Outdoor Lite: Tinted fully tempered float glass.
 - 5. Tint Color: Gray.
 - 6. Interspace Content: Air.
 - 7. Indoor Lite: Clear fully tempered float glass.
 - 8. Low-E Coating: Pyrolytic or sputtered on second surface.
 - 9. Winter Nighttime U-Factor: 0.29 maximum.
 - 10. Visible Light Transmittance: 38 percent minimum.
 - 11. Solar Heat Gain Coefficient: 0.24 maximum.
 - 12. Safety glazing where required for hazardous locations as defined by the IBC.

END OF SECTION 088000

SECTION 092216 - NON-STRUCTURAL METAL FRAMING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Non-load-bearing steel framing systems for interior partitions.
- 2. Suspension systems for interior ceilings and soffits.
- 3. Grid suspension systems for gypsum board ceilings.

B. Related Requirements:

1. Section 054000 "Cold-Formed Metal Framing" for exterior and interior load-bearing and exterior non-load-bearing wall studs; floor joists; and roof rafters and ceiling joists.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Studs and Runners: Provide documentation that framing members' certification is according to SFIA's "Code Compliance Certification Program for Cold-Formed Steel Structural and Non-Structural Framing Members."

1.4 INFORMATIONAL SUBMITTALS

- A. Product Certificates: For each type of code-compliance certification for studs and tracks.
- B. Evaluation Reports: For embossed, high-strength steel studs and tracks, from ICC-ES or other qualified testing agency acceptable to authorities having jurisdiction.

1.5 QUALITY ASSURANCE

A. Code-Compliance Certification of Studs and Tracks: Provide documentation that framing members are certified according to the product-certification program of the Certified Steel Stud Association, the Steel Framing Industry Association or the Steel Stud Manufacturers Association.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Fire-Test-Response Characteristics: For fire-resistance-rated assemblies that incorporate non-load-bearing steel framing, provide materials and construction identical to those tested in assembly indicated, according to ASTM E119 by an independent testing agency.
- B. STC-Rated Assemblies: For STC-rated assemblies, provide materials and construction identical to those tested in assembly indicated, according to ASTM E 90 and classified according to ASTM E 413 by an independent testing agency.
- C. Horizontal Deflection: For wall assemblies, limited to 1/240 of the wall height based on horizontal loading of 5 lbf/sq. ft. (239 Pa).

2.2 FRAMING SYSTEMS

- A. Framing Members, General: Comply with ASTM C754 for conditions indicated.
 - 1. Steel Sheet Components: Comply with ASTM C645 requirements for steel unless otherwise indicated.
 - 2. Protective Coating: ASTM A653/A653M, G40 (Z1209), hot-dip galvanized unless otherwise indicated.
- B. Studs and Tracks: ASTM C645. Use either conventional steel studs and tracks or embossed, high-strength steel studs and tracks.
 - 1. Steel Studs and Tracks:
 - a. Minimum Base-Steel Thickness: As indicated on Drawings and as required by performance requirements for horizontal deflection.
 - b. Depth: As indicated on Drawings.
 - 2. Embossed, High Strength Steel Studs and Tracks: Roll-formed and embossed with surface deformations to stiffen the framing members so that they are structurally comparable to conventional ASTM C645 steel studs and tracks.
 - a. Minimum Base-Steel Thickness: As required by horizontal deflection performance requirements.
 - b. Depth: As indicated on Drawings.
- C. Slip-Type Head Joints: Where indicated, provide one of the following:
 - 1. Clip System: Clips designed for use in head-of-wall deflection conditions that provide a positive attachment of studs to tracks while allowing 1-1/2-inch (38-mm) minimum vertical movement.
 - 2. Single Long-Leg Track System: ASTM C645 top track with 2-inch- (51-mm-) deep flanges in thickness not less than indicated for studs, installed with studs friction fit into

- top track and with continuous bridging located within 12 inches (305 mm) of the top of studs to provide lateral bracing.
- 3. Double-Track System: ASTM C645 top outer tracks, inside track with 2-inch- (51-mm-) deep flanges in thickness not less than indicated for studs and fastened to studs, and outer track sized to friction-fit over inner track.
- 4. Deflection Track: Steel sheet top track manufactured to prevent cracking of finishes applied to interior partition framing resulting from deflection of structure above; in thickness not less than indicated for studs and in width to accommodate depth of studs.
- D. Firestop Tracks: Top track manufactured to allow partition heads to expand and contract with movement of structure while maintaining continuity of fire-resistance-rated assembly indicated; in thickness not less than indicated for studs and in width to accommodate depth of studs.

1.

- E. Flat Strap and Backing Plate: Steel sheet for blocking and bracing in length and width indicated.
 - 1. Minimum Base-Steel Thickness: 0.0179 inch (0.455 mm).
- F. Cold-Rolled Channel Bridging: Steel, 0.0538-inch (1.367-mm) minimum base-steel thickness, with minimum 1/2-inch- (13-mm-) wide flanges.
 - 1. Depth: 1-1/2 inches (38 mm).
 - 2. Clip Angle: Not less than 1-1/2 by 1-1/2 inches (38 by 38 mm), 0.068-inch- (1.72-mm-) thick, galvanized steel.
- G. Hat-Shaped, Rigid Furring Channels: ASTM C645.
 - 1. Minimum Base-Steel Thickness: 0.0179 inch (0.455 mm).
 - 2. Depth: 7/8 inch (22.2 mm).
- H. Cold-Rolled Furring Channels: 0.053-inch (1.34-mm) uncoated-steel thickness, with minimum 1/2-inch- (13-mm-) wide flanges.
 - 1. Depth: 3/4 inch (19 mm).
 - 2. Furring Brackets: Adjustable, corrugated-edge-type steel sheet with minimum uncoated-steel thickness of 0.0329 inch (0.8 mm).
 - 3. Tie Wire: ASTM A641/A641M, Class 1 zinc coating, soft temper, 0.062-inch- (1.59-mm-) diameter wire, or double strand of 0.048-inch- (1.21-mm-) diameter wire.
- I. Z-Shaped Furring: With slotted or nonslotted web, face flange of 1-1/4 inches (32 mm), wall attachment flange of 7/8 inch (22 mm), minimum uncoated-steel thickness of 0.0179 inch (0.455 mm), and depth required to fit insulation thickness indicated.

2.3 SUSPENSION SYSTEMS

- A. Tie Wire: ASTM A641/A641M, Class 1 zinc coating, soft temper, 0.062-inch- (1.59-mm-) diameter wire, or double strand of 0.048-inch- (1.21-mm-) diameter wire.
- B. Hanger Attachments to Concrete:

- 1. Post-Installed Anchors: Fastener systems with an evaluation report acceptable to authorities having jurisdiction, based on ICC-ES AC01 as appropriate for the substrate.
 - a. Uses: Securing hangers to structure.
 - b. Type: Torque-controlled, expansion anchor.
 - c. Material for Interior Locations: Carbon-steel components zinc-plated to comply with ASTM B633 or ASTM F1941 (ASTM F1941M), Class Fe/Zn 5, unless otherwise indicated.
 - d. Material for Exterior or Interior Locations and Where Stainless Steel Is Indicated: Alloy Group 1 (A1) stainless-steel bolts, ASTM F593 (ASTM F738M), and nuts, ASTM F594 (ASTM F836M).
- 2. Power-Actuated Anchors: Fastener systems with an evaluation report acceptable to authorities having jurisdiction, based on ICC-ES AC70.
- C. Wire Hangers: ASTM A641/A641M, Class 1 zinc coating, soft temper, 0.16 inch (4.12 mm) in diameter.
- D. Grid Suspension System for Gypsum Board Ceilings: ASTM C 645, direct-hung system composed of main beams and cross-furring members that interlock.
 - 1. <u>Products:</u> Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Armstrong World Industries, Inc.</u>; Drywall Grid Systems.
 - b. <u>Chicago Metallic Corporation</u>; 640/660 Drywall Ceiling Suspension.
 - c. United State Gypsum Company; Drywall Suspension System.

2.4 AUXILIARY MATERIALS

- A. General: Provide auxiliary materials that comply with referenced installation standards.
 - 1. Fasteners for Steel Framing: Of type, material, size, corrosion resistance, holding power, and other properties required to fasten steel members to substrates.
- B. Isolation Strip at Exterior Walls: Provide **one of** the following:
 - 1. Asphalt-Saturated Organic Felt: ASTM D226/D226M, Type I (No. 15 asphalt felt), nonperforated.
 - 2. Foam Gasket: Adhesive-backed, closed-cell vinyl foam strips that allow fastener penetration without foam displacement, 1/8 inch (3.2 mm) thick, in width to suit steel stud size.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and substrates, with Installer present, and including welded hollow-metal frames, cast-in anchors, and structural framing, for compliance with requirements and other conditions affecting performance of the Work.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Suspended Assemblies: Coordinate installation of suspension systems with installation of overhead structure to ensure that inserts and other provisions for anchorages to building structure have been installed to receive hangers at spacing required to support the Work and that hangers will develop their full strength.
 - 1. Furnish concrete inserts and other devices indicated to other trades for installation in advance of time needed for coordination and construction.

3.3 INSTALLATION, GENERAL

- A. Installation Standard: ASTM C754.
 - 1. Gypsum Board Assemblies: Also comply with requirements in ASTM C840 that apply to framing installation.
- B. Install framing and accessories plumb, square, and true to line, with connections securely fastened.
- C. Install supplementary framing, and blocking to support fixtures, equipment services, heavy trim, grab bars, toilet accessories, furnishings, or similar construction.
- D. Install bracing at terminations in assemblies.
- E. Do not bridge building control and expansion joints with non-load-bearing steel framing members. Frame both sides of joints independently.

3.4 INSTALLING FRAMED ASSEMBLIES

- A. Install framing system components according to spacings indicated, but not greater than spacings required by referenced installation standards for assembly types.
 - 1. Single-Layer Application: 16 inches (406 mm) o.c. unless otherwise indicated.
 - 2. Multilayer Application: 16 inches (406 mm) o.c. unless otherwise indicated.
 - 3. Tile Backing Panels: 16 inches (406 mm) o.c. unless otherwise indicated.

- B. Where studs are installed directly against exterior masonry walls or dissimilar metals at exterior walls, install isolation strip between studs and exterior wall.
- C. Install studs so flanges within framing system point in same direction.
- D. Install tracks at floors and overhead supports. Extend framing full height to structural supports or substrates above suspended ceilings except where partitions are indicated to terminate at suspended ceilings. Continue framing around ducts that penetrate partitions above ceiling.
 - 1. Slip-Type Head Joints: Where framing extends to overhead structural supports, install to produce joints at tops of framing systems that prevent axial loading of finished assemblies.
 - 2. Door Openings: Screw vertical studs at jambs to jamb anchor clips on door frames; install track section (for cripple studs) at head and secure to jamb studs.
 - a. Install two studs at each jamb unless otherwise indicated.
 - b. Install cripple studs at head adjacent to each jamb stud, with a minimum 1/2-inch (13-mm) clearance from jamb stud to allow for installation of control joint in finished assembly.
 - c. Extend jamb studs through suspended ceilings and attach to underside of overhead structure.
 - 3. Other Framed Openings: Frame openings other than door openings the same as required for door openings unless otherwise indicated. Install framing below sills of openings to match framing required above door heads.
 - 4. Fire-Resistance-Rated Partitions: Install framing to comply with fire-resistance-rated assembly indicated and support closures and to make partitions continuous from floor to underside of solid structure.
 - a. Firestop Track: Where indicated, install to maintain continuity of fire-resistance-rated assembly indicated.
 - 5. Sound-Rated Partitions: Install framing to comply with sound-rated assembly indicated.

E. Direct Furring:

- 1. Screw to wood framing.
- 2. Attach to concrete or masonry with stub nails, screws designed for masonry attachment, or powder-driven fasteners spaced 24 inches (610 mm) o.c.

F. Z-Shaped Furring Members:

- 1. Erect insulation, specified in Section 072100 "Thermal Insulation," vertically and hold in place with Z-shaped furring members spaced 24 inches (610 mm) o.c.
- 2. Except at exterior corners, securely attach narrow flanges of furring members to wall with concrete stub nails, screws designed for masonry attachment, or powder-driven fasteners spaced 24 inches (610 mm) o.c.
- 3. At exterior corners, attach wide flange of furring members to wall with short flange extending beyond corner; on adjacent wall surface, screw-attach short flange of furring channel to web of attached channel. At interior corners, space second member no more than 12 inches (305 mm) from corner and cut insulation to fit.

G. Installation Tolerance: Install each framing member so fastening surfaces vary not more than 1/8 inch (3 mm) from the plane formed by faces of adjacent framing.

3.5 INSTALLING CEILING SUSPENSION SYSTEMS

- A. Install suspension system components according to spacings indicated, but not greater than spacings required by referenced installation standards for assembly types.
 - 1. Hangers: **48 inches** (**1219 mm**) o.c.
 - 2. Carrying Channels (Main Runners): 48 inches (1219 mm) o.c.
 - 3. Furring Channels (Furring Members): 16 inches (406 mm) o.c.
- B. Isolate suspension systems from building structure where they abut or are penetrated by building structure to prevent transfer of loading imposed by structural movement.
- C. Suspend hangers from building structure as follows:
 - 1. Install hangers plumb and free from contact with insulation or other objects within ceiling plenum that are not part of supporting structural or suspension system.
 - a. Splay hangers only where required to miss obstructions and offset resulting horizontal forces by bracing, countersplaying, or other equally effective means.
 - 2. Where width of ducts and other construction within ceiling plenum produces hanger spacings that interfere with locations of hangers required to support standard suspension system members, install supplemental suspension members and hangers in the form of trapezes or equivalent devices.
 - a. Size supplemental suspension members and hangers to support ceiling loads within performance limits established by referenced installation standards.
 - 3. Wire Hangers: Secure by looping and wire tying, either directly to structures or to inserts, eye screws, or other devices and fasteners that are secure and appropriate for substrate, and in a manner that will not cause hangers to deteriorate or otherwise fail.
 - 4. Do not attach hangers to steel roof deck.
 - 5. Do not connect or suspend steel framing from ducts, pipes, or conduit.
- D. Seismic Bracing: Sway-brace suspension systems with hangers used for support.
- E. Grid Suspension Systems: Attach perimeter wall track or angle where grid suspension systems meet vertical surfaces. Mechanically join main beam and cross-furring members to each other and butt-cut to fit into wall track.
- F. Installation Tolerances: Install suspension systems that are level to within 1/8 inch in 12 feet (3 mm in 3.6 m) measured lengthwise on each member that will receive finishes and transversely between parallel members that will receive finishes.

END OF SECTION 092216

SECTION 092900 - GYPSUM BOARD

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Interior gypsum board.
- B. Related Requirements:
 - 1. Section 061600 "Sheathing" for gypsum sheathing for exterior walls.
 - 2. Section 092216 "Non-Structural Metal Framing" for non-structural steel framing and suspension systems that support gypsum board panels.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.4 DELIVERY, STORAGE AND HANDLING

A. Store materials inside under cover and keep them dry and protected against weather, condensation, direct sunlight, construction traffic, and other potential causes of damage. Stack panels flat and supported on risers on a flat platform to prevent sagging.

1.5 FIELD CONDITIONS

- A. Environmental Limitations: Comply with ASTM C840 requirements or gypsum board manufacturer's written instructions, whichever are more stringent.
- B. Do not install paper-faced gypsum panels until installation areas are enclosed and conditioned.
- C. Do not install panels that are wet, moisture damaged, and mold damaged.
 - 1. Indications that panels are wet or moisture damaged include, but are not limited to, discoloration, sagging, or irregular shape.
 - 2. Indications that panels are mold damaged include, but are not limited to, fuzzy or splotchy surface contamination and discoloration.

PART 2 - PRODUCTS

2.1 GYPSUM BOARD, GENERAL

A. Size: Provide maximum lengths and widths available that will minimize joints in each area and that correspond with support system indicated.

2.2 INTERIOR GYPSUM BOARD

- A. Gypsum Board, Type X: ASTM C1396/C1396M.
 - 1. Thickness: 5/8 inch (15.9 mm).
 - 2. Long Edges: Tapered.
- B. Gypsum Ceiling Board: ASTM C1396/C1396M.
 - 1. Thickness: 1/2 inch (12.7 mm).
 - 2. Long Edges: Tapered.
- C. Abuse-Resistant Gypsum Board: ASTM C1396/C1396M gypsum board, tested according to ASTM C1629/C1629M.
 - 1. Core: 5/8 inch (15.9 mm), Type X.
 - 2. Surface Abrasion: ASTM C1629/C1629M, meets or exceeds Level 2 requirements.
 - 3. Indentation: ASTM C1629/C1629M, meets or exceeds Level 1 requirements.
 - 4. Soft-Body Impact: ASTM C1629/C1629M, meets or exceeds Level 1 requirements.
 - 5. Long Edges: Tapered.
 - 6. Mold Resistance: ASTM D3273, score of 10 as rated according to ASTM D3274.
- D. Mold-Resistant Gypsum Board: ASTM C1396/C1396M. With moisture- and mold-resistant core and paper surfaces.
 - 1. Core: 5/8 inch (15.9 mm), Type X.
 - 2. Long Edges: Tapered.
 - 3. Mold Resistance: ASTM D3273, score of 10 as rated according to ASTM D3274.

2.3 TRIM ACCESSORIES

- A. Interior Trim: ASTM C1047.
 - 1. Material: Galvanized or aluminum-coated steel sheet or rolled zinc.
 - 2. Shapes:
 - a. Cornerbead.

2.4 JOINT TREATMENT MATERIALS

A. General: Comply with ASTM C475/C475M.

- B. Joint Tape:
 - 1. Interior Gypsum Board: Paper.
- C. Joint Compound for Interior Gypsum Board: For each coat, use formulation that is compatible with other compounds applied on previous or for successive coats.
 - 1. Prefilling: At open joints and damaged surface areas, use setting-type taping compound.
 - 2. Embedding and First Coat: For embedding tape and first coat on joints, fasteners, and trim flanges, use setting-type taping compound.
 - a. Use setting-type compound for installing paper-faced metal trim accessories.
 - 3. Fill Coat: For second coat, use setting-type, sandable topping compound.
 - 4. Finish Coat: For third coat, use setting-type, sandable topping compound.

2.5 AUXILIARY MATERIALS

- A. General: Provide auxiliary materials that comply with referenced installation standards and manufacturer's written instructions.
- B. Steel Drill Screws: ASTM C1002 unless otherwise indicated.
 - 1. Use screws complying with ASTM C954 for fastening panels to steel members from 0.033 to 0.112 inch (0.84 to 2.84 mm) thick.
- C. Thermal Insulation: As specified in Section 072100 "Thermal Insulation."
- D. Vapor Retarder: As specified in Section 072600 "Vapor Retarders."

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and substrates including welded hollow-metal frames and support framing, with Installer present, for compliance with requirements and other conditions affecting performance of the Work.
- B. Examine panels before installation. Reject panels that are wet, moisture damaged, and mold damaged.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLYING AND FINISHING PANELS, GENERAL

A. Comply with ASTM C840.

- B. Install ceiling panels across framing to minimize the number of abutting end joints and to avoid abutting end joints in central area of each ceiling. Stagger abutting end joints of adjacent panels not less than one framing member.
- C. Install panels with face side out. Butt panels together for a light contact at edges and ends with not more than 1/16 inch (1.5 mm) of open space between panels. Do not force into place.
- D. Locate edge and end joints over supports, except in ceiling applications where intermediate supports or gypsum board back-blocking is provided behind end joints. Do not place tapered edges against cut edges or ends. Stagger vertical joints on opposite sides of partitions. Do not make joints other than control joints at corners of framed openings.
- E. Form control joints with space between edges of adjoining gypsum panels.
- F. Cover both faces of support framing with gypsum panels in concealed spaces (above ceilings, etc.), except in chases braced internally.
 - 1. Unless concealed application is indicated or required for sound or air, coverage may be accomplished with scraps of not less than 8 sq. ft. (0.7 sq. m) in area.
 - 2. Fit gypsum panels around ducts, pipes, and conduits.
 - 3. Where partitions intersect structural members projecting below underside of floor/roof slabs and decks, cut gypsum panels to fit profile formed by structural members; allow 1/4-to 3/8-inch- (6.4- to 9.5-mm-) wide joints to install sealant.
- G. Isolate perimeter of gypsum board applied to non-load-bearing partitions at structural abutments. Provide 1/4- to 1/2-inch- (6.4- to 12.7-mm-) wide spaces at these locations and trim edges with edge trim where edges of panels are exposed. Seal joints between edges and abutting structural surfaces with acoustical sealant.
- H. Attachment to Steel Framing: Attach panels so leading edge or end of each panel is attached to open (unsupported) edges of stud flanges first.

3.3 APPLYING INTERIOR GYPSUM BOARD

- A. Install interior gypsum board in the following locations:
 - 1. Wallboard Type X: At all walls not indicated to receive abuse resistant or mold resistant gypsum board
 - 2. Ceiling Type: Ceiling surfaces other than at wet areas.
 - 3. Abuse-Resistant Type: At all furred walls in the Multi-purpose Room and Library.
 - 4. Mold-Resistant Type: At ceilings in wet areas.
- B. Single-Layer Application:
 - 1. On ceilings, apply gypsum panels before wall/partition board application to greatest extent possible and at right angles to framing unless otherwise indicated.
 - 2. On partitions/walls, apply gypsum panels horizontally (perpendicular to framing) unless otherwise indicated, and minimize end joints.

- a. Stagger abutting end joints not less than one framing member in alternate courses of panels.
- 3. Fastening Methods: Apply gypsum panels to supports with steel drill screws.

3.4 INSTALLING TRIM ACCESSORIES

- A. General: For trim with back flanges intended for fasteners, attach to framing with same fasteners used for panels. Otherwise, attach trim according to manufacturer's written instructions.
- B. Interior Trim: Install in the following locations:
 - 1. Cornerbead: Use at outside corners unless otherwise indicated.

3.5 FINISHING GYPSUM BOARD

- A. General: Treat gypsum board joints, interior angles, edge trim, penetrations, fastener heads, surface defects, and elsewhere as required to prepare gypsum board surfaces for decoration. Promptly remove residual joint compound from adjacent surfaces.
- B. Prefill open joints and damaged surface areas.
- C. Apply joint tape over gypsum board joints, except for trim products specifically indicated as not intended to receive tape.
- D. Gypsum Board Finish Levels: Finish panels to levels indicated below and according to ASTM C840:
 - 1. Level 1: Ceiling plenum areas, concealed areas, and where indicated.
 - 2. Level 4: At panel surfaces that will be exposed to view unless otherwise indicated.
 - a. Primer and its application to surfaces are specified in Section 099123 "Interior Painting."

3.6 PROTECTION

- A. Protect adjacent surfaces from drywall compound and promptly remove from floors and other non-drywall surfaces. Repair surfaces stained, marred, or otherwise damaged during drywall application.
- B. Protect installed products from damage from weather, condensation, direct sunlight, construction, and other causes during remainder of the construction period.
- C. Remove and replace panels that are wet, moisture damaged, and mold damaged.
 - 1. Indications that panels are wet or moisture damaged include, but are not limited to, discoloration, sagging, or irregular shape.
 - 2. Indications that panels are mold damaged include, but are not limited to, fuzzy or splotchy surface contamination and discoloration.

1180510 TOBIE GRANT RECREATION CENTER 3/22/19

CONSTRUCTION DOCUMENTS 100% SUBMITTAL

END OF SECTION 092900

SECTION 093000 - PORCELAIN TILE

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Ceramic tile.
- 1. Uncoupling and water proofing membrane for thin-set tile installations.
- 2. Stone thresholds.
- 3. Movement joint profile.
- 4. Metal edge strips installed as part of tile installations.

B. Related Sections:

- Division 07 Section "Joint Sealants" for sealing of expansion, contraction, control, and isolation
 joints in tile surfaces.
- 2. Division 09 Section "Gypsum Board" for tile backing panels.

1.3 DEFINITIONS

- A. General: Definitions in the ANSI A108 series of tile installation standards and in ANSI A137.1 apply to Work of this Section unless otherwise specified.
- B. ANSI A108 Series: ANSI A108.01, ANSI A108.02, ANSI A108.1A, ANSI A108.1B, ANSI A108.1C, ANSI A108.4, ANSI A108.5, ANSI A108.6, ANSI A108.8, ANSI A108.9, ANSI A108.10, ANSI A108.11, ANSI A108.12, ANSI A108.13, ANSI A108.14, ANSI A108.15, ANSI A108.16, and ANSI A108.17, which are contained in "American National Standard Specifications for Installation of Ceramic Tile."
- C. Module Size: Actual tile size plus joint width indicated.
- D. Face Size: Actual tile size, excluding spacer lugs.

1.4 PERFORMANCE REQUIREMENTS

- A. Static Coefficient of Friction: For tile installed on walkway surfaces, provide products with the following values as determined by testing identical products per ASTM C 1028:
 - 1. Level Surfaces: Minimum 0.60 C.O.F. Wet, 0.70 C.O.F. Dry.

1.5 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: Show locations of each type of tile and tile pattern. Show widths, details, and locations of expansion, contraction, control, and isolation joints in tile substrates and finished tile surfaces.
- C. Samples for Initial Selection: For each type of tile and grout indicated. Include Samples of accessories involving color selection.

D. Samples for Verification:

- 1. Full-size units of each type and composition of tile and for each color and finish required.
- 2. Full-size units of each type of trim and accessory for each color and finish required.
- 3. Stone thresholds in 6-inch (150-mm) lengths.
- 4. Metal edge strips in 6-inch (150-mm) lengths.

1.6 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified Installer.

1.7 MATERIALS MAINTENANCE SUBMITTALS

- A. Furnish extra materials that match and are from same production runs as products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Tile and Trim Units: Furnish quantity of full-size units equal to 3 percent of amount installed for each type, composition, color, pattern, and size indicated.
 - 2. Grout: Furnish quantity of grout equal to 3 percent of amount installed for each type, composition, and color indicated.

1.8 QUALITY ASSURANCE

- A. Source Limitations for Tile: Obtain tile of each type and color or finish from one source or producer.
 - 1. Obtain tile of each type and color or finish from same production run and of consistent quality in appearance and physical properties for each contiguous area.
- B. Source Limitations for Setting and Grouting Materials: Obtain ingredients of a uniform quality for each mortar, adhesive, and grout component from one manufacturer and each aggregate from one source or producer.
- C. Source Limitations for Other Products: Obtain each of the following products specified in this Section from a single manufacturer for each product:
 - 1. Stone thresholds.
 - 2. Joint sealants.
 - 3. Cementitious backer units.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Deliver and store packaged materials in original containers with seals unbroken and labels intact until time of use. Comply with requirements in ANSI A137.1 for labeling tile packages.

- B. Store tile and cementitious materials on elevated platforms, under cover, and in a dry location.
- C. Store aggregates where grading and other required characteristics can be maintained and contamination can be avoided.
- D. Store liquid materials in unopened containers and protected from freezing.
- E. Handle tile that has temporary protective coating on exposed surfaces to prevent coated surfaces from contacting backs or edges of other units. If coating does contact bonding surfaces of tile, remove coating from bonding surfaces before setting tile.

1.10 PROJECT CONDITIONS

A. Environmental Limitations: Do not install tile until construction in spaces is complete and ambient temperature and humidity conditions are maintained at the levels indicated in referenced standards and manufacturer's written instructions.

PART 2 - PRODUCTS

2.1 PRODUCTS, GENERAL

- A. ANSI Ceramic Tile Standard: Provide tile that complies with ANSI A137.1 for types, compositions, and other characteristics indicated.
 - 1. Provide tile complying with Standard grade requirements unless otherwise indicated.
- B. ANSI Standards for Tile Installation Materials: Provide materials complying with ANSI A108.02, ANSI standards referenced in other Part 2 articles, ANSI standards referenced by TCA installation methods specified in tile installation schedules, and other requirements specified.
- C. Factory Blending: For tile exhibiting color variations within ranges, blend tile in factory and package so tile units taken from one package show same range in colors as those taken from other packages and match approved Samples.
- D. Factory-Applied Temporary Protective Coating: Where indicated under tile type, protect exposed surfaces of tile against adherence of mortar and grout by precoating with continuous film of petroleum paraffin wax, applied hot. Do not coat unexposed tile surfaces.
- 2.2 TILE PRODUCTS See Finish Schedule and legend for Specified Products.

2.3 THRESHOLDS

- A. General: Fabricate to sizes and profiles indicated or required to provide transition between adjacent floor finishes.
 - 1. Bevel edges at 1:2 slope, with lower edge of bevel aligned with or up to 1/16 inch above adjacent floor surface. Finish bevel to match top surface of threshold. Limit height of threshold to 1/2 inch or less above adjacent floor surface.

- B. Marble Thresholds: ASTM C 503, with a minimum abrasion resistance of 10 per ASTM C 1353 or ASTM C 241 and with honed finish.
 - 1. Description: Uniform, fine- to medium-grained beige stone with gray veining.
- C. Metal Edge Strips: Angle, height to match tile and setting-bed thickness, metallic or combination of metal and PVC or neoprene base, designed specifically for flooring applications, stainless steel; ASTM A 666, 300 Series exposed-edge material.
 - 1. Basis of Design: Schluter Reno TK (tile to carpet)
 - 2. Or approved equal.
- D. Movement Joints profiles: profile with integrated rigid, recycled PVC trapezoid perforated anchoring leg and dovetailed channel, which are connected by a 3/16" (5 mm) wide soft CPE movement zone that forms the visible surface, and a slit lower movement zone of soft CPE.
 - 1. Basis of design: Schluter Dilex-BWA
 - 2. Or approved equal.

2.4 UNCOUPLING MEMBRANE SYSTEM

- A. Uncoupling membrane: 1/8" (3 mm) thick, orange, high-density polyethylene membrane with a grid structure of 1/2" x 1/2" (12 mm x 12 mm) square cavities, each cut back in a dovetail configuration, and a polypropylene anchoring fleece laminated to its underside.
 - 1. Basis of Design: Schluter Ditra
 - 2. Or approved equal
- B. Waterproofing seaming membrane: Provide with material 0.004" (4 mil) thick, orange polyethylene membrane, with polypropylene fleece laminated on both sides.
 - 1. Basis of design: Schluter Kerdi Band
 - 2. Or approved equal.

2.5 SETTING MATERIALS

- A. Latex-Portland Cement Mortar (Thin Set): ANSI A118.4. (Walls & Floors)
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide Laticrete International, Inc #253 Gold or comparable approved equal product by one of the following:
 - a. Bonsal American; an Oldcastle company.
 - b. Custom Building Products.
 - 2. Provide prepackaged, dry-mortar mix containing dry, redispersible, vinyl acetate or acrylic additive to which only water must be added at Project site.
 - 3. Provide prepackaged, dry-mortar mix combined with liquid-latex additive at Project site.
 - 4. For wall applications, provide mortar that complies with requirements for nonsagging mortar in addition to the other requirements in ANSI A118.4.

2.6 GROUT MATERIALS

- A. Epoxy Grout: ANSI A118.3. (Walls & Floors)
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide Laticrete International, Inc SpectraLOCK Pro Premium Grout or comparable approved equal product by one of the following:
 - a. Bonsal American; an Oldcastle company.
 - b. Custom Building Products.

2.7 WATERPROOFING & CRACK ISOLATION MEMBRANE FOR THIN-SET TILE INSTALLATIONS

- A. General: Manufacturer's standard product that complies with ANSI A118.10, selected from the following.
 - 1. Product: National Applied Construction Products, Inc.; Strataflex.
 - 2. Laticrete International, Inc.; Laticrete 9235 Waterproofing Membrane.
- B. Fabric-Reinforced, Fluid-Applied Product: System consisting of liquid-latex rubber and fabric reinforcement.
- C. Anti-Fracture Membrane, 2 part system, highly flexible, full coverage membrane.

2.8 ELASTOMERIC SEALANTS

- A. General: Provide sealants, primers, backer rods, and other sealant accessories that comply with the following requirements and with the applicable requirements in Division 07 Section "Joint Sealants."
 - 1. Use primers, backer rods, and sealant accessories recommended by sealant manufacturer.
- B. Colors: Provide colors of exposed sealants to match colors of grout in tile adjoining sealed joints unless otherwise indicated.
- C. One-Part, Mildew-Resistant Silicone Sealant: ASTM C 920; Type S; Grade NS; Class 25; Uses NT, G, A, and, as applicable to nonporous joint substrates indicated, O; formulated with fungicide, intended for sealing interior ceramic tile joints and other nonporous substrates that are subject to in-service exposures of high humidity and extreme temperatures.
- D. Multipart, Pourable Urethane Sealant for Use T: ASTM C 920; Type M; Grade P; Class 25; Uses T, M, A, and, as applicable to joint substrates indicated, O.
- E. Chemical-Resistant Sealants: For chemical-resistant floors, provide chemical-resistant elastomeric sealant of type recommended and produced by chemical-resistant mortar and grout manufacturer for type of application indicated, with proven service record and compatibility with tile and other setting materials, and with chemical resistance equivalent to mortar/grout.

2.9 MISCELLANEOUS MATERIALS

- A. Trowelable Underlayments and Patching Compounds: Latex-modified, portland cement-based formulation provided or approved by manufacturer of tile-setting materials for installations indicated.
- B. Temporary Protective Coating: Either product indicated below that is formulated to protect exposed surfaces of tile against adherence of mortar and grout; compatible with tile, mortar, and grout products; and easily removable after grouting is completed without damaging grout or tile.

- 1. Petroleum paraffin wax, fully refined and odorless, containing at least 0.5 percent oil with a melting point of 120 to 140 deg F per ASTM D 87.
- 2. Grout release in form of manufacturer's standard proprietary liquid coating that is specially formulated and recommended for use as temporary protective coating for tile.
- C. Tile Cleaner: A neutral cleaner capable of removing soil and residue without harming tile and grout surfaces, specifically approved for materials and installations indicated by tile and grout manufacturers.

2.10 MIXING MORTARS AND GROUT

- A. Mix mortars and grouts to comply with referenced standards and mortar and grout manufacturers' written instructions.
- B. Add materials, water, and additives in accurate proportions.
- C. Obtain and use type of mixing equipment, mixer speeds, mixing containers, mixing time, and other procedures to produce mortars and grouts of uniform quality with optimum performance characteristics for installations indicated.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions where tile will be installed, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of installed tile.
 - Verify that substrates for setting tile are firm, dry, clean, and free of coatings that are incompatible
 with tile-setting materials including curing compounds and other substances that contain soap,
 wax, oil, or silicone; and comply with flatness tolerances required by ANSI A108.01 for
 installations indicated.
 - 2. Verify that installation of grounds, anchors, recessed frames, electrical and mechanical units of work, and similar items located in or behind tile has been completed.
 - 3. Verify that joints and cracks in tile substrates are coordinated with tile joint locations; if not coordinated, adjust joint locations in consultation with Architect.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Fill cracks, holes, and depressions in concrete substrates for tile floors installed with adhesives or thin-set mortar with trowelable leveling and patching compound specifically recommended by tile-setting material manufacturer.
- B. Where indicated, prepare substrates to receive waterproofing by applying a reinforced mortar bed that complies with ANSI A108.1A and is sloped 1/4 inch per foot toward drains.
- C. Blending: For tile exhibiting color variations, verify that tile has been factory blended and packaged so tile units taken from one package show same range of colors as those taken from other packages and match approved Samples. If not factory blended, either return to manufacturer or blend tiles at Project site before installing.

D. Field-Applied Temporary Protective Coating: If indicated under tile type or needed to prevent grout from staining or adhering to exposed tile surfaces, precoat them with continuous film of temporary protective coating, taking care not to coat unexposed tile surfaces.

3.3 TILE INSTALLATION

- A. Comply with TCA's "Handbook for Ceramic Tile Installation" for TCA installation methods specified in tile installation schedules. Comply with parts of the ANSI A108.1b Series "Specifications for Installation of Ceramic Tile" that are referenced in TCA installation methods, specified in tile installation schedules, and apply to types of setting and grouting materials used.
 - 1. For the following installations, Obtain (100%) hundred percent mortar coverage with no voids by no back buttering:
 - a. Tile floors in wet areas.
 - b. Tile floors composed of tiles 8 by 8 inches or larger.
 - c. Tile floors composed of rib-backed tiles.
- B. Extend tile work into recesses and under or behind equipment and fixtures to form complete covering without interruptions unless otherwise indicated. Terminate work neatly at obstructions, edges, and corners without disrupting pattern or joint alignments.
- C. Accurately form intersections and returns. Perform cutting and drilling of tile without marring visible surfaces. Carefully grind cut edges of tile abutting trim, finish, or built-in items for straight aligned joints. Fit tile closely to electrical outlets, piping, fixtures, and other penetrations so plates, collars, or covers overlap tile.
- D. Jointing Pattern: Lay tile in grid pattern unless otherwise indicated. Lay out tile work and center tile fields in both directions in each space or on each wall area. Lay out tile work to minimize the use of pieces that are less than half of a tile. Provide uniform joint widths unless otherwise indicated.
 - 1. Where adjoining tiles on floor, base, walls, or trim are specified or indicated to be same size, align joints.
 - 2. Where tiles are specified or indicated to be whole integer multiples of adjoining tiles on floor, base, walls, or trim, align joints unless otherwise indicated.
- E. Joint Widths: Unless otherwise indicated, install tile with the following joint widths:
 - 1. Porcelain Tile: 1/16 inch.
- F. Lay out tile wainscots to dimensions indicated or to next full tile beyond dimensions indicated.
- G. Expansion Joints: Provide expansion joints and other sealant-filled joints, including control, contraction, and isolation joints, where indicated. Form joints during installation of setting materials, mortar beds, and tile. Do not saw-cut joints after installing tiles.
 - 1. Where joints occur in concrete substrates, locate joints in tile surfaces directly above them.
 - 2. Prepare joints and apply sealants to comply with requirements in Division 07 Section "Joint Sealants."
- H. Stone Thresholds: Install stone thresholds in same type of setting bed as adjacent floor unless otherwise indicated.

3.4 CLEANING AND PROTECTING

- A. Cleaning: On completion of placement and grouting, clean all ceramic tile surfaces so they are free of foreign matter.
 - 1. Remove epoxy and latex-portland cement grout residue from tile as soon as possible.
 - 2. Clean grout smears and hazes from tile according to tile and grout manufacturer's written instructions but no sooner than 10 days after installation. Use only cleaners recommended by tile and grout manufacturers and only after determining that cleaners are safe to use by testing on samples of tile and other surfaces to be cleaned. Protect metal surfaces and plumbing fixtures from effects of cleaning. Flush surfaces with clean water before and after cleaning.
 - 3. Remove temporary protective coating by method recommended by coating manufacturer and that is acceptable to tile and grout manufacturer. Trap and remove coating to prevent drain clogging.
- B. Protect installed tile work with kraft paper or other heavy covering during construction period to prevent staining, damage, and wear. If recommended by tile manufacturer, apply coat of neutral protective cleaner to completed tile walls and floors.
- C. Prohibit foot and wheel traffic from tiled floors for at least seven days after grouting is completed.
- D. Before final inspection, remove protective coverings and rinse neutral protective cleaner from tile surfaces.

3.5 INTERIOR TILE INSTALLATION SCHEDULE

- A. Interior Floor Installations, Concrete Subfloor:
 - 1. Tile Installation F128-14: Cement Mortar with Epoxy Grout.

a. Tile Type: PT-1

b. Mortar Bed: Cement mortar.

c. Uncoupling membrane.

d. Grout: Epoxy grout.

- B. Interior Wall Installations, Metal Studs or Furring:
 - 1. Tile Installation W243: Thin-set mortar on gypsum board; TCA W244C.

a. Tile Type: PWT-1 & PWT-2

b. Thin-Set Mortar: Latex-Portland cement mortar.

c. Grout: Epoxy grout.

C. Movement Joint Installations, Perimeter Joint: EJ171I-11, using Schluter®-DILEX-BWA or approved equal.

END OF SECTION 093000

SECTION 095123 - ACOUSTICAL TILE CEILINGS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Acoustical tiles for ceilings.
- 2. Concealed suspension systems.

B. Related Requirements:

- 1. Section 095113 "Acoustical Panel Ceilings" for ceilings consisting of mineral-base and glass-fiber-base acoustical panels and exposed suspension systems.
- 2. Section 095133 "Acoustical Metal Pan Ceilings."
- C. Products furnished, but not installed under this Section, include anchors, clips, and other ceiling attachment devices to be cast in concrete.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Sample for each product

1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - 1. Ceiling suspension-system members.
 - 2. Method of attaching hangers to building structure.
 - a. Furnish layouts for cast-in-place anchors, clips, and other ceiling attachment devices whose installation is specified in other Sections.
 - 3. Size and location of initial access modules for acoustical tile.
 - 4. Ceiling-mounted items including lighting fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings.
 - 5. Minimum Drawing Scale: 1/8 inch = 1 foot.

6. Provide ESR reports for seismic ceiling installation.

1.5 CLOSEOUT SUBMITTALS

A. Maintenance Data: For finishes to include in maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Acoustical Ceiling Units: Full-size tiles equal to 2 percent of quantity installed.
 - 2. Suspension-System Components: Quantity of each concealed grid and exposed component equal to 2 percent of quantity installed.

1.7 QUALITY ASSURANCE

A. Testing Agency Qualifications: Qualified according to the National Voluntary Laboratory Accreditation Program (NVLAP) for testing indicated.

1.8 DELIVERY, STORAGE, AND HANDLING

- A. Deliver acoustical tiles, suspension-system components, and accessories to Project site in original, unopened packages and store them in a fully enclosed, conditioned space where they will be protected against damage from moisture, humidity, temperature extremes, direct sunlight, surface contamination, and other causes.
- B. Before installing acoustical tiles, permit them to reach room temperature and a stabilized moisture content.
- C. Handle acoustical tiles carefully to avoid chipping edges or damaging units in any way.

1.9 FIELD CONDITIONS

- A. Environmental Limitations: Do not install acoustical tile ceilings until spaces are enclosed and weatherproof, wet work in spaces is complete and dry, work above ceilings is complete, and ambient temperature and humidity conditions are maintained at the levels indicated for Project when occupied for its intended use.
 - 1. Pressurized Plenums: Operate ventilation system for not less than 48 hours before beginning acoustical tile ceiling installation.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: Acoustical ceiling shall withstand the effects of earthquake motions determined according to ASCE/SEI 7 & CISCA Seismic Zones 3 & 4 Ceilings and Interior Systems Construction Association Guidelines for Seismic Restraint for Direct Hung Suspended Ceiling Assemblies Category "D".
- B. Seismic Loads: Design and size components to withstand seismic loads in accordance with the International Building Code, Section 1621 for **Category C.**
- C. Surface-Burning Characteristics: Comply with ASTM E 84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 - 1. Flame-Spread Index: Comply with ASTM E 1264 for Class A materials.
 - 2. Smoke-Developed Index: 50 or less.

2.2 ACOUSTICAL TILES, GENERAL

- A. Source Limitations:
 - 1. Acoustical Ceiling Tile: Obtain each type from single source from single manufacturer.
 - 2. Suspension System: Obtain each type from single source from single manufacturer.
- B. Source Limitations: Obtain each type of acoustical ceiling tile and supporting suspension system from single source from single manufacturer.
- C. Recycled Content: Postconsumer recycled content plus one-half of preconsumer recycled content not less than 55% percent.
- D. Acoustical Tile Standard: Provide manufacturer's standard tiles of configuration indicated that comply with ASTM E 1264 classifications as designated by types, patterns, acoustical ratings, and light reflectances unless otherwise indicated.
 - 1. Mounting Method for Measuring NRC: Type E-400; plenum mounting in which face of test specimen is 15-3/4 inches away from test surface according to ASTM E 795.
- E. Acoustical Tile Colors and Patterns: Match appearance characteristics indicated for each product type.
 - 1. Where appearance characteristics of acoustical tiles are indicated by referencing pattern designations in ASTM E 1264 and not manufacturers' proprietary product designations, provide products selected by Architect from each manufacturer's full range that comply with requirements indicated for type, pattern, color, light reflectance, acoustical performance, edge detail, and size.

2.3 ACOUSTICAL TILES ACT-1

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Armstrong World Industries, Inc., Dune, Tegular #1774
 - 2. Or approved eqal.
- B. Classification: Provide tiles complying with ASTM E 1264 for type, form, and pattern as follows:
 - 1. Type and Form: Type IV, mineral base with painted finish; Form 2, water felted.
 - 2. Pattern: E.
- C. Color: White.
- D. LR: Not less than 0.83
- E. NRC: Not less than 0.50.
- F. CAC: Not less than 35.
- G. Edge/Joint Detail: Angled tegular.
- H. Thickness: 5/8 inch.
- I. Modular Size: 24x24.
- J. Broad Spectrum Antimicrobial Fungicide and Bactericide Treatment: Provide acoustical tiles treated with manufacturer's standard antimicrobial formulation that inhibits fungus, mold, mildew, and gram-positive and gram-negative bacteria and showing no mold, mildew, or bacterial growth when tested according to ASTM D 3273 and evaluated according to ASTM D 3274 or ASTM G 21.

2.4 METAL SUSPENSION SYSTEMS, GENERAL ACT-1

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Armstrong World Industries, Inc., Prelude XL HRC
- B. Recycled Content: Postconsumer recycled content plus one-half of preconsumer recycled content not less than 55% percent.
- C. Metal Suspension-System Standard: Provide manufacturer's standard metal suspension systems of types, structural classifications, and finishes indicated that comply with applicable requirements in ASTM C 635/C 635M.
- D. Wire Hangers, Braces, and Ties: Provide wires complying with the following requirements:

- 1. Zinc-Coated, Carbon-Steel Wire: ASTM A 641/A 641M, Class 1 zinc coating, soft temper.
- 2. Size: Select wire diameter so its stress at three times hanger design load (ASTM C 635/C 635M, Table 1, "Direct Hung") will be less than yield stress of wire, but provide not less than 12 gauge wire.
- E. Hanger Rods or Flat Hangers: Mild steel, zinc coated or protected with rust-inhibitive paint.
- F. Angle Hangers: Angles with legs not less than 7/8 inch wide; formed with 0.04-inch-thick, galvanized-steel sheet complying with ASTM A 653/A 653M, G90 coating designation; with bolted connections and 5/16-inch-diameter bolts.
- G. Seismic Struts: Manufacturer's standard compression struts designed to accommodate lateral forces.
- H. Seismic Clips: Manufacturer's standard seismic clips designed and spaced to secure acoustical tiles in-place if need it for locaction.

2.5 METAL SUSPENSION SYSTEM

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
- B. Direct-Hung, Double-Web Suspension System: Main and cross runners roll formed from and capped with cold-rolled steel sheet, prepainted, electrolytically zinc coated, or hot-dip galvanized according to ASTM A 653/A 653M, G30 coating designation.
 - 1. Structural Classification: Heavy-duty system.
 - 2. Access: Upward and end pivoted, with initial access openings of size indicated below and located throughout ceiling within each module formed by main and cross runners, with additional access available by progressively removing remaining acoustical tiles.
 - a. Initial Access Opening: In each module, 24 by 24 inches.

2.6 METAL EDGE MOLDINGS AND TRIM

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Armstrong World Industries, Inc., BERC2 Clip if needed for seismic Zone.
- B. Extruded-Aluminum Edge Moldings and Trim: Where indicated, provide manufacturer's extruded-aluminum edge shadow reveal transition molding at ACT to gypsum transition and perimeter shadow molding at all other instances. Trim of profile indicated or referenced by manufacturer's designations, including splice plates, corner pieces, and attachment and other clips and complying with seismic design requirements and the following:

- 1. Aluminum Alloy: Alloy and temper recommended by aluminum producer and finisher for type of use and finish indicated and with not less than the strength and durability properties of aluminum extrusions complying with ASTM B 221 for Alloy and Temper 6063-T5.
- 2. Baked-Enamel or Powder-Coat Finish: Minimum dry film thickness of 1.5 mils. Comply with ASTM C 635/C 635M and coating manufacturer's written instructions for cleaning, conversion coating, and applying and baking finish.

2.7 ACOUSTICAL SEALANT

- A. Acoustical Sealant: Manufacturer's standard sealant complying with ASTM C 834 and effective in reducing airborne sound transmission through perimeter joints and openings in building construction as demonstrated by testing representative assemblies according to ASTM E 90.
 - 1. Exposed and Concealed Joints: Nonsag, paintable, nonstaining latex sealant.
 - 2. Concealed Joints: Nondrying, nonhardening, nonskinning, nonstaining, gunnable, synthetic-rubber sealant.
 - 3. Acoustical sealant shall have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.8 MISCELLANEOUS MATERIALS

- A. Acoustical Tile Adhesive: Type recommended by acoustical tile manufacturer, bearing UL label for Class 0-25 flame spread.
 - 1. Adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- B. Staples: 5/16-inch-long, divergent-point staples.
- C. Oversized Seismic Sprinkler Trim Ring: Trim rings to be installed in ACT at sprinkler heads install white oversized trim rings at each sprinkler head. Cut acoustical ceiling tile to provide 1" gap around fixed pipe. Oversized trim ring to conceal gap.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, including structural framing and substrates to which acoustical tile ceilings attach or abut, with Installer present, for compliance with requirements specified in this and other Sections that affect ceiling installation and anchorage and for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine acoustical tiles before installation. Reject acoustical tiles that are wet, moisture damaged, or mold damaged.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Testing Substrates: Before installing adhesively applied tiles on wet-placed substrates such as cast-in-place concrete or plaster, test and verify that moisture level is below tile manufacturer's recommended limits.
- B. Measure each ceiling area and establish layout of acoustical tiles to balance border widths at opposite edges of each ceiling. Avoid using less-than-half-width tiles at borders, and comply with layout shown on reflected ceiling plans.

3.3 INSTALLATION OF SUSPENDED ACOUSTICAL TILE CEILINGS

- A. General: Install acoustical panel ceilings to comply with ASTM C 636/C 636M and seismic design requirements indicated, according to manufacturer's written instructions and CISCA's "Ceiling Systems Handbook." Install according to ESR report.
- B. Suspend ceiling hangers from building's structural members and as follows:
 - 1. Install hangers plumb and free from contact with insulation or other objects within ceiling plenum that are not part of supporting structure or of ceiling suspension system.
 - 2. Splay hangers only where required to miss obstructions; offset resulting horizontal forces by bracing, countersplaying, or other equally effective means.
 - 3. Where width of ducts and other construction within ceiling plenum produces hanger spacings that interfere with location of hangers at spacings required to support standard suspension-system members, install supplemental suspension members and hangers in form of trapezes or equivalent devices.
 - 4. Secure wire hangers to ceiling suspension members and to supports above with a minimum of three tight turns. Connect hangers directly either to structures or to inserts, eye screws, or other devices that are secure and appropriate for substrate and that will not deteriorate or otherwise fail due to age, corrosion, or elevated temperatures.
 - 5. Secure flat, angle, channel, and rod hangers to structure, including intermediate framing members, by attaching to inserts, eye screws, or other devices that are secure and appropriate for both the structure to which hangers are attached and the type of hanger involved. Install hangers in a manner that will not cause them to deteriorate or fail due to age, corrosion, or elevated temperatures.
 - 6. Do not support ceilings directly from permanent metal forms or floor deck. Fasten hangers to cast-in-place hanger inserts, postinstalled mechanical or adhesive anchors, or power-actuated fasteners that extend through forms into concrete.
 - 7. When steel framing does not permit installation of hanger wires at spacing required, install carrying channels or other supplemental support for attachment of hanger wires.
 - 8. Do not attach hangers to steel deck tabs.
 - 9. Do not attach hangers to steel roof deck. Attach hangers to structural members.
 - 10. Space hangers not more than 48 inches o.c. along each member supported directly from hangers unless otherwise indicated; provide hangers not more than 8 inches from ends of each member.

- 11. Size supplemental suspension members and hangers to support ceiling loads within performance limits established by referenced standards and publications.
- C. Secure bracing wires to ceiling suspension members and to supports with a minimum of four tight turns. Suspend bracing from building's structural members as required for hangers without attaching to permanent metal forms, steel deck, or steel deck tabs. Fasten bracing wires into concrete with cast-in-place or postinstalled anchors.
- D. Install edge moldings and trim of type indicated at perimeter of acoustical tile ceiling area and where necessary to conceal edges of acoustical tiles.
 - 1. Apply acoustical sealant in a continuous ribbon concealed on back of vertical legs of moldings before they are installed.
 - 2. Screw attach moldings to substrate at intervals not more than 16 inches o.c. and not more than 3 inches from ends, leveling with ceiling suspension system to a tolerance of 1/8 inch in 12 feet. Miter corners accurately and connect securely.
 - 3. Do not use exposed fasteners, including pop rivets, on moldings and trim.
- E. Install suspension-system runners so they are square and securely interlocked with one another. Remove and replace dented, bent, or kinked members.
- F. Arrange directionally patterned acoustical tiles as follows:
 - 1. Install tiles with pattern running in one direction parallel to long axis of space.
- G. Install acoustical tiles in coordination with suspension system and exposed moldings and trim. Place splines or suspension-system flanges into kerfed edges so tile-to-tile joints are closed by double lap of material.
 - 1. Fit adjoining tile to form flush, tight joints. Scribe and cut tile for accurate fit at borders and around penetrations through tile.
 - 2. Hold tile field in compression by inserting leaf-type, spring-steel spacers between tile and moldings, spaced 12 inches o.c.
 - 3. Protect lighting fixtures and air ducts to comply with requirements indicated for fire-resistance-rated assembly.

3.4 CLEANING

A. Clean exposed surfaces of acoustical tile ceilings, including trim and edge moldings. Comply with manufacturer's written instructions for cleaning and touchup of minor finish damage. Remove and replace tiles and other ceiling components that cannot be successfully cleaned and repaired to permanently eliminate evidence of damage.

END OF SECTION 095123

SECTION 096513 - RESILIENT WALL BASE AND ACCESSORIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Resilient wall base.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Samples for Verification: For each type of product indicated, in manufacturer's standard-size Samples but not less than 12 inches long, of each resilient product color, texture, and pattern required.
- C. Product Schedule: For resilient products refer to Finish Schedules in the specification manual.

1.4 QUALITY ASSURANCE

- A. Fire-Test-Response Characteristics: As determined by testing identical products according to ASTM E 648 or NFPA 253 by a qualified testing agency.
 - 1. Critical Radiant Flux Classification: Class I, not less than 0.45 W/sq. cm.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Store resilient products and installation materials in dry spaces protected from the weather, with ambient temperatures maintained within range recommended by manufacturer, but not less than 50 deg F or more than 90 deg F.

1.6 PROJECT CONDITIONS

- A. Maintain ambient temperatures within range recommended by manufacturer, but not less than 70 deg F or more than 95 deg F, in spaces to receive resilient products during the following time periods:
 - 1. 48 hours before installation.
 - 2. During installation.
 - 3. 48 hours after installation.

- B. Until Substantial Completion, maintain ambient temperatures within range recommended by manufacturer, but not less than 55 deg F or more than 95 deg F.
- C. Install resilient products after other finishing operations, including painting, have been completed.

1.7 EXTRA MATERIALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Furnish not less than 10 linear feet for every 500 linear feet or fraction thereof, of each type, color, pattern, and size of resilient product installed.

PART 2 - PRODUCTS

2.1 RESILIENT BASE (RB-1)

- A. Resilient Cove Base:
 - 1. Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Mannington, Inc.
 - b. Johnsonite.
- B. Resilient Base Standard: ASTM F 1861.
 - 1. Material Requirement: Type TS Group 1
 - 2. Manufacturing Method: Group I (solid, homogeneous).
 - 3. Style: Cove base
- C. Height: 4 inches, Cove Base
- D. Lengths: 8'
- E. Outside Corners: Job formed.
- F. Inside Corners: Job formed.
- G. Finish: As selected by Government from manufacturer's full range.
- H. Colors and Patterns: See finish schedule on Architectural drawings.

2.2 RESILIENT MOLDING ACCESSORY (transition strips)

- A. Resilient Molding Accessory:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

- a. Burke Mercer Flooring Products; Division of Burke Industries, Inc.
- b. Flexco, Inc.
- c. Johnsonite.
- d. R.C.A. Rubber Company (The).
- e. Roppe Corporation, USA.
- f. VPI, LLC; Floor Products Division.
- B. Description: Reducer strip for resilient floor covering.
- C. Material: Rubber.
- D. Profile and Dimensions: As indicated.
- E. Colors and Patterns: As indicated

2.3 INSTALLATION MATERIALS

- A. Trowelable Leveling and Patching Compounds: Latex-modified, portland cement based or blended hydraulic-cement-based formulation provided or approved by manufacturer for applications indicated.
- B. Adhesives: Water-resistant type recommended by manufacturer to suit resilient products and substrate conditions indicated.
 - 1. Use adhesives that comply with the following limits for VOC content when calculated according to 40 CFR 59, Subpart D (EPA Method 24):
 - a. Cove Base Adhesives: Not more than 50 g/L.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, with Installer present, for compliance with requirements for maximum moisture content and other conditions affecting performance of the Work.
- B. Verify that finishes of substrates comply with tolerances and other requirements specified in other Sections and that substrates are free of cracks, ridges, depressions, scale, and foreign deposits that might interfere with adhesion of resilient products.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Prepare substrates according to manufacturer's written instructions to ensure adhesion of resilient products.

3.3 RESILIENT BASE INSTALLATION

- A. Comply with manufacturer's written instructions for installing resilient base.
- B. Apply resilient base to walls, columns, pilasters, casework and cabinets in toe spaces, and other permanent fixtures in rooms and areas where base is required.
- C. Install resilient base in lengths as long as practicable without gaps at seams and with tops of adjacent pieces aligned.
- D. Tightly adhere resilient base to substrate throughout length of each piece, with base in continuous contact with horizontal and vertical substrates.
- E. Do not stretch resilient base during installation.
- F. Job-Formed Corners:
 - 1. Outside Corners: Use straight pieces of maximum lengths possible. Form without producing discoloration (whitening) at bends.
 - 2. Inside Corners: Use straight pieces of maximum lengths possible.

3.4 RESILIENT ACCESSORY INSTALLATION

- A. Comply with manufacturer's written instructions for installing resilient accessories.
- B. Resilient Molding Accessories: Butt to adjacent materials and tightly adhere to substrates throughout length of each piece. Install reducer strips at edges of carpet that would otherwise be exposed.

3.5 CLEANING AND PROTECTION

- A. Comply with manufacturer's written instructions for cleaning and protection of resilient products.
- B. Perform the following operations immediately after completing resilient product installation:
 - 1. Remove adhesive and other blemishes from exposed surfaces.
 - 2. Sweep and vacuum surfaces thoroughly.
- C. Protect resilient products from mars, marks, indentations, and other damage from construction operations and placement of equipment and fixtures during remainder of construction period.
- D. Cover resilient products until Substantial Completion.

END OF SECTION 096513

SECTION 096519 - RESILIENT TILE FLOORING

PART 1 - GENERAL

1.3 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.4 SUMMARY

- A. Section Includes:
 - (1) Solid vinyl floor tile (LVT).

1.5 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: For each type of floor tile. Include floor tile layouts, edges, columns, doorways, enclosing partitions, built-in furniture, cabinets, and cutouts.
 - 3. Show details of special patterns.

1.6 CLOSEOUT SUBMITTALS

A. Maintenance Data: For each type of floor tile to include in maintenance manuals.

1.7 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 3. Floor Tile: Furnish one box for every 50 boxes or fraction thereof, of each type, color, and pattern of floor tile installed.

1.8 QUALITY ASSURANCE

- A. Installer Qualifications: A qualified installer who employs workers for this Project who are competent in techniques required by manufacturer for floor tile installation and seaming method indicated.
 - 3. Engage an installer who employs workers for this Project who are trained or certified by floor tile manufacturer for installation techniques required.

- 4. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
- 5. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Store floor tile and installation materials in dry spaces protected from the weather, with ambient temperatures maintained within range recommended by manufacturer, but not less than 50 deg

B. FIELD CONDITIONS

- C. Maintain ambient temperatures within range recommended by manufacturer, but not less than 70 deg F or more than 95 deg F, in spaces to receive floor tile during the following time periods:
 - 3. 48 hours before installation.
 - 4. During installation.
 - 5. 48 hours after installation.
- D. After installation and until Substantial Completion, maintain ambient temperatures within range recommended by manufacturer, but not less than 55 deg F or more than 95 deg F.
- E. Close spaces to traffic during floor tile installation.
- F. Close spaces to traffic for 48 hours after floor tile installation.
- G. Install floor tile after other finishing operations, including painting, have been completed.

PART 2 - PRODUCTS

2.3 PERFORMANCE REQUIREMENTS

- A. Fire-Test-Response Characteristics: For resilient tile flooring, as determined by testing identical products according to ASTM E 648 or NFPA 253 by a qualified testing agency.
 - 3. Critical Radiant Flux Classification: Class I, not less than 0.45 W/sq. cm.

2.4 SOLID VINYL FLOOR TILE LVT-1

- A. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - 3. Mannington Commercial Flooring.
 - 4. Or approved equal.
- B. Tile Standard: ASTM F 1700.

- 3. Class: Class III, printed film vinyl tile.
- 4. Type: B, embossed surface.
- C. Thickness: 0.096" inch (2.5mm).
- D. Size: 4"x36".
- E. Colors and Patterns: see finish legend on architectural drawings.

2.5 INSTALLATION MATERIALS

- A. Trowelable Leveling and Patching Compounds: Latex-modified, portland cement based or blended hydraulic-cement-based formulation provided or approved by floor tile manufacturer for applications indicated.
- B. Adhesives: Water-resistant type recommended by floor tile and adhesive manufacturers to suit floor tile and substrate conditions indicated.
 - 3. Adhesives shall comply with the following limits for VOC content:
 - a. Vinyl Composition Tile Adhesives: 50 g/L or less.
 - b. Rubber Floor Adhesives: 60 g/L or less.
- C. Floor Polish: Provide protective, liquid floor-polish products recommended by floor tile manufacturer.

PART 3 - EXECUTION

3.3 EXAMINATION

- A. Examine substrates, with Installer present, for compliance with requirements for maximum moisture content and other conditions affecting performance of the Work.
 - 3. Verify that finishes of substrates comply with tolerances and other requirements specified in other Sections and that substrates are free of cracks, ridges, depressions, scale, and foreign deposits that might interfere with adhesion of floor tile.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.4 PREPARATION

- A. Prepare substrates according to floor tile manufacturer's written instructions to ensure adhesion of resilient products.
- B. Concrete Substrates: Prepare according to ASTM F 710.
 - 3. Verify that substrates are dry and free of curing compounds, sealers, and hardeners.

- 4. Remove substrate coatings and other substances that are incompatible with adhesives and that contain soap, wax, oil, or silicone, using mechanical methods recommended by floor tile manufacturer. Do not use solvents.
- 5. Alkalinity and Adhesion Testing: Perform tests recommended by floor tile manufacturer. Proceed with installation only after substrate alkalinity falls within range on pH scale recommended by manufacturer in writing, but not less than 5 or more than 10 Insert number pH.
- 6. Moisture Testing: Proceed with installation only after substrates pass testing according to floor tile manufacturer's written recommendations, but not less stringent than the following:
 - a. Perform anhydrous calcium chloride test according to ASTM F 1869. Proceed with installation only after substrates have maximum moisture-vapor-emission rate of 8 lb of water/1000 sq. ft. in 24 hours.
 - b. Perform relative humidity test using in situ probes according to ASTM F 2170. Proceed with installation only after substrates have a maximum 90 percent relative humidity level.
- C. Fill cracks, holes, and depressions in substrates with trowelable leveling and patching compound; remove bumps and ridges to produce a uniform and smooth substrate.
- D. Do not install floor tiles until they are the same temperature as the space where they are to be installed.
 - 3. At least 48 hours in advance of installation, move resilient floor tile and installation materials into spaces where they will be installed.
- E. Immediately before installation, sweep and vacuum clean substrates to be covered by resilient floor tile.

3.5 FLOOR TILE INSTALLATION

- A. Comply with manufacturer's written instructions for installing floor tile.
- B. Lay out floor tiles from center marks established with principal walls, discounting minor offsets, so tiles at opposite edges of room are of equal width. Adjust as necessary to avoid using cut widths that equal less than one-half tile at perimeter.
 - 3. Lay tiles square with room axis.
- C. Match floor tiles for color and pattern by selecting tiles from cartons in the same sequence as manufactured and packaged, if so numbered. Discard broken, cracked, chipped, or deformed tiles.
 - 3. Lay tiles with grain running in one direction.
- D. Scribe, cut, and fit floor tiles to butt neatly and tightly to vertical surfaces and permanent fixtures including built-in furniture, cabinets, pipes, outlets, and door frames.

- E. Extend floor tiles into toe spaces, door reveals, closets, and similar openings. Extend floor tiles to center of door openings.
- F. Maintain reference markers, holes, and openings that are in place or marked for future cutting by repeating on floor tiles as marked on substrates. Use chalk or other nonpermanent marking device.
- G. Install floor tiles on covers for telephone and electrical ducts, building expansion-joint covers, and similar items in finished floor areas. Maintain overall continuity of color and pattern between pieces of tile installed on covers and adjoining tiles. Tightly adhere tile edges to substrates that abut covers and to cover perimeters.
- H. Adhere floor tiles to flooring substrates using a full spread of adhesive applied to substrate to produce a completed installation without open cracks, voids, raising and puckering at joints, telegraphing of adhesive spreader marks, and other surface imperfections.

3.6 CLEANING AND PROTECTION

- A. Comply with manufacturer's written instructions for cleaning and protecting floor tile.
- B. Perform the following operations immediately after completing floor tile installation:
 - 3. Remove adhesive and other blemishes from exposed surfaces.
 - 4. Sweep and vacuum surfaces thoroughly.
 - 5. Damp-mop surfaces to remove marks and soil.
- C. Protect floor tile from mars, marks, indentations, and other damage from construction operations and placement of equipment and fixtures during remainder of construction period.
- D. Floor Polish: Remove soil, adhesive, and blemishes from floor tile surfaces before applying liquid floor polish.
 - 3. Apply three coat(s).
- E. Cover floor tile until Substantial Completion.

END OF SECTION 096519

SECTION 096566 - RESILIENT ATHLETIC FLOORING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Rubber floor tile.
 - 2. Cementitious and reactive waterproofing.
- B. Related Sections:
 - 1. Section 096513 "Resilient Base and Accessories" for wall base and accessories installed with flooring.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: Show installation details and locations of the following:
 - 1. Floor patterns.
- C. Samples for Verification: For each type, color, and pattern of flooring indicated, 8 inch square Samples of same thickness and material indicated for the Work.

1.4 CLOSEOUT SUBMITTALS

A. Maintenance Data: For flooring to include in maintenance manuals.

1.5 MATERIALS MAINTENANCE SUBMITTALS

- A. Furnish extra materials, before installation begins, that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Floor Tile: Furnish no fewer than 1 box for each 50 boxes or fraction thereof, of each type, color, pattern, and size of floor tile installed.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Deliver materials in original packages and containers, with seals unbroken, bearing manufacturer's labels indicating brand name and directions for storing.
- B. Store materials to prevent deterioration. Store tiles on flat surfaces

1.7 FIELD CONDITIONS

- A. Adhesively Applied Products:
 - 1. Maintain temperatures during installation within range recommended in writing by manufacturer, but not less than 70 deg F or more than 95 deg F >, in spaces to receive flooring 48 hours before installation, during installation, and 48 hours after installation unless longer period is recommended in writing by manufacturer.
 - 2. After postinstallation period, maintain temperatures within range recommended in writing by manufacturer, but not less than **55 deg F**or more than 95 deg F
 - 3. Close spaces to traffic during flooring installation.
 - 4. Close spaces to traffic for 48 hours after flooring installation unless manufacturer recommends longer period in writing.
- B. Install flooring after other finishing operations, including painting, have been completed.

1.8 COORDINATION

A. Coordinate layout and installation of flooring with floor inserts for gymnasium equipment.

PART 2 - PRODUCTS

2.1 RUBBER FLOOR TILE

- A. Description: Athletic flooring consisting of modular rubber tiles with smooth edges for adhered application.
- B. Material: Rubber
- C. Traffic-Surface Texture: Smooth.
- D. Size: Manufacturer's standard-size square tile 24 inches square
- E. Thickness: 8MM.
- F. Color and Pattern: See Architectural Drawings
- G. floor tile; with bevels that transition from thickness of floor tile to surface below it; with straight outside edges; and for use where flooring corners and edges do not abut vertical surfaces.

2.2 CEMENTITIUOS AND REACTIVE WATERPROOFING

- A. Description: Clear, non-staining, waterborne silicate based penetrating sealer containing a blend of surfactants and enzyme catalysts.
- B. Acceptable Manufacturer: Bone Dry Permanent Penetrating Concrete Sealer by Bone Dry Products, Inc. 9114 58th Place, Suite 400, Kenosha, WI 53144, or approved equal.

2.3 ACCESSORIES

- A. Trowelable Leveling and Patching Compound: Latex-modified, hydraulic-cement-based formulation approved by flooring manufacturer.
- B. Adhesives: Water-resistant type recommended in writing by manufacturer for substrate and conditions indicated.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, with Installer present, for compliance with requirements for installation tolerances, moisture content, and other conditions affecting performance of the Work.
 - 1. Verify that finishes of substrates comply with tolerances and other requirements specified in other Sections and that substrates are free of cracks, ridges, depressions, scale, and foreign deposits that might interfere with adhesion of resilient products.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Prepare substrates according to manufacturer's written recommendations to ensure adhesion of flooring.
- B. Concrete Substrates: Prepare according to ASTM F 710.
 - 1. Verify that substrates are dry and free of curing compounds, sealers, and hardeners.
 - 2. Alkalinity Testing: Perform pH testing according to ASTM F 710. Proceed with installation only if pH readings are not less than 7.0 and not greater than 8.5.
 - 3. Moisture Testing:
 - a. Perform anhydrous calcium chloride test, ASTM F 1869. Proceed with installation only after substrates have maximum moisture-vapor-emission rate of 3 lb of water/1000 sq. ft.in 24 hours.
 - 1) Perform tests so that each test area does not exceed 200 sq. ft., and perform no fewer than two tests in each installation area and with test areas evenly spaced in installation areas.

- b. Perform relative humidity test using in-situ probes, ASTM F 2170. Proceed with installation only after substrates have a maximum [75] percent relative humidity level measurement.
- C. Remove substrate coatings and other substances that are incompatible with adhesives and that contain soap, wax, oil, or silicone, using mechanical methods recommended in writing by manufacturer. Do not use solvents.
- D. Use trowelable leveling and patching compound to fill cracks, holes, and depressions in substrates.
- E. Move flooring and installation materials into spaces where they will be installed at least 48 hours in advance of installation unless manufacturer recommends a longer period in writing.
 - 1. Do not install flooring until they are same temperature as space where they are to be installed.
- F. Sweep and vacuum clean substrates to be covered by flooring immediately before installation. After cleaning, examine substrates for moisture, alkaline salts, carbonation, and dust.
- G. Proceed with installation only after unsatisfactory conditions have been corrected.

3.3 FLOORING INSTALLATION, GENERAL

- A. Comply with manufacturer's written installation instructions.
- B. Scribe, cut, and fit flooring to butt neatly and tightly to vertical surfaces, equipment anchors, floor outlets, and other interruptions of floor surface.
- C. Extend flooring into toe spaces, door reveals, closets, and similar openings unless otherwise indicated.
- D. Maintain reference markers, holes, and openings that are in place or marked for future cutting by repeating subfloor markings on flooring. Use nonpermanent, nonstaining marking device.

3.4 FLOOR TILE INSTALLATION

- A. Lay out tiles from center marks established with principal walls, discounting minor offsets, so tiles at opposite edges of room are of equal width. Adjust as necessary to avoid using cut widths that equal less than one-half tile at perimeter.
 - 1. Lay tiles square with room axis
- B. Discard broken, cracked, chipped, or deformed tiles.
- C. Match tiles for color and pattern by selecting tiles from cartons in same sequence as manufactured and packaged if so numbered.
 - 1. Lay tiles with grain direction alternating in adjacent tiles (basket-weave pattern)

- D. Adhered Flooring: Adhere products to substrates using a full spread of adhesive applied to substrate to comply with adhesive and flooring manufacturers' written instructions, including those for trowel notching, adhesive mixing, and adhesive open and working times.
 - 1. Provide completed installation without open cracks, voids, raising and puckering at joints, telegraphing of adhesive spreader marks, and other surface imperfections.

3.5 CEMENTITIUOS AND REACTIVE WATERPROOFING INSTALLATION

- A. Prepare and apply as per manufacturer's specifications.
- B. Clean surfaces to be treated removing impervious materials to allow sealer penetration.
- C. Hard troweled surfaces: Acid-etch or mechanically abrade to ensure proper product penetration.
- D. Do not apply sealer to surfaces below 40 degrees F (4 degrees C) or above 90 degrees F (32 degrees C) unless recommended by the manufacturer.
- E. Do not apply sealer when rain is predicted within 24 hours or less than 48 hours after surface has been wet.
- F. If the concrete surface is coated with heavy wax, thick grease, recently applied surface sealer, rubber or acrylic paint or other impervious material exists, remove such materials so that the Bone Dry will be allowed to penetrate through the surface of the concrete. The surface of slick, hard troweled concrete should be opened up by acid etching or mechanical means to facilitate the proper penetration of the Bone Dry.

3.6 CLEANING AND PROTECTING

- A. Perform the following operations immediately after completing flooring installation:
 - 1. Remove adhesive and other blemishes from flooring surfaces.
 - 2. Sweep and vacuum flooring thoroughly.
 - 3. Damp-mop flooring to remove marks and soil after time period recommended in writing by manufacturer.
- B. Protect flooring from mars, marks, indentations, and other damage from construction operations and placement of equipment and fixtures during remainder of construction period. Use protection methods recommended in writing by manufacturer.
 - 1. Do not move heavy and sharp objects directly over flooring. Protect flooring with plywood or hardboard panels to prevent damage from storing or moving objects over flooring.

END OF SECTION 096566

SECTION 096813 - TILE CARPETING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes modular, tufted carpet tile.
- B. Related Requirements:
 - 1. Section 024119 "Selective Demolition" for removing existing floor coverings.
 - 2. Section 096513 "Resilient Base and Accessories" for resilient wall base and accessories installed with carpet tile.
 - 3. See finish schedule on architectural plans.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include manufacturer's written data on physical characteristics, durability, and fade resistance.
 - 2. Include installation recommendations for each type of substrate.
- B. Samples: For each of the following products and for each color and texture required. Label each Sample with manufacturer's name, material description, color, pattern, and designation indicated on Drawings and in schedules.
 - 1. Carpet Tile: Full-size Sample.
 - 2. Exposed Edge, Transition, and Other Accessory Stripping: 12-inch-long Samples.

1.4 CLOSEOUT SUBMITTALS

- A. Maintenance Data: For carpet tiles to include in maintenance manuals. Include the following:
 - 1. Methods for maintaining carpet tile, including cleaning and stain-removal products and procedures and manufacturer's recommended maintenance schedule.
 - 2. Precautions for cleaning materials and methods that could be detrimental to carpet tile.

1.5 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials, from the same product run, that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Carpet Tile: Full-size units equal to 10 percent of amount installed for each type indicated, but not less than 10 sq. yd.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Comply with CRI 104.

1.7 FIELD CONDITIONS

- A. Comply with CRI 104 for temperature, humidity, and ventilation limitations.
- B. Environmental Limitations: Do not deliver or install carpet tiles until spaces are enclosed and weathertight, wet work in spaces is complete and dry, and ambient temperature and humidity conditions are maintained at occupancy levels during the remainder of the construction period.
- C. Do not install carpet tiles over concrete slabs until slabs have cured and are sufficiently dry to bond with adhesive and concrete slabs have pH range recommended by carpet tile manufacturer.
- D. Where demountable partitions or other items are indicated for installation on top of carpet tiles, install carpet tiles before installing these items.

1.8 WARRANTY

- A. Special Warranty for Carpet Tiles: Manufacturer agrees to repair or replace components of carpet tile installation that fail in materials or workmanship within specified warranty period.
 - 1. Warranty does not include deterioration or failure of carpet tile due to unusual traffic, failure of substrate, vandalism, or abuse.
 - 2. Failures include, but are not limited to, more than 10 percent edge raveling, snags, runs, dimensional stability, excess static discharge, loss of tuft bind strength, loss of face fiber, and delamination.
 - 3. Warranty Period: Lifetime Commercial Limited from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 CARPET TILE CPT-1, CPT-2

- A. Products: Subject to compliance with requirements, provide the following:
 - 1. Milliken Floor Covering
- B. Backing: PVC-Free Cushion.
- C. Color: As selected by Architect on sheet, Finish Legend.

- D. Pattern: As selected by Architect on sheet, Finish Legend.
- E. Applied Soil-Resistance Treatment: Manufacturer's standard material.

2.2 INSTALLATION ACCESSORIES

- A. Trowelable Leveling and Patching Compounds: Latex-modified, hydraulic-cement-based formulation provided or recommended by carpet tile manufacturer.
- B. Metal Edge/Transition Strips: Extruded aluminum with mill finish of profile and width shown, of height required to protect exposed edge of carpet, and of maximum lengths to minimize running joints.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for maximum moisture content, alkalinity range, installation tolerances, and other conditions affecting carpet tile performance. Examine carpet tile for type, color, pattern, and potential defects.
- B. For raised access flooring systems, verify the following:
 - 1. Access floor complies with installation requirements specified in Section 096900 "Access Flooring."
 - 2. Access floor substrate is compatible with carpet tile and adhesive if any.
 - 3. Underlayment surface is flat, smooth, evenly planed, tightly jointed, and free of irregularities, gaps greater than 1/8 inch, protrusions more than 1/32 inch, and substances that may interfere with adhesive bond or show through surface.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. General: Comply with CRI 104, Section 6.2, "Site Conditions; Floor Preparation," and with carpet tile manufacturer's written installation instructions for preparing substrates indicated to receive carpet tile installation.
- B. Use trowelable leveling and patching compounds, according to manufacturer's written instructions, to fill cracks, holes, depressions, and protrusions in substrates. Fill or level cracks, holes and depressions 1/8 inch wide or wider and protrusions more than 1/32 inch unless more stringent requirements are required by manufacturer's written instructions.
- C. Remove coatings, including curing compounds, and other substances that are incompatible with adhesives and that contain soap, wax, oil, or silicone, without using solvents. Use mechanical methods recommended in writing by carpet tile manufacturer.

- D. Clean metal substrates of grease, oil, soil and rust, and prime if directed by adhesive manufacturer. Rough sand painted metal surfaces and remove loose paint. Sand aluminum surfaces, to remove metal oxides, immediately before applying adhesive.
- E. Broom and vacuum clean substrates to be covered immediately before installing carpet tile.

3.3 INSTALLATION

- A. General: Comply with CRI 104, Section 14, "Carpet Modules," and with carpet tile manufacturer's written installation instructions.
- B. Installation Method: As recommended in writing by carpet tile manufacturer.
- C. Maintain dye lot integrity. Do not mix dye lots in same area.
- D. Cut and fit carpet tile to butt tightly to vertical surfaces, permanent fixtures, and built-in furniture including cabinets, pipes, outlets, edgings, thresholds, and nosings. Bind or seal cut edges as recommended by carpet tile manufacturer.
- E. Extend carpet tile into toe spaces, door reveals, closets, open-bottomed obstructions, removable flanges, alcoves, and similar openings.
- F. Maintain reference markers, holes, and openings that are in place or marked for future cutting by repeating on finish flooring as marked on subfloor. Use nonpermanent, nonstaining marking device.
- G. Install pattern parallel to walls and borders.
- H. Stagger joints of carpet tiles so carpet tile grid is offset from access flooring panel grid. Do not fill seams of access flooring panels with carpet adhesive; keep seams free of adhesive.

3.4 CLEANING AND PROTECTION

- A. Perform the following operations immediately after installing carpet tile:
 - 1. Remove yarns that protrude from carpet tile surface.
 - 2. Vacuum carpet tile using commercial machine with face-beater element.
- B. Protect installed carpet tile to comply with CRI 104, Section 16, "Protecting Indoor Installations."
- C. Protect carpet tile against damage from construction operations and placement of equipment and fixtures during the remainder of construction period. Use protection methods indicated or recommended in writing by carpet tile manufacturer.

END OF SECTION 096813

SECTION 097200 - WALL COVERINGS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Vinyl wall covering.

1.3 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include data on physical characteristics, durability, fade resistance, and fire-test-response characteristics.
 - 2. Provide strike offs of digital printed wallcovering using owner/architect supplied digital artwork
- B. Shop Drawings: Show location and extent of each wall-covering type. Indicate pattern placement, seams and termination points.
- C. Samples for Verification: For each type of wall covering and for each color, pattern, texture, and finish specified, full width by 36-inch-long in size.
 - 1. Wall-Covering Sample: From same production run to be used for the Work, with specified treatments applied. Show complete pattern repeat. Mark top and face of fabric.

1.5 CLOSEOUT SUBMITTALS

A. Maintenance Data: For wall coverings to include in maintenance manuals.

1.6 FIELD CONDITIONS

A. Environmental Limitations: Do not deliver or install wall coverings until spaces are enclosed and weather tight, wet work in spaces is complete and dry, work above ceilings is complete, and

temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at levels intended for occupants after Project completion during the remainder of the construction period.

- 1. Wood-Veneer Wall Coverings: Condition spaces for not less than 48 hours before installation.
- B. Lighting: Do not install wall covering until lighting that matches conditions intended for occupants after Project completion is provided on the surfaces to receive wall covering.
- C. Ventilation: Provide continuous ventilation during installation and for not less than the time recommended by wall-covering manufacturer for full drying or curing.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Low-Emitting Materials: Wall-covering system shall comply with the testing and product requirements of the California Department of Public Health's (formerly, the California Department of Health Services') "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."

2.2 VINYL WALL COVERING VWC-100 AND VWC-101

- A. Description: Digital printed vinyl wallcovering, provide products in rolls from same production run and complying with the following:
 - 1. FS CCC-W-408D and CFFA-W-101-D for Type II, Medium-Duty products.
 - 2. ASTM F 793 for strippable wall coverings.
 - a. Category: VI, Type III, Commercial Serviceability.
- B. Total Weight: 20 oz., excluding coatings.
- C. Width: 54 inches.
- D. Backing: fabric.
- E. Repeat: custom digital artwork, pattern has no repeat. Panels are to be install in sequence.
- F. Colors, Textures, and Patterns: Level Digital Wallcovering. See Pattern on Architectural drawings.

2.3 ACCESSORIES

- A. Adhesive: Mildew-resistant, nonstaining, strippable adhesive, for use with specific wall covering and substrate application indicated and as recommended in writing by wall-covering manufacturer.
 - 1. Adhesive shall have a VOC content of 50 g/L or less.

2. Adhesive shall comply with the testing and product requirements of the California Department of Public Health's (formerly, the California Department of Health Services') "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions, with Installer present, for compliance with requirements for levelness, wall plumbness, maximum moisture content, and other conditions affecting performance of the Work.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Comply with manufacturer's written instructions for surface preparation.
- B. Clean substrates of substances that could impair bond of wall covering, including dirt, oil, grease, mold, mildew, and incompatible primers.
- C. Prepare substrates to achieve a smooth, dry, clean, structurally sound surface free of flaking, unsound coatings, cracks, and defects.
 - 1. Moisture Content: Maximum of 5 percent on new plaster, concrete, and concrete masonry units when tested with an electronic moisture meter.
 - 2. Gypsum Board: Prime with primer as recommended in writing by primer/sealer manufacturer and wall-covering manufacturer.
- D. Check painted surfaces for pigment bleeding. Sand gloss, semigloss, and eggshell finish with fine sandpaper.
- E. Remove hardware and hardware accessories, electrical plates and covers, light fixture trims, and similar items.
- F. Acclimatize wall-covering materials by removing them from packaging in the installation areas not less than 24 hours before installation.

3.3 WALL-COVERING INSTALLATION

- A. Comply with wall-covering manufacturers' written installation instructions applicable to products and applications indicated.
- B. Cut wall-covering strips in roll number sequence. Change the roll numbers at partition breaks and corners.
- C. Install strips in same order as cut from roll.

- 1. For solid-color, even-texture, or random-match wall coverings, reverse every other strip.
- D. Install wall covering without lifted or curling edges and without visible shrinkage.
- E. Install seams vertical and plumb at least 6 inches from outside corners and 3 inches from inside corners unless a change of pattern or color exists at corner. Horizontal seams are not permitted.
- F. Trim edges and seams for color uniformity, pattern match, and tight closure. Butt seams without overlaps or gaps between strips.
- G. Fully bond wall covering to substrate. Remove air bubbles, wrinkles, blisters, and other defects.

3.4 CLEANING

- A. Remove excess adhesive at seams, perimeter edges, and adjacent surfaces.
- B. Use cleaning methods recommended in writing by wall-covering manufacturer.
- C. Replace strips that cannot be cleaned.
- D. Reinstall hardware and hardware accessories, electrical plates and covers, light fixture trims, and similar items.

END OF SECTION 097200

SECTION 099113 - EXTERIOR PAINTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes surface preparation and the application of paint systems on exterior substrates.
- B. Related Requirements:
 - 1. Section 051000 "Structural Steel Framing" for shop priming of metal substrates.
 - 2. Section 055000 "Metal Fabrications" for shop priming metal fabrications.
 - 3. Section 055213 "Pipe and Tube Railings" for shop priming and painting pipe and tube railings.
 - 4. Section 099600 "High-Performance Coatings" for tile-like coatings.

1.3 DEFINITIONS

- A. MPI Gloss Level 1: Not more than five units at 60 degrees and 10 units at 85 degrees, according to ASTM D523.
- B. MPI Gloss Level 3: 10 to 25 units at 60 degrees and 10 to 35 units at 85 degrees, according to ASTM D523.
- C. MPI Gloss Level 4: 20 to 35 units at 60 degrees and not less than 35 units at 85 degrees, according to ASTM D523.
- D. MPI Gloss Level 5: 35 to 70 units at 60 degrees, according to ASTM D523.
- E. MPI Gloss Level 6: 70 to 85 units at 60 degrees, according to ASTM D523.
- F. MPI Gloss Level 7: More than 85 units at 60 degrees, according to ASTM D523.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product. Include preparation requirements and application instructions.
 - 1. Include printout of current "MPI Approved Products List" for each product category specified, with the proposed product highlighted.
 - 2. Indicate VOC content.

- B. Samples for Verification: For each type of paint system and each color and gloss of topcoat.
 - 1. Submit Samples on rigid backing, 8 inches (200 mm) square.
 - 2. Apply coats on Samples in steps to show each coat required for system.
 - 3. Label each coat of each Sample.
 - 4. Label each Sample for location and application area.
- C. Product List: Cross-reference to paint system and locations of application areas. Use same designations indicated on Drawings and in schedules. Include color designations.

1.5 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials, that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Paint: 5 percent, but not less than 1 gal. (3.8 L) of each material and color applied.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Store materials not in use in tightly covered containers in well-ventilated areas with ambient temperatures continuously maintained at not less than 45 deg F (7 deg C).
 - 1. Maintain containers in clean condition, free of foreign materials and residue.
 - 2. Remove rags and waste from storage areas daily.

1.7 FIELD CONDITIONS

- A. Apply paints only when temperature of surfaces to be painted and ambient air temperatures are between 50 and 95 deg F (10 and 35 deg C).
- B. Do not apply paints in snow, rain, fog, or mist; when relative humidity exceeds 85 percent; at temperatures less than 5 deg F (3 deg C) above the dew point; or to damp or wet surfaces.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. Benjamin Moore & Co.
 - 2. Dulux (formerly ICI Paints); a brand of AkzoNobel.
 - 3. Glidden Professional.
 - 4. PPG Architectural Finishes, Inc.
 - 5. Pratt & Lambert.
 - 6. Sherwin-Williams Company (The).

B. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to products listed in the Exterior Painting Schedule for the paint category indicated.

2.2 PAINT, GENERAL

A. MPI Standards: Products shall comply with MPI standards indicated and shall be listed in its "MPI Approved Products Lists."

B. Material Compatibility:

- 1. Materials for use within each paint system shall be compatible with one another and substrates indicated, under conditions of service and application as demonstrated by manufacturer, based on testing and field experience.
- 2. For each coat in a paint system, products shall be recommended in writing by topcoat manufacturers for use in paint system and on substrate indicated.
- C. Colors: As indicated or, if not indicated, as selected by Architect from manufacturer's full range.

2.3 SOURCE QUALITY CONTROL

- A. Testing of Paint Materials: Owner reserves the right to invoke the following procedure:
 - 1. Owner may engage the services of a qualified testing agency to sample paint materials. Contractor will be notified in advance and may be present when samples are taken. If paint materials have already been delivered to Project site, samples may be taken at Project site. Samples will be identified, sealed, and certified by testing agency.
 - 2. Testing agency may perform tests for compliance with product requirements.
 - 3. Owner may direct Contractor to stop applying paints if test results show materials being used do not comply with product requirements. Contractor shall remove noncomplying paint materials from Project site, pay for testing, and repaint surfaces painted with rejected materials. Contractor will be required to remove rejected materials from previously painted surfaces if, on repainting with complying materials, the two paints are incompatible.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions, with Applicator present, for compliance with requirements for maximum moisture content and other conditions affecting performance of the Work.
- B. Verify suitability of substrates, including surface conditions and compatibility, with existing finishes and primers.
- C. Proceed with coating application only after unsatisfactory conditions have been corrected.

1. Application of coating indicates acceptance of surfaces and conditions.

3.2 PREPARATION

- A. Comply with manufacturer's written instructions and recommendations in "MPI Architectural Painting Specification Manual" applicable to substrates and paint systems indicated.
- B. Remove hardware, covers, plates, and similar items already in place that are removable and are not to be painted. If removal is impractical or impossible because of size or weight of item, provide surface-applied protection before surface preparation and painting.
 - 1. After completing painting operations, use workers skilled in the trades involved to reinstall items that were removed. Remove surface-applied protection.
- C. Clean substrates of substances that could impair bond of paints, including dust, dirt, oil, grease, and incompatible paints and encapsulants.
 - 1. Remove incompatible primers and reprime substrate with compatible primers or apply tie coat as required to produce paint systems indicated.
- D. Masonry Substrates: Remove efflorescence and chalk. Do not paint surfaces if moisture content or alkalinity of surfaces or mortar joints exceeds that permitted in manufacturer's written instructions.
- E. Steel Substrates: Remove rust, loose mill scale, and shop primer if any. Clean using methods recommended in writing by paint manufacturer but not less than the following:
 - 1. SSPC-SP 3.
- F. Shop-Primed Steel Substrates: Clean field welds, bolted connections, and areas where shop paint is abraded. Paint exposed areas with the same material as used for shop priming to comply with SSPC-PA 1 for touching up shop-primed surfaces.
- G. Galvanized-Metal Substrates: Remove grease and oil residue from galvanized sheet metal by mechanical methods to produce clean, lightly etched surfaces that promote adhesion of subsequently applied paints.
- H. Aluminum Substrates: Remove loose surface oxidation.

3.3 APPLICATION

- A. Apply paints according to manufacturer's written instructions and recommendations in "MPI Architectural Painting Specification Manual."
 - 1. Use applicators and techniques suited for paint and substrate indicated.
 - 2. Paint surfaces behind movable items same as similar exposed surfaces. Before final installation, paint surfaces behind permanently fixed items with prime coat only.
 - 3. Paint both sides and edges of exterior doors and entire exposed surface of exterior door frames.

- 4. Do not paint over labels of independent testing agencies or equipment name, identification, performance rating, or nomenclature plates.
- 5. Primers specified in painting schedules may be omitted on items that are factory primed or factory finished if acceptable to topcoat manufacturers.
- B. If undercoats or other conditions show through topcoat, apply additional coats until cured film has a uniform paint finish, color, and appearance.
- C. Apply paints to produce surface films without cloudiness, spotting, holidays, laps, brush marks, roller tracking, runs, sags, ropiness, or other surface imperfections. Cut in sharp lines and color breaks.
- D. Painting Fire Suppression, Plumbing, HVAC, Electrical, Communication, and Electronic Safety and Security Work:
 - 1. Paint the following work where exposed to view:
 - a. Equipment, including panelboards and switch gear.
 - b. Uninsulated metal piping.
 - c. Uninsulated plastic piping.
 - d. Pipe hangers and supports.
 - e. Metal conduit.
 - f. Plastic conduit.
 - g. Tanks that do not have factory-applied final finishes.

3.4 FIELD QUALITY CONTROL

- A. Dry Film Thickness Testing: Owner may engage the services of a qualified testing and inspecting agency to inspect and test paint for dry film thickness.
 - 1. Contractor shall touch up and restore painted surfaces damaged by testing.
 - 2. If test results show that dry film thickness of applied paint does not comply with paint manufacturer's written recommendations, Contractor shall pay for testing and apply additional coats as needed to provide dry film thickness that complies with paint manufacturer's written recommendations.

3.5 CLEANING AND PROTECTION

- A. At end of each workday, remove rubbish, empty cans, rags, and other discarded materials from Project site.
- B. After completing paint application, clean spattered surfaces. Remove spattered paints by washing, scraping, or other methods. Do not scratch or damage adjacent finished surfaces.
- C. Protect work of other trades against damage from paint application. Correct damage to work of other trades by cleaning, repairing, replacing, and refinishing, as approved by Architect, and leave in an undamaged condition.

D. At completion of construction activities of other trades, touch up and restore damaged or defaced painted surfaces.

3.6 EXTERIOR PAINTING SCHEDULE

A. CMU Substrates:

- 1. Water-Based Light Industrial Coating System MPI EXT 4.2C:
 - a. Prime Coat: Block filler, latex, interior/exterior, MPI #4.
 - b. Intermediate Coat: Light industrial coating, exterior, water based, matching topcoat.
 - c. Topcoat: Light industrial coating, exterior, water based, semi-gloss (MPI Gloss Level 5), MPI #163.

B. Steel and Iron Substrates:

- 1. Water-Based Light Industrial Coating System MPI EXT 5.1N:
 - a. Prime Coat: Shop primer specified in Section where substrate is specified or, if not specified, use primer, epoxy, anti-corrosive MPI #101.
 - b. Intermediate Coat: Light industrial coating, exterior, water based, matching topcoat.
 - c. Topcoat: Light industrial coating, exterior, water based, semi-gloss (MPI Gloss Level 5), MPI #163.

C. Galvanized-Metal Substrates:

- 1. Water-Based Light Industrial Coating System MPI EXT 5.3K:
 - a. Prime Coat: Primer, epoxy, anti-corrosive, MPI #101.
 - b. Intermediate Coat: Light industrial coating, exterior, water based, matching topcoat.
 - c. Topcoat: Light industrial coating, exterior, water based, semi-gloss (MPI Gloss Level 5), MPI #163.

D. Aluminum Substrates:

- 1. Water-Based Light Industrial Coating System MPI EXT 5.4G:
 - a. Prime Coat: Primer, quick dry, for aluminum, MPI #95.
 - b. Intermediate Coat: Light industrial coating, exterior, water based, matching topcoat.
 - c. Topcoat: Light industrial coating, exterior, water based, semi-gloss (MPI Gloss Level 5), MPI #163.

E. Stainless-Steel Substrates:

- 1. Water-Based Light Industrial Coating System MPI EXT 5.6G:
 - a. Prime Coat: Primer, quick dry, for aluminum, MPI #95.

- b. Intermediate Coat: Light industrial coating, exterior, water based, matching topcoat.
- c. Topcoat: Light industrial coating, exterior, water based, semi-gloss (MPI Gloss Level 5), MPI #163.

END OF SECTION 099113

SECTION 099123 - INTERIOR PAINTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes surface preparation and the application of paint systems on interior substrates.
 - 1. Hollow Metal Frames.
 - 2. Galvanized metal.
 - 3. Concrete masonry units (CMU).
 - 4. Gypsum board.
 - 5. Dryfall system

B. Related Requirements:

1. Section 055000 "Metal Fabrications" for shop priming metal fabrications.

1.3 DEFINITIONS

- A. MPI Gloss Level 1: Not more than five units at 60 degrees and 10 units at 85 degrees, according to ASTM D 523.
- B. MPI Gloss Level 2: Not more than 10 units at 60 degrees and 10 to 35 units at 85 degrees, according to ASTM D 523.
- C. MPI Gloss Level 3: 10 to 25 units at 60 degrees and 10 to 35 units at 85 degrees, according to ASTM D 523.
- D. MPI Gloss Level 4: 20 to 35 units at 60 degrees and not less than 35 units at 85 degrees, according to ASTM D 523.
- E. MPI Gloss Level 5: 35 to 70 units at 60 degrees, according to ASTM D 523.
- F. MPI Gloss Level 6: 70 to 85 units at 60 degrees, according to ASTM D 523.
- G. MPI Gloss Level 7: More than 85 units at 60 degrees, according to ASTM D 523.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product. Include preparation requirements and application instructions.
 - 1. Include Printout of current "MPI Approved Products List" for each product category specified, with the proposed product highlighted.
 - 2. Indicate VOC content.

1.5 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials, from the same product run, that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Paint: 10 percent, but not less than 1 gal. of each material and color applied.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Store materials not in use in tightly covered containers in well-ventilated areas with ambient temperatures continuously maintained at not less than 45 deg F.
 - 1. Maintain containers in clean condition, free of foreign materials and residue.
 - 2. Remove rags and waste from storage areas daily.

1.7 FIELD CONDITIONS

- A. Apply paints only when temperature of surfaces to be painted and ambient air temperatures are between 50 and 95 deg F.
- B. Do not apply paints when relative humidity exceeds 85 percent; at temperatures less than 5 deg F above the dew point; or to damp or wet surfaces.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. <u>Basis-of-Design Products</u>: Subject to compliance with requirements, provide products indicated in Interior Painting Schedule or comparable product by one of the following:
 - 1. Sherwin Williams.
 - 2. Or approved equal.

B. Products: Subject to compliance with requirements, provide one of the products available products that may be incorporated into the Work include, but are not limited to products listed in the Interior Painting Schedule for the paint category indicated.

2.2 PAINT, GENERAL

- A. MPI Standards: Products shall comply with MPI standards indicated and shall be listed in its "MPI Approved Products Lists."
- B. Material Compatibility:
 - 1. Materials for use within each paint system shall be compatible with one another and substrates indicated, under conditions of service and application as demonstrated by manufacturer, based on testing and field experience.
 - 2. For each coat in a paint system, products shall be recommended in writing by topcoat manufacturers for use in paint system and on substrate indicated.
- C. VOC Content: Products shall comply with VOC limits of authorities having jurisdiction and, for interior paints and coatings applied at Project site, the following VOC limits, exclusive of colorants added to a tint base:
 - 1. Flat Paints and Coatings: 50 g/L.
 - 2. Nonflat Paints and Coatings: 150 g/L.
 - 3. Dry-Fog Coatings: 400 g/L.
 - 4. Primers, Sealers, and Undercoaters: 200 g/L.
 - 5. Zinc-Rich Industrial Maintenance Primers: 340 g/L.
 - 6. Floor Coatings: 100 g/L.
 - 7. Shellacs, Clear: 730 g/L.
 - 8. Shellacs, Pigmented: 550 g/L.
- D. Colors: As indicated in a color schedule.
 - 1. Ten percent of surface area will be painted with deep tones.

2.3 SOURCE QUALITY CONTROL

- A. Testing of Paint Materials: Owner reserves the right to invoke the following procedure:
 - 1. Owner will engage the services of a qualified testing agency to sample paint materials. Contractor will be notified in advance and may be present when samples are taken. If paint materials have already been delivered to Project site, samples may be taken at Project site. Samples will be identified, sealed, and certified by testing agency.
 - 2. Testing agency will perform tests for compliance with product requirements.
 - Owner may direct Contractor to stop applying paints if test results show materials being used do not comply with product requirements. Contractor shall remove noncomplying paint materials from Project site, pay for testing, and repaint surfaces painted with rejected materials. Contractor will be required to remove rejected materials from previously painted surfaces if, on repainting with complying materials, the two paints are incompatible.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions, with Applicator present, for compliance with requirements for maximum moisture content and other conditions affecting performance of the Work.
- B. Maximum Moisture Content of Substrates: When measured with an electronic moisture meter as follows:
 - 1. Gypsum Board: 12 percent.
 - 2. Masonry (Clay and CMU): 12 percent.
- C. Gypsum Board Substrates: Verify that finishing compound is sanded smooth.
- D. Verify suitability of substrates, including surface conditions and compatibility, with existing finishes and primers.
- E. Proceed with coating application only after unsatisfactory conditions have been corrected.
 - 1. Application of coating indicates acceptance of surfaces and conditions.

3.2 PREPARATION

- A. Comply with manufacturer's written instructions and recommendations in "MPI Architectural Painting Specification Manual" applicable to substrates and paint systems indicated.
- B. Remove hardware, covers, plates, and similar items already in place that are removable and are not to be painted. If removal is impractical or impossible because of size or weight of item, provide surface-applied protection before surface preparation and painting.
 - 1. After completing painting operations, use workers skilled in the trades involved to reinstall items that were removed. Remove surface-applied protection if any.
- C. Clean substrates of substances that could impair bond of paints, including dust, dirt, oil, grease, and incompatible paints and encapsulants.
 - 1. Remove incompatible primers and reprime substrate with compatible primers or apply tie coat as required to produce paint systems indicated.
- D. Galvanized-Metal Substrates: Remove grease and oil residue from galvanized sheet metal by mechanical methods to produce clean, lightly etched surfaces that promote adhesion of subsequently applied paints.

E. Wood Substrates:

- 1. Scrape and clean knots, and apply coat of knot sealer before applying primer.
- 2. Sand surfaces that will be exposed to view, and dust off.
- 3. Prime edges, ends, faces, undersides, and backsides of wood.

4. After priming, fill holes and imperfections in the finish surfaces with putty or plastic wood filler. Sand smooth when dried.

3.3 APPLICATION

- A. Apply paints according to manufacturer's written instructions and to recommendations in "MPI Manual."
 - 1. Use applicators and techniques suited for paint and substrate indicated.
 - 2. Paint surfaces behind movable equipment and furniture same as similar exposed surfaces. Before final installation, paint surfaces behind permanently fixed equipment or furniture with prime coat only.
 - 3. Paint front and backsides of access panels, removable or hinged covers, and similar hinged items to match exposed surfaces.
 - 4. Do not paint over labels of independent testing agencies or equipment name, identification, performance rating, or nomenclature plates.
 - 5. Primers specified in painting schedules may be omitted on items that are factory primed or factory finished if acceptable to topcoat manufacturers.
- B. Tint each undercoat a lighter shade to facilitate identification of each coat if multiple coats of same material are to be applied. Tint undercoats to match color of topcoat, but provide sufficient difference in shade of undercoats to distinguish each separate coat.
- C. If undercoats or other conditions show through topcoat, apply additional coats until cured film has a uniform paint finish, color, and appearance.
- D. Apply paints to produce surface films without cloudiness, spotting, holidays, laps, brush marks, roller tracking, runs, sags, ropiness, or other surface imperfections. Cut in sharp lines and color breaks.
- E. Painting Fire Suppression, Plumbing, HVAC, Electrical, Communication, and Electronic Safety and Security Work:
 - 1. Paint portions of internal surfaces of metal ducts, without liner, behind air inlets and outlets that are visible from occupied spaces.

3.4 FIELD QUALITY CONTROL

- A. Dry Film Thickness Testing: Owner may engage the services of a qualified testing and inspecting agency to inspect and test paint for dry film thickness.
 - 1. Contractor shall touch up and restore painted surfaces damaged by testing.
 - 2. If test results show that dry film thickness of applied paint does not comply with paint manufacturer's written recommendations, Contractor shall pay for testing and apply additional coats as needed to provide dry film thickness that complies with paint manufacturer's written recommendations.

3.5 CLEANING AND PROTECTION

- A. At end of each workday, remove rubbish, empty cans, rags, and other discarded materials from Project site.
- B. After completing paint application, clean spattered surfaces. Remove spattered paints by washing, scraping, or other methods. Do not scratch or damage adjacent finished surfaces.
- C. Protect work of other trades against damage from paint application. Correct damage to work of other trades by cleaning, repairing, replacing, and refinishing, as approved by Architect, and leave in an undamaged condition.
- D. At completion of construction activities of other trades, touch up and restore damaged or defaced painted surfaces.

3.6 INTERIOR PAINTING SCHEDULE

A. Hollow Metal Frames:

- 1. Institutional Low-Odor/VOC Latex System MPI INT 5.3N:
 - a. Prime Coat: Primer, galvanized, water based, MPI #134.
 - 1) Primer, rust-inhibitive, water based: S-W Pro Industrial, Pro- Cryl Universal Primer.
 - b. Intermediate Coat: Light industrial coating, interior, water based, matching topcoat.
 - c. Topcoat: Light industrial coating, interior, water based, semi-gloss (MPI Gloss Level 5), MPI #153.
 - 1) Light industrial coating, interior, water based, eggshell, S-W Pre-Catalyzed Water Based Epoxy, K45-151 Series, at 4.0 mils wet, 1.5 mils dry per coat

B. Gypsum Board Substrates:

- 1. Institutional Low-Odor/VOC Latex System MPI INT 9.2M:
 - a. Prime Coat: Primer sealer, interior, institutional low odor/VOC, MPI #149.
 - 1) Primer, latex, interior: S-W ProMar 200 Zero VOC Latex Primer, B28W2600, at 4.0 mils wet, 1.5 mils dry.
 - b. Intermediate Coat: Latex interior, matching top coat
 - c. Topcoat: Latex, interior, institutional low odor/VOC (MPI Gloss Level 4), MPI #146.

- 1) Latex, interior, satin: S-W ProMar 200 Zero VOC Latex Eg-Shel, B20-2600 Series, at 4.0 mils wet, 1.7 mils dry, per coat
- C. Masonry: CMU Concrete, Split Face, Scored, Smooth, High Density, Low Density, Fluted.
 - 1. Latex Systems, Low Sheen Finish, Low-Odor/VOC MPI #107:
 - a. Prime Coat:
 - 1) S-W PrepRite Block Filler, B25W25 (75-125 sq ft/gal)
 - b. Intermediate Coat:
 - 1) S-W ProMar 200 Zero VOC Latex Low Sheen Enamel, B24-2600 Series.
 - c. Top Coat:
 - 1) S-W ProMar 200 Zero VOC Latex Low Sheen Enamel, B24-2600 Series (4 mils wet, 1.6 mils dry per coat).
- D. Metal: Galvanized; Ceilings, Duct work.
 - 1. Water-Based Dry-fall System, MPT #133
 - a. Prime Coat: Dryfall Waterborne.
 - 1) Pro Industrial Waterborne Acrylic Dryfall, B42-80 Series.
 - b. Top Coat Dryfall Waterborne Topcoats, Eg-Shel Finish.
 - 1) S-W Pro Industrial Waterborne Acrylic Dryfall, B42-80 Series (6.0 mils wet, 1.9 mils dry per coat).

END OF SECTION 099123

SECTION 099600 - HIGH-PERFORMANCE COATINGS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes surface preparation and the application of high-performance coating systems on the following substrates:
 - 1. Exterior Substrates:
 - a. Steel.
 - b. Galvanized metal.

B. Related Requirements:

- 1. Section 051000 "Structural Steel Framing" for shop priming of structural steel with primers specified in this Section.
- 2. Section 055213 "Pipe and Tube Railings" for shop priming and painting pipe and tube railings with coatings specified in this Section.
- 3. Section 099113 "Exterior Painting" for general field painting.
- 4. Section 099123 "Interior Painting" for general field painting.

1.3 DEFINITIONS

- A. MPI Gloss Level 5: 35 to 70 units at 60 degrees, according to ASTM D523.
- B. MPI Gloss Level 6: 70 to 85 units at 60 degrees, according to ASTM D523.
- C. MPI Gloss Level 7: More than 85 units at 60 degrees, according to ASTM D523.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product. Include preparation requirements and application instructions.
 - 1. Include printout of current "MPI Approved Products List" for each product category specified, with the proposed product highlighted.
 - 2. Indicate VOC content.
- B. Samples for Initial Selection: For each type of topcoat product indicated.

- C. Samples for Verification: For each type of coating system and each color and gloss of topcoat indicated.
 - 1. Submit Samples on rigid backing, 8 inches (200 mm) square.
 - 2. Apply coats on Samples in steps to show each coat required for system.
 - 3. Label each coat of each Sample.
 - 4. Label each Sample for location and application area.
- D. Product List: Cross-reference to coating system and locations of application areas. Use same designations indicated on Drawings and in schedules. Include color designations.

1.5 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials, from the same product run, that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Coatings: 5 percent, but not less than 1 gal. (3.8 L) of each material and color applied.

1.6 QUALITY ASSURANCE

- A. Mockups: Apply mockups of each coating system indicated to verify preliminary selections made under Sample submittals and to demonstrate aesthetic effects and set quality standards for materials and execution.
 - 1. Architect will select one surface to represent surfaces and conditions for application of each coating system.
 - a. Wall and Ceiling Surfaces: Provide samples of at least 100 sq. ft. (9 sq. m).
 - b. Other Items: Architect will designate items or areas required.
 - 2. Final approval of color selections will be based on mockups.
 - a. If preliminary color selections are not approved, apply additional mockups of additional colors selected by Architect at no added cost to Owner.
 - 3. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
 - 4. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.7 DELIVERY, STORAGE, AND HANDLING

- A. Store materials not in use in tightly covered containers in well-ventilated areas with ambient temperatures continuously maintained at not less than 45 deg F (7 deg C).
 - 1. Maintain containers in clean condition, free of foreign materials and residue.
 - 2. Remove rags and waste from storage areas daily.

1.8 FIELD CONDITIONS

- A. Apply coatings only when temperature of surfaces to be coated and ambient air temperatures are between 50 and 95 deg F (10 and 35 deg C).
- B. Do not apply coatings when relative humidity exceeds 85 percent; at temperatures less than 5 deg F (3 deg C) above the dew point; or to damp or wet surfaces.
- C. Do not apply exterior coatings in snow, rain, fog, or mist.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Behr Process Corporation</u>.
 - 2. Benjamin Moore & Co.
 - 3. Devoe Paint Company; Akzo Nobel.
 - 4. Dulux (formerly ICI Paints); a brand of AkzoNobel.
 - 5. H&C® Decorative Concrete Products; a brand of Sherwin-Williams Co.
 - 6. PPG Paints.
 - 7. Sherwin-Williams Company (The).
 - 8. Tnemec Inc.

2.2 HIGH-PERFORMANCE COATINGS, GENERAL

- A. MPI Standards: Products shall comply with MPI standards indicated and shall be listed in its "MPI Approved Products Lists."
- B. Material Compatibility:
 - 1. Materials for use within each paint system shall be compatible with one another and substrates indicated, under conditions of service and application as demonstrated by manufacturer, based on testing and field experience.
 - 2. For each coat in a paint system, products shall be recommended in writing by topcoat manufacturers for use in paint system and on substrate indicated.
 - 3. Products shall be of same manufacturer for each coat in a coating system.
- C. Colors: As indicated or, if not indicated, as selected by Architect from manufacturer's full range.

2.3 SOURCE QUALITY CONTROL

- A. Testing of Coating Materials: Owner reserves the right to invoke the following procedure:
 - 1. Owner will engage the services of a qualified testing agency to sample coating materials. Contractor will be notified in advance and may be present when samples are taken. If

- coating materials have already been delivered to Project site, samples may be taken at Project site. Samples will be identified, sealed, and certified by testing agency.
- 2. Testing agency will perform tests for compliance with product requirements.
- Owner may direct Contractor to stop applying coatings if test results show materials being used do not comply with product requirements. Contractor shall remove noncomplying coating materials from Project site, pay for testing, and recoat surfaces coated with rejected materials. Contractor will be required to remove rejected materials from previously coated surfaces if, on recoating with complying materials, the two coatings are incompatible.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions, with Applicator present, for compliance with requirements for maximum moisture content and other conditions affecting performance of the Work.
- B. Maximum Moisture Content of Substrates: When measured with an electronic moisture meter as follows:
- C. Verify suitability of substrates, including surface conditions and compatibility, with existing finishes and primers.
- D. Proceed with coating application only after unsatisfactory conditions have been corrected.
 - 1. Application of coating indicates acceptance of surfaces and conditions.

3.2 PREPARATION

- A. Comply with manufacturer's written instructions and recommendations in "MPI Architectural Painting Specification Manual" applicable to substrates and coating systems indicated.
- B. Remove hardware, covers, plates, and similar items already in place that are removable and are not to be painted. If removal is impractical or impossible because of size or weight of item, provide surface-applied protection before surface preparation and painting.
 - 1. After completing painting operations, use workers skilled in the trades involved to reinstall items that were removed. Remove surface-applied protection if any.
- C. Clean substrates of substances that could impair bond of coatings, including dust, dirt, oil, grease, and incompatible paints and encapsulants.
 - 1. Remove incompatible primers and reprime substrate with compatible primers or apply tie coat as required to produce coating systems indicated.
- D. Steel Substrates: Remove rust, loose mill scale, and shop primer if any. Clean using methods recommended in writing by paint manufacturer but not less than the following:
 - 1. SSPC-SP 6/NACE No. 3.

- E. Shop-Primed Steel Substrates: Clean field welds, bolted connections, and areas where shop paint is abraded. Paint exposed areas with the same material as used for shop priming to comply with SSPC-PA 1 for touching up shop-primed surfaces.
- F. Galvanized-Metal Substrates: Remove grease and oil residue from galvanized sheet metal by mechanical methods to produce clean, lightly etched surfaces that promote adhesion of subsequently applied coatings.

3.3 APPLICATION

- A. Apply high-performance coatings according to manufacturer's written instructions and recommendations in "MPI Architectural Painting Specification Manual."
 - 1. Use applicators and techniques suited for coating and substrate indicated.
 - 2. Coat surfaces behind movable equipment and furniture same as similar exposed surfaces. Before final installation, coat surfaces behind permanently fixed equipment or furniture with prime coat only.
 - 3. Coat backsides of access panels, removable or hinged covers, and similar hinged items to match exposed surfaces.
 - 4. Do not apply coatings over labels of independent testing agencies or equipment name, identification, performance rating, or nomenclature plates.
- B. If undercoats or other conditions show through final coat, apply additional coats until cured film has a uniform coating finish, color, and appearance.
- C. Apply coatings to produce surface films without cloudiness, spotting, holidays, laps, brush marks, runs, sags, ropiness, or other surface imperfections. Produce sharp glass lines and color breaks.

3.4 FIELD QUALITY CONTROL

- A. Dry Film Thickness Testing: Owner may engage the services of a qualified testing and inspecting agency to inspect and test coatings for dry film thickness.
 - 1. Contractor shall touch up and restore coated surfaces damaged by testing.
 - 2. If test results show that dry film thickness of applied coating does not comply with coating manufacturer's written recommendations, Contractor shall pay for testing and apply additional coats as needed to provide dry film thickness that complies with coating manufacturer's written recommendations.

3.5 CLEANING AND PROTECTION

- A. At end of each workday, remove rubbish, empty cans, rags, and other discarded materials from Project site.
- B. After completing coating application, clean spattered surfaces. Remove spattered coatings by washing, scraping, or other methods. Do not scratch or damage adjacent finished surfaces.

- C. Protect work of other trades against damage from coating operation. Correct damage to work of other trades by cleaning, repairing, replacing, and recoating, as approved by Architect, and leave in an undamaged condition.
- D. At completion of construction activities of other trades, touch up and restore damaged or defaced coated surfaces.

3.6 EXTERIOR HIGH-PERFORMANCE COATING SCHEDULE

A. Steel Substrates:

- 1. Epoxy System MPI EXT 5.1F:
 - a. Prime Coat: Primer, epoxy, anti-corrosive, for metal, MPI #101.
 - b. Intermediate Coat: Epoxy, high build, low gloss, MPI #108.
 - c. Topcoat: Epoxy, gloss, MPI #77.

B. Galvanized-Metal Substrates:

- 1. Epoxy System MPI EXT 5.3C:
 - a. Prime Coat: Primer, epoxy, anti-corrosive, for metal, MPI 101.
 - b. Intermediate Coat: Epoxy, matching topcoat.
 - c. Topcoat: Epoxy, gloss, MPI #77.

END OF SECTION 099600

101400 - SIGNAGE

PART 1 -GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of Contract, including General and Supplementary Conditions and Division 1 Specification sections, apply to work of this section.

1.2 DESCRIPTION

- A. Room signs meeting Americans with Disabilities Act standards.
- B. Cast Aluminum Signage.

1.3 SUBMITTALS

- A. Manufacturer's must submit 3 references showing comparable products for projects completed within the last 5 years.
- B. Manufacturer's Data: Submit manufacturer's descriptive literature and specifications, including color samples of material for selection, as applicable to the Engineer for approval.
- C. Submit shop drawings listing sign styles, lettering and locations, and overall dimensions of each sign.
- D. Submit three samples illustrating full size sample sign, of type, style and color specified including method of attachment.

1.4 SYSTEM DESCRIPTION

A. Room Signage: Signage package shall meet the requirements of the Americans with Disabilities Act - 1990 Accessibility Guidelines for Buildings and Facilities and ANSI A117.1-1986.

PART 2 - PRODUCTS

2.1 RAISED BRAILLE SIGNAGE

SIGNAGE 101400 - 1

- A. Manufacturers: Subject to compliance with requirements, manufacturers offering signage which may be incorporated in the work include, but are not limited to, the following:
 - 1. Best Manufacturing Sign Systems, Montrose, Colorado, 1-800-235-2378.
- A. Raised Plastic Signs: Signs shall be of the four-in one construction style having the following characteristics:
 - 1. Tactile characters/symbols shall be raised 1/32 inch from sign plate face. Signs shall be of one-piece construction; added-on and/or engraved characters are unacceptable.
 - 2. Text shall be accompanied by Grade 2 braille.
 - All letters, numbers and/or symbols shall contrast with their background light characters on a dark background. Characters and background shall have matte finish.
- B. Signage: Plaque material shall consist of melamine plastic laminate, approximately 1/8" thick, with core painted a contrasting color and rated non-static, fire retardant and self-extinguishing. Plastic laminate will be impervious to most acids, alkalies, alcohol, solvents, abrasives and boiling water. Lettering style shall be Standard Bold Condensed, upper case, or other Sans Serif or simple Serif typeface.
- D. Sizes of letters and numbers shall be as follows:
 - 1. Room numbers shall be 5/8" high.
 - 2. Lettering for room usage and directional identification shall be 5/8" high.
 - 3. Lettering for restroom identification shall be 5/8" high, corresponding symbols shall be 3" high.
 - 1. Radius corners: 1/2".
- E. Letters and numbers shall be centered on sign.
- F. Grade 2 braille shall be placed directly below last line of letters or numbers, except for room number signs, where they shall be placed directly behind the last number.
- G. Sign Size: Signage shall be sized as indicated on Part 4. Color shall be as selected from manufacturer's standard colors.
- H. Mounting Hardware: Manufacturer's standard vinyl foam tape. Mount all signs at 60" above finish floor to the centerline of sign. Install on wall adjacent to the latch side of door. If installed on glass lite, provide backer panel and size, of same material, to be installed on opposite side of glass to conceal mounting strips.

2.3 RAISED ALUMINUM LETTERING

SIGNAGE 101400 - 2

1180510 TOBIE GRANT RECREATION CENTER 3/22/19

- A. Manufacturers: Subject to compliance with requirements, manufacturers offering signage which may be incorporated in the work include, but are not limited to, the following:
 - 1. cast aluminum as manufactured by Metal Arts (701) 663-6535 or approved equal. Style shall be 209 Times New Roman. Finish to be #20 Acrylic Baked Enamel, color as selected by Government. Mounting method shall raise letter approximately 1" above finished surface.

PART 3 - SIGNAGE SCHEDULE

SEE SIGNAGE PLAN **IG101** AND SIGNAGE SCHEUDLE **IG601 IN ARCHITECTRUAL DRAWINGS**

END OF SECTION 101400

SIGNAGE 101400 - 3

SECTION 101419 - DIMENSIONAL LETTER SIGNAGE

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Cast dimensional characters.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: For signs.
 - 1. Include fabrication and installation details and attachments to other work.
 - 2. Show sign mounting heights, locations of supplementary supports to be provided by other installers, and accessories.
 - 3. Show message list, typestyles, graphic elements, and layout for each sign at least half size.
- C. Delegated-Design Submittal: For signs indicated in "Performance Requirements" Article.
 - 1. Include structural analysis calculations for signs indicated to comply with design loads; signed and sealed by the qualified professional engineer responsible for their preparation.

1.4 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For Installer.
- B. Sample Warranty: For special warranty.

1.5 CLOSEOUT SUBMITTALS

A. Maintenance Data: For signs to include in maintenance manuals.

1.6 QUALITY ASSURANCE

A. Installer Qualifications: An entity that employs installers and supervisors who are trained and approved by manufacturer.

1.7 WARRANTY

- A. Special Warranty: Manufacturer agrees to repair or replace components of signs that fail in materials or workmanship within specified warranty period.
 - 1. Failures include, but are not limited to, the following:
 - a. Deterioration of finishes beyond normal weathering.
 - b. Separation or delamination of sheet materials and components.
 - 2. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Delegated: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design sign structure and anchorage of dimensional character sign type(s) according to structural performance requirements.
- B. Structural Performance: Signs and supporting elements shall withstand the effects of gravity and other loads within limits and under conditions indicated.
 - 1. Uniform Wind Load: As indicated on Drawings.
 - 2. Concentrated Horizontal Load: As indicated on Drawings.
 - 3. Other Design Load: As indicated on Drawings
 - 4. Uniform and concentrated loads need not be assumed to act concurrently.

2.2 DIMENSIONAL CHARACTERS

- A. Cast Characters: Characters with uniform faces, sharp corners, and precisely formelines and profiles, and as follows:
 - 1. Character Material: Cast aluminum.
 - 2. Character Height: As indicated on Drawings.
 - 3. Thickness: Manufacturer's standard for size of character.
 - 4. Finishes:
 - a. Integral Aluminum Finish: Clear anodized.
 - 5. Mounting: Projecting studs.
 - 6. Typeface: Helvetica.

2.3 DIMENSIONAL CHARACTER MATERIALS

A. Aluminum Castings: ASTM B26/B26M, alloy and temper recommended by sign manufacturer for casting process used and for type of use and finish indicated.

2.4 ACCESSORIES

- A. Fasteners and Anchors: Manufacturer's standard as required for secure anchorage of signs, noncorrosive and compatible with each material joined, and complying with the following:
 - 1. Use concealed fasteners and anchors unless indicated to be exposed.
 - 2. For exterior exposure, furnish stainless-steel devices unless otherwise indicated.
 - 3. Exposed Metal-Fastener Components, General:
 - a. Fabricated from same basic metal and finish of fastened metal unless otherwise indicated.
 - 4. Sign Mounting Fasteners:
 - a. Projecting Studs: Threaded studs with sleeve spacer, welded or brazed to back of sign material, screwed into back of sign assembly, or screwed into tapped lugs cast integrally into back of cast sign material, unless otherwise indicated.
- B. Bituminous Paint: Cold-applied asphalt emulsion complying with ASTM D1187/D1187M.

2.5 FABRICATION

- A. General: Provide manufacturer's standard sign assemblies according to requirements indicated.
 - 1. Preassemble signs and assemblies in the shop to greatest extent possible. Disassemble signs and assemblies only as necessary for shipping and handling limitations. Clearly mark units for reassembly and installation; apply markings in locations concealed from view after final assembly.
 - 2. Mill joints to a tight, hairline fit. Form assemblies and joints exposed to weather to resist water penetration and retention.
 - 3. Comply with AWS for recommended practices in welding and brazing. Provide welds and brazes behind finished surfaces without distorting or discoloring exposed side. Clean exposed welded and brazed connections of flux, and dress exposed and contact surfaces.
 - 4. Conceal connections if possible; otherwise, locate connections where they are inconspicuous.
 - 5. Provide rabbets, lugs, and tabs necessary to assemble components and to attach to existing work. Drill and tap for required fasteners. Use concealed fasteners where possible; use exposed fasteners that match sign finish.
 - 6. Castings: Fabricate castings free of warp, cracks, blowholes, pits, scale, sand holes, and other defects that impair appearance or strength. Grind, wire brush, sandblast, and buff castings to remove seams, gate marks, casting flash, and other casting marks before finishing.

2.6 GENERAL FINISH REQUIREMENTS

- A. Protect mechanical finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.
- B. Appearance of Finished Work: Noticeable variations in same piece are not acceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.
- C. Anodic Produced Finishes: Apply to formed metal after fabrication but before applying contrasting polished finishes on raised features unless otherwise indicated.

2.7 ALUMINUM FINISHES

A. Clear Anodic Finish: AAMA 611, Class I, 0.018 mm or thicker.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance.
- B. Verify that sign-support surfaces are within tolerances to accommodate signs without gaps or irregularities between backs of signs and support surfaces unless otherwise indicated.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. General: Install signs using mounting methods indicated and according to manufacturer's written instructions.
 - 1. Install signs level, plumb, true to line, and at locations and heights indicated, with sign surfaces free of distortion and other defects in appearance.
 - 2. Before installation, verify that sign surfaces are clean and free of materials or debris that would impair installation.
 - 3. Corrosion Protection: Coat concealed surfaces of exterior aluminum in contact with grout, concrete, masonry, wood, or dissimilar metals, with a heavy coat of bituminous paint.

B. Mounting Methods:

- 1. Projecting Studs: Using a template, drill holes in substrate aligning with studs on back of sign. Remove loose debris from hole and substrate surface.
 - a. Masonry Substrates: Fill holes with adhesive. Leave recess space in hole for displaced adhesive. Place spacers on study, place sign in position, and push until

- spacers are pinched between sign and substrate, embedding the stud ends in holes. Temporarily support sign in position until adhesive fully sets.
- b. Thin or Hollow Surfaces: Place spacers on studs, place sign in position with spacers pinched between sign and substrate, and install washers and nuts on stud ends projecting through opposite side of surface, and tighten.
- 2. Through Fasteners: Drill holes in substrate using predrilled holes in sign as template. Countersink holes in sign if required. Place sign in position and flush to surface. Install through fasteners and tighten.

3.3 ADJUSTING AND CLEANING

- A. Remove and replace damaged or deformed characters and signs that do not comply with specified requirements. Replace characters with damaged or deteriorated finishes or components that cannot be successfully repaired by finish touchup or similar minor repair procedures.
- B. Remove temporary protective coverings and strippable films as signs are installed.
- C. On completion of installation, clean exposed surfaces of signs according to manufacturer's written instructions, and touch up minor nicks and abrasions in finish. Maintain signs in a clean condition during construction and protect from damage until acceptance by Owner.

END OF SECTION 101419

CONSTRUCTION DOCUMENTS

100% SUBMITTAL

SECTION 102113.17 - PHENOLIC-CORE TOILET COMPARTMENTS

PART 1 - GENERAL

1.1 **RELATED DOCUMENTS**

Drawings and general provisions of the Contract, including General and Supplementary A. Conditions and Division 01 Specification Sections, apply to this Section.

SUMMARY 1.2

- A. Section Includes:
 - 1. Phenolic-core toilet compartments configured as toilet enclosures and urinal screens.
- B. Related Requirements:
 - 1. Section 061053 "Miscellaneous Rough Carpentry" for blocking.
 - 2. Section 102800 "Toilet, Bath, and Laundry Accessories" for toilet tissue dispensers, grab bars, purse shelves, and similar accessories mounted on toilet compartments.

1.3 **ACTION SUBMITTALS**

- A. Product Data: For each type of product.
 - Include construction details, material descriptions, dimensions of individual components 1. and profiles, and finishes for toilet compartments.
- B. Shop Drawings: For toilet compartments.
 - Include plans, elevations, sections, details, and attachment details. 1.
 - Show locations of cutouts for compartment-mounted toilet accessories. 2.
 - 3. Show locations of centerlines of toilet fixtures.
 - Show locations of floor drains. 4.
 - 5. Show overhead support or bracing locations.
- C. Samples for Verification: For the following products, in manufacturer's standard sizes unless otherwise indicated:
 - 1. Each type of material, color, and finish required for toilet compartments, prepared on 6inch-square Samples of same thickness and material indicated for Work.
 - Each type of hardware and accessory. 2.

1.4 CLOSEOUT SUBMITTALS

A. Maintenance Data: For toilet compartments to include in maintenance manuals.

1.5 PROJECT CONDITIONS

A. Field Measurements: Verify actual locations of toilet fixtures, walls, columns, ceilings, and other construction contiguous with toilet compartments by field measurements before fabrication.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Surface-Burning Characteristics: Comply with ASTM E 84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 - 1. Flame-Spread Index: 75 or less.
 - 2. Smoke-Developed Index: 450 or less.
- B. Recycled Content of Phenolic-Core Panel: Postconsumer recycled content plus one-half of preconsumer recycled content not less than 10 percent.
- C. Regulatory Requirements: Comply with applicable provisions in the U.S. Architectural & Transportation Barriers Compliance Board's ADA-ABA Accessibility Guidelines for Buildings and Facilities and ICC A117.1 for toilet compartments designated as accessible.

2.2 PHENOLIC-CORE TOILET COMPARMENTS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
- B. Basis-of-Design Product: Subject to compliance with requirements, provide PCiSC or approved equal.
- C. Toilet-Enclosure Style: Overhead braced Floor anchored.
- D. Urinal-Screen Style: Wall hung.
- E. Door, Panel, Screen, and Pilaster Construction: Solid phenolic-core panel material with melamine facing on both sides fused to substrate during panel manufacture (not separately laminated), and with eased and polished edges and no-sightline system. Provide minimum 3/4-inch-thick doors and pilasters and minimum 1/2-inch-thick panels.
- F. Pilaster Shoes and Sleeves (Caps): Formed from stainless-steel sheet, not less than 0.031-inch nominal thickness and 3 inches high, finished to match hardware.

G. Brackets (Fittings):

1. Stirrup Type: Ear or U-brackets, stainless steel.

H. Phenolic-Panel Finish:

- 1. Facing Sheet Finish: One color and pattern in each room.
- 2. Color and Pattern: See finish legend on architectural drawings with manufacturer's standard dark color core.
- 3. Edge Color: Manufacturer's standard.

2.3 HARDWARE AND ACCESSORIES

- A. Hardware and Accessories: Manufacturer's heavy-duty operating hardware and accessories.
 - 1. Hinges: Manufacturer's minimum 0.062-inch-thick stainless-steel continuous, cam type that swings to a closed or partially open position, allowing emergency access by lifting door. Mount with through-bolts.
 - 2. Latch and Keeper: Manufacturer's heavy-duty surface-mounted cast-stainless-steel latch unit designed to resist damage due to slamming, with combination rubber-faced door strike and keeper, and with provision for emergency access. Provide units that comply with regulatory requirements for accessibility at compartments designated as accessible. Mount with through-bolts.
 - 3. Coat Hook: Manufacturer's heavy-duty combination cast-stainless-steel hook and rubber-tipped bumper, sized to prevent in-swinging door from hitting compartment-mounted accessories. Mount with through-bolts.
 - 4. Door Bumper: Manufacturer's heavy-duty rubber-tipped cast-stainless-steel bumper at out-swinging doors. Mount with through-bolts.
 - 5. Door Pull: Manufacturer's heavy-duty cast-stainless-steel pull at out-swinging doors that complies with regulatory requirements for accessibility. Provide units on both sides of doors at compartments designated as accessible. Mount with through-bolts.
- B. Overhead Bracing: Manufacturer's standard continuous, extruded-aluminum head rail with antigrip profile and in manufacturer's standard finish.
- C. Anchorages and Fasteners: Manufacturer's standard exposed fasteners of stainless steel, finished to match the items they are securing, with theft-resistant-type heads. Provide sex-type bolts for through-bolt applications. For concealed anchors, use stainless-steel, hot-dip galvanized-steel, or other rust-resistant, protective-coated steel compatible with related materials.

2.4 MATERIALS

- A. Aluminum Castings: ASTM B 26/B 26M.
- B. Aluminum Extrusions: ASTM B 221.
- C. Brass Castings: ASTM B 584.

- D. Brass Extrusions: ASTM B 455.
- E. Stainless-Steel Sheet: ASTM A 666, Type 304, stretcher-leveled standard of flatness.
- F. Stainless-Steel Castings: ASTM A 743/A 743M.
- G. Zamac: ASTM B 86, commercial zinc-alloy die castings.

2.5 FABRICATION

- A. Fabrication, General: Fabricate toilet compartment components to sizes indicated. Coordinate requirements and provide cutouts for through-partition toilet accessories where required for attachment of toilet accessories.
- B. Overhead-Braced Units: Provide manufacturer's standard corrosion-resistant supports, leveling mechanism, and anchors at pilasters to suit floor conditions. Provide shoes at pilasters to conceal supports and leveling mechanism.
- C. Floor-Anchored Units: Provide manufacturer's standard corrosion-resistant anchoring assemblies with leveling adjustment nuts at pilasters for structural connection to floor. Provide shoes at pilasters to conceal anchorage.
- D. Door Size and Swings: Unless otherwise indicated, provide 24-inch-wide in-swinging doors for standard toilet compartments and 36-inch-wide out-swinging doors with a minimum 32-inch-wide clear opening for compartments designated as accessible.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and conditions, with Installer present, for compliance with requirements for fastening, support, alignment, operating clearances, and other conditions affecting performance of the Work.
 - 1. Confirm location and adequacy of blocking and supports required for installation.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. General: Comply with manufacturer's written installation instructions. Install units rigid, straight, level, and plumb. Secure units in position with manufacturer's recommended anchoring devices.
 - 1. Maximum Clearances:
 - a. Pilasters and Panels: 1/2 inch.

- b. Panels and Walls: 1 inch.
- 2. Stirrup Brackets: Secure panels to walls and to pilasters with no fewer than two brackets attached near top and bottom of panel.
 - a. Locate wall brackets so holes for wall anchors occur in masonry or tile joints.
 - b. Align brackets at pilasters with brackets at walls.
- B. Overhead-Braced Units: Secure pilasters to floor and level, plumb, and tighten. Set pilasters with anchors penetrating not less than 1-3/4 inches into structural floor unless otherwise indicated in manufacturer's written instructions. Secure continuous head rail to each pilaster with no fewer than two fasteners. Hang doors to align tops of doors with tops of panels, and adjust so tops of doors are parallel with overhead brace when doors are in closed position.
- C. Floor-Anchored Units: Set pilasters with anchors penetrating not less than 2 inches into structural floor unless otherwise indicated in manufacturer's written instructions. Level, plumb, and tighten pilasters. Hang doors and adjust so tops of doors are level with tops of pilasters when doors are in closed position.

3.3 ADJUSTING

A. Hardware Adjustment: Adjust and lubricate hardware according to hardware manufacturer's written instructions for proper operation. Set hinges on in-swinging doors to hold doors open approximately 30 degrees from closed position when unlatched. Set hinges on out-swinging doors to return doors to fully closed position.

END OF SECTION 102113.17

SECTION 102239 - FOLDING PANEL PARTITIONS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Electrically operated, acoustical panel partitions.
 - 2. Pass doors
- B. Related Requirements:
 - 1. Section 055000 "Metal Fabrications" for supports that attach supporting tracks to overhead structural system.
 - 2. Section 092900 "Gypsum Board" for fire-rated assemblies and sound barrier construction above the ceiling at track.

1.3 DEFINITIONS

- A. NIC: Noise Isolation Class.
- B. NRC: Noise Reduction Coefficient.
- C. STC: Sound Transmission Class.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: For operable panel partitions.
 - 1. Include plans, elevations, sections, details, numbered panel installation sequence, and attachments to other work.
 - 2. Indicate stacking and operating clearances. Indicate location and installation requirements for hardware and track, blocking, and direction of travel.
 - 3. Include diagrams for power, signal, and control wiring.
- C. Samples for Initial Selection: For each type of exposed material, finish, covering, or facing.

- 1. Include Samples of accessories involving color selection.
- D. Samples for Verification: For each type of exposed material, finish, covering, or facing, prepared on Samples of size indicated below:
 - 1. Textile Facing Material: Full width by not less than 36-inch-long section of fabric from dye lot to be used for the Work, with specified treatments applied. Show complete pattern repeat.
 - 2. Panel Facing Material: Manufacturer's standard-size unit, not less than 3 inches square.
 - 3. Hardware: One of each exposed door-operating device.

1.5 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - 1. Partition track, track supports and bracing, switches, turning space, and storage layout.
 - 2. Suspended ceiling components.
 - 3. Structural members to which suspension systems are attached.
 - 4. Size and location of initial access modules for acoustical tile.
 - 5. Items penetrating finished ceiling, including the following:
 - a. Lighting fixtures.
 - b. HVAC ductwork, outlets, and inlets.
 - c. Speakers.
 - d. Sprinklers.
 - e. Smoke detectors.
 - f. Access panels.
 - 6. Plenum acoustical barriers.
- B. Setting Drawings: For embedded items and cutouts required in other work, including supportbeam, mounting-hole template.
- C. Qualification Data: For qualified Installer and testing agency.
- D. Product Certificates: For each type of operable panel partition.
- E. Product Test Reports: For each operable panel partition, for tests performed by a qualified testing agency.
- F. Field quality-control reports.
- G. Sample Warranty: For manufacturer's special warranty.

1.6 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For operable panel partitions to include in maintenance manuals.
 - 1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 - a. Panel finish facings and finishes for exposed trim and accessories. Include precautions for cleaning materials and methods that could be detrimental to finishes and performance.
 - b. Seals, hardware, track, track switches, carriers, and other operating components.

1.7 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials, from the same production run, that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Panel Finish-Facing Material: Furnish full width in quantity to cover both sides of two panels when installed.

1.8 QUALITY ASSURANCE

A. Installer Qualifications: An entity that employs installers and supervisors who are trained and approved by manufacturer.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Protectively package and sequence panels in order for installation. Clearly mark packages and panels with numbering system used on Shop Drawings. Do not use permanent markings on panels.

1.10 WARRANTY

- A. Special Warranty: Manufacturer agrees to repair or replace components of operable panel partitions that fail in materials or workmanship within specified warranty period.
 - 1. Failures include, but are not limited to, the following:
 - a. Faulty operation of operable panel partitions.
 - b. Deterioration of metals, metal finishes, and other materials beyond normal use.
 - 2. Warranty Period: Two years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Acoustical Performance: Provide operable panel partitions tested by a qualified testing agency for the following acoustical properties according to test methods indicated:

- 1. Sound-Transmission Requirements: Operable panel partition assembly tested for laboratory sound-transmission loss performance according to ASTM E 90, determined by ASTM E 413, and rated for not less than the STC indicated.
- 2. Noise-Reduction Requirements: Operable panel partition assembly, identical to partition tested for STC, tested for sound-absorption performance according to ASTM C 423, and rated for not less than the NRC indicated.
- 3. Noise-Isolation Requirements: Installed operable panel partition assembly, identical to partition tested for STC, tested for NIC according to ASTM E 336, determined by ASTM E 413, and rated for 10 dB less than STC value indicated.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.2 OPERABLE ACOUSTICAL PANELS

- A. Operable Acoustical Panels: Partition system, including panels, seals, finish facing, suspension system, operators, and accessories.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. <u>Hufcor, Inc.</u>, 600 Series.
 - b. Moderco Inc., 700 Series.
 - c. Panelfold Inc., 540 Series.
- B. Panel Operation: Electrically operated, continuously hinged panels.
- C. Panel Construction: As required to support panel from suspension components and with reinforcement for hardware attachment. Fabricate panels with tight hairline joints and concealed fasteners. Fabricate panels so finished in-place partition is rigid; level; plumb; aligned, with tight joints and uniform appearance; and free of bow, warp, twist, deformation, and surface and finish irregularities.
- D. Dimensions: Fabricate operable acoustical panel partitions to form an assembled system of dimensions indicated and verified by field measurements.
 - 1. Panel Width: Standard widths.
- E. STC: Not less than 52.
- F. NRC: Not less than 0.65.
- G. Panel Weight: 10 lb/sq. ft. maximum.
- H. Panel Thickness: Not less than 3 inches.
- I. Panel Closure: Manufacturer's standard unless otherwise indicated.

- J. Hardware: Manufacturer's standard as required to operate operable panel partition and accessories; with decorative, protective finish.
 - 1. Hinges: Concealed (invisible).

2.3 SEALS

- A. General: Provide seals that produce operable panel partitions complying with performance requirements and the following:
 - 1. Manufacturer's standard seals unless otherwise indicated.
 - 2. Seals made from materials and in profiles that minimize sound leakage.
 - 3. Seals fitting tight at contact surfaces and sealing continuously between adjacent panels and between operable panel partition perimeter and adjacent surfaces, when operable panel partition is extended and closed.
- B. Vertical Seals: Deep-nesting, interlocking astragals mounted on each edge of panel, with continuous PVC acoustical seal.
- C. Horizontal Top Seals: Continuous-contact, extruded-PVC seal exerting uniform constant pressure on track or PVC-faced, mechanical, retractable, constant-force-contact seal exerting uniform constant pressure on track when extended.
- D. Horizontal Bottom Seals: Manufacturer's standard continuous-contact seal exerting uniform constant pressure on floor.

2.4 PANEL FINISH FACINGS

- A. General: Provide finish facings for panels that comply with indicated fire-test-response characteristics and that are factory applied to operable panel partitions with appropriate backing, using mildew-resistant nonstaining adhesive as recommended by facing manufacturer's written instructions.
 - 1. Apply one-piece, seamless facings free of air bubbles, wrinkles, blisters, and other defects, with edges tightly butted, and with invisible seams complying with Shop Drawings for location, and with no gaps or overlaps. Horizontal butted edges are not permitted. Tightly secure and conceal raw and selvage edges of facing for finished appearance.
 - 2. Where facings with directional or repeating patterns or directional weave are indicated, mark facing top and attach facing in same direction.
 - 3. Match facing pattern 72 inches above finished floor.
- B. Vinyl-Coated Fabric Wall Covering: Manufacturer's standard, mildew-resistant, washable, vinyl-coated fabric wall covering; complying with CFFA-W-101-D for type indicated; Class A.
 - 1. Total Weight: 21 oz.
 - 2. Antimicrobial Treatment: Additives capable of inhibiting growth of bacteria, fungi, and veasts.
 - 3. Color/Pattern: As selected by Government from manufacturer's full range.

- C. Fabric Wall Covering: Manufacturer's standard fabric, from same dye lot, treated to resist stains.
 - 1. Color/Pattern: As selected by Government from manufacturer's full range.
- D. Trimless Edges: Fabricate exposed panel edges so finish facing wraps uninterrupted around panel, covering edge and resulting in an installed partition with facing visible on vertical panel edges, without trim, for minimal sightlines at panel-to-panel joints.

2.5 SUSPENSION SYSTEMS

- A. Tracks: Steel or aluminum with adjustable steel hanger rods for overhead support, designed for operation, size, and weight of operable panel partition indicated. Size track to support partition operation and storage without damage to suspension system, operable panel partitions, or adjacent construction. Limit track deflection to no more than 0.10 inch between bracket supports. Provide a continuous system of track sections and accessories to accommodate configuration and layout indicated for partition operation and storage.
 - 1. Panel Guide: Aluminum guide on both sides of the track to facilitate straightening of the panels; finished with factory-applied, decorative, protective finish.
 - 2. Head Closure Trim: As required for acoustical performance; with factory-applied, decorative, protective finish.
- B. Carriers: Trolley system as required for configuration type, size, and weight of partition and for easy operation; with ball-bearing wheels.
 - 1. Multidirectional Carriers: Capable of negotiating intersections without track switches.
- C. Track Intersections, Switches, and Accessories: As required for operation, storage, track configuration, and layout indicated for operable panel partitions, and compatible with partition assembly specified. Fabricate track intersections and switches from steel or aluminum.
 - 1. Center carrier stop.
- D. Aluminum Finish: Mill finish or manufacturer's standard, factory-applied, decorative finish unless otherwise indicated.
- E. Steel Finish: Manufacturer's standard, factory-applied, corrosion-resistant, protective coating unless otherwise indicated.

2.6 ELECTRIC OPERATORS

- A. General: Factory-assembled electric operation system of size and capacity recommended and provided by operable panel partition manufacturer for partition specified; with electric motor and factory-prewired motor controls, speed reducer, chain drive, control stations, control devices, and accessories required for operation. Include wiring from control stations to motor. Coordinate operator wiring requirements and electrical characteristics with building electrical system.
- B. Comply with NFPA 70.

- C. Control Equipment: Comply with NEMA ICS 1, NEMA ICS 2, and NEMA ICS 6.
- D. Motor Electrical Characteristics:
 - 1. Horsepower: Manufacturer's standard.
 - 2. Volts: 115.
 - 3. Phase: Single.
 - 4. Hertz: 60.
- E. Control Stations: Two single-key-operated, constant-pressure control stations located remotely from each other on opposite sides and opposite ends of partition run. Wire in series to require simultaneous activation of both key stations to operate partition. Each three-position control station labeled "Open," "Close," and "Off." Furnish two keys per station.
- F. Obstruction-Detection Devices: Equip each motorized operable panel partition with indicated automatic safety sensor that causes operator to immediately shut off motor.
 - 1. Sensor Edge: Contact-pressure-sensitive safety edge along partition's leading edge.
 - 2. Sensor Mat: Electrically operated, contact-weight-sensitive safety mat in storage pocket area.
 - 3. Infrared Sensor System: Designed to detect an obstruction in partition's path and sound an audible alarm, without obstruction contacting partition.
- G. Limit Switches: Adjustable switches, interlocked with motor controls and set to automatically stop operable panel partition at fully extended and fully stacked positions.
- H. Emergency Release Mechanism: Quick disconnect-release of electric-motor drive system, permitting manual operation in event of operating failure.
- I. Electric Interlock: Equip each motorized operable panel partition with electric interlocks at locations indicated, to prevent operation of operable panel partition under the following conditions:
 - 1. On partitions at location of convergence by another partition, to prevent operation if merging partitions are in place.

2.7 ACCESSORIES

- A. Pass Doors: Swinging door built into and matching panel materials, construction, acoustical qualities, finish and thickness, complete with frames and operating hardware. Hinges finished to match other exposed hardware.
 - Accessibility Standard: Fabricate doors to comply with applicable provisions in ICC A117.1 and the U.S. Architectural & Transportation Barriers Compliance Board's ADA-ABA Accessibility Guidelines for Buildings and Facilitie..
 - 2. Single Pass Door: 36 by 84 inches.
 - 3. Pass-Door Hardware: Equip pass door with the following:
 - a. Panic hardware.
 - b. Concealed door closer.
 - c. Exit Sign: Recessed, self-illuminated.

- d. Lock: Key-operated lock with cylinder, keyed to master key system, operable from both sides of door. Include two keys per lock.
- e. Lock: Deadlock to receive cylinder, operable from both sides of door. See Section 087100 "Door Hardware" for lock cylinder and keying requirements.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine flooring, structural support, and opening, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of operable panel partitions.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. General: Comply with ASTM E 557 except as otherwise required by operable panel partition manufacturer's written installation instructions.
- B. Install operable panel partitions and accessories after other finishing operations, including painting, have been completed in area of partition installation.
- C. Install panels from marked packages in numbered sequence indicated on Shop Drawings.
- D. Broken, cracked, chipped, deformed, or unmatched panels are not acceptable.
- E. Broken, cracked, deformed, or unmatched gasketing or gasketing with gaps at butted ends is not acceptable.
- F. Light-Leakage Test: Illuminate one side of partition installation and observe vertical joints and top and bottom seals for voids. Adjust partitions for alignment and full closure of vertical joints and full closure along top and bottom seals. Perform test and make adjustments before NIC testing.

3.3 FIELD QUALITY CONTROL

- A. NIC Testing: Engage a qualified testing agency to perform tests and inspections.
 - 1. Testing Extent: Testing agency shall randomly select one operable panel partition installation(s) for testing.
 - 2. Testing Methodology: Perform testing of installed operable panel partition for noise isolation according to ASTM E 336, determined by ASTM E 413, and rated for not less than NIC indicated. Adjust and fit partitions to comply with NIC test method requirements.

- B. An operable panel partition installation will be considered defective if it does not pass tests and inspections.
- C. Prepare test and inspection reports.

3.4 ADJUSTING

- A. Adjust operable panel partitions, hardware, and other moving parts to function smoothly, and lubricate as recommended by manufacturer.
- B. Adjust pass doors and storage pocket doors to operate smoothly and easily, without binding or warping.
- C. Verify that safety devices are properly functioning.

3.5 MAINTENANCE SERVICE

A. Maintenance Service: Beginning at Substantial Completion, maintenance service shall include 12 months' full maintenance by manufacturer's authorized service representative. Include quarterly preventive maintenance, repair or replacement of worn or defective components, lubrication, cleaning, and adjusting as required for proper operable-partition operation. Parts and supplies shall be manufacturer's authorized replacement parts and supplies.

3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain operable panel partitions.

END OF SECTION 102239

SECTION 102800 - TOILET AND BATH ACCESSORIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes

- 1. Public-use washroom accessories.
- 2. Public-use shower room accessories.
- 3. Custodial accessories.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated. Include the following:
 - 1. Construction details and dimensions.
 - 2. Anchoring and mounting requirements, including requirements for cutouts in other work and substrate preparation.
 - 3. Material and finish descriptions.
 - 4. Features that will be included for Project.
 - 5. Manufacturer's warranty.
- B. Product Schedule: Indicating types, quantities, sizes, and installation locations by room of each accessory required.
 - 1. Identify locations using room designations indicated.
 - 2. Identify products using designations indicated.
- C. Warranty: Sample of special warranty.

1.4 QUALITY ASSURANCE

- A. Source Limitations: For products listed together in the same Part 2 articles, obtain products from single source from single manufacturer.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

1.5 COORDINATION

- A. Coordinate accessory locations with other work to prevent interference with clearances required for access by people with disabilities, and for proper installation, adjustment, operation, cleaning, and servicing of accessories.
- B. Deliver inserts and anchoring devices set into concrete or masonry as required to prevent delaying the Work.

1.6 WARRANTY

- A. Special Mirror Warranty: Manufacturer's standard form in which manufacturer agrees to replace mirrors that develop visible silver spoilage defects and that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: 15 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Stainless Steel: ASTM A 666, Type 304, 0.031-inch minimum nominal thickness unless otherwise indicated.
- B. Brass: ASTM B 19, flat products; ASTM B 16/B 16M, rods, shapes, forgings, and flat products with finished edges; or ASTM B 30, castings.
- C. Steel Sheet: ASTM A 1008/A 1008M, Designation CS (cold rolled, commercial steel), 0.036-inch minimum nominal thickness.
- D. Galvanized-Steel Sheet: ASTM A 653/A 653M, with G60 hot-dip zinc coating.
- E. Galvanized-Steel Mounting Devices: ASTM A 153/A 153M, hot-dip galvanized after fabrication.
- F. Fasteners: Screws, bolts, and other devices of same material as accessory unit and tamper-and-theft resistant where exposed, and of galvanized steel where concealed.
- G. Chrome Plating: ASTM B 456, Service Condition Number SC 2 (moderate service).
- H. Mirrors: ASTM C 1503, Mirror Glazing Quality, clear-glass mirrors, nominal 6.0 mm thick.
- I. ABS Plastic: Acrylonitrile-butadiene-styrene resin formulation.

2.2 PUBLIC-USE WASHROOM ACCESSORIES

- A. Manufacturers: Subject to compliance with requirements, manufacturers offering products which may be incorporated into the work include, but are not limited to, the following:
 - 1. American Specialties, Inc.

- 2. Bobrick Washroom Equipment, Inc.
- 3. Bradley Corporation.

B. Toilet Tissue (Roll) Dispenser **TTD**:

- 1. Basis-of-Design Product: Georgia-Pacific Toilet Paper Dispenser, Jumbo, Model No. 59350.
- 2. Description: Jumbo 12".
- 3. Mounting: Surface mounted.
- 4. Capacity: Designed for 12-inch-diameter tissue rolls.
- 5. Material and Finish: Plastic, Translucent Smoke.

C. Grab Bar **GB-1**, **GB-2**, **GB-3**:

- 1. Basis-of-Design Product: Bradley Model 812-2.
- 2. Mounting: Flanges with concealed fasteners.
- 3. Material: Stainless steel, 18 gages thick.
 - a. Finish: Smooth, No. 4 finish (satin) on ends and slip-resistant texture in grip area.
- 4. Outside Diameter: 1-1/2 inches.
- 5. Configuration and Length: As indicated on Drawings.

D. Mirror Unit **MG-1**:

- 1. Basis-of-Design Product:
- 2. Mounting: Surface WITH clips
- 3. Description: Frameless Float Glass Mirror with Clip Fasteners
- 4. Size: 24"x 36"

E. Liquid-Soap Dispenser. **SD-1**:

- 1. Basis-of-Design Product: Bobrick.
- 2. Description: SureFlo® Automatic, Top Fill Bulk Soap Dispenser, Liquid
- 3. Mounting: Vertically oriented, surface mounted.
- 4. Capacity: 34oz.
- 5. Materials: Plastic.

F. Liquid-Soap Dispenser. **SD-2**:

- 1. Basis-of-Design Product: Model 6A01-11.
- 2. Description: Designed for dispensing soap in foam form.
- 3. Mounting: Vertically oriented, surface mounted.
- 4. Capacity: 27oz.
- 5. Materials: Satin Finish Stainless Steel

G. Robe Hook **RBH-1**:

- 1. Basis-of-Design Product: Bradley Model 912.
- 2. Description: Double Clothes hook.
- 3. Materials: 12 Gauge Stainless Steel with exposed in satin finish.

H. Baby Changing Station **CH-1**:

- 1. Basis-of-Design Product: Koala Kare KB200-05SS.
- 2. Description: Molded bacterial-resistant, high density polyethylene with full length, Steel hinge pin. Concealed gas shock assists opening and closing; eliminates pinch points. Graphics in English and Spanish permanently molded in. Integrated dual paper liner dispenser and molded-in purse/diaper bag hooks. Safety strap with 100% unbreakable buckle.
- 3. Finish: Polypropylene cabinet, stainless steel veneer

I. Toilet Seat Cover Dispenser **TSCD**:

- 1. Basis-of-Design Product: Bradley Model 5831.
- 2. Description: Surface Mounted Seat Cover Dispenser.
- 3. Materials: Satin Stainless Steel

2.3 CUSTODIAL ACCESSORIES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. American Specialties, Inc.
 - 2. Bobrick Washroom Equipment, Inc.
 - 3. Bradley Corporation.

B. Mop and Broom Holder **MBH-1**:

- 1. Basis-of-Design Product: Bradley Model 9954.
- 2. Description: Unit with 3 holders.
- 3. Length: 24 inches.
- 4. Mop/Broom Holders: 3, spring-loaded, rubber hat, cam type.
- 5. Material and Finish: Stainless steel, No. 4 finish (satin).

2.4 FABRICATION

- A. General: Fabricate units with tight seams and joints, and exposed edges rolled. Hang doors and access panels with full-length, continuous hinges. Equip units for concealed anchorage and with corrosion-resistant backing plates.
- B. Keys: Provide universal keys for internal access to accessories for servicing and resupplying. Provide minimum of six keys to Owner's representative.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install accessories according to manufacturers' written instructions, using fasteners appropriate to substrate indicated and recommended by unit manufacturer. Install units level, plumb, and firmly anchored in locations and at heights indicated.

B. Grab Bars: Install to withstand a downward load of at least 250 lbf , when tested according to ASTM F 446.

3.2 ADJUSTING AND CLEANING

- A. Adjust accessories for unencumbered, smooth operation. Replace damaged or defective items.
- B. Remove temporary labels and protective coatings.
- C. Clean and polish exposed surfaces according to manufacturer's written recommendations.

END OF SECTION 102800

SECTION 104413 - FIRE PROTECTION CABINETS.

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Fire-protection cabinets for the following:
 - a. Portable fire extinguisher.
- B. Related Requirements:
 - 1. Section 104416 "Fire Extinguishers" for portable, hand-carried fire extinguishers accommodated by fire-protection cabinets

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Show door hardware, cabinet type, trim style, and panel style. Include roughing-in dimensions and details showing semi-recessed-, or surface-mounting method and relationships of box and trim to surrounding construction.
- B. Shop Drawings: For fire-protection cabinets.
 - 1. Include plans, elevations, sections, details, and attachments to other work.
- C. Maintenance Data: For fire-protection cabinets to include in maintenance manuals.

1.4 COORDINATION

- A. Coordinate size of fire-protection cabinets to ensure that type and capacity of fire extinguishers indicated are accommodated.
- B. Coordinate sizes and locations of fire-protection cabinets with wall depths.

1.5 SEQUENCING

A. Apply vinyl lettering on field-painted fire-protection cabinets after painting is complete.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Source Limitations: Obtain fire-protection cabinets, accessories, and fire extinguishers from single source from single manufacturer.
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Babcock-Davis.
 - 2. JL Industries, Inc.; a division of the Activar Construction Products Group.
 - 3. Kidde Residential and Commercial Division.
 - 4. Larsens Manufacturing Company.
 - 5. Nystrom, Inc

2.2 FIRE-PROTECTION CABINET

- A. Cabinet Type: Suitable for fire extinguisher.
 - 1. Babcock-Davis.
 - 2. JL Industries, Inc.; a division of the Activar Construction Products Group.
 - 3. Kidde Residential and Commercial Division.
 - 4. Larsens Manufacturing Company.
 - 5. Nystrom, Inc
- B. Cabinet Construction: Nonrated.
- C. Cabinet Material: Stainless-steel sheet.
- D. Semirecessed Cabinet: One-piece combination trim and perimeter door frame overlapping surrounding wall surface, with exposed trim face and wall return at outer edge (backbend).
 - 1. Rolled-Edge Trim: 2-1/2-inch (64-mm) backbend depth.
- E. Surface-Mounted Cabinet: Cabinet box fully exposed and mounted directly on wall with no trim.
- F. Cabinet Trim Material: Stainless-steel sheet.
- G. Door Material: Stainless-steel sheet.
- H. Door Style: Fully glazed panel with frame.
- I. Door Glazing: Clear float glass.

- J. Door Hardware: Manufacturer's standard door-operating hardware of proper type for cabinet type, trim style, and door material and style indicated.
 - 1. Provide recessed door pull and friction latch.
 - 2. Provide continuous hinge, of same material and finish as trim,, permitting door to open 180 degrees.

K. Accessories:

- 1. Mounting Bracket: Manufacturer's standard steel, designed to secure fire extinguisher to fire-protection cabinet, of sizes required for types and capacities of fire extinguishers indicated, with plated or baked-enamel finish.
- 2. Break-Glass Strike: Manufacturer's standard metal strike, complete with chain and mounting clip, secured to cabinet.
- 3. Break-Glass Door Handle: Manufacturer's standard, integral to glass with the words "PULL TO BREAK GLASS" applied to handle.
- 4. Lettered Door Handle: One-piece, cast-iron door handle with the word "FIRE" embossed into face.
- 5. Door Lock: Cam lock that allows door to be opened during emergency by pulling sharply on door handle.
- 6. Identification: Lettering complying with authorities having jurisdiction for letter style, size, spacing, and location. Locate as indicated.
 - a. Identify fire extinguisher in fire-protection cabinet with the words "FIRE EXTINGUISHER."
 - 1) Location: Applied to cabinet glazing.
 - 2) Application Process: Decals or Pressure-sensitive vinyl letters.
 - 3) Lettering Color: Red.
 - 4) Orientation: Vertical.
- 7. Alarm: Manufacturer's standard alarm that actuates when fire-protection cabinet door is opened and that is powered by batteries.

L. Materials:

- 1. Stainless Steel: ASTM A666, Type 304.
 - a. Finish: No. 4 directional satin finish.
- 2. Clear Float Glass: ASTM C1036, Type I, Class 1, Quality q3, 3 mm thick.

2.3 FABRICATION

- A. Fire-Protection Cabinets: Provide manufacturer's standard box (tub) with trim, frame, door, and hardware to suit cabinet type, trim style, and door style indicated.
 - 1. Weld joints and grind smooth.
 - 2. Miter corners and grind smooth.
 - 3. Provide factory-drilled mounting holes.

- 4. Prepare doors and frames to receive locks.
- 5. Install door locks at factory.
- B. Cabinet Doors: Fabricate doors according to manufacturer's standards, from materials indicated and coordinated with cabinet types and trim styles.
 - 1. Fabricate door frames with tubular stiles and rails and hollow-metal design, minimum 1/2 inch (13 mm) thick.
 - 2. Fabricate door frames of one-piece construction with edges flanged.
 - 3. Miter and weld perimeter door frames and grind smooth.
- C. Cabinet Trim: Fabricate cabinet trim in one piece with corners mitered, welded, and ground smooth.

2.4 GENERAL FINISH REQUIREMENTS

- A. Comply with NAAMM's AMP 500, "Metal Finishes Manual for Architectural and Metal Products," for recommendations for applying and designating finishes.
- B. Protect mechanical finishes on exposed surfaces of fire-protection cabinets from damage by applying a strippable, temporary protective covering before shipping.
- C. Finish fire-protection cabinets after assembly.
- D. Appearance of Finished Work: Noticeable variations in same piece are unacceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine walls and partitions for suitable framing depth and blocking where semirecessed cabinets will be installed.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Prepare recesses for semirecessed fire-protection cabinets as required by type and size of cabinet and trim style.

3.3 INSTALLATION

A. General: Install fire-protection cabinets in locations and at mounting heights indicated or, if not indicated, at height indicated below:

- 1. Fire-Protection Cabinets: **42 inches** (**1067 mm**) above finished floor to top of fire extinguisher.
- B. Fire-Protection Cabinets: Fasten cabinets to structure, square and plumb.
 - 1. Unless otherwise indicated, provide recessed fire-protection cabinets. If wall thickness is inadequate for recessed cabinets, provide semi-recessed fire-protection cabinets.
 - 2. Provide inside latch and lock for break-glass panels.
 - 3. Fasten mounting brackets to inside surface of fire-protection cabinets, square and plumb.

C. Identification:

1. Apply vinyl lettering at locations indicated.

3.4 ADJUSTING AND CLEANING

- A. Remove temporary protective coverings and strippable films, if any, as fire-protection cabinets are installed unless otherwise indicated in manufacturer's written installation instructions.
- B. Adjust fire-protection cabinet doors to operate easily without binding. Verify that integral locking devices operate properly.
- C. On completion of fire-protection cabinet installation, clean interior and exterior surfaces as recommended by manufacturer.
- D. Touch up marred finishes, or replace fire-protection cabinets that cannot be restored to factory-finished appearance. Use only materials and procedures recommended or furnished by fire-protection cabinet and mounting bracket manufacturers.
- E. Replace fire-protection cabinets that have been damaged or have deteriorated beyond successful repair by finish touchup or similar minor repair procedures.

END OF SECTION 104413

104416 - 1

SECTION 104416 - FIRE EXTINGUISHERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes portable, hand-carried fire extinguishers and mounting brackets for fire extinguishers.
- B. Owner-Furnished Material: Hand-carried fire extinguishers.
- C. Related Requirements:
 - 1. Section 104413 "Fire Protection Cabinets."

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product. Include rating and classification, material descriptions, dimensions of individual components and profiles, and finishes for fire extinguisher and mounting brackets.
- B. Product Schedule: For fire extinguishers. Coordinate final fire-extinguisher schedule with fire-protection cabinet schedule to ensure proper fit and function.

1.4 INFORMATIONAL SUBMITTALS

A. Warranty: Sample of special warranty.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For fire extinguishers to include in maintenance manuals.

1.6 COORDINATION

A. Coordinate type and capacity of fire extinguishers with fire-protection cabinets to ensure fit and function.

1.7 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace fire extinguishers that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: Six years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. NFPA Compliance: Fabricate and label fire extinguishers to comply with NFPA 10, "Portable Fire Extinguishers."
- B. Fire Extinguishers: Listed and labeled for type, rating, and classification by an independent testing agency acceptable to authorities having jurisdiction.
 - 1. Provide fire extinguishers approved, listed, and labeled by FM Global.

2.2 PORTABLE, HAND-CARRIED FIRE EXTINGUISHERS

- A. Fire Extinguishers: Type, size, and capacity for each fire-protection cabinet and mounting bracket indicated.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. Babcock-Davis.
 - b. JL Industries, Inc.; a division of the Activar Construction Products Group.
 - c. Kidde Residential and Commercial Division.
 - d. Larsens Manufacturing Company.
 - e. Nystrom, Inc.
 - 2. Source Limitations: Obtain fire extinguishers, fire-protection cabinets, and accessories, from single source from single manufacturer.
 - 3. Valves: Manufacturer's standard.
 - 4. Handles and Levers: Stainless steel.
 - 5. Instruction Labels: Include pictorial marking system complying with NFPA 10, Appendix B.
- B. Multipurpose Dry-Chemical Type in Steel Container: UL-rated 4-A:60-B:C, 10-lb (4.5-kg) nominal capacity, with monoammonium phosphate-based dry chemical in enameled-steel container.

2.3 MOUNTING BRACKETS

- A. Mounting Brackets: Manufacturer's standard steel, designed to secure fire extinguisher to wall or structure, of sizes required for types and capacities of fire extinguishers indicated, with plated or red baked-enamel finish.
 - 1. Source Limitations: Obtain mounting brackets and fire extinguishers from single source from single manufacturer.
- B. Identification: Lettering complying with authorities having jurisdiction for letter style, size, spacing, and location. Locate as indicated by Architect.
 - 1. Identify bracket-mounted fire extinguishers with the words "FIRE EXTINGUISHER" in red letter decals applied to mounting surface.
 - a. Orientation: Vertical.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine fire extinguishers for proper charging and tagging.
 - 1. Remove and replace damaged, defective, or undercharged fire extinguishers.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. General: Install fire extinguishers and mounting brackets in locations indicated and in compliance with requirements of authorities having jurisdiction.
 - 1. Mounting Brackets: Top of fire extinguisher to be at 42 inches (1067 mm) above finished floor.
- B. Mounting Brackets: Fasten mounting brackets to surfaces, square and plumb, at locations indicated.

END OF SECTION 104416

SECTION 10 51 26 - PLASTIC LOCKERS

PART 1 - GENERAL

1.1 SECTION INCLUDES

A. Solid plastic lockers.

1.2 REFERENCES

A. ASTM International (ASTM):

- 1. ASTM A 666 Standard Specification for Annealed or Cold-Worked Austenitic Stainless Steel Sheet, Strip, Plate, and Flat Bar.
- 2. ASTM E 84 Standard Test Method for Surface Burning Characteristics of Building Materials.

B. US Federal Government:

1. U.S. Architectural & Transportation Barriers Compliance Board. Americans with Disabilities Act (ADA), Accessibility Guidelines for Buildings and Facilities (ADAAG).

1.3 ACTION SUBMITTALS

- A. Product Data: Manufacturer's data sheets for each type of product indicated include fabrication details, description of materials and finishes.
 - 1. Product Test Reports: When requested by Architect, provide documentation indicating compliance of products with requirements, from a qualified independent testing agency.
- B. Shop Drawings: Include overall locker dimensions, floor plan, elevations, sections, details, and attachments to other work. Include choice of options with details.
- C. Samples for Selection: Furnish samples of manufacturer's full range of colors for initial selection.
- D. Samples for Approval: Furnish a physical sample of the material in the selected color.
 - 1. Size: 6 by 6 inch (102 by 102 mm) in type of finish specified.

1.4 INFORMATIONAL SUBMITTALS

- A. Installation instructions.
- B. Warranty: Sample of special warranty.

1.5 MAINTENANCE SUBMITTALS

A. Operation and Maintenance Data.

1.6 QUALITY ASSURANCE

- A. Manufacturer Qualifications: Approved manufacturer listed in this section, with minimum [5] years experience in the manufacture of plastic lockers. Manufacturers seeking approval must submit the following in accordance with Instructions to Bidders and Division 01 requirements:
 - 1. Product data, including test data from qualified independent testing agency indicating compliance with requirements.
 - 2. Samples of each component of product specified.
 - 3. List of successful installations of similar products available for evaluation by Architect.
 - 4. Submit substitution request not less than 15 days prior to bid date.
- B. Installers Qualifications: An experienced Installer regularly engaged in the installation of lockers for a minimum of 3 years.
- C. Source Limitations: Obtain plastic lockers and trim accessories from single manufacturer.
- D. Accessibility Requirements: Comply with requirements of IBC, ADAAG, and ICC A117.1 and with requirements of authorities having jurisdiction.
- E. Surface-Burning Characteristics: As determined by testing identical products according to ASTM E 84 by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 - 1. Flame-Spread Index: 100 or less.
 - 2. Smoke-Developed Index: 450 or less.

1.7 DELIVERY, STORAGE, AND HANDLING

- A. Do not deliver plastic lockers to the site until the building is enclosed and HVAC systems are in operation. Deliver plastic lockers in manufacturer's original packaging. Store in an upright condition. Protect plastic lockers from exposure to direct sunlight.
- B. Ship plastic lockers fully assembled.
- C. Lift and handle plastic lockers from the base not the sides.

1.8 WARRANTY

A. Special Manufacturer's Warranty: 20 year against rust, delamination or breakage of plastic parts under normal use.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Basis-of-Design Manufacturer: Subject to compliance with requirements, provide products of ASI Storage Solutions, Eastanollee, GA. website: www.ASIStorage.com

- 1. Provide basis of design products or comparable products of one of the following approved manufacturers:
 - a. Bradley Corporation
 - b. Scranton Products
 - c. Submit requests for substitution in accordance with Instructions to Bidders and Division 01 General Requirements.

B. MATERIALS

- 1. High Density Polyethylene (HDPE) polyethylene thermoplastic formed under high pressure into solid plastic components.
- 2. Stainless-Steel Sheet: ASTM A 666, Type 304.
- 3. Fasteners: Tamper-Resistant Fasteners: Stainless steel torx-head screws.
 - a. Locker Connectors: No. 10-24 sex bolts.
 - b. Anchors: Type and size required for secure anchorage.
 - c. Drilled-in-place Masonry Anchors: Minimum 1/4 by 1-3/4 inch (6 by 44 mm) screws.

2.2 STANDARD PLASTIC LOCKERS

- A. Basis-of-Design Product: ASI Traditional Collection, Solid Plastic.
- B. Locker Configuration: Two tier.
- C. Locker Dimensions
 - 1. Height, Nominal: 36 inch (914 mm).
 - 2. Width: 15 inch (381 mm).
 - 3. Depth: 18 inch (457 mm).
- D. Material: HDPE plastic.
- E. Sides, Tops, Bottoms, Dividers, and Shelves: 3/8 inch (10 mm) thick HDPE plastic with smooth finish.
- F. Locker Shelves: 3/8 inch (10 mm) HDPE plastic, mortised into sides and back.
- G. Locker Tops: Slope top.
- H. Doors: Fabricate from a single piece 1/2 inch (13 mm) HDPE plastic.
 - 1. Doors and Frame: 1/2 inch (13 mm) thick HDPE plastic with matte texture finish with ventilation slots.
 - 2. Handle: ADA/ABA Compliant handle fabricated from injection molded plastic.
 - 3. Locks: Standard hasp.
 - 4. Hinges: Manufacturer's standard continuous piano hinges fabricated to wrap around edges of door and frame and attached with stainless steel tamper-resistant screws.

a. Finish: Manufacturer's standard.

- 5. Latch Bar: Full-height latch bar constructed of 1/2 inch (13 mm) HDPE plastic secured to locker with stainless steel tamper-resistant screws.
- I. Color: As selected by Architect from manufacturer's full range.

J. Accessories:

- 1. Coat Hooks: Black polycarbonate double hook.
- 2. End Panels: 3/8 inch (10 mm) thick, with color and finish matching locker body.
- 3. Number Plate: Manufacturer's standard, laser etched with number specified. Provide one per locker.
- 4. Locker Base: 1 inch (26 mm) solid HDPE plastic, with black or finish matching locker body, 4 inch (101 mm) high.

2.3 LOCKER FABRICATION

- A. Fabricate locker box from a single sheet of HDPE solid plastic with corners fused together. Weld frames and shelves to box assembly. Provide all welded construction of locker parts without dovetail slots or metal fasteners. Add welded gussets in single tier full height lockers.
- B. Hardware Attachment: All hinges, handles, hasps, hooks, latch bars, and locks attached with tamper-resistant screws.
- C. Provide ventilated panels where indicated.
- D. Continuous Base: Set toe clearance 3 inch (76 mm) from locker front. Notch end caps for ease of installation.
- E. Continuous Sloping Tops: Fabricated in lengths indicated, without visible fasteners at splice locations; and finished to match lockers.
- F. Filler Panels: Fabricated in unequal leg angle shape; finished to match lockers.
- G. Finished End Panels: Fabricated with 3/8 inch (10 mm) wide edge dimension, configured to conceal fasteners and holes at exposed ends of plastic lockers.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install lockers in climate controlled environment, shielded from direct sunlight.
- B. General: Install on floor or other firm support. Install level, plumb, and true.
 - 1. Position locker base per approved shop drawing. Using fasteners provided by manufacturer, anchor base sections to the floor.
 - 2. Attach filler pieces to lockers with male-female sex bolts.
 - 3. Position first locker according to submittal layout. Square and plumb the locker using concealed shims. Secure the locker to the wall at the top and bottom of the locker. Position second locker next to first, square and plumb to align the tops and bottoms; and

temporarily clamp lockers together. Drill four holes through the sides of the lockers and connect lockers using sex bolts provided by manufacturer.

- C. Accessories: Fit exposed connections of trim, fillers, and closures together to form tight, hairline joints, with concealed fasteners and splice plates furnished by locker manufacturer. Install as indicated on approved shop drawings.
 - 1. Coat Hooks: Attach with at least two fasteners.
 - 2. Identification Plates: Identify plastic lockers with approved identification numbers. Attach plates to each locker door.
 - 3. Filler Panels: Attach with concealed fasteners.
 - 4. Sloping Tops: Attach sloping-tops to plastic lockers, with closures at exposed ends.
 - 5. Finished End Panels: Attach at ends indicated.

3.2 FINAL CLEANING

- A. Clean locker interior and exterior surfaces.
- B. Remove packaging and construction debris and legally dispose of off-site.

END OF SECTION

SECTION 113100 - RESIDENTIAL APPLIANCES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Cooking and warming appliances.
- 2. Refrigeration appliances.
- 3. Cleaning appliances.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include installation details, material descriptions, dimensions of individual components, and finishes for each appliance.
 - 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished accessories.

1.4 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For manufacturer.
- B. Product Certificates: For each type of appliance.
- C. Field quality-control reports.
- D. Sample Warranties: For manufacturers' special warranties.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For each residential appliance to include in operation and maintenance manuals.

1.6 WARRANTY

- A. Special Warranties: Manufacturer agrees to repair or replace residential appliances or components that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: Two years from date of Substantial Completion.
- B. Microwave Oven: Full warranty, including parts and labor, for on-site service.
 - 1. Warranty Period: Two years from date of Substantial Completion.
- C. Refrigerator/Freezer, Sealed System: Full warranty, including parts and labor, for on-site service on the product.
 - 1. Warranty Period for: Two years from date of Substantial Completion.
- D. Dishwasher: Full warranty, including parts and labor, for on-site service on the product.
 - 1. Warranty Period for: Two years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Electrical Appliances: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Accessibility: Where residential appliances are indicated to comply with accessibility requirements, comply with applicable provisions in the DOJ's 2010 ADA Standards for Accessible Design and ICC A117.1.

2.2 MICROWAVE OVENS

A. Microwave Oven:

- 1. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Amana; a division of Whirlpool Corporation.
 - b. BSH Home Appliances Corporation (Bosch).
 - c. Electrolux Home Products (Frigidaire).
 - d. General Electric Company (GE Appliances).
 - e. KitchenAid; a division of Whirlpool Corporation.
 - f. Maytag; a division of Whirlpool Corporation.
 - g. <u>Samsung</u>.
 - h. Whirlpool Corporation.
- 2. Mounting: Wall cabinet.

- 3. Type: Conventional.
- 4. Capacity: 2.0 cu. ft. (0.06 cu. m).
- 5. Oven Door: Door with observation window and pull handle and pushbutton latch release.
- 6. Exhaust Fan: Two-speed fan, nonvented, recirculating type with charcoal filter and with manufacturer's standard 300-cfm (140-L/s) capacity.
- 7. Microwave Power Rating: Manufacturer's standard.
- 8. Electric Power Supply: 120 V, 60 Hz, 1 phase, 15 A.
- 9. Controls: Digital panel controls and timer display.
- 10. Other Features: Turntable and temperature probe.
- 11. Material: Stainless steel.

2.3 WARMING DRAWER

A. Warming drawer:

- 1. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following: (Note: Basis of design is Cres Cor H-137-SUA-12D)
 - a. Amana; a division of Whirlpool Corporation.
 - b. <u>BSH Home Appliances Corporation (Bosch)</u>.
 - c. Electrolux Home Products (Frigidaire).
 - d. General Electric Company (GE Appliances), Basis-of-Design CW9000SJSS.
 - e. <u>KitchenAid; a division of Whirlpool Corporation</u>.
 - f. Maytag; a division of Whirlpool Corporation.
 - g. Samsung.
 - h. Whirlpool Corporation.
 - i. Cres Cor
- 2. Mounting: Wall cabinet
- 3. Dimensions:
 - a. Width: approximately 28 3/4 inches.
 - b. Depth: approximately 32 3/4 inches.
 - c. Height: approximately 73 inches.
- 4. Door: Half doors with pull handle.
- 5. Electric Power Supply: 120 V, 60 Hz, 1 phase, 12 A.
- 6. Material: Stainless steel.

2.4 REFRIGERATOR/FREEZERS

A. Refrigerator/Freezer: Two-door refrigerator/freezer with freezer on bottom and complying with AHAM HRF-1.

- 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. Electrolux Home Products (Frigidaire).
 - b. <u>General Electric Company (GE Appliances)</u>.
 - c. <u>KitchenAid</u>; a division of Whirlpool Corporation.
 - d. Samsung.
 - e. Sears Brands LLC (Kenmore).
 - f. Whirlpool Corporation.
- 2. Type: Freestanding.
- 3. Dimensions:
 - a. Width: approximately 36 inches (914 mm).
 - b. Depth: approximately 27 inches (686 mm).
 - c. Height: approximately 70 inches (1778 mm).
- 4. Storage Capacity:
 - a. Refrigeration Compartment Volume: 15.6 cu. ft. (0.44 cu. m).
 - b. Freezer Volume: 7.2 cu. ft. (0.15 cu. m).
 - c. Shelf Area: Three adjustable glass shelves, 26 sq. ft. (2.42 sq. m).
- 5. General Features:
 - a. Door Configuration: Overlay.
 - b. Built-in water-filtration system.
 - c. Dual refrigeration systems.
 - d. Separate temperature controls for each compartment.
- 6. Refrigerator Features:
 - a. Interior light in refrigeration compartment.
 - b. Compartment Storage: vegetable crisper and meat compartment.
 - c. Temperature-controlled meat/deli bin.
- 7. Freezer Features: One freezer compartment(s) with door configured as pull-out drawer(s).
 - a. Automatic defrost.
 - b. Interior light in freezer compartment.
 - c. Automatic icemaker and storage bin.
- 8. ENERGY STAR: Provide appliances that qualify for the EPA/DOE ENERGY STAR product-labeling program.
- 9. Front Door/Drawer Finish: Stainless steel.
- 10. Appliance Color/Finish: Black.

2.5 ICEMAKERS

A. Icemaker:

- 1. <u>Basis-of-Design Product:</u> Subject to compliance with requirements, provide Hoshizaki; KM-230BAJ or a comparable product by one of the following:
 - a. General Electric Company (GE Appliances).
 - b. <u>KitchenAid; a division of Whirlpool Corporation</u>.
 - c. Maytag; a division of Whirlpool Corporation.
 - d. Whirlpool Corporation.
- 2. Type: Freestanding, self-contained cuber with storage bin.
- 3. Dimensions:
 - a. Width: 24 inches (375 mm)].b. Depth: 28 inches (610 mm).
 - c. Height: 39 inches (386 mm).
- 4. Ice Capacity:
 - a. Production: Up to 230 lb (13.6 kg) per day.
 - b. Storage: 80 lb (11.3 kg).
- 5. Electric rating: 120 V, 60 Hz, 1 phase, 6.5 A.
- 6. Features:
 - a. ADA compliant Ice Bin opening.
 - b. Individual crescent cube.
 - c. Stainless steel evaporator
 - d. Cycle-Saver design.
 - e. Front-in, front-out airflow.
 - f. Removable air filter.
 - g. Water filter.
- 7. Appliance Color/Finish: Stainless steel.

2.6 DISHWASHERS

- A. Dishwasher: Complying with AHAM DW-1.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. BSH Home Appliances Corporation (Bosch).
 - b. Electrolux Home Products (Frigidaire).
 - c. General Electric Company (GE Appliances).
 - d. KitchenAid; a division of Whirlpool Corporation.
 - e. <u>Samsung</u>.

- f. Sears Brands LLC (Kenmore).
- g. Whirlpool Corporation.
- 2. Type: Built-in undercounter.
- 3. Dimensions:
 - a. Width: 24 inches (610 mm).
 - b. Depth: 23 inches (584 mm).
 - c. Height: 32-1/2 inches (876 mm).
- 4. Sound Level: Maximum 44 dB.
- 5. Tub and Door Liner: Stainless steel with sealed detergent and automatic rinsing-aid dispensers.
- 6. Rack System: PVC-coated sliding dish racks, with removable cutlery basket top cutlery tray.
- 7. Controls: Touch-pad controls with four wash cycles and hot-air and heat-off drying cycle options.
- 8. Features:
 - a. Waste food disposer.
 - b. Self-cleaning food-filter system.
 - c. Hot-water booster heater for 140 deg F (60 deg C) wash water with incoming water at 100 deg F (38 deg C).
 - d. Delay-wash option.
- 9. ENERGY STAR: Provide appliances that qualify for the EPA/DOE ENERGY STAR product-labeling program.
- 10. Front Panel: Stainless steel.
- 11. Appliance Color/Finish: Stainless steel.

2.7 COFFEE MAKER

- A. Coffee Maker: 12-cup automatic coffee brewer with 2 upper and one lower warmer.
 - 1. Basis-of-Design: Subject to compliance with requirements, provide the following:
 - a. Bunn 12950.0213 CWTF15-3.
 - 2. Type: Countertop.
 - 3. Dimensions:
 - a. Width: 8-1/2 inches (610 mm).
 - b. Depth: 17-3/4 inches (584 mm).
 - c. Height: 19 inches (876 mm).
 - 4. Capacity: 3.9 gallons per hour into standard 64 oz. decanters.
 - 5. Electric rating: 120 V, 60 Hz, 1 phase, 13.9 A, 1,670 watt.
 - 6. Appliance Color/Finish: Stainless steel.

2.8 POPCORN MAKER

- A. Popcorn Maker: 20 oz. electric popcorn machine.
 - 1. Basis-of-Design: Subject to compliance with requirements, provide the following:
 - a. Paragon 1120810.
 - 2. Type: Countertop.
 - 3. Dimensions:
 - a. Width: 29-1/4 inches (610 mm).
 b. Depth: 21-1/4 inches (584 mm).
 c. Height: 36-1/2 inches (876 mm).
 - 4. Capacity: 400 1 oz. servings per hour into standard 64 oz. decanters.
 - 5. Electric rating: 120 V, 60 Hz, 1 phase, 27 A, 3,050 watts.
 - 6. Appliance Color/Finish: Aluminum kettle and frame with tempered glass side panels.

2.9 GENERAL FINISH REQUIREMENTS

- A. Protect mechanical finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.
- B. Appearance of Finished Work: Noticeable variations in same piece are not acceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances, power connections, and other conditions affecting installation and performance of residential appliances.
- B. Examine roughing-in for piping systems to verify actual locations of piping connections before appliance installation.
- C. Examine walls, ceilings, and roofs for suitable conditions where appliances will be installed.
- D. Prepare written report, endorsed by Installer, listing conditions detrimental to performance of the Work.
- E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install appliances according to manufacturer's written instructions.
- B. Built-in Equipment: Securely anchor units to supporting cabinets or countertops with concealed fasteners. Verify that clearances are adequate for proper functioning and that rough openings are completely concealed.
- C. Freestanding Equipment: Place units in final locations after finishes have been completed in each area. Verify that clearances are adequate to properly operate equipment.

3.3 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Perform visual, mechanical, and electrical inspection and testing for each appliance according to manufacturers' written recommendations. Certify compliance with each manufacturer's appliance-performance parameters.
 - 2. Leak Test: After installation, test for leaks. Repair leaks and retest until no leaks exist.
 - 3. Operational Test: After installation, start units to confirm proper operation.
 - 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and components.
- B. An appliance will be considered defective if it does not pass tests and inspections.
- C. Prepare test and inspection reports.

END OF SECTION 113100

SECTION 115213 - PROJECTION SCREENS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Electrically operated, front-projection screens and controls.
- B. Related Requirements:
 - 1. Section 055000 "Metal Fabrications" for metal support framing for front-projection screens.
 - 2. Section 061000 "Rough Carpentry" for wood backing for screen installation.

1.3 DEFINITIONS

A. Gain: Ratio of light reflected from screen material to that reflected perpendicularly from a magnesium carbonate surface as determined per SMPTE RP 94.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: Show layouts and types of front-projection screens. Include the following:
 - 1. Drop lengths.
 - 2. Anchorage details, including connection to supporting structure for suspended units.
 - 3. Details of juncture of exposed surfaces with adjacent finishes.
 - 4. Location of wiring connections for electrically operated units.
 - 5. Wiring diagrams for electrically operated units.
 - 6. Accessories.

1.5 CLOSEOUT SUBMITTALS

A. Maintenance Data: For front-projection screens to include in maintenance manuals.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Environmental Limitations: Do not deliver or install front-projection screens until spaces are enclosed and weathertight, wet work in spaces is complete and dry, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.

1.7 COORDINATION

A. Coordinate layout and installation of front-projection screens with adjacent construction, including ceiling suspension systems, light fixtures, HVAC equipment, fire-suppression system, and partitions.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations for Projection Screens: Obtain front-projection screens from single manufacturer. Obtain accessories, including necessary mounting hardware, from screen manufacturer.

2.2 ELECTRICALLY OPERATED, FRONT-PROJECTION SCREENS

- A. General: Manufacturer's standard units consisting of case, screen, motor, controls, mounting accessories, and other components necessary for a complete installation.
 - 1. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. Controls: Remote, key-operated, three-position control switch installed in recessed device box with flush cover plate matching other electrical device cover plates in room where switch is installed.
 - a. Provide number of control switches indicated for each screen.
 - b. Provide power supply for low-voltage systems if required.
 - c. Provide locking cover plates for switches.
 - d. Provide key-operated, power-supply switch.
 - e. Provide infrared or radio-frequency remote control consisting of battery-powered transmitter and receiver.
 - f. Provide video interface control for connecting to projector. Projector provides signal to raise or lower screen.
 - 3. Screen Mounting: Top edge securely anchored to rigid metal roller and bottom edge formed into a pocket holding a 3/8-inch-diameter metal rod with ends of rod protected by plastic caps.
 - 4. Tab Tensioning: Provide units that have a durable low-stretch cord, such as braided polyester, on each side of screen that is connected to edge of screen by tabs to pull screen flat horizontally.

- B. Suspended, Electrically Operated Screens with Automatic Ceiling Closure, with Motor-in Roller, and with Tab Tensioning: Units designed and fabricated for suspended mounting; with bottom of case composed of two panels, fully enclosing screen, motor, and wiring; one panel hinged and designed to open and close automatically when screen is lowered and fully raised, the other removable or openable for access to interior of case.
 - 1. Provide metal or metal-lined wiring compartment.
 - 2. Screen Case: Made from metal.
 - 3. Provide screen case with trim flange to receive ceiling finish.
 - 4. Finish on Exposed Surfaces: Vinyl covering or baked enamel.

2.3 FRONT-PROJECTION SCREEN MATERIAL

- A. Matte-White Viewing Surface: Peak gain of not less than 0.9, and gain of not less than 0.8 at an angle of 50 degrees from the axis of the screen surface.
- B. Material: vinyl sheet.
- C. Mildew-Resistance Rating: Zero or 1 when tested according to ASTM G 21.
- D. Flame Resistance: Passes NFPA 701.
- E. Flame-Spread Index: Not greater than 75 when tested according to ASTM E 84.
- F. Seamless Construction: Provide screens, in sizes indicated, without seams.
- G. Size of Viewing Surface: 72 by 96 inches.
- H. Provide extra drop length of dimensions and at locations indicated.
 - 1. Color: Same as viewing surface.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install front-projection screens at locations indicated to comply with screen manufacturer's written instructions.
- B. Install front-projection screens with screen cases in position and in relation to adjoining construction indicated. Securely anchor to supporting substrate in a manner that produces a smoothly operating screen with vertical edges plumb and viewing surface flat when screen is lowered.
 - 1. Install low-voltage controls according to NFPA 70 and complying with manufacturer's written instructions.
 - a. Wiring Method: Install wiring in raceway except in accessible ceiling spaces and in gypsum board partitions where unenclosed wiring method may be used. Use

UL-listed plenum cable in environmental air spaces, including plenum ceilings. Conceal raceway and cables except in unfinished spaces.

2. Test electrically operated units to verify that screen controls, limit switches, closures, and other operating components are in optimum functioning condition.

3.2 FRONT-PROJECTION SCREEN SCHEDULE

- A. Electrically Operated, Front-Projection Screen: Suspended, with automatic ceiling closure.
 - 1. Screen Surface: Matte white.
 - 2. Size of Viewing Surface: 72 by 96 inches.
 - 3. Extra Drop Length: As needed at top of screen for bottom of screen to be 36 inches above floor.

END OF SECTION 115213

SECTION 116623 - ATHLETIC EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

- A. The Work required under this Section consists of providing sports & physical education equipment items, accessories and necessary mounting, and installation hardware.
- B. Related Work Specified Elsewhere
 - 1. Division 3, Concrete; set the volleyball sleeves.
 - 2. Division 9, Finishes; install volleyball sleeve cover plates.
 - 3. Division 16, Electrical; coordinate all electrical.

1.2 SUBMITTALS

- A. Submit in accordance with Division 1 requirements.
- B. Shop drawings shall indicate the model number, type of material, gauges or thickness of metal, finishes and details of construction, and attachment. Provide layout of gymnasium showing location dimensions for each piece of equipment.
- C. Submit warranties as specified herein.

1.3 PROJECT CONDITIONS

A. Loose items of equipment shall be turned over to the Owner after un-packaging or uncrating, and checking for proper type, material, size and fit of each accessory. Obtain receipt from Owner for items turned over. No claim may be made for items turned over to the Owner without obtaining a receipt.

1.4 COORDINATION

A. Coordinate with Divisions 15 and 16 contractors for installation of the physical education equipment. Also coordinate with the Architect for exact locations.

1.5 WARRANTY

A. Provide manufacturer's standard warranty on all sports & physical education equipment from the date of substantial completion as stated in this specification.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Products of the following manufacturers are acceptable, providing their products equal or exceed the quality specified. Minor differences in construction and products are recognized to exist and may be acceptable. These variations must be submitted to the architect at least 10 days prior to bid due date. Acceptance will be established by addendum.

- 1. <u>Basis of Design:</u> Performance Sports Systems, Noblesville, Indiana
- 2. Porter Athletic, Broadview, IL
- 3. Jaypro Sports Equipment, Waterford, CT

2.2 GENERAL

- A. Equipment shall be provided complete as per manufacturer's standard catalog description and specifications for the numbers indicated in the schedule. Equipment to be permanently installed shall be complete and ready for use.
- B. Materials and finishes shall be non-corrosive in type and quality of finish noted or as a part of the manufacturer's printed description or specifications.

2.3 CEILING SUSPENDED FORWARD FOLD BACKSTOPS

- A. Model No. 3107 "Single Post" ceiling suspended, forward fold, front braced backstop as manufactured by Performance Sports Systems, Noblesville, Indiana.
- B. "Single Post" vertical main mast assembly shall be constructed of 6-5/8" O.D. (.120" wall ASTM A-500 Grade B) structural steel tubing with diagonal side sway braces of 2 ½"X 1½" X14 gauge ASTM A-513 rectangular steel tube sway braces miter cut and welded in place to a top horizontal 4" x 1½" x 0.18" web ASTM A-36 steel channel. Sway braces shall attach to mast above backboard for maximum rigidity. Mast and sway braces shall be welded for ceiling heights up to thirty (30) feet. Mast and sway braces shall be clamped for ceiling heights over thirty (30) feet. Backstop shall be rear braced and fold forward. Rear brace shall be 2-3/8" O.D. steel tubing and attached to drop frame by sliding collar mechanism for ease and confidence of operation.

Goal shall be mounted directly through backboard into a heavy structural steel weldment which shall be clamped to the vertical 6-5/8" O.D. center mast. (This direct attachment feature transfers the load on the goal directly to the mast pipe minimizing stress to glass backboard). Goal and backboard mounting design shall conform to NCAA, NFSHSA and FIBA regulations.

- C. The all-welded "Single Post" design shall be suspended from custom adjustable hangers with bronze bushings designed to be offset no less than 4" behind the center line of gravity of mast, providing for proper weighting of the assembly and insuring that unit locks securely and automatically into playing position.
- D. Backstop shall be supported from 3-1/2" O.D. pipe anchored to roof framing members by means of heavy formed steel support fittings. Superstructure pipes to be reinforced with special bridging or bracing when truss centers exceed spans of fourteen (14) feet. Each attachment clamp must be capable of supporting static loads of at least 10,000 lbs. with no deflection.
- E. All metal parts shall have one coat of black primer and shall be finish painted in field to match the building color scheme. All metal parts will be packaged adequately for protection during shipment from manufacturer.

2.4 RECTANGULAR GLASS BACKBOARDS

- A. Model No. LXP4200 Steel Framed Rectangular Glass Backboard by Performance Sports Systems, Noblesville, IN.
- B. Backboards shall be 42 inches high by 72 inches wide.
- C. Backboard shall be manufactured from 1/2" tempered glass set in heavy extruded aluminum or steel framing and cushioned by shock absorbing vinyl. Official border and target area permanently fired into glass.
- D. Goal mounting structure shall be a heavy welded formed steel assembly, and directly attached to lower horizontal frame member to minimize stress on glass.
- E. Backboard shall have limited lifetime warranty against defects in material and workmanship, and when used with Performance Sports System's Direct Goal Attachment feature shall be protected against shatter and breakage of glass. Board must meet NCAA, FIBA and NFSHSA specifications.
- F. Provide Model No. PMCE Bolt-On Cushion Edge by Performance Sports Systems, Noblesville, IN. Available in ten (10) standard colors (color to be determined by Architect). Five (5) year warranty.

2.5 BASKETBALL GOAL

- A. Model No. 2000+ Breakaway Goal as manufactured by Performance Sports Systems, Noblesville, IN.
- B. Goal shall be fabricated from 5/8" diameter cold drawn alloy steel round formed to an 18" inside diameter ring. Inside of ring shall be positioned 6" from face of backboard by heavy, formed steel hinged-type housing with removable cover to conceal mounting bolts and shock absorption mechanism of goal and to protect against finger entrapment.
- C. Goal shall be designed to absorb shock loads from slam dunking or hanging on rim. Shock absorption feature shall be provided by means of a special offset hinge arrangement rim and back plate mounting housing with concealed molded rubber shock absorber.
- D. Goal shall meet NCAA, FIBA and NFSHSA specification on moveable rims, which states, "A moveable basket ring shall have rebound characteristics identical to those of a non-moveable ring." Goal shall be factory set to proper flex and rebound requirements.
- E. Goal shall be finished in durable, electrostatic powder coated official orange finish.
- F. Goal shall be furnished complete with heavy-duty white anti-whip nylon netting and mounting hardware.

2.6 ELECTRIC WINCH

A. Model No. 1194 Electric Backstop Winch by Performance Sports Systems, Noblesville, IN.

- B. Electric winch shall be a definite purpose electric winch designed specifically for use of basketball backstop positioning. Winch shall be worm gear type designed to hold backstop at any position during operation. Winch will be driven by a 1 HP, 120-volt, 60 hertz, single-phase instant reversing electric motor with thermal overload protection (governed to stall at 14 amps to prevent overload) and manufactured to NEMA specifications. Winch shall develop over 1000 lbs. of line pull at a speed of nine (9) feet per minute.
- C. Winch shall have high-speed worm gearing to support both radial and thrust loads, and positive locking double reduction gear drive providing 200:1 reduction rate for strong cable hold under load, eliminating need for special brakes. Sealed gear case for lifetime maintenance free operation.
- D. Winch shall incorporate a large 4-1/2" diameter grooved drum to assure long cable life and proper coiling, with a tension roller for correct cable tracking even in slack conditions. Drum shall be grooved for 1/4" 7 x 19 galvanized aircraft cable to facilitate smooth takeup and proper spooling of cable. Drum shall allow 25 feet of travel on one (1) layer and 40 feet on two (2) layers.
- E. Winch shall utilize a flush mounted single keyed switch to both raise and lower backstop (eliminating the need for two keys). Key switch shall be located so that the backstop is in full view of authorized operator at all times. Optional wireless remote control or keypad control operation available.
- F. Winch shall have five (5) year warranty against material defects and workmanship. Winches with less than a five (5) year warranty shall not be considered equal.

2.8 BACKSTOP AUTO LOCK SAFETY STRAP

- A. Model No. 1100 Safstop safety strap by Performance Sports Systems, Noblesville, IN.
- B. Provide one for each backstop.
- C. Safety strap shall be inertia sensitive to automatically lock basketball backstop in position at any time (in storage or during raising or lowering cycle) due to any sudden surge of speed created by possible malfunction(s) of hoisting apparatus, winch, cable, pulleys, support fittings, etc.
- D. Safety strap shall incorporate a two (2) inch wide nylon belt rated at 6,000 lbs. breaking strength. Entire unit to be tested to withstand 1,500 lb. free fall load and rated at 1000 lbs. Strap shall extend a maximum of 35'-0" and shall be automatically retracted and stored on a reel equipped with a special negator type constant force spring. Operation and locking action of strap shall be set by inertial force for immediate and positive setting, or centrifugal force to instantly lock basketball backstop before unit can gain momentum. Unit shall incorporate a fully automatic reset requiring no poles, ropes, levers or buttons.
- E. Safety strap shall be furnished with universal mounting bracket to fit 3-1/2" O.D. pipe mounted either parallel or at right angles to backboard. Belt shall be supplied with an autolock belt clamp for ease of securing directly to basketball backstop.

2.9 MANUAL BASKETBALL BACKSTOP HEIGHT ADJUSTER

- A. Model No. 1130 Manual Adjust-A-Goal by Performance Sports Systems, Noblesville, IN.
- B. Height adjuster shall be manufactured of steel using an Acme threaded screw rod with awning type hand crank to raise and lower backboard. Height adjuster shall be screw driven to raise and lower goal height from 8' to 10' off of finished floor. Screw drive shall be a 3/4" Acme double-start threaded rod secured in two bronze bushings. Height adjuster shall be operated from floor by hand crank (included with height adjuster). Adjust-A-Goal features a direct goal attachment to transfers load of play directly through backboard to support structure.

ELECTRIC GYM DIVIDER CURTAINS

3.0

- A. Model 4030 Roll-Up: Electrically operated, roll-up gymnasium divider including motor, belts, controls, clamps for attachment to building structure, threaded rod supports, and other components required for complete functional installation; Roll-Up Gym Divider as manufactured by Performance Sports Systems, Noblesville, IN.
- B. Operation: Curtain rolled up and down by belts wound onto overhead rotating drive pipe operated by electrical motor.
- C. Configuration: Rectangular shape with straight bottom and extending across room as indicated on Drawings.
 - 1. Maximum dimension of stored divider: 2 feet from bottom of structural support to bottom of rolled curtain.
 - 2. Minimum required clearance between vertical curtain edges and adjacent fixed objects: 6 inches.
 - 3. Provide 36 inches space between curtain ends and walls or fixed objects to allow passage space around divider.
- D. Operating mechanism: Drive pipe winch powered with 1 HP, 110VAC, 60-cycle, single-phase, reversible capacitor, C-Face motor with thermal overload protection. Entire winch assembly to be UL listed and shall carry a five-year warranty. Provide with load holding worm gear reduction and integral limit switches to control curtain travel. Drive pipe shall rotate in pipe support assemblies spaced at approximately [9 feet] [2.7 m].
- E. Attachment: Attach to structural support with beam clamps, hanger brackets, and 1/2 inch diameter threaded rods. Attachment clamps designed to be capable of supporting a minimum of 5,000 lbs each and provided in sufficient number to provide a combined minimum 45:1 attachment point safety factor.
- F. Hoist belts: 4 inches wide black polyester webbing attached to drive pipe, passing under bottom batten, and terminating at top batten. Space belts at approximately 15 feet.
- G. Bottom roller: 3-1/2 inches diameter steel pipe with aluminum strip for attachment of curtain.

CONTROLS

- A. Provide key lock, 3-position, momentary contact wall control switch to lower, raise, and stop gymnasium curtain. Provide with switch box and stainless steel polished cover plate.
- B. Safety delay: Provide safety delay for motor such that when key is turned in opposite direction of curtain travel, motor shut offs momentarily and then reverses to opposite direction.

3.1 VOLLEYBALL FLOOR PLATE/SLEEVES

- A. Model No. 6405 volleyball floor sleeves with Model 6430 cover plates as manufactured by Gared Sports, Noblesville, IN.
- A. Cover plate shall be 6-1/4" diameter by 9/16" thick brass alloy with attached hinged cover. Diameter of opening shall be five (5) inches. Hinge and four holes in ring (for screwing into floor) shall be completely concealed under cover when in closed position, allowing for a completely flat surface. When installed in "floating" wood floors, floor plate is connected to floor only, allowing it to move with expansion and contraction of floor.
- B. Sleeve shall be 4" I.D. steel measuring 12-11/16" long. Steel sleeve eliminates possibility of electrolysis between concrete and sleeve that occurs with aluminum sleeves. Sleeves made of aluminum shall not be considered as equal. Cover plate the sleeve are furnished as separate units to allow for any "floating" of playing surface.

3.2 VOLLEYBALL STANDARDS

- A. Model No. 6000 Collegiate standards as manufactured by Gared Sports, Noblesville, IN. Refer to drawings for configuration of court layouts.
- B. Standards are 3.5" O.D. high strength, lightweight extruded aluminum. Uprights shall be removable type designed for use with below floor sleeves or above floor tee-bases. Uprights shall be provided with adjustable high impact rubber foot to protect finished floors and to allow for precise net height adjustment. The upright post shall have infinite height adjustment for Men's, Women's, Tennis, and Badminton. Standards shall meet NCAA, NFSHSA and USVBA specifications The net tensioner shall incorporate a heavy duty, self locking ratchet mechanism with a compression clutch brake release. A high tensile nylon strap will be used with the winch to achieve required net tension

3.3.1 STANDARD PROTECTIVE PADS

- A. Model No. 6010 volleyball standard protective pads by Gared Sports, Noblesville, IN. Provide model No. 6020 for center standards as required.
- B. Pads shall be 72" high and fabricated from 1-1/4" thick polyurethane foam covered with 14 oz. vinyl coated nylon on the outside and jersey inner liner. Each pad shall be tailored to easily fold around upright and fastened by Velcro flaps, covering winch and net tensioning hardware. Front side of pad shall be furnished with an opening for attaching and tensioning bottom strap from net. Available in sixteen (16) standard colors (color to

be determined by Architect). Standard pads to meet NCAA, NFSHSA and USVBA specifications.

3.4 VOLLEYBALL NET

- A. Model No. 7602 Collegiate volleyball net by Gared Sports, Noblesville, IN.
- B. Net shall be 32' L x 39" H with #48 black nylon mesh measuring approximately 4" by 4" square. The net shall have a 2" white double thickness binding on all 4 sides. The end sleeves shall feature a 1' diameter wood dowel. The net must meet NCAA, NFSHSA and USVBA specifications

3.5 NET ANTENNA

- A. Model No. 6412 antenna by Gared Sports, Noblesville, IN.
- B. Antennae is secured firmly to the net by insertion in the full length pockets in then sidelines markers fully eliminating the possibility of the antennae dislodging from the net.

3.6 PROTECTIVE WALL PADDING

- A. Model No. 4100 by Performance Sports Systems, Noblesville, IN.
- B. Panels are 2' wide by 8' high. Panels shall be constructed of 2'' thick 3.5 lb. density polyurethane. Each panel shall be covered with 14 oz. polyester reinforced laminated vinyl and cemented to 7/16'' OSB exterior grade wood panels with one-inch nailing margins at top and bottom (for securing panels to wall). Available in fifteen (15) standard colors (color to be determined by Architect). All cutouts in panels shall be made in field to fit job conditions.
- C. Vinyl flammability rated as self-extinguishing by the California State Fire Code.

3.7 DANCE AEROBICS MIRRORS

- A. Manufacture: Mirrorlite
- B. Construction: Aluminum underframes with rigid core, 1/8" air space between core and acrylic mirror surface allowing flex during minor impact. Shatterproof, impact resistant, clear acrylic.
- C. Size; 36" X 72" X 1-1/4" thick standard. See plans for exact sizes and locations.
- D. Optical Clarity: No distortion in reflected image allowed
- E. Mounting Hardware: Manufactures standard mounting hardware for attachment to masonry.

3.8 BALLET BARRES -

A. Manufacture: Alvas

- B. Construction:
- 1. <u>Brackets</u>; stationary steel construction bracket extending 9" from wall. Threaded ends allowing for screwing into wood barre.
- 2. <u>Wood Barres</u>; 10' long white maple beveled on both ends with predrilled holes
- B. Mounting Hardware: Manufactures standard mounting hardware for attachment to masonry. Coordinate barre locations with mirror manufacture.

PART 3 - EXECUTION

3.1. PREPARATION

A. Make such arrangements as necessary to provide scaffolding to perform Work under this Section. Damage to floors, walls, equipment and the like shall be corrected at the expense of Contractor under this Section.

3.2. INSTALLATION, GENERAL

- A. Install equipment in accordance with manufacturer's printed instructions, drawings, specifications and approved shop drawings. Complete equipment field assembly, where required.
- B. Unless otherwise indicated, install gymnasium equipment after other finishing operations, including painting, have been completed.
- C. Permanent Gymnasium Equipment: Rigid, level, plumb, square and true; anchored securely to supporting structure; positioned at locations and elevations indicated on Shop Drawings; in proper relation to adjacent construction; and aligned with court layout.
 - 1. Floor Insert Location: Coordinate location with application of game lines and markers.
 - 2. Floor Insert Elevation: Coordinate installed heights of floor insert with installation and field finishing of finish flooring and type of floor plate.
- D. Floor Insert Setting: Grout sleeve for post standards in oversized, recessed voids in concrete slabs. Clean holes of debris. Position sleeve and fill void around sleeves with grout, mixed and placed to comply with grout manufacture's written instructions. Verify that sleeves are set plumb, aligned and at correct height and spacing and held in position during placement and finishing operations until grout is cured. Set insert so top of unit is flush with finished flooring surface.
- E. Portable Gymnasium Equipment: Assemble in place to verify equipment and components are complete and in proper working order. Disassemble portable gymnasium equipment after assembled configuration has been approved by Architect and store units in location indicated on Drawings.

3.3. DEMONSTRATION

1180510 TOBIE GRANT RECREATION CENTER 3/22/19

CONSTRUCTION DOCUMENTS 9 100% SUBMITTAL

A. Work under this Section shall include demonstrating the proper use and operation of equipment to the Owner as required. Instruct Owner's designated authorized personnel in properly handling, assembling, adjusting, disassembling, transporting, storing and maintaining units.

END OF SECTION 11 6623

SECTION 116643 – INTERIOR SCOREBOARDS

8203 LED Basketball Scoreboard

PART 1 - GENERAL

1.01 SUMMARY

A. Section includes a single-sided, indoor, electronic, multisport scoreboard

1.02 REFERENCES

- A. UL 48 Standard for Safety for Electric Signs, 15thEdition
- B. National Electrical Code
- C. Federal Communication Commission (FCC) Rules, Part 15

1.03 SUBMITTALS

- A. Product Data: Manufacturer's illustrations, diagrams, pictures, and documentation for scoreboard(s) and accessories
- B. Documentation: Wiring diagram, installation manual, and operation manuals

1.04 DELIVERY, STORAGE, AND HANDLING

- A. Product to be delivered to customer specified location
- B. Product to be stored in a clean, dry, environment prior to installation

1.05 SITE CONDITIONS

A. Ambient Conditions

- 1. Building space must be enclosed, weatherproofed, and any additional projects which may change the environmental conditions (e.g. temperature and humidity) must be completed before the installation of the scoreboard(s)
- 2. The mounting location of the scoreboard(s) needs to be confirmed with the owner prior to installation.
- 3. An AC power source will need to be located near the top left corner of the scoreboard's mounting location.
- 4. Ensure that all mounting hardware and the building structure is capable of supporting the weight of the scoreboard and accessories.

1.06 WARRANTY

A. Manufacturer Warranty

- 1. Scoreboard is covered under a five (5) year general manufacturer defect part warranty
- 2. Radios (optional) are covered under a two (2) year manufacturer defect part warranty

- 3. Console AC adapter and internal battery pack are covered under a one (1) year manufacturer defect part warranty
- 4. Provide Technical Phone support Monday through Friday 8:00am to 5:00pm Central Standard Time. Limited phone support available until 9:00pm on weekdays, and from 8:00am to 12:00pm on Saturdays

PART 2 – PRODUCTS

2.01 MANUFACTURERS

2.02

2.02.1 All American Scoreboards. 401 S. Main Street, Pardeeville, WI 53954

2.01.2

2.01.3

2.03 EQUIPMENT: 8203 ELECTRONIC SCOREBOARD

- 2.03.1 Description: All American Scoreboards 8203, single sided Basketball scoreboard.

 Multi-sport functionality for Basketball, Volleyball, Wrestling, and a Segment Timer.
- 2.03.2 Scoreboard Design Criteria

A. Cabinet Construction

- 1. 5" extruded aluminum frame, .093" thick.
- 2. Shatterproof polycarbonate face panel
- 3. Nine (9) standard colors, with custom color matching available 4. 1'6" High x 5' Wide x 5" Deep (.46m x 1.52m x .13m)
- 5. Net Weight of 35lbs (15.88kg)
- 6. Displays Game Time, Home and Guest Scores, and Period

B. LED Panels

- 1. Clock Digits: 8" high, red, displaying 0:00-99:59 with user configurable last minute tenths
- 2. Score Digits: 8" high, amber, displaying 0-99
- 3. Period Indicators: Four (4) 2" bulls-eye, amber indicators

C. Captions

- 1. All captions are white vinyl
- 2. Home and Guest: 2.5"

D. Standard Equipment

- 1. Built-in shatterproof face panel covering all LEDs, requiring no additional protective screen or netting
- 2. Twisted pair hardwire control
- 3. Time of Day Clock when not connected to a console
- 4. External 100dB horn

E. Optional Equipment

- 1. 2.4GHz Wireless Radio Control (Hardwire backup is available)
- 2. External 120dB horn

2.03.3 Console Design Criteria

- A. 8000 Series Multi-Sport Console
- B. Console Construction: Extruded aluminum with raised molded sides
- C. Console Dimensions: 13.25" (33.66cm) wide x 5" (12.7cm) high x 9" (22.86cm) deep
- D. Net weight: 6lbs (2.72kg)
- E. Microprocessor control with membrane keyboard
- F. Standard Console Features:
 - 1. Internal battery pack
 - 2. Capability to control any single or multiple scoreboard(s), timer(s), Electronic Message Center(s) and/or stat panels
 - 3. Easy to read large 2x20 character LCD screen
 - 4. Multi-sport functionality with slip sheets for membrane keypad layout
 - 5. AC power adapter, 12V, 2.0A for AC power operation and internal battery charging
 - 6. Basic setup instructions on the underside of the console
 - 7. Advanced console configuration options are available via a USB connected PC
 - 8. USB updatable firmware, when attached to an internet connected PC
 - 9. Full sport configuration setup through the console, including period time, stat panel operation, number of periods, time out length, time outs allowed, two (2) shot times, max team fouls, automatic horn, last minute tenths, automatic bonus, and bonus and double bonus levels
 - 10. Visual indicators for radio operation, running clock, battery, and horn
 - 11. Hand-held timer pendant switch for clock stop/start
 - 12. Dimming control for 8 levels of Scoreboard LED brightness

G. Optional Console Features

- 1. Hand-held remote functionality with console add-on
- 2. Hard-Cover carrying case
- 3. 2.4GHz radio for wireless control

PART 3 - EXECUTION

3.01 EXAMINATION

3.01.1 Verify that the mounting structure is ready to receive the scoreboard. The wall and mounting anchors must be capable of supporting the scoreboard's weight.

3.02 INSTALLATION – SCOREBOARD

- 3.02.1 All power wires and any control wires will be routed in conduit. Power to the scoreboard(s)/display(s) as well as any cable race-ways shall be installed as shown on the electrical plans by the electrical contractor or architect's specifications
- 3.02.2 Mount and install the scoreboard(s) and ad-panel displays to the wall or mounting structure in the manner described in the supplied manufacture's instructions. Verify that the scoreboard is mounted plumb, level, and all fasteners are secure.

3.03 INSTALLATION – HARDWIRE CONTROL

- 3.03.1 Install any ports, jacks, and/or electrical boxes in the specified locations per the project plans.
- 3.03.2 Confirm all control wiring is performed in accordance with manufacturer's specifications.
- **3.03.3** Test the operation of the scoreboard and control console. Confirm the console is able to control all scoreboard functions, digits, and indicators.
- 3.03.4 Leave the console, and any accessories with the scoreboard owner, or owner's designated representative.

End of Section 11 66 43

SECTION 122413 - ROLLER WINDOW SHADES (RS-1)

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes roller shades.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated. Include styles, material descriptions, construction details, dimensions of individual components and profiles, features, finishes, and operating instructions.
- B. Shop Drawings: Show location and extent of roller shades. Include elevations, sections, details, and dimensions not shown in Product Data. Show installation details, mountings, attachments to other work, operational clearances, and relationship to adjoining work.
- C. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved:
 - 1. Ceiling suspension system members and attachment to building structure.
 - 2. Ceiling-mounted or penetrating items including light fixtures, air outlets and inlets, speakers, sprinklers, recessed shades, and special moldings at walls, column penetrations, and other junctures of acoustical ceilings with adjoining construction.
 - 3. Shade mounting assembly and attachment.
 - 4. Size and location of access to shade operator and adjustable components.
 - 5. Minimum Drawing Scale: 1/8 inch = 1 foot.

E. Samples for Verification:

- 1. Complete, full-size operating unit not less than 16 inches wide for each type of roller shade indicated.
- 2. For the following products:
 - a. Shade Material: Not less than 3 inches square, with specified treatments applied. Mark face of material.

- b. Shade Material: Not less than 12-inch- square section of fabric, from dye lot used for the Work, with specified treatments applied. Show complete pattern repeat. Mark top and face of material.
- c. Valance: Full-size unit, not less than 12 inches long.
- E. Window Treatment Schedule: For roller shades. Use same designations indicated on Drawings (RS-1).
- F. Qualification Data: For Installer.
- G. Maintenance Data: For roller shades to include in maintenance manuals. Include the following:
 - 1. Methods for maintaining roller shades and finishes.
 - 2. Precautions about cleaning materials and methods that could be detrimental to fabrics, finishes, and performance.
 - 3. Operating hardware.

1.4 QUALITY ASSURANCE

- A. Installer Qualifications: Fabricator of products.
- B. Source Limitations: Obtain roller shades through one source from a single manufacturer.
- C. Fire-Test-Response Characteristics: Provide roller shade band materials with the fire-test-response characteristics indicated, as determined by testing identical products per test method indicated below by UL or another testing and inspecting agency acceptable to authorities having jurisdiction:
 - 1. Flame-Resistance Ratings: Passes NFPA 701.
- D. Product Standard: Provide roller shades complying with WCMA A 100.1.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Deliver shades in factory packages, marked with manufacturer and product name, fire-test-response characteristics, lead-free designation, and location of installation using same designations indicated on Drawings and in a window treatment schedule.

1.6 PROJECT CONDITIONS

- A. Environmental Limitations: Do not install roller shades until construction and wet and dirty finish work in spaces, including painting, is complete and ambient temperature and humidity conditions are maintained at the levels indicated for Project when occupied for its intended use.
- B. Field Measurements: Where roller shades are indicated to fit to other construction, verify dimensions of other construction by field measurements before fabrication and indicate measurements on Shop Drawings. Allow clearances for operable glazed units' operation hardware throughout the entire operating range. Notify Architect of discrepancies. Coordinate fabrication schedule with construction progress to avoid delaying the Work.

PART 2 - PRODUCTS

- 2.1 ROLLER SHADES To be installed at all exterior windows involved in scope of work for this project.
 - A. Products: Subject to compliance with requirements, provide one of the following:
 - 1. Hunter Douglas, Inc.; Hunter Douglas Window Fashions Division; see finish legend
 - 2. Or approved Equal.
 - B. Shade Band Material: PVC-coated fiberglass and polyester blends.
 - 1. Fabric Width: As indicated on Drawing
 - 2. Style: Glacier Screen, Solar Shading Fabric
 - 3. Colors: As selected from manufacturer's full range
 - 4. Material Solar-Optical Properties:
 - 5. Material Openness Factor: 5% percent.
 - 6. Material UV Blockage: 95% percent.
 - 7. Bottom Hem: Straight.
 - C. Rollers: Electrogalvanized or epoxy primed steel or extruded-aluminum tube of diameter and wall thickness required to support and fit internal components of operating system and the weight and width of shade band material without sagging; designed to be easily removable from support brackets; with manufacturer's standard method for attaching shade material. Provide capacity for one roller shade band(s) per roller, unless otherwise indicated on Drawings.
 - D. Direction of Roll: Regular, from back of roller.
 - E. Mounting Brackets: Fascia end caps, fabricated from steel finished to match fascia or headbox, unless otherwise noted on plans.
 - F. Fascia: L-shaped, Anodized extruded aluminum; long edges returned or rolled; continuous panel concealing front and bottom of shade roller, brackets, and operating hardware and operators; length as indicated on Drawings; removable design for access.
 - G. Bottom Bar: Steel or extruded aluminum. Provide concealed, by pocket of shade material, internal-type bottom bar with concealed weight bar as required for smooth, properly balanced shade operation.
 - H. Mounting: Inside mounting permitting easy removal and replacement without damaging roller shade or adjacent surfaces and finishes.
 - I. Shade Operation: Manual; with continuous-loop bead-chain, clutch, and cord tensioner and bracket lift operator.
 - 1. Position of Crank Operator: As indicated on Drawings.

- 2. Position of Clutch Operator: Right side of roller, as determined by hand of user facing shade from inside, unless otherwise indicated on Drawings.
- 3. Clutch: Capacity to lift size and weight of shade; sized to fit roller or provide adaptor.
- 4. Lift-Assist Mechanism: Manufacturer's standard spring assist for balancing roller shade weight and lifting heavy roller shades.
- 5. Loop Length: Full length of roller shade.
- 6. Bead Chain: Stainless steel.
- 7. Operating Function: Stop and hold shade at any position in ascending or descending travel.

2.2 ROLLER SHADE FABRICATION

- A. Product Description: Roller shade consisting of a roller, a means of supporting the roller, a flexible sheet or band of material carried by the roller, a means of attaching the material to the roller, a bottom bar, and an operating mechanism that lifts and lowers the shade.
- B. Concealed Components: Noncorrodible or corrosion-resistant-coated materials.
 - 1. Lifting Mechanism: With permanently lubricated moving parts.
- C. Unit Sizes: Obtain units fabricated in sizes to fill window and other openings as follows, measured at 74 deg F:
 - 1. Shade Units Installed between (Inside) Jambs: Edge of shade not more than 1/4 inch from face of jamb. Length equal to head to sill dimension of opening in which each shade is installed.
 - 2. Shade Units Installed Outside Jambs: Width and length as indicated, with terminations between shades of end-to-end installations at centerlines of mullion or other defined vertical separations between openings.
- D. Installation Brackets: Designed for easy removal and reinstallation of shade, for supporting fascia, roller, and operating hardware and for hardware position and shade mounting method indicated.
- E. Installation Fasteners: No fewer than two fasteners per bracket, fabricated from metal noncorrosive to shade hardware and adjoining construction; type designed for securing to supporting substrate; and supporting shades and accessories under conditions of normal use.
- F. Color-Coated Finish: For metal components exposed to view, apply manufacturer's standard baked finish complying with manufacturer's written instructions for surface preparation including pretreatment, application, baking, and minimum dry film thickness.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances, operational clearances, and other conditions affecting performance.

1. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 ROLLER SHADE INSTALLATION

A. Install roller shades level, plumb, and aligned with adjacent units according to manufacturer's written instructions, and located so shade band is not closer than 2 inches to interior face of glass. Allow clearances for window operation hardware.

3.3 ADJUSTING

A. Adjust and balance roller shades to operate smoothly, easily, safely, and free from binding or malfunction throughout entire operational range.

3.4 CLEANING AND PROTECTION

- A. Clean roller shade surfaces after installation, according to manufacturer's written instructions.
- B. Provide final protection and maintain conditions, in a manner acceptable to manufacturer and Installer that ensure that roller shades are without damage or deterioration at time of Substantial Completion.
- C. Replace damaged roller shades that cannot be repaired, in a manner approved by Architect, before time of Substantial Completion.

END OF SECTION

SECTION 126613 - TELESCOPING STANDS

PART 1 – GENERAL

1.01 SUMMARY

- A. Section Includes: Telescoping Gym Seating includes, either manually or electrically operated systems of multiple-tiered seating rows comprising of seat, deck components, understructure that permits closing without requiring dismantling, into a nested configuration for storing or for moving purposes.
- B.
- 1. Typical applications include the following:
 - a. Wall Attached Telescoping Gym Seats.

A. Related Sections:

- 1. Division 9 finishes sections for adequate floor & wall construction for operation of Telescoping Gym Seats. Flooring shall be level and rear wall plumb within 1/8" [3mm] in 8'-0 [2438mm]. Maximum bleacher force on the floor, of a 27'-0" [7772] section, shall be a static point load of less than 300 psi [2.068 N/mm²].
- 2
- B. Qualifications and Capabilities:
 - 1. BIDDER QUALIFICATIONS:

Bidders are required to be an authorized dealer or manufacturer for equipment proposed which on a day-to-day basis regularly provide the equipment offered. Bidders are further advised that only standard production models or standard options will be acceptable for award. Equipment offered shall be currently manufactured on an active assembly line. The State is only interested in proven equipment; provided, installed, and serviced by Authorized Dealers capable of providing references.

2. INSTALLER QUALIFICATIONS:

Bleacher installer shall be Factory Certified by the Manufacturer. Proof of Factory Certified Installation_Certificate shall be provided along with the Invitation to Bid. Failure to provide this information shall result in rejection of bid. (No Exceptions Taken)

3. SERVICE CAPABILITY: The Bleacher Contractor must be able to show proof of full time service capability by factory certified technicians directly employed by the Bleacher Contractor. Sub-Contractors of the Bleacher Contractor or Factory Technicians located outside of the State do not qualify under this service response requirement. Adequate and satisfactory availability of repair parts and supplies, and ability to meet warranty and service requirements are a requirement of this Invitation to Bid. The State reserves the right to satisfy itself by inquiry or otherwise as to bidder's capabilities in this regard. A four (4) to eight (8) hour maximum on-site repair response is required during normal working hours, 8 a.m. to 5 p.m. weekdays (excluding holidays) All Full Time Service Personnel shall be Factory Authorized and Trained. Proof of Service Capability along with a listing of service parts regularly maintained in inventory shall be provided along with the Invitation for Bid. Failure to provide this information shall result in rejection of bid.

1.02 REFERENCE

- A. International Building Code (IBC)
- B. ICC 300 Standard for Bleachers, Folding and Telescopic Seating and Grandstands
- C. NFPA Standard for Bleachers, Folding and Telescopic Seating and Grandstands
- D. American Welding Society (AWS)
 - 1. AWS D1.1 Structural Welding Code Steel
 - 2. WS D1.3 Structural Welding Code Sheet Steel
- E. American Institute of Steel Construction (AISC):
 - 1. AISC Design of Hot Rolled Steel Structural Members.
- F. American National Standards Institute (ANSI).
- G. American Iron & Steel Institute (AISI):
 - 1. AISI Design Cold Formed Steel Structural Members.
- H. Aluminum Association (AA):
 - 1. AA Aluminum Structures, Construction Manual Series.
- I. American Society for Testing Materials (ASTM):
 - 1. ASTM Standard Specification for Properties of Materials.
- J. National Forest Products Association (NFoPA):
 - 1. NFoPA National Design Specification for Wood Construction.
- K. Southern Pine Inspection Bureau (SPIB):
 - 1. SPIB Standard Grading Rules for Southern Pine.
- L. National Bureau of Standards/Products Standard (NBS/PS):
 - 1. PS1 Construction and Industrial Plywood.
- M. Americans with Disability Act (ADA)
 - 1. ADA Standards for Accessible Design.

1.03 MANUFACTURER'S SYSTEM ENGINEERING DESCRIPTION

- A. Structural Performance: Engineer, fabricate and install telescopic gym seating systems to the following structural loads without exceeding allowable design working stresses of materials involved, including anchors and connections. Apply each load to produce maximum stress in each respective component of each gym seat unit.
 - 1. Design Loads: Comply with ICC 300 2012 Edition

- B. Manufacturer's System Design Criteria:
 - 1. Gymnasium seat assembly; Design to support and resist, in addition to it's own weight, the following forces:
 - a. Live load of 120 lbs per linear foot [162.69 N/m] on seats and decking
 - b. Uniformly distributed live load of not less than 100 lbs per sq. ft. [135.58N/m] of gross horizontal projection.
 - c. Parallel sway load of 24 lbs. [32.53 N/m] per linear foot of row combined with (b.) above
 - d. Perpendicular sway load of 10 lbs. [13.56 N-m] per linear foot of row combined with (b.) above
 - 2. Hand Railings, Posts and Supports: Engineered to withstand the following forces applied separately:
 - a. Concentrated load of 200 lbs. [90.72 kg] applied at any point and in any direction.
 - b. Uniform load of 50 lbs. per foot [.344 N/mm²] applied in any direction.
 - 3. Guard Railings, Post and Supports: Engineered to withstand the following forces applied separately:
 - a. Concentrated load of 200 lbs. [90.72 kg] applied at any point and in any direction along top rail.
 - b. Uniform load of 50 lbs. per foot [.344 N/mm²] applied horizontally at top rail and a simultaneous uniform load of 100 lbs. per foot [.689 N/mm²] applied vertically downward.
 - 4. Member Sizes and Connections: Design criteria (current edition) of the following shall be the basis for calculation of member sizes and connections:
 - a. AISC: Manual of Steel Construction
 - b. AISI: Specification for Design of Cold Formed Steel Structural Members
 - c. AA: Specification for Aluminum Structures
 - d. NFOPA: National Design Guide For Wood Construction.

1.04 SUBMITTIALS

- A. Section Cross-Reference: Required submittals in accordance with "Conditions of the Contract" and Division 1 General Requirements sections of this "Project Manual."
- B. Project Data: Manufacturer's product data for each system. Include the following:
 - 1. Project list: Ten(10) seating projects of similar size, complexity and in service for at least five (5) years.
 - 2. Deviations: List of deviations from these project specifications, if any.
- C. Shop Drawings: Indicate Telescoping Gym Seat assembly layout. Show seat heights, row spacing and rise, aisle widths and locations, assembly dimensions, anchorage to supporting structure, material types and finishes.

- 1. Wiring Diagrams: Indicate electrical wiring and connections.
- 2. Graphics Layout Drawings: Indicate pattern of contrasting or matching seat colors
- D. Samples: Seat materials and color finish as selected by Architect from manufacturers standard offered color finishes.
- E. Environmental Data Package: Provide project specific environmental data work sheet with project header and LEED calculations completed based on actual project weight and project price. Environmental Data Package required to be submitted with formal submittal package prior to project award.

1. Regional Manufacturing

a. Provide manufacturing location and distant to project site by product material type as required. [straight-line travel as a bird flies as per USGBC]

2. Recycled Content:

- a. Provide Packaging Material Listing & Recycled Content by Material Type; [Total % Recycled Content, Total % Pre Consumer and % Post Consumer]
- b. Provide Product Material Listing & Recycled Content by Material Type; [Total % Recycled Content, Total % Pre Consumer and % Post Consumer]

3. Indoor Environmental Quality

- a. Provide documentation that the specified product passes ANSI/BIFMA X7.1-2007
 Standard for Formaldehyde and TVOC Emissions of Low-emitting Office Furniture
 Systems and Seating
- b. Provide documentation that the specified product solid core ply-form or engineered fiber panels are manufactured with resins which are free of added urea-formaldehyde.
- 4. Product Life Cycle Deconstruction & Reclaiming Opportunity
 - a. Provide listing of product materials which can be recycled at the end of the product life cycle and re-enter the recycled or reuse material stream.
- F. Manufacturer Qualifications: Certification of insurance coverage and manufacturing experience of manufacturer, and copy of a telescopic load test to all loads described in 1.03 above, observed by a qualified independent testing laboratory, and certified by a registered professional structural engineer verifying the integrity of the manufacturer's geometry design and base structural assumptions.
- G. Installer Qualifications: Installer qualifications indicating capability, experience, and official Certification Card issued by manufacturer of telescopic seating.
- H. Engineer Qualifications: Certification by a professional engineer registered in the state of manufacturer that the equipment to be supplied meets or exceeds the design criteria of this specification.

- I. Operating/Maintenance Manuals: Provide to Owner maintenance manuals. Demonstrate operating procedures, recommended maintenance and inspection program.
- J. Warranty: Manufacturers standard warranty documents.
- K. Shop Drawings: Indicate Telescoping Gym Seat assembly layout. Show seat heights, row spacing and rise, aisle widths and locations, assembly dimensions, anchorage to supporting structure, material types and finishes.
 - 1. Wiring Diagrams: Indicate electrical wiring and connections.
 - 2. Graphics Layout Drawings: Indicate pattern of contrasting or matching seat colors
- L. Samples: Seat materials and color finish as selected by Architect from manufacturers standard offered color finishes.
- M. Environmental Data Package: Provide project specific environmental data work sheet with project header and LEED calculations completed based on actual project weight and project price. Environmental Data Package required to be submitted with formal submittal package prior to project award.
 - 1. Regional Manufacturing
 - a. Provide manufacturing location and distant to project site by product material type as required. [straight-line travel as a bird flies as per USGBC]
 - 2. Recycled Content:
 - a. Provide Packaging Material Listing & Recycled Content by Material Type; [Total % Recycled Content, Total % Pre Consumer and % Post Consumer]
 - b. Provide Product Material Listing & Recycled Content by Material Type; [Total % Recycled Content, Total % Pre Consumer and % Post Consumer]
 - 3. Indoor Environmental Quality
 - a. Provide documentation that the specified product passes ANSI/BIFMA X7.1-2007
 Standard for Formaldehyde and TVOC Emissions of Low-emitting Office Furniture
 Systems and Seating
 - b. Provide documentation that the specified product solid core ply-form or engineered fiber panels are manufactured with resins which are free of added urea-formaldehyde.
 - 4. Product Life Cycle Deconstruction & Reclaiming Opportunity
 - a. Provide listing of product materials which can be recycled at the end of the product life cycle and re-enter the recycled or reuse material stream.
- N. Manufacturer Qualifications: Certification of insurance coverage and manufacturing experience of manufacturer, and copy of a telescopic load test to all loads described in 1.03 above, observed by a qualified independent testing laboratory, and certified by a registered professional structural

- engineer verifying the integrity of the manufacturer's geometry design and base structural assumptions.
- O. Installer Qualifications: Installer qualifications indicating capability, experience, and official Certification Card issued by manufacturer of telescopic seating.
- P. Engineer Qualifications: Certification by a professional engineer registered in the state of manufacturer that the equipment to be supplied meets or exceeds the design criteria of this specification.
- Q. Operating/Maintenance Manuals: Provide to Owner maintenance manuals. Demonstrate operating procedures, recommended maintenance and inspection program.
- R. Warranty: Manufacturers standard warranty documents.

1.05 QUALITY ASSURANCE

- A. Seating Layout: Comply with ICCC 300 -2012 Standard for Bleachers, Folding Telescopic Seating and Grandstands, except where additional requirements are indicated or imposed by authorities having jurisdiction.
- B. Welding Standards & Qualification: Comply with AWS D1.1 Structural Welding Code Steel and AWS D1.3 Structural Welding Code Sheet Steel.
- C. Insurance Qualifications: Mandatory that each bidder submit with his bid an insurance certificate from the manufacturer evidencing the following insurance coverage:
 - 1. Workers Compensation including Employers Liability with the following limits:
 - a. \$500,000.00 (US) Each Accident
 - b. \$500,000.00 (US) Disease Policy Limit
 - c. \$500,000.00 (US) Disease Each Employee
 - 2. Commercial General Liability including premises/ operations, independent contractors and products completed operations liability. Limits of liability shall not be less than \$5,000,000.00 (US).
- D. Manufacturer Qualifications: Manufacturer who has a minimum of 40 years of experience manufacturing telescoping gym seats and can demonstrate continual design enhancement and 25-year minimum product life-cycle support of telescopic seating.
- E. Installer Qualifications: Engage experienced Installer who has specialized in installation of telescoping gym seat types similar to types required for this project and who carries an official Certification Card issued by telescoping gym seat manufacturer.

F. Engineer Qualifications: Engage licensed professional engineer experienced in providing engineering services of the kind indicated that have resulted in the successful installation of telescoping bleachers similar in material, design, fabrication, and extent to those types indicated for this project.

1.06 DELIVERY, STORAGE AND HANDLING

- A. Deliver telescopic gym seats in manufacturers packaging clearly labeled with manufacturer name and content.
- B. Handle seating equipment in a manner to prevent damage.
- C. Deliver the seating at a scheduled time for installation that will not interfere with other trades operating in the building.

1.07 PROJECT CONDITIONS

A. Field Measurements: Coordinate actual dimensions of construction affecting telescoping bleachers installation by accurate field measurements before fabrication. Show recorded measurements on final shop drawings. Coordinate field measurements and fabrication schedule with construction progress to avoid delay of Work.

1.08 WARRANTY

- A. Manufacturer's Product Warranty: Submit manufacturer's standard warranty form for telescoping bleachers. This warranty is in addition to, and not a limitation of other rights Owner may have under Contract Documents.
 - 1. Warranty Period: Five years from Date of Acceptance.
 - 2. Beneficiary: Issue warranty in legal name of project Owner.
 - 3. Warranty Acceptance: Owner is sole authority who will determine acceptance of warranty documents.

1.09 MAINTENANCE AND OPERATION

- A. Instructions: Both operation and maintenance shall be transmitted to the Owner by the manufacturer of the seating or his representative.
- B. Service: Maintenance and operation of the seating system shall be the responsibility of the Owner or his duly authorized representative, and shall include the following:
 - 1. Operation of the Seating System shall be supervised by responsible personnel who will assure that the operation is in accordance with the manufacturer's instructions.

- 2. Only attachments specifically approved by the manufacturer for the specific installation shall be attached to the seating.
- 3. An annual inspection and required maintenance of each seating system shall be performed to assure safe conditions. At least biannually the inspection shall be performed by a professional engineer or factory qualified service personnel.

PART 2 – PRODUCTS

2.01 MANUFACTURERS

- A. Manufacturer: Hussey Seating Company, U.S.A.
 - 1. Address: North Berwick, Maine, 03906
 - 2. Telephone: (207) 676-2271; Fax: (207) 676-9690
- B. Product: MAXAM Telescopic Gym Seat System by Hussey Seating Company
 - a. MAXAM26 Series Telescopic Gym Seats, Rise Spacing: 9 5/8" [244], with row spacing of 24"
 - b. Aisle Type: foot level aisles, front steps, intermediate aisle steps.
 - c. Seat Type: 10" Courtside Collection
 - (1) Seat color finish: manufacturers 15 standard for Courtside Collection
 - d. Rail Type: Self-storing end rail, front railings at flex row locations
 - (1) Rail color finish: Standard black
 - e. Operation: Manual
 - 1. Product Description/Criteria
 - a. Bank Length: 83'-3" including self-storing end rails
 - b. Aisle Widths: 54"
 - c. Number of Tiers: 4
 - d. Row Spacing(s): 24"
 - e. Open Dimension: 8'-3"
 - f. Closed Dimension: 3'-5"
 - g. Overall Unit Height: 3'-4"
 - h. Net Capacity; per 18" wide seat 189 seats:
 - i. Maximum Net Capacity; (w/Flex Row Recovered):
 - 2. Handicap Seating Provisions: SELECT: Provide first tier modular recoverable Flex-rows for handicap locations as indicated on drawings and per requirements of (ADA) Americans with Disability Act located as indicated.
- C. Other Acceptable Manufacturers: Will be considered if in compliance with these specifications. Deviations must be submitted with bid in order that a fair and proper evaluation be made. Those bidders not submitting a list of deviations will be presumed to have bid as specified.

2.02 MATERIALS

- D. Lumber: ANSI/Voluntary Product 20, B & B Southern Pine
- E. Plywood: ANSI/Voluntary Product PS1, APA A-C Exterior Grade.
- F. Structural Steel Shapes, Plates and Bars: ASTM A 36.
- G. Uncoated Steel Strip (Non-Structural Components): ASTM A569, Commercial Quality, Hot-Rolled Strip.
- H. Uncoated Steel Strip (Structural Components): ASTM A570 Grade 33, 40, 45, or 50, Structural Quality, Hot-Rolled Strip.
- I. Uncoated Steel Strip (Structural Components): ASTM A607 Grade 45 or 50, High-Strength, Low Alloy, Hot-Rolled Strip.
- J. Galvanized Steel Strip: ASTM A653 Grade 40, zinc coated by the hot-dip process, structural quality.
- K. Structural Tubing: ASTM A500 Grade B, cold-formed.
- L. Polyethylene Polymer: ASTM D 1248, Type III, Class B; molded, color-pigmented, textured, impact-resistant, structural formulation; in color indicated or, if not otherwise indicated, as selected by Architect from manufacturer's standard colors.
- M. Fasteners: Vibration-proof, of size and material standard with manufacturer.

2.02 UNDERSTRUCTURE FABRICATION

A. Frame System:

- 1. Wheels: Not less than 5" [127] diameter by 1 1/4" [32] with non-marring soft rubber face to protect wood and synthetic floor surfaces, with molded-in sintered iron oil-impregnated bushings to fit 3/8" [10] diameter axles secured with E-type snap rings.
- 2. Lower Track: Continuous Positive Interglide System interlocks each adjacent CPI unit using an integral, continuous, anti-drift feature and through-bolted guide at front to prevent separation and misalignment. CPI units at end sections of powered banks and manual sections shall contain a Low Profile Posi-Lock LX to lock each row in open position and allow unlocking automatically. Provide adjustable stops to allow field adjustment of row spacings.
- 3. Slant Columns: High tensile steel, tubular shape.
- 4. Sway Bracing: High tensile steel members through-bolted to columns.
- Deck Stabilizer: High tensile steel member through-bolted to nose and riser at three locations
 per section. Interlocks with adjacent stabilizer on upper tier using low-friction nylon roller to
 prevent separation and misalignment. Incorporates multiple stops to allow field adjustment of
 row spacings.

6. Deck Support: Securely captures front and rear edge of decking at rear edge of nose beam and lower edge of riser beam for entire length of section.

B. Deck System:

- 1. Section Lengths: Each bank shall contain sections not to exceed 25'-6" [7772] in length with a minimum of two supporting frames per row, each section.
- Nose beam and Rear Riser beam: Nose beam shall be continuously roll-formed closed tubular shape of ASTM A653 grade 40. Riser beam shall be continuously roll-formed of ASTM A653 grade 40. Nose and Riser beam shall be designed with no steel edges exposed to spectator after product assembly.
- 3. Attachment: Through-Bolted fore/aft to deck stabilizers, and frame cantilevers.
- 4. Decking: 5/8" [16], AC grade clear-top-coated tongue and groove Southern Yellow Pine; or BC grade polyethylene-top-coated tongue and groove Douglas Fir plywood; both of interior type with exterior glue, 5-ply, all plies with plugged cross-bands, produced in accordance with National Bureau of Standards PS-1-97. Plywood shall be cut and installed with top, center and bottom ply grain-oriented from front of deck to rear of deck (nose beam to riser beam). Adjacent pieces shall be locked together with tongue and groove joint from front to rear of deck. Longest unsupported span:

 MAXAM 26, 21 ½" [546].
- 5. Deck End Overhang: Not to exceed frame support by more than 5'-11" [1804].

2.03 SEAT FABRICATION

A. Polymer Seat System – Courtside Collection XC10 (10")

Hussey Courtside Collection Series embodies the latest leading edge innovations in linear telescopic seating modules. Courtside seats utilize a harmonious blend of advanced ergonomic principals, architecturally appealing design, safety, value and performance.

Seat Modules: 18" [457] long assembled, gas assisted injection-molded, high density, 100% recyclable HDPE (high density polyethylene) modules in monochromatic colors providing, dual textured scuff resistant 10" [254] with ½" [13] minimum interlock on seat and face. Unit structural tested to 600 lbs occupant load.

1. CourtSide XC10 Seat Module

- a. XC10 10" [254] Comfort Profile
 - (1) 10" [254] depth continuous comfort curve style bench seat module
 - (2) Ergonomically contoured forward "waterfall" edge for enhanced spectator comfort and minimization of sensitive pressure point area, regardless of leg positioning.
 - (3) Fore & Aft contoured seat surface for uniform support and minimize high pressure points under the buttocks.
 - (4) Seat height ranges from deck to t/o seat range from 16-1/8" [410] to 18-1/8" [460]
 - (5) 21-1/8" [537] clear foot space area, regardless of leg positioning.
- b. Integrally molded end caps at aisle end locations for clean finished appearance.
- c. Custom color graphic logo design application for end cap insert.(See Personalization and Creativity under Accessories section)
- d. Integrally molded recess pockets to accept seat number and row letters.

- e. Integrally molded rear closure panel at back of seat to allow for "continuous clean sweep" of debris at deck level and minimized visibility of structural ribbing.
- f. Seat Attachment: Each polymer seat module shall be securely anchored by a 12 ga steel clamp bracket that provides steel-to-steel, through bolted attachment to the front nose beam of the bleacher. Attachment eliminates fore / aft movement of the seat module on the nose beam.

2.04 SHOP FINISHES

- A. Understructure: For rust resistance, steel understructure shall be finished on all surfaces with black "Dura-Coat" enamel. Understructure finish shall contain a silicone additive to improve scratch resistance of finish.
- B. Wear Surfaces: Surface subject to normal wear by spectators shall have a finish that does not wear to show different color underneath:
 - 1. Steel nosing and rear risers shall be pre-galvanized with a minimum spangle of G-60 zinc plating.
 - 2. Decking shall have use-surfaces to receive both a sealer coat and wear-resistant high gloss clear urethane finish. Optional decking to have 0.030" laminated polyethylene wear surface.
 - 3. Injection Molded Courtside seats shall be per manufacturer standard 15 colors.
- C. Railings: Steel railings shall be finished with powder-coated semi gloss black or optional 15 standard colors to match polymer seat color.

2.05 FASTENINGS

- A. Welds: Performed by welders certified by AWS standards for the process employed.
- B. Structural Connections: Secured by structural bolts with prevailing torque lock nuts, free-spinning nuts in combination with lock washers, or Riv-nuts in combination with lock washers.

2.06 ACCESSORIES | STANDARD TELESCOPIC GYMSEAT ACCESSORIES

- A. Operating Handles: Provide and install manual operating handles constructed of ³/₄" [19] OD steel tubing. Handles to engage pull-bar installed at the first tier.
- B. Flex-Row: Provide first row modular recoverable seating units to be utilized by persons in wheelchairs and able-bodied persons. Each Flex-Row unit shall have an unlock handle for easy deployment if wheelchair or team seating access is needed. Unlock handle shall lock the bleacher seats into position when fully opened.
 - 1. Provide a black full-surround steel skirting with no more than ³/₄" floor clearance for safety and improved aesthetics.
 - 2. Provide a black injection molded end cap for the nose beam for safety and improved aesthetics..
 - 3. Provide a mechanical positive lock when the Flex-Row system is in the open and used position.
 - 4. Flex-Row modular units are designed to achieve multi-use front row seating to accommodate team seating, ADA requirements and facility specific requirements. Flex-Row units are available in modular units from 2 to 7 seats wide as well as full section widths.

- C. Provide a removable belt barrier with or without signage for the rear of each recoverable Flex-Row module to assist with seating identification.
- D. Front Aisle Steps: Provide at each vertical aisle location front aisle step. Front steps shall engage with front row to prevent accidental separation or movement. Steps shall be fitted with four non-skid rubber feet each 1/2" [13] in diameter. Blow molded end caps shall have full radius on all four edges. Quantity and location as indicated.
- E. Non-Slip Tread: Provide at front edge of each aisle location an adhesive-backed abrasive non-slip tread surface.
- F. Foot Level Aisles: Provide deck level full width vertical aisles located as indicated.
- G. Intermediate Aisle Steps: Intermediate aisle steps shall be of boxed fully enclosed type construction. Blow molded end caps shall have full radius on all four edges. Step shall have adhesive-backed abrasive non-slip tread surface. Quantity and location as indicated.
- H. Intermediate Automatic Rotating Aisle Handrails: Provide single pedestal mount handrails 34" [864] high with terminating mid rail. Permanently attached handrail shall rotate in a permanently mounted socket for rail storage. Rail shall automatically rotate, lock in the use position, unlock and rotate back to the stowed position as the gym seats open and close. Ends of the handrail shall return to the post, and not extend away from it. Rails having openings to avoid interference with closed decks are not acceptable.
- I. Self-Storing End Rails: Provide steel self-storing 42" [1066] high above seat, end rail with tubular supports and intermediate members designed with 4" [102] sphere passage requirements...
- J. Safety Accessories: Provide the following safety features:
 - Coin Round or Roll all edges of exposed metal on top and underneath Bleacher to eliminate sharp edges. Provide safety ease edges, coined edges, or rounded edges for the bleacher understructure components as follows. Diagonal or X braces and deck support or deck stabilizers. Systems provided with sharp edges or corners, to be rounded off in the field and field painted.
 - 2. Provide polymer end cap on nose metal at Bank ends to close off edges to prevent spectator injury.
 - 3. Provide polymer end cap on back of deck supports on 1st 7 Rows to prevent spectator injury.
 - 4. On 1st Row, provide front and side skirt boards anywhere there is an exposed end to prevent players/balls from sliding underneath the 1st Row.
 - 5. Provide metal end deck cover on each row to cover exposed edge of plywood at the ends of the bleachers.
- 2.06 ACCESSORIES | PERSONALIZATION and CREATIVITY ACCESSORIES and SOLUTIONS

PART 3 - EXECUTION

3.01 EXAMINATION

A. Verification of Conditions: Verify area to receive telescoping gym seats are free of impediments interfering with installation and condition of installation substrates are acceptable to receive telescoping gym seats in accordance with telescoping gym seats manufacturer's recommendations. Do not commence installation until conditions are satisfactory.

3.02 INSTALLATION

- A. Manufacturer's Recommendations: Comply with telescoping gym seats manufacturer's recommendations for product installation requirements.
- B. General: Manufacturer's Certified Installers to install telescoping gym seats in accordance with manufacturer's installation instructions and final shop drawings. Provide accessories, anchors, fasteners, inserts and other items for installation of telescoping gym seats and for permanent attachment to adjoining construction.

3.03 ADJUSTMENT AND CLEANING

- A. Adjustment: After installation completion, test and adjust each telescoping gym seats assembly to operate in compliance with manufacturer's operations manual.
- B. Cleaning: Clean installed telescoping gym seats on both exposed and semi-exposed surfaces. Touch-up finishes restoring damage or soiled surfaces.

3.04 PROTECTION

A. General: Provide final protection and maintain conditions, in a manner acceptable to manufacturer and installer to ensure telescoping gym seats are without damage or deterioration at time of substantial completion.

SECTION 210513 - COMMON MOTOR REQUIREMENTS FOR FIRE SUPPRESSION EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes general requirements for single-phase and polyphase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on alternating-current power systems up to 600 V and installed at equipment manufacturer's factory or shipped separately by equipment manufacturer for field installation.

1.2 COORDINATION

- A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:
 - 1. Motor controllers.
 - 2. Torque, speed, and horsepower requirements of the load.
 - 3. Ratings and characteristics of supply circuit and required control sequence.
 - 4. Ambient and environmental conditions of installation location.

PART 2 - PRODUCTS

2.1 GENERAL MOTOR REQUIREMENTS

- A. Comply with requirements in this Section except when stricter requirements are specified in equipment schedules or Sections.
- B. Comply with NEMA MG 1 unless otherwise indicated.
- C. Comply with IEEE 841 for severe-duty motors.

2.2 MOTOR CHARACTERISTICS

- A. Duty: Continuous duty at ambient temperature of 40 deg C and at altitude of 3300 feet above sea level.
- B. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.

2.3 POLYPHASE MOTORS

A. Description: NEMA MG 1, Design B, medium induction motor.

- B. Efficiency: Premium efficient, as defined in NEMA MG 1.
- C. Service Factor: 1.15.
- D. Multispeed Motors: Variable torque.
 - 1. For motors with 2:1 speed ratio, consequent pole, single winding.
 - 2. For motors with other than 2:1 speed ratio, separate winding for each speed.
- E. Rotor: Random-wound, squirrel cage.
- F. Bearings: Regreasable, shielded, antifriction ball bearings suitable for radial and thrust loading.
- G. Temperature Rise: Match insulation rating.
- H. Insulation: Class F.
- I. Code Letter Designation:
 - 1. Motors 15 HP and Larger: NEMA starting Code F or Code G.
 - 2. Motors Smaller Than 15 HP: Manufacturer's standard starting characteristic.
- J. Enclosure Material: Cast iron for motor frame sizes 324T and larger; rolled steel for motor frame sizes smaller than 324T.

2.4 ADDITIONAL REQUIREMENTS FOR POLYPHASE MOTORS

- A. Motors Used with Reduced-Voltage and Multispeed Controllers: Match wiring connection requirements for controller with required motor leads. Provide terminals in motor terminal box, suited to control method.
- B. Motors Used with Variable-Frequency Controllers: Ratings, characteristics, and features coordinated with and approved by controller manufacturer.
 - 1. Windings: Copper magnet wire with moisture-resistant insulation varnish, designed and tested to resist transient spikes, high frequencies, and short time rise pulses produced by pulse-width-modulated inverters.
 - 2. Premium-Efficient Motors: Class B temperature rise; Class F insulation.
 - 3. Inverter-Duty Motors: Class F temperature rise; Class H insulation.
 - 4. Thermal Protection: Comply with NEMA MG 1 requirements for thermally protected motors.

2.5 SINGLE-PHASE MOTORS

- A. Motors larger than 1/20 hp shall be one of the following, to suit starting torque and requirements of specific motor application:
 - 1. Permanent-split capacitor.
 - 2. Split phase.
 - 3. Capacitor start, inductor run.

- 4. Capacitor start, capacitor run.
- B. Multispeed Motors: Variable-torque, permanent-split-capacitor type.
- C. Bearings: Prelubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.
- D. Motors 1/20 HP and Smaller: Shaded-pole type.
- E. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.

PART 3 - EXECUTION (Not Applicable)

SECTION 210517 - SLEEVES AND SLEEVE SEALS FOR FIRE-SUPPRESSION PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Sleeves.
- 2. Sleeve-seal systems.
- 3. Grout.
- 4. Silicone sealants.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.3 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

PART 2 - PRODUCTS

2.1 SLEEVES

- A. Cast-Iron Pipe Sleeves: Cast or fabricated of cast or ductile iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop.
- B. Steel Pipe Sleeves: ASTM A53/A53M, Type E, Grade B, Schedule 40, anticorrosion coated or galvanized, with plain ends and integral welded waterstop collar.
- C. Galvanized-Steel Sheet Sleeves: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.
- D. PVC Pipe Sleeves: ASTM D1785, Schedule 40.

2.2 SLEEVE-SEAL SYSTEMS

A. Description:

- 1. Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.
- 2. Designed to form a hydrostatic seal of 20 psig minimum.

- 3. Sealing Elements: EPDM-rubber High-temperature-silicone Nitrile (Buna N) interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size.
- 4. Pressure Plates: Carbon steel Composite plastic Stainless steel Stainless steel, Type 316.
- 5. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating, ASTM B633 Stainless steel Stainless steel, Type 316, of length required to secure pressure plates to sealing elements.

2.3 GROUT

- A. Description: Nonshrink, for interior and exterior sealing openings in non-fire-rated walls or floors.
- B. Standard: ASTM C1107/C1107M, Grade B, post-hardening and volume-adjusting, dry, hydraulic-cement grout.
- C. Design Mix: 5000-psi, 28-day compressive strength.
- D. Packaging: Premixed and factory packaged.

2.4 SILICONE SEALANTS

- A. Silicone, S, NS, 25, NT: Single-component, nonsag, plus 25 percent and minus 25 percent movement capability, nontraffic-use, neutral-curing silicone joint sealant, ASTM C920, Type S, Grade NS, Class 25, Use NT.
- B. Silicone, S, P, 25, T, NT: Single-component, pourable, plus 25 percent and minus 25 percent movement capability, traffic- and nontraffic-use, neutral-curing silicone joint sealant; ASTM C920, Type S, Grade P, Class 25, Uses T and NT. Grade P Pourable (self-leveling) formulation is for opening in floors and other horizontal surfaces that are not fire rated.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

- A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.
- B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch annular clear space between piping and concrete slabs and walls.
- C. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.
 - 1. Cut sleeves to length for mounting flush with both surfaces.
 - a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level.

- 2. Using grout or silicone sealant, seal space outside of sleeves in slabs and walls without sleeve-seal system.
- D. Install sleeves for pipes passing through interior partitions.
 - 1. Cut sleeves to length for mounting flush with both surfaces.
 - 2. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
 - 3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint.
- E. Fire-Resistance-Rated Penetrations, Horizontal Assembly Penetrations, and Smoke Barrier Penetrations: Maintain indicated fire or smoke rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with fire- and smoke-stop materials. Comply with requirements for firestopping and fill materials specified in Section 078413 "Penetration Firestopping."

3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

- A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.
- B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

3.3 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Leak Test: After allowing for a full cure, test sleeves and sleeve seals for leaks. Repair leaks and retest until no leaks exist.
- B. Sleeves and sleeve seals will be considered defective if they do not pass tests and inspections.
- C. Prepare test and inspection reports.

3.4 SLEEVE AND SLEEVE-SEAL SCHEDULE

- A. Use sleeves and sleeve seals for the following piping-penetration applications:
 - 1. Exterior Concrete Walls above Grade:
 - a. Piping Smaller Than NPS 6: Cast-iron pipe sleeves.
 - b. Piping NPS 6 and Larger: Cast-iron pipe sleeves.
 - 2. Exterior Concrete Walls below Grade:

- a. Piping Smaller Than NPS 6: Cast-iron pipe sleeves with sleeve-seal system.
 - 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
- b. Piping NPS 6 and Larger: Cast-iron pipe sleeves with sleeve-seal system.
 - 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.

3. Concrete Slabs-on-Grade:

- a. Piping Smaller Than NPS 6: Cast-iron pipe sleeves with sleeve-seal system.
 - 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
- b. Piping NPS 6 and Larger: Cast-iron pipe sleeves with sleeve-seal system.
 - 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
- 4. Concrete Slabs above Grade:
 - a. Piping Smaller Than NPS 6: Steel pipe sleeves.
 - b. Piping NPS 6 and Larger: Steel pipe sleeves.
- 5. Interior Partitions:
 - a. Piping Smaller Than NPS 6: Steel pipe sleeves.
 - b. Piping NPS 6 and Larger: Galvanized-steel sheet sleeves.

SECTION 210518 - ESCUTCHEONS FOR FIRE-SUPPRESSION PIPING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Escutcheons.
 - 2. Floor plates.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

2.2 ESCUTCHEONS

- A. One-Piece, Steel Type: With polished, chrome-plated finish and setscrew fastener.
- B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped steel with polished, chrome-plated finish and spring-clip fasteners.
- C. One-Piece, Stamped-Steel Type: With polished, chrome-plated finish and spring-clip fasteners.
- D. Split-Plate, Stamped-Steel Type: With polished, chrome-plated finish; concealed and exposed-rivet hinge; and spring-clip fasteners.

2.3 FLOOR PLATES

A. Split Floor Plates: Steel with concealed hinge.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install escutcheons for piping penetrations of walls, ceilings, and finished floors.

- B. Install escutcheons with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.
 - 1. Escutcheons for New Piping:
 - a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep pattern.
 - b. Chrome-Plated Piping: One-piece steel cast brass or split-plate steel with polished, chrome-plated finish.
 - c. Insulated Piping: One-piece steel with polished, chrome-plated finish.
 - d. Insulated Piping: One-piece stamped steel or split-plate, stamped steel with concealed hinge or split-plate, stamped steel with exposed-rivet hinge with polished, chrome-plated finish.
 - e. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece steel with polished, chrome-plated finish.
 - f. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece stamped steel or split-plate, stamped steel with concealed hinge or split-plate, stamped steel with exposed-rivet hinge with polished, chrome-plated finish.
 - g. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece steel with polished, chrome-plated finish.
 - h. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece stamped steel or split-plate, stamped steel with concealed hinge or split-plate, stamped steel with exposed-rivet hinge with polished, chrome-plated finish.
- C. Install floor plates for piping penetrations of equipment-room floors.

3.2 FIELD QUALITY CONTROL

A. Using new materials, replace broken and damaged escutcheons and floor plates.

SECTION 210523 - GENERAL-DUTY VALVES FOR FIRE PROTECTION PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Iron butterfly valves with indicators.
- 2. Check valves.
- 3. Iron OS&Y gate valves.
- 4. NRS gate valves.
- 5. Indicator posts.
- 6. Trim and drain valves.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of valve.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

- A. UL Listed: Valves shall be listed in UL's "Online Certifications Directory" under the headings listed below and shall bear UL mark:
- B. FM Global Approved: Valves shall be listed in its "Approval Guide," under the headings listed below:
 - 1. Automated Sprinkler Systems:
 - a. Indicator posts.
 - b. Valves.
 - 1) Gate valves.
 - 2) Check valves.
 - a) Single check valves.
 - 3) Miscellaneous valves.
- C. Source Limitations for Valves: Obtain valves for each valve type from single manufacturer.
- D. ASME Compliance:
 - 1. ASME B16.1 for flanges on iron valves.

- 2. ASME B1.20.1 for threads for threaded-end valves.
- 3. ASME B31.9 for building services piping valves.
- E. AWWA Compliance: Comply with AWWA C606 for grooved-end connections.
- F. NFPA Compliance: Comply with NFPA 24 for valves.
- G. Valve Pressure Ratings: Not less than the minimum pressure rating indicated or higher as required by system pressures.
- H. Valve Sizes: Same as upstream piping unless otherwise indicated.
- I. Valve Actuator Types:
 - 1. Worm-gear actuator with handwheel for quarter-turn valves, except for trim and drain valves
 - 2. Handwheel: For other than quarter-turn trim and drain valves.
 - 3. Handlever: For quarter-turn trim and drain valves NPS 2 and smaller.

2.2 IRON BUTTERFLY VALVES WITH INDICATORS

A. Description:

- 1. Standard: UL 1091 and FM Global standard for indicating valves, (butterfly or ball type), Class Number 112.
- 2. Minimum Pressure Rating: 175 psig.
- 3. Body Material: Cast or ductile iron with nylon, EPDM, epoxy, or polyamide coating.
- 4. Seat Material: EPDM.
- 5. Stem: Stainless steel.
- 6. Disc: Ductile iron, nickel plated and EPDM or SBR coated.
- 7. Actuator: Worm gear or traveling nut.
- 8. Supervisory Switch: Internal or external.
- 9. Body Design: Lug or wafer Grooved-end connections.

2.3 CHECK VALVES

A. Description:

- 1. Standard: UL 312 and FM Global standard for swing check valves, Class Number 1210.
- 2. Minimum Pressure Rating: 175 psig.
- 3. Type: Single swing check.
- 4. Body Material: Cast iron, ductile iron, or bronze.
- 5. Clapper: Bronze, ductile iron, or stainless steel with elastomeric seal.
- 6. Clapper Seat: Brass, bronze, or stainless steel.
- 7. Hinge Shaft: Bronze or stainless steel.
- 8. Hinge Spring: Stainless steel.
- 9. End Connections: Flanged, grooved, or threaded.

2.4 IRON OS&Y GATE VALVES

A. Description:

- 1. Standard: UL 262 and FM Global standard for fire-service water control valves (OS&Y-and NRS-type gate valves).
- 2. Minimum Pressure Rating: 175 psig.
- 3. Body and Bonnet Material: Cast or ductile iron.
- 4. Wedge: Cast or ductile iron, or bronze with elastomeric coating.
- 5. Wedge Seat: Cast or ductile iron, or bronze with elastomeric coating.
- 6. Stem: Brass or bronze.
- 7. Packing: Non-asbestos PTFE.
- 8. Supervisory Switch: External.
- 9. End Connections: Flanged.

2.5 NRS GATE VALVES

A. Description:

- 1. Standard: UL 262 and FM Global standard for fire-service water control valves (OS&Y-and NRS-type gate valves).
- 2. Minimum Pressure Rating: 175 psig.
- 3. Body and Bonnet Material: Cast or ductile iron.
- 4. Wedge: Cast or ductile iron with elastomeric coating.
- 5. Wedge Seat: Cast or ductile iron, or bronze with elastomeric coating.
- 6. Stem: Brass or bronze.
- 7. Packing: Non-asbestos PTFE.
- 8. Supervisory Switch: External.
- 9. End Connections: Flanged.

2.6 INDICATOR POSTS

A. Description:

- 1. Standard: UL 789 and FM Global standard for indicator posts.
- 2. Type: Underground, Pit, or Wall.
- 3. Base Barrel Material: Cast or ductile iron.
- 4. Extension Barrel: Cast or ductile iron.
- 5. Cap: Cast or ductile iron.
- 6. Operation: Wrench or Handwheel.

2.7 TRIM AND DRAIN VALVES

A. Angle Valves:

- 1. Description:
 - a. Pressure Rating: 175 psig.
 - b. Body Material: Brass or bronze.

- c. Ends: Threaded.d. Stem: Bronze.e. Disc: Bronze.
- f. Packing: Asbestos free.
- g. Handwheel: Malleable iron, bronze, or aluminum.

PART 3 - EXECUTION

3.1 GENERAL REQUIREMENTS FOR VALVE INSTALLATION

- A. Install listed fire-protection shutoff valves supervised-open, located to control sources of water supply except from fire-department connections. Install permanent identification signs indicating portion of system controlled by each valve.
- B. Install check valve in each water-supply connection. Install backflow preventers instead of check valves in potable-water-supply sources.
- C. Install valves having threaded connections with unions at each piece of equipment arranged to allow easy access, service, maintenance, and equipment removal without system shutdown. Provide separate support where necessary.
- D. Install valves in horizontal piping with stem at or above the pipe center.
- E. Install valves in position to allow full stem movement.
- F. Install valve tags. Comply with requirements in Section 210553 "Identification for Fire-Suppression Piping and Equipment" for valve tags and schedules and signs on surfaces concealing valves; and the NFPA standard applying to the piping system in which valves are installed. Install permanent identification signs indicating the portion of system controlled by each valve.
- G. Install listed fire-protection shutoff valves supervised-open, located to control sources of water supply except from fire-department connections.
- H. Install check valve in each water-supply connection. Install backflow preventers instead of check valves in potable-water-supply sources.

SECTION 210529 - HANGERS AND SUPPORTS FOR FIRE SUPRESSION PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Metal pipe hangers and supports.
- 2. Trapeze pipe hangers.
- 3. Thermal hanger-shield inserts.
- 4. Fastener systems.
- 5. Equipment supports.

B. Related Requirements:

- 1. Section 055000 "Metal Fabrications" for structural-steel shapes and plates for trapeze hangers for pipe and equipment supports.
- 2. Section 210516 "Expansion Fittings and Loops for Fire-Suppression Piping" for pipe guides and anchors.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: Show fabrication and installation details and include calculations.
- C. Delegated-Design Submittal: For trapeze hangers indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.3 INFORMATIONAL SUBMITTALS

A. Welding certificates.

1.4 QUALITY ASSURANCE

- A. Structural-Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M.
- B. Pipe Welding Qualifications: Qualify procedures and operators according to "2015 ASME Boiler and Pressure Vessel Code, Section IX."

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design trapeze pipe hangers and equipment supports.
- B. Structural Performance: Hangers and supports for fire-suppression piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.
 - 1. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.
 - 2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
 - 3. Design seismic-restraint hangers and supports for piping and equipment.
- C. NFPA Compliance: Comply with NFPA 13.
- D. UL Compliance: Comply with UL 203.

2.2 METAL PIPE HANGERS AND SUPPORTS

- A. Carbon-Steel Pipe Hangers and Supports:
 - 1. Description: Factory-fabricated components, NFPA approved, UL listed, or FM approved for fire-suppression piping support.
 - 2. Galvanized Metallic Coatings: Pregalvanized or hot-dip galvanized.
 - 3. Hanger Rods: Continuous-thread rod, nuts, and washer made of carbon steel.
- B. Copper Pipe and Tube Hangers:
 - 1. Description: Copper-coated-steel, factory-fabricated components, NFPA approved, UL listed, or FM approved for fire-suppression piping support.
 - 2. Hanger Rods: Continuous-thread rod, nuts, and washer made of copper-coated steel.

2.3 TRAPEZE PIPE HANGERS

A. Description: MSS SP-58, Type 59, shop- or field-fabricated pipe-support assembly, made from structural-carbon-steel shapes, with NFPA-approved, UL-listed, or FM-approved carbon-steel hanger rods, nuts, saddles, and U-bolts.

2.4 FASTENER SYSTEMS

A. Powder-Actuated Fasteners: NFPA-approved, UL-listed, or FM-approved threaded-steel stud, for use in hardened portland cement concrete, with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

- B. Mechanical-Expansion Anchors: NFPA-approved, UL-listed, or FM-approved, insert-wedge-type anchors, for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
 - 1. Indoor Applications: Zinc-coated or Stainless steel.
 - 2. Outdoor Applications: Stainless steel.

2.5 EQUIPMENT SUPPORTS

A. Description: NFPA-approved, UL-listed, or FM-approved, welded, shop- or field-fabricated equipment support, made from structural-carbon-steel shapes.

2.6 MATERIALS

- A. Aluminum: ASTM B221.
- B. Carbon Steel: ASTM A1011/A1011M.
- C. Structural Steel: ASTM A36/A36M, carbon-steel plates, shapes, and bars; black and galvanized.
- D. Stainless Steel: ASTM A240/A240M.
- E. Grout: ASTM C1107/C1107M, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout, suitable for interior and exterior applications.
 - 1. Properties: Nonstaining, noncorrosive, and nongaseous.
 - 2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 APPLICATION

- A. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping materials and installation, for penetrations through fire-rated walls, ceilings, and assemblies.
- B. Strength of Support Assemblies: Where not indicated, select sizes of components, so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb.

3.2 HANGER AND SUPPORT INSTALLATION

A. Metal Pipe-Hanger Installation: Comply with installation requirements of approvals and listings. Install hangers, supports, clamps, and attachments as required to properly support piping from building structure.

- B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-58. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.
 - 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size, or install intermediate supports for smaller-diameter pipes as specified for individual pipe hangers.
 - 2. Field fabricate from ASTM A36/A36M carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.
- C. Thermal Hanger-Shield Installation: Install in pipe hanger or shield for insulated piping.
- D. Fastener System Installation:
 - 1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches thick in concrete, after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual. Install in accordance with approvals and listings.
 - 2. Install mechanical-expansion anchors in concrete, after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions. Install in accordance with approvals and listings.
- E. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.
- F. Equipment Support Installation: Fabricate from welded-structural-steel shapes.
- G. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.
- H. Install lateral bracing with pipe hangers and supports to prevent swaying.
- I. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms, and install reinforcing bars through openings at top of inserts.
- J. Load Distribution: Install hangers and supports, so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.
- K. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.
- L. Insulated Piping:
 - 1. Attach clamps and spacers to piping.
 - a. Piping Operating Above Ambient Air Temperature: Clamp may project through insulation.

- b. Piping Operating Below Ambient Air Temperature: Use thermal hanger-shield insert with clamp sized to match OD of insert.
- c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.
- 2. Install MSS SP-58, Type 39 protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 - a. Option: Thermal hanger-shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
- 3. Install MSS SP-58, Type 40 protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 - a. Option: Thermal hanger-shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
- 4. Shield Dimensions for Pipe: Not less than the following:
 - a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 - b. NPS 4: 12 inches long and 0.06 inch thick.
 - c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.
- 5. Pipes NPS 8 and Larger: Include wood or reinforced calcium-silicate-insulation inserts of length at least as long as protective shield.
- 6. Thermal Hanger Shields: Install with insulation of same thickness as piping insulation.

3.3 EQUIPMENT SUPPORTS

- A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.
- B. Grouting: Place grout under supports for equipment, and make bearing surface smooth.
- C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.4 METAL FABRICATIONS

- A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.
- B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
- C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work.

3.5 ADJUSTING

- A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
- B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.6 PAINTING

- A. Touchup: Clean field welds and abraded, shop-painted areas. Paint exposed areas immediately after erecting hangers and supports. Use same materials as those used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 - 1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.
- B. Touchup: Cleaning and touchup painting of field welds, bolted connections, and abraded, shoppainted areas on miscellaneous metal are specified in Section 099113 "Exterior Painting." Section 099123 "Interior Painting."
- C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas, and apply galvanizing-repair paint to comply with ASTM A780/A780M.

3.7 HANGER AND SUPPORT SCHEDULE

- A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.
- B. Comply with NFPA requirements for pipe-hanger selections and applications that are not specified in piping system Sections.
- C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finishes.
- D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.
- E. Use carbon-steel pipe hangers and supports and metal trapeze pipe hangers and attachments for general service applications.
- F. Use stainless-steel pipe hangers and stainless-steel or corrosion-resistant attachments for hostile environment applications.
- G. Use copper-plated pipe hangers and copper or stainless-steel attachments for copper piping and tubing.
- H. Use thermal hanger-shield inserts for insulated piping and tubing.
- I. Horizontal-Piping Hangers and Supports: Comply with NFPA requirements. Unless otherwise indicated and except as specified in piping system Sections, install the following types:

- 1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30.
- 2. Steel Pipe Clamps (MSS Type 4): For suspension of NPS 1/2 to NPS 24 if little or no insulation is required.
- 3. Adjustable, Swivel-Ring Band Hangers (MSS Type 10): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
- 4. Split Pipe Ring with or without Turnbuckle Hangers (MSS Type 11): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 8.
- 5. Extension Hinged or Two-Bolt Split Pipe Clamps (MSS Type 12): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 3.
- 6. U-Bolts (MSS Type 24): For support of heavy pipes NPS 1/2 to NPS 30.
- 7. Pipe Saddle Supports (MSS Type 36): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate.
- 8. Pipe Stanchion Saddles (MSS Type 37): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate, and with U-bolt to retain pipe.
- 9. Adjustable Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes NPS 2-1/2 to NPS 36 if vertical adjustment is required, with steel-pipe base stanchion support and cast-iron floor flange.
- J. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24.
 - 2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 24 if longer ends are required for riser clamps.
- K. Hanger-Rod Attachments: Comply with NFPA requirements.
- L. Building Attachments: Comply with NFPA requirements. Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel or Malleable-Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
 - 2. C-Clamps (MSS Type 23): For structural shapes.
 - 3. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
- M. Saddles and Shields: Comply with NFPA requirements. Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
 - 2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
 - 3. Thermal Hanger-Shield Inserts: For supporting insulated pipe.
- N. Comply with NFPA requirements for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.

O. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.

SECTION 210548 - VIBRATION AND SEISMIC CONTROLS FOR FIRE-SUPPRESSION PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Elastomeric isolation pads.
- 2. Elastomeric isolation mounts.
- 3. Restrained elastomeric isolation mounts.
- 4. Restraint channel bracings.
- 5. Seismic-restraint accessories.
- 6. Mechanical anchor bolts.

1.2 DEFINITIONS

- A. IBC: International Building Code.
- B. ICC-ES: ICC-Evaluation Service.
- C. OSHPD: Office of Statewide Health Planning & Development (for the State of California).

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Delegated-Design Submittal: For each vibration isolation and seismic-restraint device.
 - 1. Include design calculations and details for selecting vibration isolators and seismic restraints complying with performance requirements, design criteria, and analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.4 QUALITY ASSURANCE

- A. Comply with seismic-restraint requirements in the IBC unless requirements in this Section are more stringent.
- B. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- C. Seismic-restraint devices shall have horizontal and vertical load testing and analysis and shall bear anchorage preapproval OPA number from OSHPD, preapproval by ICC-ES, or preapproval by another agency acceptable to authorities having jurisdiction, showing maximum seismic-restraint ratings. Ratings based on independent testing are preferred to ratings based on

calculations. If preapproved ratings are unavailable, submittals based on independent testing are preferred. Calculations (including combining shear and tensile loads) to support seismic-restraint designs must be signed and sealed by a qualified professional engineer.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Seismic-Restraint Loading:

- 1. Site Class as Defined in the IBC: C.
- 2. Assigned Seismic Use Group or Building Category as Defined in the IBC: III.
 - a. Component Importance Factor: 1.0.
 - b. Component Response Modification Factor: 1.5.
 - c. Component Amplification Factor: 1.0.
- 3. Design Spectral Response Acceleration at Short Periods (0.2 Second):
- 4. Design Spectral Response Acceleration at 1.0-Second Period:

2.2 ELASTOMERIC ISOLATION PADS

A. Elastomeric Isolation Pads:

- 1. Fabrication: Single or multiple layers of sufficient durometer stiffness for uniform loading over pad area.
- 2. Size: Factory or field cut to match requirements of supported equipment.
- 3. Pad Material: Oil and water resistant with elastomeric properties.
- 4. Surface Pattern: Smooth pattern.
- 5. Infused nonwoven cotton or synthetic fibers.
- 6. Load-bearing metal plates adhered to pads.

2.3 ELASTOMERIC ISOLATION MOUNTS

A. Double-Deflection, Elastomeric Isolation Mounts:

- 1. Mounting Plates:
 - a. Top Plate: Encapsulated steel load transfer top plates, factory drilled and threaded with threaded studs or bolts.
 - b. Baseplate: Encapsulated steel bottom plates with holes provided for anchoring to support structure.
- 2. Elastomeric Material: Molded, oil-resistant rubber, neoprene, or other elastomeric material.

2.4 RESTRAINED ELASTOMERIC ISOLATION MOUNTS

A. Restrained Elastomeric Isolation Mounts:

- 1. Description: All-directional isolator with seismic restraints containing two separate and opposing elastomeric elements that prevent central threaded element and attachment hardware from contacting the housing during normal operation.
 - a. Housing: Cast-ductile iron or welded steel.
 - b. Elastomeric Material: Molded, oil-resistant rubber, neoprene, or other elastomeric material.

2.5 RESTRAINT CHANNEL BRACINGS

A. Description: MFMA-4, shop- or field-fabricated bracing assembly made of slotted steel channels with accessories for attachment to braced component at one end and to building structure at the other end and other matching components and with corrosion-resistant coating; rated in tension, compression, and torsion forces.

2.6 SEISMIC-RESTRAINT ACCESSORIES

- A. Hanger-Rod Stiffener: Steel tube or steel slotted-support-system sleeve with internally bolted connections to hanger rod.
- B. Bushings for Floor-Mounted Equipment Anchor Bolts: Neoprene bushings designed for rigid equipment mountings, and matched to type and size of anchor bolts and studs.
- C. Bushing Assemblies for Wall-Mounted Equipment Anchorage: Assemblies of neoprene elements and steel sleeves designed for rigid equipment mountings, and matched to type and size of attachment devices used.
- D. Resilient Isolation Washers and Bushings: One-piece, molded, oil- and water-resistant neoprene, with a flat washer face.
- E. Mechanical Anchor Bolts: Drilled-in and stud-wedge or female-wedge type in zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488.

PART 3 - EXECUTION

3.1 VIBRATION CONTROL AND SEISMIC-RESTRAINT DEVICE INSTALLATION

A. Installation of vibration isolators must not cause any change of position of equipment, piping, or ductwork resulting in stresses or misalignment.

B. Equipment Restraints:

1. Install resilient bolt isolation washers on equipment anchor bolts where clearance between anchor and adjacent surface exceeds 0.125 inch.

C. Piping Restraints:

- 1. Comply with requirements in MSS SP-127.
- 2. Space lateral supports a maximum of 40 feet o.c., and longitudinal supports a maximum of 80 feet o.c.
- 3. Brace a change of direction longer than 12 feet.
- D. Install seismic-restraint devices using methods approved by an agency acceptable to authorities having jurisdiction that provides required submittals for component.
- E. Install bushing assemblies for anchor bolts for floor-mounted equipment, arranged to provide resilient media between anchor bolt and mounting hole in concrete base.
- F. Install bushing assemblies for mounting bolts for wall-mounted equipment, arranged to provide resilient media where equipment or equipment-mounting channels are attached to wall.
- G. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.

H. Drilled-in Anchors:

- Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling. Notify the structural engineer if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
- 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
- 3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
- 4. Set anchors to manufacturer's recommended torque, using a torque wrench.
- 5. Install zinc-coated steel anchors for interior and stainless-steel anchors for exterior applications.

3.2 ACCOMMODATION OF DIFFERENTIAL SEISMIC MOTION

A. Install flexible connections in piping where they cross seismic joints, where adjacent sections or branches are supported by different structural elements, and where the connections terminate with connection to equipment that is anchored to a different structural element from the one supporting the connections as they approach equipment. Comply with requirements in Section 211200 "Fire-Suppression Standpipes," Section 211313 "Wet-Pipe Sprinkler Systems," and Section 211316 "Dry-Pipe Sprinkler Systems" for piping flexible connections.

SECTION 210553 - IDENTIFICATION FOR FIRE-SUPPRESSION PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Equipment labels.
- 2. Warning signs and labels.
- 3. Pipe labels.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Equipment-Label Schedule: Include a listing of all equipment to be labeled and the proposed content for each label.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

A. Metal Labels for Equipment:

- 1. Material and Thickness: Brass, 0.032 inch thick, with predrilled holes for attachment hardware.
- 2. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
- 3. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
- 4. Fasteners: Stainless-steel rivets or self-tapping screws.
- 5. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

B. Plastic Labels for Equipment:

- 1. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch thick, with predrilled holes for attachment hardware.
- 2. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
- 3. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
- 4. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.

- 5. Fasteners: Stainless-steel rivets or self-tapping screws.
- 6. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- C. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), and the Specification Section number and title where equipment is specified.
- D. Equipment-Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch (A4) bond paper. Tabulate equipment identification number and identify Drawing numbers where equipment is indicated (plans, details, and schedules) and the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 WARNING SIGNS AND LABELS

- A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch thick, with predrilled holes for attachment hardware.
- B. Letter Color: White.
- C. Background Color: Red.
- D. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
- E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
- F. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
- G. Fasteners: Stainless-steel rivets or self-tapping screws.
- H. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- I. Label Content: Include caution and warning information, plus emergency notification instructions.

2.3 PIPE LABELS

- A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service and showing flow direction.
- B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to partially cover circumference of pipe and to attach to pipe without fasteners or adhesive.
- C. Self-adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.

- D. Pipe-Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size, and an arrow indicating flow direction.
 - 1. Flow-Direction Arrows: Integral with piping-system service lettering to accommodate both directions or as separate unit on each pipe label to indicate flow direction.
 - 2. Lettering Size: At least 1/2 inch for viewing distances up to 72 inches and proportionately larger lettering for greater viewing distances.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of incompatible primers, paints, and encapsulants, as well as dirt, oil, grease, release agents, and other substances that could impair bond of identification devices.

3.2 LABEL INSTALLATION REQUIREMENTS

- A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be installed.
- B. Coordinate installation of identifying devices with locations of access panels and doors.
- C. Install or permanently fasten labels on each major item of mechanical equipment.
- D. Locate equipment labels where accessible and visible.
- E. Piping: Painting of piping is specified in Section 099123 "Interior Painting."
- F. Pipe-Label Locations: Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:
 - 1. Near each valve and control device.
 - 2. Near each branch connection excluding short takeoffs. Where flow pattern is not obvious, mark each pipe at branch.
 - 3. Near penetrations and on both sides of through walls, floors, ceilings, and inaccessible enclosures.
 - 4. At access doors, manholes, and similar access points that permit a view of concealed piping.
 - 5. Near major equipment items and other points of origination and termination.
 - 6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.
 - 7. On piping above removable acoustical ceilings. Omit intermediately spaced labels.

SECTION 210700 - FIRE-SUPPRESSION SYSTEMS INSULATION

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Insulating indoor engine coolant piping for remote radiator of engine-driven fire pump.
- 2. Insulating indoor engine exhaust piping and silencer.
- 3. Insulating indoor and outdoor equipment.
- 4. Insulating outdoor piping.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Sustainable Design Submittals:
- C. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 - 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 - 2. Detail attachment and covering of heat tracing inside insulation.
 - 3. Detail insulation application at pipe expansion joints for each type of insulation.
 - 4. Detail insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.
 - 5. Detail removable insulation at piping specialties and equipment connections.
 - 6. Detail application of field-applied jackets.
 - 7. Detail application at linkages of control devices.
 - 8. Detail field application for fire-suppression water storage tanks.

1.3 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.4 QUALITY ASSURANCE

- A. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, and cement material containers, with appropriate markings of applicable testing agency.
 - 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.

2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

- A. Products shall not contain asbestos, lead, mercury, or mercury compounds.
- B. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C871.
- C. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C795.
- D. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
- E. Calcium Silicate:
 - 1. Preformed Pipe Sections: Flat-, curved-, and grooved-block sections of noncombustible, inorganic, hydrous calcium silicate with a non-asbestos fibrous reinforcement. Comply with ASTM C533, Type I.
 - 2. Prefabricated Fitting Covers: Comply with ASTM C450 and ASTM C585 for dimensions used in preforming insulation to cover valves, elbows, tees, and flanges.
- F. Cellular Glass: Inorganic, incombustible, foamed or cellulated glass with annealed, rigid, hermetically sealed cells. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. Block Insulation: ASTM C552, Type I.
 - 2. Special-Shaped Insulation: ASTM C552, Type III.
 - 3. Board Insulation: ASTM C552, Type IV.
 - 4. Preformed Pipe Insulation without Jacket: Comply with ASTM C552, Type II, Class 1.
 - 5. Preformed Pipe Insulation with Factory-Applied ASJ: Comply with ASTM C552, Type II, Class 2.
 - 6. Factory fabricate shapes according to ASTM C450 and ASTM C585.
- G. Flexible Elastomeric Insulation: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C534, Type I for tubular materials and Type II for sheet materials.
- H. Mineral-Fiber, Preformed Pipe Insulation:
 - 1. Type I, 850 Deg F Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C547, Type I, Grade A, without factory-applied jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

2. Type II, 1200 Deg F Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C547, Type II, Grade A, without factory-applied jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

2.2 INSULATING CEMENTS

A. Mineral-Fiber, Hydraulic-Setting Insulating and Finishing Cement: Comply with ASTM C449.

2.3 ADHESIVES

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.
- B. Calcium Silicate Adhesive: Fibrous, sodium-silicate-based adhesive with a service temperature range of 50 to 800 deg F.
- C. Cellular-Glass Adhesive: Two-component, thermosetting urethane adhesive containing no flammable solvents, with a service temperature range of minus 100 to plus 200 deg F.
- D. Flexible Elastomeric Adhesive: Comply with MIL-A-24179A, Type II, Class I.
- E. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.

2.4 MASTICS

- A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.
- B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below-ambient services.
 - 1. Water-Vapor Permeance: ASTM E96/E96M, Procedure B, 0.013 perm at 43-mil dry film thickness.
 - 2. Service Temperature Range: Minus 20 to plus 180 deg F.
 - 3. Solids Content: ASTM D1644, 58 percent by volume and 70 percent by weight.
 - 4. Color: White.
- C. Breather Mastic: Water based; suitable for indoor and outdoor use on above-ambient services.
 - 1. Water-Vapor Permeance: ASTM F1249, 1.8 perms at 0.0625-inch dry film thickness.
 - 2. Service Temperature Range: Minus 20 to plus 180 deg F.
 - 3. Solids Content: 60 percent by volume and 66 percent by weight.
 - 4. Color: White.

2.5 LAGGING ADHESIVES

A. Description: Comply with MIL-A-3316C Class I, Grade A and shall be compatible with insulation materials, jackets, and substrates.

- 1. Fire-resistant, water-based lagging adhesive and coating for use indoors to adhere fire-resistant lagging cloths over equipment and pipe insulation.
- 2. Service Temperature Range: 0 to plus 180 deg F.
- 3. Color: White.

2.6 SEALANTS

- A. Joint Sealants for Cellular-Glass Products:
 - 1. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 2. Permanently flexible, elastomeric sealant.
 - 3. Service Temperature Range: Minus 100 to plus 300 deg F.
 - 4. Color: White or gray.
- B. FSK and Metal Jacket Flashing Sealants:
 - 1. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 2. Fire- and water-resistant, flexible, elastomeric sealant.
 - 3. Service Temperature Range: Minus 40 to plus 250 deg F.
 - 4. Color: Aluminum.
- C. ASJ Flashing Sealants, and Vinyl, PVDC, and PVC Jacket Flashing Sealants:
 - 1. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 2. Fire- and water-resistant, flexible, elastomeric sealant.
 - 3. Service Temperature Range: Minus 40 to plus 250 deg F.
 - 4. Color: White.

2.7 FACTORY-APPLIED JACKETS

- A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 - 1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C1136, Type I.
 - 2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C1136, Type I.
 - 3. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C1136, Type II.

2.8 FIELD-APPLIED FABRIC-REINFORCING MESH

A. Woven Polyester Fabric: Approximately 1 oz./sq. yd. with a thread count of 10 strands by 10 strands/sq. in, in a Leno weave.

2.9 FIELD-APPLIED CLOTHS

A. Woven Glass-Fiber Fabric: Comply with MIL-C-20079H, Type I, plain weave, and presized a minimum of 8 oz./sq. yd.

2.10 FIELD-APPLIED JACKETS

- A. Field-applied jackets shall comply with ASTM C921, Type I unless otherwise indicated.
- B. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.
 - 1. Adhesive: As recommended by jacket material manufacturer.
 - 2. Color: White.
 - 3. Factory-fabricated fitting covers to match jacket if available; otherwise, field fabricate.
 - a. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, unions, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories.
 - 4. Factory-fabricated tank heads and tank side panels.
- C. Aluminum Jacket: Comply with ASTM B209, Alloy 3003, 3005, 3105, or 5005, Temper H-14.
 - 1. Sheet and roll stock ready for shop or field.
 - 2. Finish and thickness are indicated in field-applied jacket schedules.
 - 3. Moisture Barrier for Indoor Applications: 1-mil- thick, heat-bonded polyethylene and kraft paper.
 - 4. Moisture Barrier for Outdoor Applications: 3-mil- thick, heat-bonded polyethylene and kraft paper.
 - 5. Factory-Fabricated Fitting Covers:
 - a. Same material, finish, and thickness as jacket.
 - b. Preformed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows.
 - c. Tee covers.
 - d. Flange and union covers.
 - e. End caps.
 - f. Beveled collars.
 - g. Valve covers.
 - h. Field fabricate fitting covers only if factory-fabricated fitting covers are not available.

2.11 TAPES

A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C1136.

- 1. Width: 3 inches.
- 2. Thickness: 11.5 mils.
- 3. Adhesion: 90 ounces force/inch in width.
- 4. Elongation: 2 percent.
- 5. Tensile Strength: 40 lbf/inch in width.
- 6. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.
- B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C1136.
 - 1. Width: 3 inches.
 - 2. Thickness: 6.5 mils.
 - 3. Adhesion: 90 ounces force/inch in width.
 - 4. Elongation: 2 percent.
 - 5. Tensile Strength: 40 lbf/inch in width.
 - 6. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.
- C. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive; suitable for indoor and outdoor applications.
 - 1. Width: 2 inches.
 - 2. Thickness: 6 mils.
 - 3. Adhesion: 64 ounces force/inch in width.
 - 4. Elongation: 500 percent.
 - 5. Tensile Strength: 18 lbf/inch in width.
- D. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.
 - 1. Width: 2 inches.
 - 2. Thickness: 3.7 mils.
 - 3. Adhesion: 100 ounces force/inch in width.
 - 4. Elongation: 5 percent.
 - 5. Tensile Strength: 34 lbf/inch in width.

2.12 SECUREMENTS

- A. Aluminum Bands: ASTM B209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch thick, 1/2 inch wide with wing seal or closed seal.
- B. Insulation Pins and Hangers:
 - 1. Metal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place.

- a. Baseplate: Perforated, galvanized carbon-steel sheet, 0.030 inch thick by 2 inches square.
- b. Spindle: Copper- or zinc-coated, low carbon steel, fully annealed, 0.106-inch-diameter shank, length to suit depth of insulation indicated.
- c. Adhesive: Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.
- 2. Self-Sticking-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place.
 - a. Baseplate: Galvanized carbon-steel sheet, 0.030 inch thick by 2 inches square.
 - b. Spindle: Copper- or zinc-coated, low-carbon steel, fully annealed, 0.106-inch-diameter shank, length to suit depth of insulation indicated.
 - c. Adhesive-backed base with a peel-off protective cover.
- 3. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch- thick, galvanized-steelsheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.
 - a. Protect ends with capped self-locking washers incorporating a spring steel insert to ensure permanent retention of cap in exposed locations.
- C. Staples: Outward-clinching insulation staples, nominal 3/4-inch- wide, stainless steel or Monel.
- D. Wire: 0.080-inch nickel-copper alloy.

2.13 CORNER ANGLES

- A. PVC Corner Angles: 30 mils thick, minimum 1 by 1 inch, PVC according to ASTM D1784, Class 16354-C. White or color-coded to match adjacent surface.
- B. Aluminum Corner Angles: 0.040 inch thick, minimum 1 by 1 inch, aluminum according to ASTM B209, Alloy 3003, 3005, 3105, or 5005; Temper H-14.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.
- B. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.

C. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.2 GENERAL INSTALLATION REQUIREMENTS

- A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of equipment and piping including fittings, valves, and specialties.
- B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of equipment and pipe system as specified in insulation system schedules.
- C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
- D. Install insulation with longitudinal seams at top and bottom of horizontal runs.
- E. Install multiple layers of insulation with longitudinal and end seams staggered.
- F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.
- G. Keep insulation materials dry during application and finishing.
- H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- I. Install insulation with least number of joints practical.
- J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 - 1. Install insulation continuously through hangers and around anchor attachments.
 - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 - 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 - 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.
- K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
- L. Install insulation with factory-applied jackets as follows:
 - 1. Draw jacket tight and smooth.
 - 2. Cover circumferential joints with 3-inch- wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.

- 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches o.c.
 - a. For below-ambient services, apply vapor-barrier mastic over staples.
- 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
- 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.
- M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.
- N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
- O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.
- P. For above-ambient services, do not install insulation to the following:
 - 1. Vibration-control devices.
 - 2. Testing agency labels and stamps.
 - 3. Nameplates and data plates.
 - 4. Manholes.
 - 5. Handholes.
 - 6. Cleanouts.

3.3 PENETRATIONS

- A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
 - 4. Seal jacket to roof flashing with flashing sealant.
- B. Insulation Installation at Below-Grade Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.
- C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.

- 1. Seal penetrations with flashing sealant.
- 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
- 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
- 4. Seal jacket to wall flashing with flashing sealant.
- D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.
- E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.
 - 1. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping and fire-resistive joint sealers.
- F. Insulation Installation at Floor Penetrations:
 - 1. Pipe: Install insulation continuously through floor penetrations.
 - 2. Seal penetrations through fire-rated assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

3.4 GENERAL PIPE INSULATION INSTALLATION

- A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.
- B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:
 - 1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.
 - 2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
 - 3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
 - 4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.
 - 5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe

insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.

- 6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.
- 7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.
- 8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.
- 9. Stencil or label the outside insulation jacket of each union with the word "union." Match size and color of pipe labels.
- C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes, vessels, and equipment. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.
- D. Install removable insulation covers at locations indicated. Installation shall conform to the following:
 - 1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.
 - 2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.
 - 3. Construct removable valve insulation covers in same manner as for flanges, except divide the two-part section on the vertical center line of valve body.
 - 4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.
 - 5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.

3.5 CALCIUM SILICATE INSULATION INSTALLATION

A. Insulation Installation on Straight Pipes and Tubes:

- 1. Secure single-layer insulation with stainless-steel bands at 12-inch intervals and tighten bands without deforming insulation materials.
- 2. Install two-layer insulation with joints tightly butted and staggered at least 3 inches. Secure inner layer with wire spaced at 12-inch intervals. Secure outer layer with stainless-steel bands at 12-inch intervals.
- 3. Apply a skim coat of mineral-fiber, hydraulic-setting cement to insulation surface. When cement is dry, apply flood coat of lagging adhesive and press on one layer of glass cloth or tape. Overlap edges at least 1 inch. Apply finish coat of lagging adhesive over glass cloth or tape. Thin finish coat to achieve smooth, uniform finish.

B. Insulation Installation on Pipe Flanges:

- 1. Install preformed pipe insulation to outer diameter of pipe flange.
- 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
- 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of block insulation of same material and thickness as pipe insulation.
- 4. Finish flange insulation same as pipe insulation.

C. Insulation Installation on Pipe Fittings and Elbows:

- 1. Install preformed sections of same material as straight segments of pipe insulation when available.
- 2. When preformed insulation sections of insulation are not available, install mitered sections of calcium silicate insulation. Secure insulation materials with wire or bands.
- 3. Finish fittings insulation same as pipe insulation.

D. Insulation Installation on Valves and Pipe Specialties:

- 1. Install mitered segments of calcium silicate insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
- 2. Install insulation to flanges as specified for flange insulation application.
- 3. Finish valve and specialty insulation same as pipe insulation.

3.6 CELLULAR-GLASS INSULATION INSTALLATION

A. Insulation Installation on Straight Pipes and Tubes:

- 1. Secure each layer of insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
- 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and applicable insulation joint sealant.
- 3. For insulation with factory-applied jackets on above-ambient services, secure laps with outward-clinched staples at 6 inches o.c.
- 4. For insulation with factory-applied jackets on below-ambient services, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:

- 1. Install preformed pipe insulation to outer diameter of pipe flange.
- 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
- 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of cellular-glass block insulation of same thickness as pipe insulation.
- 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:

- 1. Install preformed sections of same material as straight segments of pipe insulation when available.
- 2. When preformed sections of insulation are not available, install mitered sections of cellular-glass insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:

- 1. Install preformed sections of cellular-glass insulation to valve body.
- 2. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
- 3. Install insulation to flanges as specified for flange insulation application.

3.7 FLEXIBLE ELASTOMERIC INSULATION INSTALLATION

- A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.
 - 4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

C. Insulation Installation on Pipe Fittings and Elbows:

- 1. Install mitered sections of pipe insulation.
- 2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

D. Insulation Installation on Valves and Pipe Specialties:

1. Install preformed valve covers manufactured of same material as pipe insulation when available.

- 2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
- 3. Install insulation to flanges as specified for flange insulation application.
- 4. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.8 MINERAL-FIBER, Preformed Pipe INSULATION INSTALLATION

A. Insulation Installation on Straight Pipes and Tubes:

- 1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
- 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and applicable insulation joint sealant.
- 3. For insulation with factory-applied jackets on above-ambient surfaces, secure laps with outward-clinched staples at 6 inches o.c.
- 4. For insulation with factory-applied jackets on below-ambient surfaces, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:

- 1. Install preformed pipe insulation to outer diameter of pipe flange.
- 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
- 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
- 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:

- 1. Install preformed sections of same material as straight segments of pipe insulation when available.
- 2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:

- 1. Install preformed sections of same material as straight segments of pipe insulation when available.
- 2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
- 3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
- 4. Install insulation to flanges as specified for flange insulation application.

3.9 FIELD-APPLIED JACKET INSTALLATION

- A. Where glass-cloth jackets are indicated, install directly over bare insulation or insulation with factory-applied jackets.
 - 1. Draw jacket smooth and tight to surface with 2-inch overlap at seams and joints.
 - 2. Embed glass cloth between two 0.062-inch- thick coats of lagging adhesive.
 - 3. Completely encapsulate insulation with coating, leaving no exposed insulation.
- B. Where FSK jackets are indicated, install as follows:
 - 1. Draw jacket material smooth and tight.
 - 2. Install lap or joint strips with same material as jacket.
 - 3. Secure jacket to insulation with manufacturer's recommended adhesive.
 - 4. Install jacket with 1-1/2-inch laps at longitudinal seams and 3-inch- wide joint strips at end joints.
 - 5. Seal openings, punctures, and breaks in vapor-retarder jackets and exposed insulation with vapor-barrier mastic.
- C. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints. Seal with manufacturer's recommended adhesive.
 - 1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.
- D. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints.

3.10 FINISHES

- A. Equipment and Pipe Insulation with ASJ, Glass-Cloth, or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Section 099113 "Exterior Painting" and Section 099123 "Interior Painting."
 - 1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.
 - a. Finish Coat Material: Interior, flat, latex-emulsion size.
- B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.
- C. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.
- D. Do not field paint aluminum or stainless-steel jackets.

3.11 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:

- 1. Inspect field-insulated equipment, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to one location for each type of equipment defined in the "Equipment Insulation Schedule" Article. For large equipment, remove only a portion adequate to determine compliance.
- 2. Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three locations of straight pipe, three locations of threaded fittings, three locations of welded fittings, two locations of threaded strainers, two locations of welded strainers, three locations of threaded valves, and three locations of flanged valves for each pipe service defined in the "Piping Insulation Schedule, General" Article.
- C. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.12 EQUIPMENT INSULATION SCHEDULE

- A. Insulation materials and thicknesses are identified below. If more than one material is listed for a type of equipment, selection from materials listed is Contractor's option.
- B. Insulate indoor and outdoor equipment that is not factory insulated.

3.13 PIPING INSULATION SCHEDULE, GENERAL

- A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.
- B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:
 - 1. Indoor fire-suppression piping.
 - 2. Underground piping.

3.14 INDOOR PIPING INSULATION SCHEDULE

- A. Indoor Engine Coolant Piping for Remote Radiator of Engine-Driven Fire Pump: Mineral-fiber, preformed pipe, Type I or II, 2 inches thick.
- B. Indoor Engine Exhaust Piping and Silencer, All Pipe Sizes: Calcium silicate, 4 inches thick.

3.15 OUTDOOR, ABOVEGROUND PIPING INSULATION SCHEDULE

- A. Fire-Suppression Water Piping:
 - 1. All Pipe Sizes: Insulation shall be one of the following:
 - a. Cellular Glass: 2 inches thick.
 - b. Mineral-Fiber, Preformed Pipe Insulation, Type I: 2 inches thick.
- B. Outdoor Engine Coolant Piping for Remote Radiator of Engine-Driven Fire Pump:
 - 1. All Pipe Sizes: Insulation shall be one of the following:
 - a. Calcium Silicate: 2 inches thick.
 - b. Cellular Glass: 2 inches thick.
 - c. Mineral-Fiber, Preformed Pipe, Type I or II: 2 inches thick.
- C. Outdoor Engine Exhaust Piping and Silencer, All Pipe Sizes: Calcium silicate, 4 inches thick.
- D. Outdoor Fire-Suppression Piping Filled with Water: Insulation shall be one of the following:
 - 1. Cellular Glass: 2 inches thick.
 - 2. Flexible Elastomeric: 2 inches thick.
 - 3. Mineral-Fiber, Preformed Pipe Insulation, Type I: 2 inches thick.

3.16 INDOOR, FIELD-APPLIED JACKET SCHEDULE

- A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.
- B. If more than one material is listed, selection from materials listed is Contractor's option.
- C. Piping, Concealed:
 - 1. None.
 - 2. Aluminum, Smooth: 0.016 inch thick.
- D. Piping, Exposed:
 - 1. None.
 - 2. PVC: 20 mils thick.
 - 3. Aluminum, Smooth: 0.016 inch thick.

3.17 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE

- A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.
- B. If more than one material is listed, selection from materials listed is Contractor's option.

- C. Equipment, Concealed:
 - 1. None.
 - 2. PVC: 20 mils thick.
 - 3. Aluminum, Smooth thick.
- D. Equipment, Exposed, up to 48 Inches in Diameter or with Flat Surfaces up to 72 Inches:
 - 1. Painted Aluminum, Smooth thick.
- E. Equipment, Exposed, Larger Than 48 Inches in Diameter or with Flat Surfaces Larger Than 72 Inches:
 - 1. Painted Aluminum, Smooth thick.
- F. Outdoor Exposed Piping:
 - 1. PVC: 20 mils thick.
 - 2. Painted Aluminum, Smooth thick.

END OF SECTION 210700

SECTION 211119 – FIRE DEPARTMENT CONNECTIONS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Exposed-type fire-department connections.
- 2. Flush-type fire-department connections.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for each fire-department connection.

PART 2 - PRODUCTS

2.1 EXPOSED-TYPE FIRE-DEPARTMENT CONNECTION

- A. Standard: UL 405.
- B. Type: Exposed, projecting, for wall mounting.
- C. Pressure Rating: 175 psig minimum.
- D. Body Material: Corrosion-resistant metal.
- E. Inlets: Brass with threads according to NFPA 1963 and matching local fire-department sizes and threads. Include extension pipe nipples, brass lugged swivel connections, and check devices or clappers.
- F. Caps: Brass, lugged type, with gasket and chain.
- G. Escutcheon Plate: Round, brass, wall type.
- H. Outlet: Back, with pipe threads.
- I. Number of Inlets: Two.
- J. Escutcheon Plate Marking: Similar to "AUTO SPKR & STANDPIPE."
- K. Finish: Polished chrome plated.

- L. Outlet Size: NPS 6.
- 2.2 FLUSH-TYPE FIRE-DEPARTMENT CONNECTION
 - A.
 - B. Standard: UL 405.
 - C. Type: Flush, for wall mounting.
 - D. Pressure Rating: 175 psig minimum.
 - E. Body Material: Corrosion-resistant metal.
 - F. Inlets: Brass with threads according to NFPA 1963 and matching local fire-department sizes and threads. Include extension pipe nipples, brass lugged swivel connections, and check devices or clappers.
 - G. Caps: Brass, lugged type, with gasket and chain.
 - H. Escutcheon Plate: Rectangular, brass, wall type.
 - I. Outlet: With pipe threads.
 - J. Body Style: Horizontal.
 - K. Number of Inlets: Two.
 - L. Outlet Location: Back.
 - M. Escutcheon Plate Marking: Similar to "AUTO SPKR & STANDPIPE."
 - N. Finish: Polished chrome plated.
 - O. Outlet Size: NPS 6.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install wall-type fire-department connections.
- B. Install automatic (ball-drip) drain valve at each check valve for fire-department connection.

END OF SECTION 211119

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Pipes, fittings, and specialties.
- 2. Sprinklers.

1.2 SYSTEM DESCRIPTIONS

A. Wet-Pipe Sprinkler System: Automatic sprinklers are attached to piping containing water and that is connected to water supply through alarm valve. Water discharges immediately from sprinklers when they are opened. Sprinklers open when heat melts fusible link or destroys frangible device. Hose connections are included if indicated.

1.3 PERFORMANCE REQUIREMENTS

- A. Standard-Pressure Piping System Component: Factory Mutual (FM) approved for 175-psig minimum working pressure.
- B. Sprinkler system design shall be approved by authorities having jurisdiction.
 - 1. Sprinkler Occupancy Hazard Classifications:
 - a. All areas Light Hazard.

1.4 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: For wet-pipe sprinkler systems. Include plans, elevations, sections, details, and attachments to other work.
- C. Approved Sprinkler Piping Drawings: Working plans, prepared according to NFPA 13, that have been approved by authorities having jurisdiction, including hydraulic calculations if applicable.
- D. Welding certificates. For qualified Installer having completed necessary training by piping system manufacturer.
- E. Field Test Reports and Certificates: Indicate and interpret test results for compliance with performance requirements and as described in NFPA 13. Include "Contractor's

Material and Test Certificate for Aboveground Piping." Also include final system test data in accordance with piping manufacturer's requirements.

- F. Field quality-control reports.
- G. Operation and maintenance data.

1.5 QUALITY ASSURANCE

- A. Installer Qualifications:
- B. Polypropylene fusion=welding Qualifications: Qualify procedures and operators according to ASTM F2389 and manufacturer's instructions.
- C. NFPA Standards: Sprinkler system equipment, specialties, accessories, installation, and testing shall comply with the following Installation Standards as applicable:
 - 1. NFPA 13, "Installation of Sprinkler Systems."
 - 2. NFPA 13R, "Installation of Sprinkler Systems in Residential Occupancies up to and Including Four Stories in Height." Or
 - 3. NFPA 13D, " Installation of Sprinkler Systems in One- and Two-Family Dwellings and Manufactured Homes"

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, and fitting materials, and for joining methods for specific services, service locations, and pipe sizes.

2.2 POLYPROPYLENE (PP-R) PIPE AND FITTINGS

- A. Polypropylene SDR 7.4 pipe approved per FM 1635.
 - 1. Manufacturers:
 - a. Aquatherm, GmbH
- B. Polypropylene fusion-weld fittings (socket fusion, fusion-outlet, butt-weld), approved per FM 1635.
 - 1. Manufacturers:

- a. Aquatherm, GmbH
- C. Polypropylene adapter fittings, NPT or ISO threads as applicable, approved per FM 1635.
 - 1. Manufacturers:
 - a. Aquatherm, GmbH
- D. Polypropylene (PP-R) Flanges approved per FM 1635.
 - 1. Manufacturers:
 - a. Aquatherm, GmbH
- E. Grooved-Joint, Steel-Pipe adapter fittings approved per FM 1635.
 - 1. <u>Manufacturers</u>:
 - a. Aquatherm, GmbH
 - 2. Pressure Rating: 175 psig

2.3 SPRINKLER SPECIALTY PIPE FITTINGS

- A. Branch Outlet Fittings (fusion outlets):
 - 1. Manufacturers::
 - a. Aquatherm, GmbH
 - 2. Standard: FM 1635.
 - 3. Pressure Rating: 175 psig minimum.
 - 4. Configurations: Fusion-weld to main pipe, with socket fusion outlet or brass threaded connection.
 - 5. Size: Of dimension to fit onto sprinkler main and with outlet connections as required to match connected branch piping.
 - 6. Branch Outlets: socket-fusion weld, or threaded.

2.4 SPRINKLERS

- A. <u>Manufacturers</u>: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Globe Fire Sprinkler Corporation.

- 2. Reliable Automatic Sprinkler Co., Inc.
- 3. Tyco Fire & Building Products LP.
- 4. <u>Victaulic Company</u>.
- 5. <u>Viking Corporation</u>.

B. General Requirements:

- 1. Standard: UL's "Fire Protection Equipment Directory" listing or "Approval Guide," published by FM Global, listing.
- 2. Pressure Rating for Automatic Sprinklers: 175 psig minimum.

C. Automatic Sprinklers with Heat-Responsive Element:

- 1. Early-Suppression, Fast-Response type sprinklers must be used.
- 2. Characteristics: Nominal 1/2-inch orifice with Discharge Coefficient K of 5.6 or higher, and for "Light hazard" temperature classification rating.

PART 3 - EXECUTION

3.1 PIPING INSTALLATION

- A. Locations and Arrangements: Drawing plans, schematics, and diagrams indicate general location and arrangement of piping. Install piping as indicated, as far as practical.
 - 1. Deviations from approved working plans for piping require written approval from authorities having jurisdiction. File written approval with Architect before deviating from approved working plans.
- B. Piping Standard: Comply with requirements for installation of sprinkler piping in NFPA 13, NFPA 13D, or NFPA 13R as applicable.
- C. Install seismic restraints on piping. Comply with requirements for seismic-restraint device materials and installation in NFPA 13.
- D. Use listed fittings to make changes in direction, branch takeoffs from mains, and reductions in pipe sizes.
- E. Install unions adjacent to each valve in pipes NPS 2 and smaller.
- F. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 and larger end connections unless otherwise specified.
- G. Install "Inspector's Test Connections" in sprinkler system piping, complete with shutoff valve, and sized and located according to NFPA 13.

- H. Install sprinkler piping with drains for complete system drainage.
- I. Install sprinkler control valves, test assemblies, and drain risers adjacent to standpipes when sprinkler piping is connected to standpipes.
- J. Install automatic (ball drip) drain valve at each check valve for fire-department connection, to drain piping between fire-department connection and check valve. Install drain piping to and spill over floor drain or to outside building.
- K. Install alarm devices in piping systems.
- L. Install hangers and supports for sprinkler system piping according to NFPA 13 and manufacturer's instructions. Comply with requirements for hanger materials in NFPA 13.
- M. Install pressure gages on riser or feed main, at each sprinkler test connection, and at top of each standpipe. Include pressure gages with connection not less than NPS 1/4 and with soft metal seated globe valve, arranged for draining pipe between gage and valve. Install gages to permit removal, and install where they will not be subject to freezing.
- N. Fill sprinkler system piping with water.
- O. Install electric heating cables and pipe insulation on sprinkler piping in areas subject to freezing. Comply with requirements for heating cables in Section 210533 "Heat Tracing for Fire-Suppression Piping" and for piping insulation in Section 210700 "Fire-Suppression Systems Insulation."
 - 1. For polypropylene piping, ensure that heat tracing surface temperature will not exceed 160°F.
 - 2. Glycerin or glycol antifreeze solutions may also be used with polypropylene piping.
- P. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 210517 "Sleeves and Sleeve Seals for Fire-Suppression Piping."
- Q. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 210517 "Sleeves and Sleeve Seals for Fire-Suppression Piping."
- R. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 210518 "Escutcheons for Fire-Suppression Piping."

3.2 JOINT CONSTRUCTION

- A. Install couplings, flanges, flanged fittings, unions, nipples, and transition and special fittings that have finish and pressure ratings same as or higher than system's pressure rating for aboveground applications unless otherwise indicated.
- B. Install unions adjacent to each valve in pipes NPS 2 and smaller unless PP-R union ball valves are used.
- C. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 and larger end connections.
- D. Clean inside and outside of pipes, tubes, and fittings as required in the manufacturers installation instructions before assembly.
- E. Flanged Joints: Select appropriate gasket material in size, type, and thickness suitable for water service. Join flanges with gasket and bolts according to ASME B31.9.
- F. Threaded Joints: Polypropylene pipe shall not be threaded. Use threaded adapter fittings for making thread connections.

3.3 SPRINKLER INSTALLATION

- A. Install sprinklers in accordance with manufacturer's installation and listing instructions.
- B. If required, install sprinklers in suspended ceilings in center of narrow dimension of acoustical ceiling panels.

3.4 IDENTIFICATION

- A. Install labeling and pipe markers on equipment and piping according to requirements in NFPA 13.
- B. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.5 FIELD QUALITY CONTROL

- A. Tests and Inspections:
 - 1. Flush, test, and inspect sprinkler systems according to NFPA 13, "Systems Acceptance" Chapter.
- B. Perform tests and inspections in accordance with sprinkler piping manufacturer's requirements.

Prepare test and inspection reports per NFPA 13 and sprinkler piping manufacturer's requirements.

END OF SECTION 211313

SECTION 220517 - SLEEVES AND SLEEVE SEALS FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Sleeves.
 - 2. Sleeve-seal systems.
 - 3. Grout.
 - 4. Silicone sealants.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Sustainable Design Submittals:

1.3 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

PART 2 - PRODUCTS

2.1 SLEEVES

- A. Cast-Iron Pipe Sleeves: Cast or fabricated of cast or ductile iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop collar.
- B. Steel Pipe Sleeves: ASTM A53/A53M, Type E, Grade B, Schedule 40, anticorrosion coated or galvanized, with plain ends and integral welded waterstop collar.
- C. Galvanized-Steel Sheet Sleeves: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.
- D. PVC Pipe Sleeves: ASTM D1785, Schedule 40.

2.2 SLEEVE-SEAL SYSTEMS

A. Description:

1. Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.

- 2. Designed to form a hydrostatic seal of 20 psig minimum.
- 3. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
- 4. Pressure Plates: Carbon steel.
- 5. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating, ASTM B633 of length required to secure pressure plates to sealing elements.

2.3 GROUT

- A. Description: Nonshrink, for interior and exterior sealing openings in non-fire-rated walls or floors.
- B. Standard: ASTM C1107/C1107M, Grade B, post-hardening and volume-adjusting, dry, hydraulic-cement grout.
- C. Design Mix: 5000-psi, 28-day compressive strength.
- D. Packaging: Premixed and factory packaged.

2.4 SILICONE SEALANTS

- A. Silicone, S, NS, 25, NT: Single-component, nonsag, plus 25 percent and minus 25 percent movement capability, nontraffic-use, neutral-curing silicone joint sealant, ASTM C920, Type S, Grade NS, Class 25, Use NT.
- B. Silicone, S, P, 25, T, NT: Single-component, pourable, plus 25 percent and minus 25 percent movement capability, traffic- and nontraffic-use, neutral-curing silicone joint sealant; ASTM C920, Type S, Grade P, Class 25, Uses T and NT. Grade P Pourable (self-leveling) formulation is for opening in floors and other horizontal surfaces that are not fire rated.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

- A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.
- B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch annular clear space between piping and concrete slabs and walls.
- C. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.
 - 1. Cut sleeves to length for mounting flush with both surfaces.
 - a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level.

- 2. Using grout or silicone sealant, seal the space outside of sleeves in slabs and walls without sleeve-seal system.
- D. Install sleeves for pipes passing through interior partitions.
 - 1. Cut sleeves to length for mounting flush with both surfaces.
 - 2. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
 - 3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint.
- E. Fire-Resistance-Rated Penetrations, Horizontal Assembly Penetrations, and Smoke Barrier Penetrations: Maintain indicated fire or smoke rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with fire- and smoke-stop materials. Comply with requirements for firestopping and fill materials specified in Section 078413 "Penetration Firestopping."

3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

- A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.
- B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

3.3 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Leak Test: After allowing for a full cure, test sleeves and sleeve seals for leaks. Repair leaks and retest until no leaks exist.
- B. Sleeves and sleeve seals will be considered defective if they do not pass tests and inspections.
- C. Prepare test and inspection reports.

3.4 SLEEVE AND SLEEVE-SEAL SCHEDULE

- A. Use sleeves and sleeve seals for the following piping-penetration applications:
 - 1. Exterior Concrete Walls above Grade:
 - a. Piping Smaller Than NPS 6: Cast-iron pipe sleeves.
 - b. Piping NPS 6 and Larger: Cast-iron pipe sleeves.
 - 2. Exterior Concrete Walls below Grade:

- a. Piping Smaller Than NPS 6: Cast-iron pipe sleeves with sleeve-seal system.
 - 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
- b. Piping NPS 6 and Larger: Cast-iron pipe sleeves with sleeve-seal system.
 - 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.

3. Concrete Slabs-on-Grade:

- a. Piping Smaller Than NPS 6: Cast-iron pipe sleeves with sleeve-seal system.
 - 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
- b. Piping NPS 6 and Larger: Cast-iron pipe sleeves with sleeve-seal system.
 - 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
- 4. Concrete Slabs above Grade:
 - a. Piping Smaller Than NPS 6: Steel pipe sleeves.
 - b. Piping NPS 6 and Larger: Steel pipe sleeves.
- 5. Interior Partitions:
 - a. Piping Smaller Than NPS 6: Steel pipe sleeves.
 - b. Piping NPS 6 and Larger: Galvanized-steel sheet sleeves

END OF SECTION 220517

SECTION 220529 - HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Metal pipe hangers and supports.
- 2. Trapeze pipe hangers.
- 3. Thermal hanger-shield inserts.
- 4. Fastener systems.
- 5. Pipe-positioning systems.
- 6. Equipment supports.

B. Related Requirements:

- 1. Section 055000 "Metal Fabrications" for structural-steel shapes and plates for trapeze hangers for pipe and equipment supports.
- 2. Section 220516 "Expansion Fittings and Loops for Plumbing Piping" for pipe guides and anchors.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: Show fabrication and installation details and include calculations.
- C. Delegated-Design Submittal: For trapeze hangers indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.3 INFORMATIONAL SUBMITTALS

A. Welding certificates.

1.4 QUALITY ASSURANCE

- A. Structural-Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M.
- B. Pipe Welding Qualifications: Qualify procedures and operators according to "2015 ASME Boiler and Pressure Vessel Code, Section IX."

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design trapeze pipe hangers and equipment supports.
- B. Structural Performance: Hangers and supports for plumbing piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.
 - 1. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.
 - 2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.

2.2 METAL PIPE HANGERS AND SUPPORTS

- A. Carbon-Steel Pipe Hangers and Supports:
 - 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 - 2. Galvanized Metallic Coatings: Pregalvanized, hot-dip galvanized, or electro-galvanized.
 - 3. Nonmetallic Coatings: Plastic coated or epoxy powder coated.
 - 4. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.
 - 5. Hanger Rods: Continuous-thread rod, nuts, and washer made of carbon steel.
- B. Stainless-Steel Pipe Hangers and Supports:
 - 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 - 2. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.
 - 3. Hanger Rods: Continuous-thread rod, nuts, and washer made of stainless steel.
- C. Copper Pipe and Tube Hangers:
 - 1. Description: MSS SP-58, Types 1 through 58, copper-coated-steel, factory-fabricated components.
 - 2. Hanger Rods: Continuous-thread rod, nuts, and washer made of copper-coated steel.

2.3 TRAPEZE PIPE HANGERS

A. Description: MSS SP-58, Type 59, shop- or field-fabricated pipe-support assembly, made from structural-carbon-steel shapes, with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts.

2.4 THERMAL HANGER-SHIELD INSERTS

- A. Insulation-Insert Material for Cold Piping: ASTM C552, Type II cellular glass with 100-psig or ASTM C59, Type VI, Grade 1 polyisocyanurate with 125-psig minimum compressive strength and vapor barrier.
- B. Insulation-Insert Material for Hot Piping: Water-repellent-treated, ASTM C533, Type I calcium silicate with 100-psig ASTM C552, Type II cellular glass with 100-psig or ASTM C59, Type VI, Grade 1 polyisocyanurate with 125-psig minimum compressive strength.
- C. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.
- D. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.
- E. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.

2.5 FASTENER SYSTEMS

- A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete, with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
- B. Mechanical-Expansion Anchors: Insert-wedge-type anchors, for use in hardened portland cement concrete, with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
 - 1. Indoor Applications: Zinc-coated or stainless steel.
 - 2. Outdoor Applications: Stainless steel.

2.6 PIPE-POSITIONING SYSTEMS

A. Description: IAPMO PS 42 positioning system composed of metal brackets, clips, and straps for positioning piping in pipe spaces; for plumbing fixtures in commercial applications.

2.7 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural-carbon-steel shapes.

2.8 MATERIALS

- A. Aluminum: ASTM B221.
- B. Carbon Steel: ASTM A1011/A1011M.
- C. Structural Steel: ASTM A36/A36M carbon-steel plates, shapes, and bars; black and galvanized.

- D. Stainless Steel: ASTM A240/A240M.
- E. Grout: ASTM C1107/C1107M, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 - 1. Properties: Nonstaining, noncorrosive, and nongaseous.
 - 2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 APPLICATION

- A. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping materials and installation, for penetrations through fire-rated walls, ceilings, and assemblies.
- B. Strength of Support Assemblies: Where not indicated, select sizes of components, so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb.

3.2 HANGER AND SUPPORT INSTALLATION

- A. Metal Pipe-Hanger Installation: Comply with MSS SP-58. Install hangers, supports, clamps, and attachments as required to properly support piping from building structure.
- B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-58. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.
 - 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size, or install intermediate supports for smaller-diameter pipes as specified for individual pipe hangers.
 - 2. Field fabricate from ASTM A36/A36M carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.
- C. Thermal Hanger-Shield Installation: Install in pipe hanger or shield for insulated piping.
- D. Fastener System Installation:
 - 1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches thick in concrete, after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.
 - 2. Install mechanical-expansion anchors in concrete, after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.
- E. Pipe-Positioning-System Installation: Install support devices to make rigid supply and waste piping connections to each plumbing fixture.

- F. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.
- G. Equipment Support Installation: Fabricate from welded-structural-steel shapes.
- H. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.
- I. Install lateral bracing with pipe hangers and supports to prevent swaying.
- J. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms, and install reinforcing bars through openings at top of inserts.
- K. Load Distribution: Install hangers and supports, so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.
- L. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.

M. Insulated Piping:

- 1. Attach clamps and spacers to piping.
 - a. Piping Operating Above Ambient Air Temperature: Clamp may project through insulation.
 - b. Piping Operating Below Ambient Air Temperature: Use thermal hanger-shield insert with clamp sized to match OD of insert.
 - c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.
- 2. Install MSS SP-58, Type 39 protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 - a. Option: Thermal hanger-shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
- 3. Install MSS SP-58, Type 40 protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 - a. Option: Thermal hanger-shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
- 4. Shield Dimensions for Pipe: Not less than the following:
 - a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 - b. NPS 4: 12 inches long and 0.06 inch thick.
 - c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.
 - d. NPS 8 to NPS 14: 24 inches long and 0.075 inch thick.

- e. NPS 16 to NPS 24: 24 inches long and 0.105 inch thick.
- 5. Pipes NPS 8 and Larger: Include wood or reinforced calcium-silicate-insulation inserts of length at least as long as protective shield.
- 6. Thermal Hanger Shields: Install with insulation of same thickness as piping insulation.

3.3 EQUIPMENT SUPPORTS

- A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.
- B. Grouting: Place grout under supports for equipment, and make bearing surface smooth.
- C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.4 METAL FABRICATIONS

- A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.
- B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
- C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work.

3.5 ADJUSTING

- A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
- B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.6 PAINTING

- A. Touchup: Clean field welds and abraded, shop-painted areas. Paint exposed areas immediately after erecting hangers and supports. Use same materials as those used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 - 1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.
- B. Touchup: Cleaning and touchup painting of field welds, bolted connections, and abraded, shoppainted areas on miscellaneous metal are specified in Section 099113 "Exterior Painting." Section 099123 "Interior Painting." Section 099600 "High-Performance Coatings."
- C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas, and apply galvanizing-repair paint to comply with ASTM A780/A780M.

3.7 HANGER AND SUPPORT SCHEDULE

- A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.
- B. Comply with MSS SP-58 for pipe-hanger selections and applications that are not specified in piping system Sections.
- C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finishes.
- D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.
- E. Use carbon-steel pipe hangers and supports and metal trapeze pipe hangers and attachments for general service applications.
- F. Use stainless-steel pipe hangers and stainless-steel or corrosion-resistant attachments for hostile environment applications.
- G. Use copper-plated pipe hangers and copper or stainless-steel attachments for copper piping and tubing.
- H. Use padded hangers for piping that is subject to scratching.
- I. Use thermal hanger-shield inserts for insulated piping and tubing.
- J. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30.
 - 2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of up to 1050 deg F pipes NPS 4 to NPS 24, requiring up to 4 inches of insulation.
 - 3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes NPS 3/4 to NPS 36, requiring clamp flexibility and up to 4 inches of insulation.
 - 4. Steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes NPS 1/2 to NPS 24 if little or no insulation is required.
 - 5. Pipe Hangers (MSS Type 5): For suspension of pipes NPS 1/2 to NPS 4, to allow off-center closure for hanger installation before pipe erection.
 - 6. Adjustable, Swivel Split- or Solid-Ring Hangers (MSS Type 6): For suspension of noninsulated, stationary pipes NPS 3/4 to NPS 8.
 - 7. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
 - 8. Adjustable Band Hangers (MSS Type 9): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
 - 9. Adjustable, Swivel-Ring Band Hangers (MSS Type 10): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
 - 10. Split Pipe Ring with or without Turnbuckle Hangers (MSS Type 11): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 8.

- 11. Extension Hinged or Two-Bolt Split Pipe Clamps (MSS Type 12): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 3.
- 12. U-Bolts (MSS Type 24): For support of heavy pipes NPS 1/2 to NPS 30.
- 13. Clips (MSS Type 26): For support of insulated pipes not subject to expansion or contraction.
- 14. Pipe Saddle Supports (MSS Type 36): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate.
- 15. Pipe Stanchion Saddles (MSS Type 37): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate, and with U-bolt to retain pipe.
- 16. Adjustable Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes NPS 2-1/2 to NPS 36 if vertical adjustment is required, with steel-pipe base stanchion support and cast-iron floor flange.
- 17. Single-Pipe Rolls (MSS Type 41): For suspension of pipes NPS 1 to NPS 30, from two rods if longitudinal movement caused by expansion and contraction occurs.
- 18. Adjustable Roller Hangers (MSS Type 43): For suspension of pipes NPS 2-1/2 to NPS 24, from single rod if horizontal movement caused by expansion and contraction occurs.
- 19. Complete Pipe Rolls (MSS Type 44): For support of pipes NPS 2 to NPS 42 if longitudinal movement caused by expansion and contraction occurs but vertical adjustment is unnecessary.
- 20. Pipe Roll and Plate Units (MSS Type 45): For support of pipes NPS 2 to NPS 24 if small horizontal movement caused by expansion and contraction occurs and vertical adjustment is unnecessary.
- 21. Adjustable Pipe Roll and Base Units (MSS Type 46): For support of pipes NPS 2 to NPS 30 if vertical and lateral adjustment during installation, in addition to expansion and contraction, is required.
- K. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24.
 - 2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 24 if longer ends are required for riser clamps.
- L. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel Turnbuckles (MSS Type 13): For adjustment of up to 6 inches for heavy loads.
 - 2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.
 - 3. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11 split pipe rings.
 - 4. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.
 - 5. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F piping installations.
- M. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel or Malleable-Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.

- 2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction, to attach to top flange of structural shape.
- 3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
- 4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
- 5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
- 6. C-Clamps (MSS Type 23): For structural shapes.
- 7. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
- 8. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
- 9. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel Ibeams for heavy loads.
- 10. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel Ibeams for heavy loads, with link extensions.
- 11. Malleable-Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
- 12. Welded-Steel Brackets: For support of pipes from below or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 - a. Light (MSS Type 31): 750 lb.
 - b. Medium (MSS Type 32): 1500 lb.
 - c. Heavy (MSS Type 33): 3000 lb.
- 13. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
- 14. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
- 15. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.
- N. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
 - 2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
 - 3. Thermal Hanger-Shield Inserts: For supporting insulated pipe.
- O. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Restraint-Control Devices (MSS Type 47): Where indicated to control piping movement.
 - 2. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches.
 - 3. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41 roll hanger with springs.
 - 4. Spring Sway Braces (MSS Type 50): To retard sway, shock, vibration, or thermal expansion in piping systems.
 - 5. Variable-Spring Hangers (MSS Type 51): Preset to indicated load, and limit variability factor to 25 percent to allow expansion and contraction of piping system from hanger.

- 6. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load, and limit variability factor to 25 percent to allow expansion and contraction of piping system from base support.
- 7. Variable-Spring Trapeze Hangers (MSS Type 53): Preset to indicated load, and limit variability factor to 25 percent to allow expansion and contraction of piping system from trapeze support.
- 8. Constant Supports: For critical piping stress and if necessary to avoid transfer of stress from one support to another support, critical terminal, or connected equipment. Include auxiliary stops for erection, hydrostatic test, and load-adjustment capability. These supports include the following types:
 - a. Horizontal (MSS Type 54): Mounted horizontally.
 - b. Vertical (MSS Type 55): Mounted vertically.
 - c. Trapeze (MSS Type 56): Two vertical-type supports and one trapeze member.
- P. Comply with MSS SP-58 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.
- Q. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.
- R. Use pipe-positioning systems in pipe spaces behind plumbing fixtures to support supply and waste piping for plumbing fixtures.

END OF SECTION 220529

SECTION 220548 - VIBRATION AND SEISMIC CONTROLS FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Elastomeric isolation pads.
- 2. Elastomeric isolation mounts.
- 3. Restrained elastomeric isolation mounts.
- 4. Open-spring isolators.
- 5. Housed-spring isolators.
- 6. Restrained-spring isolators.
- 7. Housed-restrained-spring isolators.
- 8. Pipe-riser resilient supports.
- 9. Resilient pipe guides.
- 10. Elastomeric hangers.
- 11. Spring hangers.
- 12. Snubbers.
- 13. Restraint channel bracings.
- 14. Restraint cables.
- 15. Seismic-restraint accessories.
- 16. Mechanical anchor bolts.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Delegated-Design Submittal: For each vibration isolation and seismic-restraint device.
 - 1. Include design calculations and details for selecting vibration isolators and seismic restraints complying with performance requirements, design criteria, and analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.3 QUALITY ASSURANCE

- A. Comply with seismic-restraint requirements in the IBC unless requirements in this Section are more stringent.
- B. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- C. Seismic-restraint devices shall have horizontal and vertical load testing and analysis and shall bear anchorage preapproval OPA number from OSHPD, preapproval by ICC-ES, or

preapproval by another agency acceptable to authorities having jurisdiction, showing maximum seismic-restraint ratings. Ratings based on independent testing are preferred to ratings based on calculations. If preapproved ratings are unavailable, submittals based on independent testing are preferred. Calculations (including combining shear and tensile loads) to support seismic-restraint designs must be signed and sealed by a qualified professional engineer.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Seismic-Restraint Loading:

- 1. Site Class as Defined in the IBC: C.
- 2. Assigned Seismic Use Group or Building Category as Defined in the IBC: III.
 - a. Component Importance Factor: 1.0.
 - b. Component Response Modification Factor: 1.5.
 - c. Component Amplification Factor: 1.0.
- 3. Design Spectral Response Acceleration at Short Periods (0.2 Second):
- 4. Design Spectral Response Acceleration at 1.0-Second Period:

2.2 ELASTOMERIC ISOLATION PADS

A. Elastomeric Isolation Pads:

- 1. Fabrication: Single or multiple layers of sufficient durometer stiffness for uniform loading over pad area.
- 2. Size: Factory or field cut to match requirements of supported equipment.
- 3. Pad Material: Oil and water resistant with elastomeric properties.
- 4. Surface Pattern: Smooth pattern.
- 5. Infused nonwoven cotton or synthetic fibers.
- 6. Load-bearing metal plates adhered to pads.

2.3 ELASTOMERIC ISOLATION MOUNTS

A. Double-Deflection, Elastomeric Isolation Mounts:

- 1. Mounting Plates:
 - a. Top Plate: Encapsulated steel load transfer top plates, factory drilled and threaded with threaded studs or bolts.
 - b. Baseplate: Encapsulated steel bottom plates with holes provided for anchoring to support structure.
- 2. Elastomeric Material: Molded, oil-resistant rubber, neoprene, or other elastomeric material.

2.4 RESTRAINED ELASTOMERIC ISOLATION MOUNTS

A. Restrained Elastomeric Isolation Mounts:

- 1. Description: All-directional isolator with seismic restraints containing two separate and opposing elastomeric elements that prevent central threaded element and attachment hardware from contacting the housing during normal operation.
 - a. Housing: Cast-ductile iron or welded steel.
 - b. Elastomeric Material: Molded, oil-resistant rubber, neoprene, or other elastomeric material.

2.5 OPEN-SPRING ISOLATORS

- A. Freestanding, Laterally Stable, Open-Spring Isolators:
 - 1. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 2. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - 3. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - 4. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 - 5. Baseplates: Factory-drilled steel plate for bolting to structure with an elastomeric isolator pad attached to the underside. Baseplates shall limit floor load to 500 psig.
 - 6. Top Plate and Adjustment Bolt: Threaded top plate with adjustment bolt and cap screw to fasten and level equipment.

2.6 HOUSED-SPRING ISOLATORS

- A. Freestanding, Laterally Stable, Open-Spring Isolators in Two-Part Telescoping Housing:
 - 1. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 2. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - 3. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - 4. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 - 5. Two-Part Telescoping Housing: A steel top and bottom frame separated by an elastomeric material and enclosing the spring isolators.
 - a. Drilled base housing for bolting to structure with an elastomeric isolator pad attached to the underside. Bases shall limit floor load to 500 psig.
 - b. Top housing with attachment and leveling bolt.

2.7 RESTRAINED-SPRING ISOLATORS

- A. Freestanding, Laterally Stable, Open-Spring Isolators with Vertical-Limit Stop Restraint:
 - 1. Housing: Steel housing with vertical-limit stops to prevent spring extension due to weight being removed.

- a. Base with holes for bolting to structure with an elastomeric isolator pad attached to the underside. Bases shall limit floor load to 500 psig.
- b. Top plate with threaded mounting holes.
- c. Internal leveling bolt that acts as blocking during installation.
- 2. Restraint: Limit stop as required for equipment and authorities having jurisdiction.
- 3. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
- 4. Minimum Additional Travel: 50 percent of the required deflection at rated load.
- 5. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
- 6. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.

2.8 HOUSED-RESTRAINED-SPRING ISOLATORS

- A. Freestanding, Steel, Open-Spring Isolators with Vertical-Limit Stop Restraint in Two-Part Telescoping Housing:
 - 1. Two-Part Telescoping Housing: A steel top and bottom frame separated by an elastomeric material and enclosing the spring isolators. Housings are equipped with adjustable snubbers to limit vertical movement.
 - a. Drilled base housing for bolting to structure with an elastomeric isolator pad attached to the underside. Bases shall limit floor load to 500 psig.
 - b. Threaded top housing with adjustment bolt and cap screw to fasten and level equipment.
 - 2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - 4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.

2.9 PIPE-RISER RESILIENT SUPPORT

- A. Description: All-directional, acoustical pipe anchor consisting of two steel tubes separated by a minimum 1/2-inch- thick neoprene.
 - 1. Vertical-Limit Stops: Steel and neoprene vertical-limit stops arranged to prevent vertical travel in both directions.
 - 2. Maximum Load Per Support: 500 psig on isolation material providing equal isolation in all directions.

2.10 RESILIENT PIPE GUIDES

A. Description: Telescopic arrangement of two steel tubes or post and sleeve arrangement separated by a minimum 1/2-inch- thick neoprene.

1. Factory-Set Height Guide with Shear Pin: Shear pin shall be removable and reinsertable to allow for selection of pipe movement. Guides shall be capable of motion to meet location requirements.

2.11 ELASTOMERIC HANGERS

- A. Elastomeric Mount in a Steel Frame with Upper and Lower Steel Hanger Rods:
 - 1. Frame: Steel, fabricated with a connection for an upper threaded hanger rod and an opening on the underside to allow for a maximum of 30 degrees of angular lower hanger-rod misalignment without binding or reducing isolation efficiency.
 - 2. Dampening Element: Molded, oil-resistant rubber, neoprene, or other elastomeric material with a projecting bushing for the underside opening preventing steel to steel contact.

2.12 SPRING HANGERS

- A. Combination Coil-Spring and Elastomeric-Insert Hanger with Spring and Insert in Compression:
 - 1. Frame: Steel, fabricated for connection to threaded hanger rods and to allow for a maximum of 30 degrees of angular hanger-rod misalignment without binding or reducing isolation efficiency.
 - 2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - 4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 - 6. Elastomeric Element: Molded, oil-resistant rubber or neoprene. Steel-washer-reinforced cup to support spring and bushing projecting through bottom of frame.
 - 7. Adjustable Vertical Stop: Steel washer with neoprene washer "up-stop" on lower threaded rod.
 - 8. Self-centering hanger-rod cap to ensure concentricity between hanger rod and support spring coil.

2.13 SNUBBERS

- A. Description: Factory fabricated using welded structural-steel shapes and plates, anchor bolts, and replaceable resilient isolation washers and bushings.
 - 1. Anchor bolts for attaching to concrete shall be seismic-rated, drill-in, and stud-wedge or female-wedge type.
 - 2. Resilient Isolation Washers and Bushings: Oil- and water-resistant neoprene.
 - 3. Maximum 1/4-inch air gap, and minimum 1/4-inch- thick resilient cushion.

2.14 RESTRAINT CHANNEL BRACINGS

A. Description: MFMA-4, shop- or field-fabricated bracing assembly made of slotted steel channels with accessories for attachment to braced component at one end and to building structure at the other end and other matching components and with corrosion-resistant coating; rated in tension, compression, and torsion forces.

2.15 RESTRAINT CABLES

A. Restraint Cables: ASTM A 603 galvanized-steel cables. End connections made of steel assemblies with thimbles, brackets, swivel, and bolts designed for restraining cable service; with a minimum of two clamping bolts for cable engagement.

2.16 SEISMIC-RESTRAINT ACCESSORIES

- A. Hanger-Rod Stiffener: Steel tube or steel slotted-support-system sleeve with internally bolted connections to hanger rod.
- B. Bushings for Floor-Mounted Equipment Anchor Bolts: Neoprene bushings designed for rigid equipment mountings, and matched to type and size of anchor bolts and studs.
- C. Bushing Assemblies for Wall-Mounted Equipment Anchorage: Assemblies of neoprene elements and steel sleeves designed for rigid equipment mountings, and matched to type and size of attachment devices used.
- D. Resilient Isolation Washers and Bushings: One-piece, molded, oil- and water-resistant neoprene, with a flat washer face.
- E. Mechanical Anchor Bolts: Drilled-in and stud-wedge or female-wedge type in zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488.

PART 3 - EXECUTION

3.1 APPLICATIONS

- A. Hanger-Rod Stiffeners: Install hanger-rod stiffeners where indicated or scheduled on Drawings to receive them and where required to prevent buckling of hanger rods due to seismic forces.
- B. Strength of Support and Seismic-Restraint Assemblies: Where not indicated, select sizes of components so strength is adequate to carry present and future static and seismic loads within specified loading limits.

3.2 VIBRATION CONTROL AND SEISMIC-RESTRAINT DEVICE INSTALLATION

A. Installation of vibration isolators must not cause any change of position of equipment, piping, or ductwork resulting in stresses or misalignment.

B. Comply with requirements in Section 077200 "Roof Accessories" for installation of roof curbs, equipment supports, and roof penetrations.

C. Equipment Restraints:

- 1. Install seismic snubbers on plumbing equipment mounted on vibration isolators. Locate snubbers as close as possible to vibration isolators and bolt to equipment base and supporting structure.
- 2. Install resilient bolt isolation washers on equipment anchor bolts where clearance between anchor and adjacent surface exceeds 0.125 inch.

D. Piping Restraints:

- 1. Comply with requirements in MSS SP-127.
- 2. Space lateral supports a maximum of 40 feet o.c., and longitudinal supports a maximum of 80 feet o.c.
- 3. Brace a change of direction longer than 12 feet.
- E. Install cables so they do not bend across edges of adjacent equipment or building structure.
- F. Install bushing assemblies for anchor bolts for floor-mounted equipment, arranged to provide resilient media between anchor bolt and mounting hole in concrete base.
- G. Install bushing assemblies for mounting bolts for wall-mounted equipment, arranged to provide resilient media where equipment or equipment-mounting channels are attached to wall.
- H. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.

I. Drilled-in Anchors:

- Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling. Notify the structural engineer if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
- 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
- 3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
- 4. Set anchors to manufacturer's recommended torque, using a torque wrench.
- 5. Install zinc-coated steel anchors for interior and stainless-steel anchors for exterior applications.

3.3 ACCOMMODATION OF DIFFERENTIAL SEISMIC MOTION

A. Install flexible connections in piping where they cross seismic joints, where adjacent sections or branches are supported by different structural elements, and where the connections terminate with connection to equipment that is anchored to a different structural element from the one

supporting the connections as they approach equipment. Comply with requirements in Section 221116 "Domestic Water Piping" for piping flexible connections.

3.4 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections:
 - 1. Provide evidence of recent calibration of test equipment by a testing agency acceptable to authorities having jurisdiction.
 - 2. Schedule test with Owner, through Architect, before connecting anchorage device to restrained component (unless postconnection testing has been approved), and with at least seven days' advance notice.
 - 3. Obtain Architect's approval before transmitting test loads to structure. Provide temporary load-spreading members.
 - 4. Test at least four of each type and size of installed anchors and fasteners selected by Architect.
 - 5. Test to 90 percent of rated proof load of device.
 - 6. Measure isolator restraint clearance.
 - 7. Measure isolator deflection.
 - 8. Verify snubber minimum clearances.
- C. Remove and replace malfunctioning units and retest as specified above.
- D. Prepare test and inspection reports.

3.5 ADJUSTING

- A. Adjust isolators after piping system is at operating weight.
- B. Adjust limit stops on restrained-spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.

END OF SECTION 220548

SECTION 220553 - IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Equipment labels.
- 2. Warning signs and labels.
- 3. Pipe labels.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

A. Metal Labels for Equipment:

- 1. Material and Thickness: Brass, 0.032-inch stainless steel, 0.025-inch aluminum, 0.032-inch or anodized aluminum, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
- 2. Letter Color: White.
- 3. Background Color: Black.
- 4. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
- 5. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.
- 6. Fasteners: Stainless-steel rivets or self-tapping screws.
- 7. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

B. Plastic Labels for Equipment:

- 1. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch thick, and having predrilled holes for attachment hardware.
- 2. Letter Color: White.
- 3. Background Color: Black.
- 4. Maximum Temperature: Able to withstand temperatures up to 160 deg F.

- 5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
- 6. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.
- 7. Fasteners: Stainless-steel rivets or self-tapping screws.
- 8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- C. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), and the Specification Section number and title where equipment is specified.
- D. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number, and identify Drawing numbers where equipment is indicated (plans, details, and schedules) and the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 WARNING SIGNS AND LABELS

- A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch thick, and having predrilled holes for attachment hardware.
- B. Letter Color: White.
- C. Background Color: Black.
- D. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
- E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
- F. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.
- G. Fasteners: Stainless-steel rivets or self-tapping screws.
- H. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- I. Label Content: Include caution and warning information plus emergency notification instructions.

2.3 PIPE LABELS

A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.

- B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to partially cover circumference of pipe and to attach to pipe without fasteners or adhesive.
- C. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.
- D. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings; also include pipe size and an arrow indicating flow direction.
 - 1. Flow-Direction Arrows: Integral with piping-system service lettering to accommodate both directions or as separate unit on each pipe label to indicate flow direction.
 - 2. Lettering Size: Size letters according to ASME A13.1 for piping At least 1/2 inch for viewing distances up to 72 inches and proportionately larger lettering for greater viewing distances.

PART 3 - EXECUTION

3.1 EQUIPMENT LABEL INSTALLATION

- A. Install or permanently fasten labels on each major item of mechanical equipment.
- B. Locate equipment labels where accessible and visible.

3.2 PIPE LABEL INSTALLATION

- A. Piping Color Coding: Painting of piping is specified in Section 099123 "Interior Painting."
- B. Pipe Label Locations: Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:
 - 1. Near each valve and control device.
 - 2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
 - 3. Near penetrations and on both sides of through walls, floors, ceilings, and inaccessible enclosures.
 - 4. At access doors, manholes, and similar access points that permit view of concealed piping.
 - 5. Near major equipment items and other points of origination and termination.
 - 6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.
 - 7. On piping above removable acoustical ceilings. Omit intermediately spaced labels.

C. Pipe Label Color Schedule:

- 1. Domestic Water Piping
 - a. Background: Safety green.

- Letter Colors: White. b.
- Sanitary Waste and Storm Drainage Piping: 2.
 - Background Color: Safety black. Letter Color: White. a.
 - b.

END OF SECTION 220553

SECTION 220719 - PLUMBING PIPING INSULATION

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes insulating the following plumbing piping services:
 - 1. Domestic hot-water piping.
 - 2. Domestic recirculating hot-water piping.
 - 3. Sanitary waste piping exposed to freezing conditions.
 - 4. Storm-water piping exposed to freezing conditions.
 - 5. Roof drains and rainwater leaders.
 - 6. Supplies and drains for handicap-accessible lavatories and sinks.

B. Related Sections:

1. Section 220716 "Plumbing Equipment Insulation."

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 - 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 - 2. Detail attachment and covering of heat tracing inside insulation.
 - 3. Detail insulation application at pipe expansion joints for each type of insulation.
 - 4. Detail insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.
 - 5. Detail removable insulation at piping specialties, equipment connections, and access panels.
 - 6. Detail application of field-applied jackets.
 - 7. Detail application at linkages of control devices.

1.3 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.4 QUALITY ASSURANCE

A. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84 by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.

- 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
- 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.
- B. Comply with the following applicable standards and other requirements specified for miscellaneous components:
 - 1. Supply and Drain Protective Shielding Guards: ICC A117.1.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

- A. Comply with requirements in "Piping Insulation Schedule, General," "Indoor Piping Insulation Schedule," "Outdoor, Aboveground Piping Insulation Schedule," and "Outdoor, Underground Piping Insulation Schedule" articles for where insulating materials shall be applied.
- B. Products shall not contain asbestos, lead, mercury, or mercury compounds.
- C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.
- D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
- E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
- F. Cellular Glass: Inorganic, incombustible, foamed or cellulated glass with annealed, rigid, hermetically sealed cells. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. Special-Shaped Insulation: ASTM C 552, Type III.
 - 2. Preformed Pipe Insulation without Jacket: Comply with ASTM C 552, Type II, Class 1.
 - 3. Preformed Pipe Insulation with Factory-Applied ASJ ASJ-SSL: Comply with ASTM C 552, Type II, Class 2.
 - 4. Factory fabricate shapes according to ASTM C 450 and ASTM C 585.
- G. Flexible Elastomeric Insulation: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials.
- H. Mineral-Fiber, Preformed Pipe Insulation:
 - 1. Type I, 850 Deg F (454 Deg C) Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, with factory-applied ASJ with factory-applied ASJ-SSL. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

I. Polyolefin: Unicellular, polyethylene thermal plastic insulation. Comply with ASTM C 534 or ASTM C 1427, Type I, Grade 1 for tubular materials.

2.2 INSULATING CEMENTS

A. Mineral-Fiber, Hydraulic-Setting Insulating and Finishing Cement: Comply with ASTM C 449.

2.3 ADHESIVES

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated, unless otherwise indicated.
- B. Cellular-Glass Adhesive: Two-component, thermosetting urethane adhesive containing no flammable solvents, with a service temperature range of minus 100 to plus 200 deg F.

1.

- 2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- 3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- C. Flexible Elastomeric and Polyolefin Adhesive: Comply with MIL-A-24179A, Type II, Class I.
 - 1. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 2. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- D. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 - 1. For indoor applications, adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 2. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- E. ASJ Adhesive, and FSK Jacket Adhesive: Comply with MIL-A-3316C, Class 2, Grade A for bonding insulation jacket lap seams and joints.
 - 1. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 2. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- F. PVC Jacket Adhesive: Compatible with PVC jacket.

- 1. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- 2. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.4 MASTICS

- A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.
 - 1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below-ambient services.
 - 1. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm at 43-mil dry film thickness.
 - 2. Service Temperature Range: Minus 20 to plus 180 deg F.
 - 3. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.
 - 4. Color: White.
- C. Breather Mastic: Water based; suitable for indoor and outdoor use on above-ambient services.
 - 1. Water-Vapor Permeance: ASTM F 1249, 1.8 perms at 0.0625-inch dry film thickness.
 - 2. Service Temperature Range: Minus 20 to plus 180 deg F.
 - 3. Solids Content: 60 percent by volume and 66 percent by weight.
 - 4. Color: White.

2.5 SEALANTS

A. Joint Sealants:

- 1. Materials shall be compatible with insulation materials, jackets, and substrates.
- 2. Permanently flexible, elastomeric sealant.
- 3. Service Temperature Range: Minus 100 to plus 300 deg F.
- 4. Color: White or gray.
- 5. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- 6. Sealants shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- B. FSK and Metal Jacket Flashing Sealants:
 - 1. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 2. Fire- and water-resistant, flexible, elastomeric sealant.
 - 3. Service Temperature Range: Minus 40 to plus 250 deg F.
 - 4. Color: Aluminum.
 - 5. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

- 6. Sealants shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- C. ASJ Flashing Sealants, and Vinyl, PVDC, and PVC Jacket Flashing Sealants:
 - 1. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 2. Fire- and water-resistant, flexible, elastomeric sealant.
 - 3. Service Temperature Range: Minus 40 to plus 250 deg F.
 - 4. Color: White.
 - 5. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 6. Sealants shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.6 FACTORY-APPLIED JACKETS

- A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 - 1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.
 - 2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.
 - 3. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.

2.7 FIELD-APPLIED FABRIC-REINFORCING MESH

A. Woven Polyester Fabric: Approximately 1 oz./sq. yd. with a thread count of 10 strands by 10 strands/sq. in., in a Leno weave, for pipe.

2.8 FIELD-APPLIED JACKETS

- A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.
- B. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.
 - 1. Adhesive: As recommended by jacket material manufacturer.
 - 2. Color: White
 - 3. Factory-fabricated fitting covers to match jacket if available; otherwise, field fabricate.
 - a. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, unions, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories.
- C. Aluminum Jacket: Comply with ASTM B 209, Alloy 3003, 3005, 3105, or 5005, Temper H-14.

- 1. Sheet and roll stock ready for shop or field sizing
- 2. Finish and thickness are indicated in field-applied jacket schedules.
- 3. Moisture Barrier for Indoor Applications: 1-mil- thick, heat-bonded polyethylene and kraft paper.
- 4. Moisture Barrier for Outdoor Applications: 3-mil- thick, heat-bonded polyethylene and kraft paper.
- 5. Factory-Fabricated Fitting Covers:
 - a. Same material, finish, and thickness as jacket.
 - b. Preformed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows.
 - c. Tee covers.
 - d. Flange and union covers.
 - e. End caps.
 - f. Beveled collars.
 - g. Valve covers.
 - h. Field fabricate fitting covers only if factory-fabricated fitting covers are not available.
- D. Underground Direct-Buried Jacket: 125-mil- thick vapor barrier and waterproofing membrane consisting of a rubberized bituminous resin reinforced with a woven-glass fiber or polyester scrim and laminated aluminum foil.

2.9 TAPES

- A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.
 - 1. Width: 3 inches
 - 2. Thickness: 11.5 mils.
 - 3. Adhesion: 90 ounces force/inch in width.
 - 4. Elongation: 2 percent.
 - 5. Tensile Strength: 40 lbf/inch in width.
 - 6. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.
- B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.
 - 1. Width: 3 inches.
 - 2. Thickness: 6.5 mils.
 - 3. Adhesion: 90 ounces force/inch in width.
 - 4. Elongation: 2 percent.
 - 5. Tensile Strength: 40 lbf/inch in width.
 - 6. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.
- C. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive; suitable for indoor and outdoor applications.
 - 1. Width: 2 inches.
 - 2. Thickness: 6 mils.
 - 3. Adhesion: 64 ounces force/inch in width.
 - 4. Elongation: 500 percent.
 - 5. Tensile Strength: 18 lbf/inch in width.

- D. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.
 - 1. Width: 2 inches.
 - 2. Thickness: 3.7 mils.
 - 3. Adhesion: 100 ounces force/inch in width.
 - 4. Elongation: 5 percent.
 - 5. Tensile Strength: 34 lbf/inch in width.

2.10 SECUREMENTS

- A. Aluminum Bands: ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch thick, 1/2 inch wide with wing seal.
- B. Staples: Outward-clinching insulation staples, nominal 3/4-inch- wide, stainless steel or Monel.
- C. Wire: 0.080-inch nickel-copper.

2.11 PROTECTIVE SHIELDING GUARDS

- A. Protective Shielding Pipe Covers, :
 - 1. Description: Manufactured plastic wraps for covering plumbing fixture hot-water supply hot- and cold-water supplies and trap and drain piping. Comply with Americans with Disabilities Act (ADA) requirements.
- B. Protective Shielding Piping Enclosures, :
 - 1. Description: Manufactured plastic enclosure for covering plumbing fixture hot- and cold-water supplies and trap and drain piping. Comply with ADA requirements.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.
- B. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.
- C. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.2 GENERAL INSTALLATION REQUIREMENTS

- A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping including fittings, valves, and specialties.
- B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of pipe system as specified in insulation system schedules.

- C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
- D. Install insulation with longitudinal seams at top and bottom of horizontal runs.
- E. Install multiple layers of insulation with longitudinal and end seams staggered.
- F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.
- G. Keep insulation materials dry during application and finishing.
- H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- I. Install insulation with least number of joints practical.
- J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 - 1. Install insulation continuously through hangers and around anchor attachments.
 - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 - 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 - 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.
- K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
- L. Install insulation with factory-applied jackets as follows:
 - 1. Draw jacket tight and smooth.
 - 2. Cover circumferential joints with 3-inch- wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
 - 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches o.c.
 - a. For below-ambient services, apply vapor-barrier mastic over staples.
 - 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
 - 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.

- M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.
- N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
- O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.
- P. For above-ambient services, do not install insulation to the following:
 - 1. Vibration-control devices.
 - 2. Testing agency labels and stamps.
 - 3. Nameplates and data plates.
 - 4. Cleanouts.

3.3 PENETRATIONS

- A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
 - 4. Seal jacket to roof flashing with flashing sealant.
- B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.
- C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
 - 4. Seal jacket to wall flashing with flashing sealant.
- D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

- E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.
 - 1. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping and fire-resistive joint sealers.

F. Insulation Installation at Floor Penetrations:

- 1. Pipe: Install insulation continuously through floor penetrations.
- 2. Seal penetrations through fire-rated assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

3.4 GENERAL PIPE INSULATION INSTALLATION

- A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.
- B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:
 - 1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.
 - 2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
 - 3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
 - 4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.
 - 5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.
 - 6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.
 - 7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for

- above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.
- 8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.
- 9. Stencil or label the outside insulation jacket of each union with the word "union." Match size and color of pipe labels.
- C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.
- D. Install removable insulation covers at locations indicated. Installation shall conform to the following:
 - 1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.
 - 2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.
 - 3. Construct removable valve insulation covers in same manner as for flanges, except divide the two-part section on the vertical center line of valve body.
 - 4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.
 - 5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.

3.5 INSTALLATION OF CELLULAR-GLASS INSULATION

- A. Insulation Installation on Straight Pipes and Tubes:
 - 1. Secure each layer of insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
 - 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
 - 3. For insulation with factory-applied jackets on above-ambient services, secure laps with outward clinched staples at 6 inches o.c.
 - 4. For insulation with factory-applied jackets on below-ambient services, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.
- B. Insulation Installation on Pipe Flanges:

- 1. Install preformed pipe insulation to outer diameter of pipe flange.
- 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
- 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of cellular-glass block insulation of same thickness as pipe insulation.
- 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:

- 1. Install preformed sections of same material as straight segments of pipe insulation when available. Secure according to manufacturer's written instructions.
- 2. When preformed sections of insulation are not available, install mitered sections of cellular-glass insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:

- 1. Install preformed sections of cellular-glass insulation to valve body.
- 2. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
- 3. Install insulation to flanges as specified for flange insulation application.

3.6 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION

- A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.
 - 4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

C. Insulation Installation on Pipe Fittings and Elbows:

- 1. Install mitered sections of pipe insulation.
- 2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

D. Insulation Installation on Valves and Pipe Specialties:

1. Install preformed valve covers manufactured of same material as pipe insulation when available.

- 2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
- 3. Install insulation to flanges as specified for flange insulation application.
- 4. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.7 INSTALLATION OF MINERAL-FIBER PREFORMED PIPE INSULATION

A. Insulation Installation on Straight Pipes and Tubes:

- 1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
- 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
- 3. For insulation with factory-applied jackets on above-ambient surfaces, secure laps with outward clinched staples at 6 inches o.c.
- 4. For insulation with factory-applied jackets on below-ambient surfaces, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:

- 1. Install preformed pipe insulation to outer diameter of pipe flange.
- 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
- 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
- 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:

- 1. Install preformed sections of same material as straight segments of pipe insulation when available.
- 2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:

- 1. Install preformed sections of same material as straight segments of pipe insulation when available.
- 2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
- 3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
- 4. Install insulation to flanges as specified for flange insulation application.

3.8 INSTALLATION OF POLYOLEFIN INSULATION

A. Insulation Installation on Straight Pipes and Tubes:

1. Seal split-tube longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

B. Insulation Installation on Pipe Flanges:

- 1. Install pipe insulation to outer diameter of pipe flange.
- 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
- 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of polyolefin sheet insulation of same thickness as pipe insulation.
- 4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

C. Insulation Installation on Pipe Fittings and Elbows:

- 1. Install mitered sections of polyolefin pipe insulation.
- 2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

D. Insulation Installation on Valves and Pipe Specialties:

- 1. Install cut sections of polyolefin pipe and sheet insulation to valve body.
- 2. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
- 3. Install insulation to flanges as specified for flange insulation application.
- 4. Secure insulation to valves and specialties, and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.9 FIELD-APPLIED JACKET INSTALLATION

A. Where FSK jackets are indicated, install as follows:

- 1. Draw jacket material smooth and tight.
- 2. Install lap or joint strips with same material as jacket.
- 3. Secure jacket to insulation with manufacturer's recommended adhesive.
- 4. Install jacket with 1-1/2-inch laps at longitudinal seams and 3-inch- wide joint strips at end joints.
- 5. Seal openings, punctures, and breaks in vapor-retarder jackets and exposed insulation with vapor-barrier mastic.
- B. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints. Seal with manufacturer's recommended adhesive.

- 1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.
- C. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints.

3.10 FINISHES

- A. Insulation with ASJ, Glass-Cloth, or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Section 099113 "Exterior Painting" and Section 099123 "Interior Painting."
 - 1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.
 - a. Finish Coat Material: Interior, flat, latex-emulsion size.
- B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.
- C. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.
- D. Do not field paint aluminum or stainless-steel jackets.

3.11 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.12 PIPING INSULATION SCHEDULE, GENERAL

- A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.
- B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:
 - 1. Drainage piping located in crawl spaces.
 - 2. Underground piping.
 - 3. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

3.13 UNDERGROUND, FIELD-INSTALLED INSULATION JACKET

A. For underground direct-buried piping applications, install underground direct-buried jacket over insulation material.

END OF SECTION 220719

SECTION 221116 - DOMESTIC WATER PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes under-building-slab and aboveground domestic water pipes, tubes, and fittings inside buildings.

B. Related Requirements:

1. Section 221113 "Facility Water Distribution Piping" for water-service piping and water meters outside the building from source to the point where water-service piping enters the building.

1.2 ACTION SUBMITTALS

A. Product Data: For transition fittings and dielectric fittings.

B. LEED Submittals:

- 1. Product Data for Credit IEQ 4.1: For solvent cements and adhesive primers, documentation including printed statement of VOC content.
- 2. Laboratory Test Reports for Credit IEQ 4: For solvent cements and adhesive primers, documentation indicating that products comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

1.3 INFORMATIONAL SUBMITTALS

- A. System purging and disinfecting activities report.
- B. Field quality-control reports.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

B. Potable-water piping and components shall comply with NSF 14 and NSF 61 Annex G. Plastic piping components shall be marked with "NSF-pw."

2.2 COPPER TUBE AND FITTINGS

- A. Hard Copper Tube: ASTM B 88, Type L and ASTM B 88, Type M water tube, drawn temper.
- B. Soft Copper Tube: ASTM B 88, Type K and ASTM B 88, Type L water tube, annealed temper.
- C. Cast-Copper, Solder-Joint Fittings: ASME B16.18, pressure fittings.
- D. Wrought-Copper, Solder-Joint Fittings: ASME B16.22, wrought-copper pressure fittings.
- E. Bronze Flanges: ASME B16.24, Class 150, with solder-joint ends.

F. Copper Unions:

- 1. MSS SP-123.
- 2. Cast-copper-alloy, hexagonal-stock body.
- 3. Ball-and-socket, metal-to-metal seating surfaces.
- 4. Solder-joint or threaded ends.

G. Copper Pressure-Seal-Joint Fittings:

- 1. Fittings for NPS 2 and Smaller: Wrought-copper fitting with EPDM-rubber, Oring seal in each end.
- 2. Fittings for NPS 2-1/2 to NPS 4: Cast-bronze or wrought-copper fitting with EPDM-rubber, O-ring seal in each end.

H. Copper Push-on-Joint Fittings:

- 1. Cast-copper fitting complying with ASME B16.18 or wrought-copper fitting complying with ASME B 16.22.
- 2. Stainless-steel teeth and EPDM-rubber, O-ring seal in each end instead of solder-joint ends.

2.3 DUCTILE-IRON PIPE AND FITTINGS

A. Mechanical-Joint, Ductile-Iron Pipe:

- 1. AWWA C151/A21.51, with mechanical-joint bell and plain spigot end unless grooved or flanged ends are indicated.
- 2. Glands, Gaskets, and Bolts: AWWA C111/A21.11, ductile- or gray-iron glands, rubber gaskets, and steel bolts.

- B. Standard-Pattern, Mechanical-Joint Fittings:
 - 1. AWWA C110/A21.10, ductile or gray iron.
 - 2. Glands, Gaskets, and Bolts: AWWA C111/A21.11, ductile- or gray-iron glands, rubber gaskets, and steel bolts.
- C. Compact-Pattern, Mechanical-Joint Fittings:
 - 1. AWWA C153/A21.53, ductile iron.
 - 2. Glands, Gaskets, and Bolts: AWWA C111/A21.11, ductile- or gray-iron glands, rubber gaskets, and steel bolts.

2.4 GALVANIZED-STEEL PIPE AND FITTINGS

- A. Galvanized-Steel Pipe:
 - 1. ASTM A 53/A 53M, Type E, Grade B, Standard Weight.
 - 2. Include ends matching joining method.
- B. Galvanized-Steel Pipe Nipples: ASTM A 733, made of ASTM A 53/A 53M or ASTM A 106/A 106M, Standard Weight, seamless steel pipe with threaded ends.
- C. Galvanized, Gray-Iron Threaded Fittings: ASME B16.4, Class 125, standard pattern.
- D. Malleable-Iron Unions:
 - 1. ASME B16.39, Class 150.
 - 2. Hexagonal-stock body.
 - 3. Ball-and-socket, metal-to-metal, bronze seating surface.
 - 4. Threaded ends.
- E. Flanges: ASME B16.1, Class 125, cast iron.

2.5 CPVC PIPING

- A. CPVC Pipe: ASTM F 441/F 441M, Schedule 40 and Schedule 80.
 - 1. CPVC Socket Fittings: ASTM F 438 for Schedule 40 and ASTM F 439 for Schedule 80.
 - 2. CPVC Threaded Fittings: ASTM F 437, Schedule 80.
- B. CPVC Piping System: ASTM D 2846/D 2846M, SDR 11, pipe and socket fittings.
- C. CPVC Tubing System: ASTM D 2846/D 2846M, SDR 11, tube and socket fittings.

2.6 PEX TUBE AND FITTINGS

- A. PEX Distribution System: ASTM F 877, SDR 9 tubing.
- B. Fittings for PEX Tube: ASTM F 1807, metal-insert type with copper or stainless-steel crimp rings and matching PEX tube dimensions.
- C. Manifold: Multiple-outlet, plastic or corrosion-resistant-metal assembly complying with ASTM F 877; with plastic or corrosion-resistant-metal valve for each outlet.

2.7 PVC PIPE AND FITTINGS

- A. PVC Pipe: ASTM D 1785, Schedule 40 and Schedule 80.
- B. PVC Socket Fittings: ASTM D 2466 for Schedule 40 and ASTM D 2467 for Schedule 80.
- C. PVC Schedule 80 Threaded Fittings: ASTM D 2464.

2.8 PIPING JOINING MATERIALS

- A. Pipe-Flange Gasket Materials:
 - 1. AWWA C110/A21.10, rubber, flat face, 1/8 inch thick or ASME B16.21, nonmetallic and asbestos free unless otherwise indicated.
 - 2. Full-face or ring type unless otherwise indicated.
- B. Metal, Pipe-Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.
- C. Solder Filler Metals: ASTM B 32, lead-free alloys.
- D. Flux: ASTM B 813, water flushable.
- E. Brazing Filler Metals: AWS A5.8/A5.8M, BCuP Series, copper-phosphorus alloys for general-duty brazing unless otherwise indicated.
- F. Solvent Cements for Joining CPVC Piping and Tubing: ASTM F 493.
 - 1. CPVC solvent cement shall have a VOC content of 490 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 2. Adhesive primer shall have a VOC content of 550 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 3. Solvent cement and adhesive primer shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

- G. Solvent Cements for Joining PVC Piping: ASTM D 2564. Include primer according to ASTM F 656.
 - 1. PVC solvent cement shall have a VOC content of 510 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 2. Adhesive primer shall have a VOC content of 550 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 3. Solvent cement and adhesive primer shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- H. Plastic, Pipe-Flange Gaskets, Bolts, and Nuts: Type and material recommended by piping system manufacturer unless otherwise indicated.

2.9 TRANSITION FITTINGS

- A. General Requirements:
 - 1. Same size as pipes to be joined.
 - 2. Pressure rating at least equal to pipes to be joined.
 - 3. End connections compatible with pipes to be joined.
- B. Fitting-Type Transition Couplings: Manufactured piping coupling or specified piping system fitting.
- C. Plastic-to-Metal Transition Fittings:
 - 1. Description:
 - a. CPVC or PVC one-piece fitting with manufacturer's Schedule 80 equivalent dimensions.
 - b. One end with threaded brass insert and one solvent-cement-socket or threaded end.
- D. Plastic-to-Metal Transition Unions:
 - 1. Description:
 - a. CPVC or PVC four-part union.
 - b. Brass or stainless-steel threaded end.
 - c. Solvent-cement-joint or threaded plastic end.
 - d. Rubber O-ring.
 - e. Union nut.

2.10 DIELECTRIC FITTINGS

A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.

B. Dielectric Unions:

- 1. Standard: ASSE 1079.
- 2. Pressure Rating: 125 psig minimum at 180 deg F 150 psig 250 psig End Connections: Solder-joint copper alloy and threaded ferrous.

C. Dielectric Flanges:

- 1. Standard: ASSE 1079.
- 2. Factory-fabricated, bolted, companion-flange assembly.
- 3. Pressure Rating: 125 psig minimum at 180 deg F 150 psig 175 psig 300 psig
- 4. End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.

D. Dielectric-Flange Insulating Kits:

- 1. Nonconducting materials for field assembly of companion flanges.
- 2. Pressure Rating: 150 psig.
- 3. Gasket: Neoprene or phenolic.
- 4. Bolt Sleeves: Phenolic or polyethylene.
- 5. Washers: Phenolic with steel backing washers.

E. Dielectric Nipples:

- 1. Standard: IAPMO PS 66.
- 2. Electroplated steel nipple complying with ASTM F 1545.
- 3. Pressure Rating and Temperature: 300 psig at 225 deg F.
- 4. End Connections: Male threaded or grooved.
- 5. Lining: Inert and noncorrosive, propylene.

PART 3 - EXECUTION

3.1 EARTHWORK

A. Comply with requirements in Section 312000 "Earth Moving" for excavating, trenching, and backfilling.

3.2 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of domestic water piping. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on coordination drawings.

- B. Install copper tubing under building slab according to CDA's "Copper Tube Handbook."
- C. Install ductile-iron piping under building slab with restrained joints according to AWWA C600 and AWWA M41.
- D. Install shutoff valve, hose-end drain valve, strainer, pressure gage, and test tee with valve inside the building at each domestic water-service entrance. Comply with requirements for pressure gages in Section 220519 "Meters and Gages for Plumbing Piping" and with requirements for drain valves and strainers in Section 221119 "Domestic Water Piping Specialties."
- E. Install shutoff valve immediately upstream of each dielectric fitting.
- F. Install water-pressure-reducing valves downstream from shutoff valves. Comply with requirements for pressure-reducing valves in Section 221119 "Domestic Water Piping Specialties."
- G. Install domestic water piping level with 0.25 percent slope downward toward drain without pitch and plumb.
- H. Rough-in domestic water piping for water-meter installation according to utility company's requirements.
- I. Install seismic restraints on piping. Comply with requirements for seismic-restraint devices in Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment."
- J. Install piping concealed from view and protected from physical contact by building occupants unless otherwise indicated and except in equipment rooms and service areas.
- K. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- L. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal, and coordinate with other services occupying that space.
- M. Install piping to permit valve servicing.
- N. Install nipples, unions, special fittings, and valves with pressure ratings the same as or higher than the system pressure rating used in applications below unless otherwise indicated.
- O. Install piping free of sags and bends.
- P. Install fittings for changes in direction and branch connections.
- Q. Install PEX piping with loop at each change of direction of more than 90 degrees.

- R. Install unions in copper tubing at final connection to each piece of equipment, machine, and specialty.
- S. Install pressure gages on suction and discharge piping for each plumbing pump and packaged booster pump. Comply with requirements for pressure gages in Section 220519 "Meters and Gages for Plumbing Piping."
- T. Install thermostats in hot-water circulation piping. Comply with requirements for thermostats in Section 221123 "Domestic Water Pumps."
- U. Install thermometers on inlet and outlet piping from each water heater. Comply with requirements for thermometers in Section 220519 "Meters and Gages for Plumbing Piping."
- V. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."
- W. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."
- X. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 220518 "Escutcheons for Plumbing Piping."

3.3 JOINT CONSTRUCTION

- A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- B. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.
- C. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.
- D. Brazed Joints for Copper Tubing: Comply with CDA's "Copper Tube Handbook," "Brazed Joints" chapter.
- E. Soldered Joints for Copper Tubing: Apply ASTM B 813, water-flushable flux to end of tube. Join copper tube and fittings according to ASTM B 828 or CDA's "Copper Tube Handbook."

- F. Pressure-Sealed Joints for Copper Tubing: Join copper tube and pressure-seal fittings with tools recommended by fitting manufacturer.
- G. Flanged Joints: Select appropriate asbestos-free, nonmetallic gasket material in size, type, and thickness suitable for domestic water service. Join flanges with gasket and bolts according to ASME B31.9.
- H. Joint Construction for Solvent-Cemented Plastic Piping: Clean and dry joining surfaces. Join pipe and fittings according to the following:
 - 1. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements. Apply primer.
 - 2. CPVC Piping: Join according to ASTM D 2846/D 2846M Appendix.
 - 3. PVC Piping: Join according to ASTM D 2855.
- I. Joints for PEX Piping: Join according to ASTM F 1807.
- J. Joints for Dissimilar-Material Piping: Make joints using adapters compatible with materials of both piping systems.

3.4 TRANSITION FITTING INSTALLATION

- A. Install transition couplings at joints of dissimilar piping.
- B. Transition Fittings in Underground Domestic Water Piping:
 - 1. Fittings for NPS 1-1/2 and Smaller: Fitting-type coupling.
 - 2. Fittings for NPS 2 and Larger: Sleeve-type coupling.
- C. Transition Fittings in Aboveground Domestic Water Piping NPS 2 and Smaller: Plastic-to-metal transition fittings or unions.

3.5 DIELECTRIC FITTING INSTALLATION

- A. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.
- B. Dielectric Fittings for NPS 2 and Smaller: Use dielectric couplings or nipples unions.
- C. Dielectric Fittings for NPS 2-1/2 to NPS 4 : Use dielectric flanges.
- D. Dielectric Fittings for NPS 5 and Larger: Use dielectric flange kits.

3.6 HANGER AND SUPPORT INSTALLATION

A. Comply with requirements for seismic-restraint devices in Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment."

- B. Comply with requirements for pipe hanger, support products, and installation in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment."
 - 1. Vertical Piping: MSS Type 8 or 42, clamps.
 - 2. Individual, Straight, Horizontal Piping Runs:
 - a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 - b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 - c. Longer Than 100 Feet if Indicated: MSS Type 49, spring cushion rolls.
 - 3. Multiple, Straight, Horizontal Piping Runs 100 Feet r Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
 - 4. Base of Vertical Piping: MSS Type 52, spring hangers.
- C. Support vertical piping and tubing at base and at each floor.
- D. Rod diameter may be reduced one size for double-rod hangers, to a minimum of 3/8 inch.
- E. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 3/4 and Smaller: 60 inches with 3/8-inch rod.
 - 2. NPS 1 and NPS 1-1/4: 72 inches with 3/8-inch rod.
 - 3. NPS 1-1/2 and NPS 2: 96 inches with 3/8-inch rod.
 - 4. NPS 2-1/2: 108 inches with 1/2-inch rod.
 - 5. NPS 3 to NPS 5: 10 feet with 1/2-inch rod.
 - 6. NPS 6: 10 feet with 5/8-inch rod.
 - 7. NPS 8: 10 feet with 3/4-inch rod.
- F. Install supports for vertical copper tubing every 10 feet.
- G. Install hangers for steel piping with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1-1/4 and Smaller: 84 inches with 3/8-inch rod.
 - 2. NPS 1-1/2: 108 inches with 3/8-inch rod.
 - 3. NPS 2: 10 feet with 3/8-inch rod.
 - 4. NPS 2-1/2: 11 feet with 1/2-inch rod.
 - 5. NPS 3 and NPS 3-1/2: 12 feet with 1/2-inch rod.
 - 6. NPS 4 and NPS 5: 12 feet with 5/8-inch rod.
 - 7. NPS 6: 12 feet with 3/4-inch rod.
 - 8. NPS 8 to NPS 12: 12 feet with 7/8-inch rod.
- H. Install supports for vertical steel piping every 15 feet.
- I. Install vinyl-coated hangers for CPVC piping with the following maximum horizontal spacing and minimum rod diameters:

- 1. NPS 1 and Smaller: 36 inches with 3/8-inch rod.
- 2. NPS 1-1/4 to NPS 2: 48 inches with 3/8-inch rod.
- 3. NPS 2-1/2 to NPS 3-1/2: 48 inches with 1/2-inch rod.
- 4. NPS 4 and NPS 5: 48 inches with 5/8-inch rod.
- 5. NPS 6: 48 inches with 3/4-inch rod.
- 6. NPS 8: 48 inches with 7/8-inch rod.
- J. Install supports for vertical CPVC piping every 60 inches for NPS 1 and smaller, and every 72 inches for NPS 1-1/4 and larger.
- K. Install vinyl-coated hangers for PEX piping with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1 and Smaller: 32 inches with 3/8-inch rod.
- L. Install hangers for vertical PEX piping every 48 inches.
- M. Install vinyl-coated hangers for PVC piping with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 2 and Smaller: 48 inches with 3/8-inch rod.
 - 2. NPS 2-1/2 to NPS 3-1/2: 48 inches with 1/2-inch rod.
 - 3. NPS 4 and NPS 5: 48 inches with 5/8-inch rod.
 - 4. NPS 6: 48 inches with 3/4-inch rod.
 - 5. NPS 8: 48 inches with 7/8-inch rod.
- N. Install supports for vertical PVC piping every 48 inches.
- O. Support piping and tubing not listed in this article according to MSS SP-69 and manufacturer's written instructions.

3.7 CONNECTIONS

- A. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. When installing piping adjacent to equipment and machines, allow space for service and maintenance.
- C. Connect domestic water piping to exterior water-service piping. Use transition fitting to join dissimilar piping materials.
- D. Connect domestic water piping to water-service piping with shutoff valve; extend and connect to the following:
 - 1. Domestic Water Booster Pumps: Cold-water suction and discharge piping.
 - 2. Water Heaters: Cold-water inlet and hot-water outlet piping in sizes indicated, but not smaller than sizes of water heater connections.

- 3. Plumbing Fixtures: Cold- and hot-water-supply piping in sizes indicated, but not smaller than that required by plumbing code.
- 4. Equipment: Cold- and hot-water-supply piping as indicated, but not smaller than equipment connections. Provide shutoff valve and union for each connection. Use flanges instead of unions for NPS 2-1/2 and larger.

3.8 IDENTIFICATION

- A. Identify system components. Comply with requirements for identification materials and installation in Section 220553 "Identification for Plumbing Piping and Equipment."
- B. Label pressure piping with system operating pressure.

3.9 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

1. Piping Inspections:

- a. Do not enclose, cover, or put piping into operation until it has been inspected and approved by authorities having jurisdiction.
- b. During installation, notify authorities having jurisdiction at least one day before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction:
 - 1) Roughing-in Inspection: Arrange for inspection of piping before concealing or closing in after roughing in and before setting fixtures.
 - 2) Final Inspection: Arrange for authorities having jurisdiction to observe tests specified in "Piping Tests" Subparagraph below and to ensure compliance with requirements.
- c. Reinspection: If authorities having jurisdiction find that piping will not pass tests or inspections, make required corrections and arrange for reinspection.
- d. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.

2. Piping Tests:

- a. Fill domestic water piping. Check components to determine that they are not air bound and that piping is full of water.
- b. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit a separate report for each test, complete with diagram of portion of piping tested.

- c. Leave new, altered, extended, or replaced domestic water piping uncovered and unconcealed until it has been tested and approved. Expose work that was covered or concealed before it was tested.
- d. Cap and subject piping to static water pressure of 50 psig above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow it to stand for four hours. Leaks and loss in test pressure constitute defects that must be repaired.
- e. Repair leaks and defects with new materials, and retest piping or portion thereof until satisfactory results are obtained.
- f. Prepare reports for tests and for corrective action required.
- B. Domestic water piping will be considered defective if it does not pass tests and inspections.
- C. Prepare test and inspection reports.

3.10 ADJUSTING

- A. Perform the following adjustments before operation:
 - 1. Close drain valves, hydrants, and hose bibbs.
 - 2. Open shutoff valves to fully open position.
 - 3. Open throttling valves to proper setting.
 - 4. Adjust balancing valves in hot-water-circulation return piping to provide adequate flow.
 - a. Manually adjust ball-type balancing valves in hot-water-circulation return piping to provide hot-water flow in each branch.
 - b. Adjust calibrated balancing valves to flows indicated.
 - 5. Remove plugs used during testing of piping and for temporary sealing of piping during installation.
 - 6. Remove and clean strainer screens. Close drain valves and replace drain plugs.
 - 7. Remove filter cartridges from housings and verify that cartridges are as specified for application where used and are clean and ready for use.
 - 8. Check plumbing specialties and verify proper settings, adjustments, and operation.

3.11 CLEANING

- A. Clean and disinfect potable domestic water piping as follows:
 - 1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.

- 2. Use purging and disinfecting procedures prescribed by authorities having jurisdiction; if methods are not prescribed, use procedures described in either AWWA C651 or AWWA C652 or follow procedures described below:
 - a. Flush piping system with clean, potable water until dirty water does not appear at outlets.
 - b. Fill and isolate system according to either of the following:
 - 1) Fill system or part thereof with water/chlorine solution with at least 50 ppm of chlorine. Isolate with valves and allow to stand for 24 hours.
 - 2) Fill system or part thereof with water/chlorine solution with at least 200 ppm of chlorine. Isolate and allow to stand for three hours.
 - c. Flush system with clean, potable water until no chlorine is in water coming from system after the standing time.
 - d. Repeat procedures if biological examination shows contamination.
 - e. Submit water samples in sterile bottles to authorities having jurisdiction.
- B. Prepare and submit reports of purging and disinfecting activities. Include copies of water-sample approvals from authorities having jurisdiction.
- C. Clean interior of domestic water piping system. Remove dirt and debris as work progresses.

END OF SECTION 221116

SECTION 221119 - DOMESTIC WATER PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following domestic water piping specialties:
 - 1. Backflow preventers.
 - 2. Wall hydrants.
 - 3. Ground hydrants.
 - 4. Floor drains.
 - 5. Water hammer arresters.
 - 6. Roof drains.
 - 7. Trap-seal primer systems.

B. Related Sections include the following:

- 1. Division 22 Section "Meters and Gages for Plumbing Piping" for thermometers, pressure gages, and flow meters in domestic water piping.
- 2. Division 22 Section "Domestic Water Piping" for water meters.
- 3. Division 22 Section "Domestic Water Filtration Equipment" for water filters in domestic water piping.
- 4. Division 22 Section "Drinking Fountains and Water Coolers" for water filters for water coolers.

1.3 PERFORMANCE REQUIREMENTS

A. Minimum Working Pressure for Domestic Water Piping Specialties: 125 psig, unless otherwise indicated.

1.4 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: Diagram power, signal, and control wiring.
- C. Field quality-control test reports.
- D. Operation and Maintenance Data: For domestic water piping specialties to include in emergency, operation, and maintenance manuals.

1.5 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

PART 2 - PRODUCTS

2.1 BACKFLOW PREVENTERS

- A. Reduced-Pressure-Principle Backflow Preventers:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Ames Co.
 - b. Watts Industries, Inc.; Water Products Div.
 - c. Zurn Plumbing Products Group; Wilkins Div.
 - d. Hersey Beeco.
 - 3. Standard: ASSE 1013.
 - 4. Operation: Continuous-pressure applications.
 - 5. Pressure Loss: 12 psig maximum, through middle 1/3 of flow range.
 - 6. Size: 1-1/2" NPS (DN).
 - 7. Design Flow Rate: 35 gpm (L/s).

2.2 WALL HYDRANTS

- A. Nonfreeze Wall Hydrants:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Josam Company.
 - b. MIFAB, Inc.
 - c. Smith, Jay R. Mfg. Co.; Division of Smith Industries, Inc.
 - d. Tyler Pipe; Wade Div.
 - e. Watts Drainage Products Inc.
 - f. Woodford Manufacturing Company.
 - g. Zurn Plumbing Products Group.
 - 2. Standard: ASME A112.21.3M for concealed-outlet, self-draining wall hydrants.
 - 3. Pressure Rating: 125 psig.
 - 4. Operation: Loose key.

- 5. Casing and Operating Rod: Of length required to match wall thickness. Include wall clamp.
- 6. Inlet: NPS 3/4.
- 7. Outlet: Concealed, with integral vacuum breaker and garden-hose thread complying with ASME B1.20.7.
- 8. Box: Deep, flush mounting with locking cover.
- 9. Box and Cover Finish: Polished nickel bronze.
- 10. Outlet: Exposed, with integral vacuum breaker and garden-hose thread complying with ASME B1.20.7.
- 11. Nozzle and Wall-Plate Finish: Polished nickel bronze.
- 12. Operating Keys(s): Two with each wall hydrant.

2.3 GROUND HYDRANTS

A. Nonfreeze Ground Hydrants:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Josam Company.
 - b. MIFAB, Inc.
 - c. Murdock, Inc.
 - d. Smith, Jay R. Mfg. Co.; Division of Smith Industries, Inc.
 - e. Tyler Pipe; Wade Div.
 - f. Watts Drainage Products Inc.
 - g. Woodford Manufacturing Company.
 - h. Zurn Plumbing Products Group.
- 2. Standard: ASME A112.21.3M.
- 3. Type: Nonfreeze, concealed-outlet ground hydrant with box.
- 4. Operation: Loose key.
- 5. Casing and Operating Rod: Of at least length required for burial of valve below frost line
- 6. Inlet: NPS 3/4.
- 7. Outlet: Garden-hose thread complying with ASME B1.20.7.
- 8. Drain: Designed with hole to drain into ground when shut off.
- 9. Box: Standard pattern with cover.
- 10. Box and Cover Finish: Rough bronze.
- 11. Operating Key(s): Two with each ground hydrant.
- 12. Vacuum Breaker: ASSE 1011.

2.4 FLOOR DRAINS

A. Furnish and install floor drains equal to the following types. Bids shall be based on drains of Jay R. Smith, Josam, Mifab, Wade, Watts, Zurn, or approved equal manufacture.

2.5 ROOF DRAINS

- A. Furnish and install the following roof drains where shown. Bids shall be based on drains of Jay R. Smith, Josam, Mifab, Wade, Watts, Zurn, or approved equal manufacture.
- B. Roof Drain No. 1A (R.D. No. 1A) shall be a Smith Fig. 1010Y-E-CID cast iron roof drain with no-hub outlet, extension, combined flashing clamp and gravel stop, and cast iron dome.

2.6 SECONDARY ROOF DRAINS

- A. Furnish and install the following roof drains where shown. Bids shall be based on drains of Jay R. Smith, Josam, Mifab, Wade, Watts, Zurn, or approved equal manufacture.
- B. Roof Drain No. 1A (S.R.D. No. 1A) shall be a Smith Fig. 1080Y-E-CID cast iron roof drain with no-hub outlet, extension, combined flashing clamp and gravel stop, cast iron dome, and 2" high exterior water dam.

2.7 CLEANOUTS

- A. Cleanouts shall be Jay R. Smith, Mifab, Wade, Watts, Josam, or Zurn cleanouts, equal to the types hereinafter specified.
- B. Cleanouts shall be full size of pipe up to 4", and 4" on all pipe exceeding that diameter. All cleanouts shall have at least a one inch adjustment.
- C. Cleanouts shall be Jay R. Smith No. 4400C-BP cast iron caulk ferrule with cast bronze countersunk plug.
- D. Where cleanouts are installed outside building, extend pipe up to a Jay R. Smith No. 4243S-U cleanout installed in a 14" x 14" x 4" thick concrete pad.
- E. Cleanouts in concrete floors (no finish) shall be Jay R. Smith Figure 4253S cast iron cleanouts with no-hub outlet, cast bronze tapered countersunk plug and double flanged housing with heavy duty cast iron cover.
- F. Cleanouts in finished floors shall be Jay R. Smith Figure 4163S cast iron cleanouts with no-hub outlet, cast bronze tapered countersunk plug and a square adjustable secured nickel bronze top with 1/8" tile recessed.
- G. Cleanouts in horizontal pipes shall be Jay R. Smith Figure 4420C cast iron cleanouts with no-hub outlet and cast bronze tapered countersunk plug installed on Wyes or T-Wyes.
- H. Cleanouts in vertical piping shall be Jay R. Smith Figure 4512S-Y cast iron cleanout tee with no-hub ends and cast bronze tapered plug.

2.8 PRIMERS

A. <u>Trap Primer</u> shall be a Zurn, 2" Z-1022.Z-.51PU all bronze, automatic, plain bronze body, integral vacuum breaker, non-liming operating assembly, gasketed cover with IPS female union connections.

2.9 FLASHINGS

A. Flashings for vents, shower drains, and floor drains shall be Noble Chloraloy heavy gauge vinyl. Verify size and coordinate installation with Roofing and General Contractor.

2.10 PIPE CURB AND SUPPORTS

- A. Where gas pipe passes through roof, furnish and install a Pate Company style PCA-1 Custom Curb, or Thycurb pipe curb assembly with PCC cover, boot, and clamps. Curb shall also accommodate three electric conduits passing through roof.
- B. Where gas pipe runs across roof, furnish and install Pate Company style ES-1, Custom Curb, or Thycurb pipe curb equipment supports 18" long, 9-1/2" wide, and 12" high with treated wood nailer, counterflashing, and lag screws. Fasten 16" long unistrut channel to top of supports to support gas main and three electric conduits.

2.11 STRAINERS

- A. Strainers shall be Mueller, McClear, Sarco, or Crane equal to the following types:
 - 1. Strainers shall have stainless steel screens or baskets with the following perforations: City water 1/16" (3/4" -4pipe); and 1/8" (5" and larger pipe).

B. Y-Pattern Strainers

- 1. Installed in Copper Pipe: Mueller No. 351M, 200 PSI W.O.G. cast bronze body with screwed ends and cast bronze cover flange with BUNA-N O-ring seal and blowoff outlet and stainless steel screen.
- 2. 2" and Smaller Installed in Steel Pipe: Mueller No. 11M, 200 PSI W.O.G. cast iron body with screwed ends and threaded and gasketed cap with plugged blowoff outlet and stainless steel screen.
- 3. 2-1/2" and Larger Installed in Steel Pipe: Mueller No. 758, 200 PSI W.O.G., cast iron body with flanged ends, cast iron cover flange and plugged blowoff outlet and stainless steel screen.

C. Simple Basket Strainers

1. 2" and Larger: Mueller No. 155M, 200 PSI W.O.G. cast iron body with flanged ends and plugged drain outlet, cast iron cover with ductile iron clamp and BUNA-N O-ring seal, and stainless steel bucket strainer with handle.

2.12 UNIONS

A. Unions shall be installed adjacent to all new screwed valves and on all new pipes wherever necessary for convenience in erecting and repairing whether shown on the drawings or not. Unions in copper tubing shall be all bronze type with ground joint; all other unions 2" and smaller shall be malleable iron bronze mounted, with ground joint. Larger unions shall be standard cast flanges with gaskets.

2.13 DIELECTRIC FITTINGS AND ISOLATING FLANGES

- A. In piping 2" and smaller, furnish and install Epco dielectric unions at juncture of copper and steel or iron piping, fitted with dielectric insulators and/or gaskets to prevent contact of dissimilar metals; each end to be of same material as pipe to which it is connected.
- B. In piping 2-1/2" and larger and at flanged fittings and equipment, furnish and install isolation flanges at juncture of copper steel or iron piping, fitted with plastic sleeves around bolts and plastic washers under the bolt heads and under the nuts to isolate bolt from both flanges.

2.14 PRESSURE GAUGES

A. For Water Systems gauges shall be a 4-1/2" Palmer No. 40 SWLM, Weksler, Trerice, or approved equal, glycerine filled, pressure gauge each with stainless steel bourdon tube with stainless steel socket, 1/4" NPT stainless steel bottom connection, 2 of 1% accuracy, stainless steel case without mounting flange but with polished stainless steel ring, and with No. 872 pressure snubber and No. 735 needle valve.

2.15 PRESSURE-TEMPERATURE STATIONS

A. Pressure-Temperature Stations shall be a Peterson Engineering Co., Inc. No. 710, Sisco, or approved equal, 2" pressure-temperature test plug. Deliver to Owner one Peterson Engineering Co., Inc. Sisco, or approved equal, test kit complete with carrying case equipped with two pressure gauges each with adapter and two thermometers each with adapter

2.16 PRESSURE REDUCING VALVES

A. Water Systems, reducing valves shall be Watts No. U5 with strainer.

2.17 ACCESS PANELS

A. Where new valves, dampers or other equipment, requiring operation or maintenance, occur in inaccessible locations, such as above suspended ceilings, behind walls, etc., access panels shall be provided. Where access panels are not indicated on Architectural drawings, this contractor shall furnish and install flush metal access panels with frames of ample size for removal or repair of such equipment. Where removable ceiling panels occur, access panels will not be required.

B. Access doors shall be Milcor, or equal, of the following types: in plaster walls: Style DW; in masonry walls: Style M; in plaster ceilings: Style AP; in inaccessible acoustical ceilings: Style AT. Doors in fire rated walls shall have a fire rating equal to or greater than the wall. Minimum size for access doors shall be 16" x 16".

2.18 WALL, FLOOR, AND CEILING PLATES

A. Wall, floor, and ceiling plates shall be installed at exposed points where new pipes pass through walls, floors, and ceilings. Plates shall be a heavy nickel plated metal plate of split type with springs or screws for securing flange to pipe. Plates for insulated pipes shall be of proper size to allow covering to pass through continuously

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Refer to Division 22 Section "Common Work Results for Plumbing" for piping joining materials, joint construction, and basic installation requirements.
- B. Install balancing valves in locations where they can easily be adjusted.
- C. Install temperature-actuated water mixing valves with check stops or shutoff valves on inlets and with shutoff valve on outlet.
- D. Install air vents at high points of water piping.
- E. Install supply-type, trap-seal primer valves with outlet piping pitched down toward drain trap a minimum of 1 percent, and connect to floor-drain body, trap, or inlet fitting. Adjust valve for proper flow.

3.2 CONNECTIONS

- A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping and specialties.
- B. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.3 FIELD QUALITY CONTROL

- A. Perform the following tests and prepare test reports:
 - 1. Test each reduced-pressure-principle backflow preventer according to authorities having jurisdiction and the device's reference standard.
- B. Remove and replace malfunctioning domestic water piping specialties and retest as specified above.

3.4 ADJUSTING

- A. Set field-adjustable pressure set points of water pressure-reducing valves.
- B. Set field-adjustable flow set points of balancing valves.
- C. Set field-adjustable temperature set points of temperature-actuated water mixing valves.

END OF SECTION 221119

SECTION 221316 - SANITARY WASTE AND VENT PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Hub-and-spigot, cast-iron soil pipe and fittings.
- 2. Copper tube and fittings.
- 3. ABS pipe and fittings.
- 4. PVC pipe and fittings.
- 5. Specialty pipe fittings.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.3 WARRANTY

A. Listed manufacturers to provide labeling and warranty of their respective products.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Components and installation shall be capable of withstanding the following minimum working pressure unless otherwise indicated:
 - 1. Soil, Waste, and Vent Piping: 10-foot head of water.

2.2 PIPING MATERIALS

- A. Piping materials shall bear label, stamp, or other markings of specified testing agency.
- B. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

2.3 HUB-AND-SPIGOT, CAST-IRON SOIL PIPE AND FITTINGS

- A. Pipe and Fittings: ASTM A74, Service class.
- B. Gaskets: ASTM C564, rubber.

C. Calking Materials: ASTM B29, pure lead and oakum or hemp fiber.

2.4 COPPER TUBE AND FITTINGS

- A. Copper Type DWV Tube: ASTM B306, drainage tube, drawn temper.
- B. Copper Drainage Fittings: ASME B16.23, cast copper or ASME B16.29, wrought copper, solder-joint fittings.
- C. Copper Pressure Fittings:
 - 1. Copper Fittings: ASME B16.18, cast-copper-alloy or ASME B16.22, wrought-copper, solder-joint fittings. Furnish wrought-copper fittings if indicated.
 - 2. Copper Unions: MSS SP-123, copper-alloy, hexagonal-stock body with ball-and-socket, metal-to-metal seating surfaces, and solder-joint or threaded ends.
- D. Copper Flanges: ASME B16.24, Class 150, cast copper with solder-joint end.
 - 1. Flange Gasket Materials: ASME B16.21, full-face, flat, nonmetallic, asbestos-free, 1/8-inch. maximum thickness unless thickness or specific material is indicated.
 - 2. Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.
- E. Solder: ASTM B32, lead free with ASTM B813, water-flushable flux.

2.5 ABS PIPE AND FITTINGS

- A. Comply with NSF 14, "Plastics Piping Systems Components and Related Materials," for plastic piping components. Include marking with "NSF-dwv" for plastic drain, waste, and vent piping and "NSF-sewer" for plastic sewer piping.
- B. Solid-Wall ABS Pipe: ASTM D2661, Schedule 40.
- C. Cellular-Core ABS Pipe: ASTM F628, Schedule 40.
- D. ABS Socket Fittings: ASTM D2661, made to ASTM D3311, drain, waste, and vent patterns.
- E. Solvent Cement: ASTM D2235.

2.6 PVC PIPE AND FITTINGS

- A. Comply with NSF 14, "Plastics Piping Systems Components and Related Materials," for plastic piping components. Include marking with "NSF-dwv" for plastic drain, waste, and vent piping and "NSF-sewer" for plastic sewer piping.
- B. Solid-Wall PVC Pipe: ASTM D2665, drain, waste, and vent.
- C. Cellular-Core PVC Pipe: ASTM F891, Schedule 40.

- D. PVC Socket Fittings: ASTM D2665, made to ASTM D3311, drain, waste, and vent patterns and to fit Schedule 40 pipe.
- E. Adhesive Primer: ASTM F656.
- F. Solvent Cement: ASTM D2564.

2.7 SPECIALTY PIPE FITTINGS

A. Transition Couplings:

- 1. Fitting-Type Transition Couplings: Manufactured piping coupling or specified piping system fitting.
- 2. Unshielded, Nonpressure Transition Couplings:
 - a. Standard: ASTM C1173.
 - b. Description: Elastomeric, sleeve-type, reducing or transition pattern. Include shear ring and corrosion-resistant-metal tension band and tightening mechanism on each end
 - c. End Connections: Same size as and compatible with pipes to be joined.
 - d. Sleeve Materials:
 - 1) For Cast-Iron Soil Pipes: ASTM C564, rubber.
 - 2) For Plastic Pipes: ASTM F477, elastomeric seal or ASTM D5926, PVC.
 - 3) For Dissimilar Pipes: ASTM D5926, PVC or other material compatible with pipe materials being joined.
- 3. Shielded, Nonpressure Transition Couplings:
 - a. Standard: ASTM C1460.
 - b. Description: Elastomeric or rubber sleeve with full-length, corrosion-resistant outer shield and corrosion-resistant-metal tension band and tightening mechanism on each end.
 - c. End Connections: Same size as and compatible with pipes to be joined.

PART 3 - EXECUTION

3.1 EARTH MOVING

A. Comply with requirements for excavating, trenching, and backfilling specified in Section 312000 "Earth Moving."

3.2 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems.

- 1. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations.
- 2. Install piping as indicated unless deviations to layout are approved on coordination drawings.
- B. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
- C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- E. Install piping to permit valve servicing.
- F. Install piping at indicated slopes.
- G. Install piping free of sags and bends.
- H. Install fittings for changes in direction and branch connections.
- I. Install piping to allow application of insulation.
- J. Make changes in direction for soil and waste drainage and vent piping using appropriate branches, bends, and long-sweep bends.
 - 1. Sanitary tees and short-sweep 1/4 bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical.
 - 2. Use long-turn, double Y-branch and 1/8-bend fittings if two fixtures are installed back to back or side by side with common drain pipe.
 - a. Straight tees, elbows, and crosses may be used on vent lines.
 - 3. Do not change direction of flow more than 90 degrees.
 - 4. Use proper size of standard increasers and reducers if pipes of different sizes are connected.
 - a. Reducing size of waste piping in direction of flow is prohibited.
- K. Lay buried building waste piping beginning at low point of each system.
 - 1. Install true to grades and alignment indicated, with unbroken continuity of invert. Place hub ends of piping upstream.
 - 2. Install required gaskets according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements.
 - 3. Maintain swab in piping and pull past each joint as completed.
- L. Install soil and waste and vent piping at the following minimum slopes unless otherwise indicated:

- 1. Building Sanitary Waste: 2 percent downward in direction of flow for piping NPS 3 and smaller; 1 percent downward in direction of flow for piping NPS 4 and larger.
- 2. Horizontal Sanitary Waste Piping: 2 percent downward in direction of flow.
- 3. Vent Piping: 1 percent down toward vertical fixture vent or toward vent stack.
- M. Install cast-iron soil piping according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings."
- N. Install aboveground copper tubing according to CDA's "Copper Tube Handbook."
- O. Install aboveground ABS piping according to ASTM D2661.
- P. Install aboveground PVC piping according to ASTM D2665.
- Q. Install underground ABS and PVC piping according to ASTM D2321.
- R. Plumbing Specialties:
 - 1. Install backwater valves in sanitary waster gravity-flow piping.
 - a. Comply with requirements for backwater valves specified in Section 221319 "Sanitary Waste Piping Specialties."
 - 2. Install cleanouts at grade and extend to where building sanitary drains connect to building sanitary sewers in sanitary waste gravity-flow piping.
 - a. Comply with requirements for cleanouts specified in Section 221319 "Sanitary Waste Piping Specialties."
 - 3. Install drains in sanitary waste gravity-flow piping.
 - a. Comply with requirements for drains specified in Section 221319 "Sanitary Waste Piping Specialties."
- S. Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction.
- T. Install sleeves for piping penetrations of walls, ceilings, and floors.
 - 1. Comply with requirements for sleeves specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."
- U. Install sleeve seals for piping penetrations of concrete walls and slabs.
 - 1. Comply with requirements for sleeve seals specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."
- V. Install escutcheons for piping penetrations of walls, ceilings, and floors.
 - 1. Comply with requirements for escutcheons specified in Section 220518 "Escutcheons for Plumbing Piping."

3.3 JOINT CONSTRUCTION

- A. Join hub-and-spigot, cast-iron soil piping with gasket joints according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for compression joints.
- B. Join copper tube and fittings with soldered joints according to ASTM B828. Use ASTM B813, water-flushable, lead-free flux and ASTM B32, lead-free-alloy solder.
- C. Grooved Joints: Cut groove ends of pipe according to AWWA C606. Lubricate and install gasket over ends of pipes or pipe and fitting. Install coupling housing sections, over gasket, with keys seated in piping grooves. Install and tighten housing bolts.
- D. Plastic, Nonpressure-Piping, Solvent-Cement Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:
 - 1. Comply with ASTM F402 for safe-handling practice of cleaners, primers, and solvent cements.
 - 2. ABS Piping: Join according to ASTM D2235 and ASTM D2661 appendixes.
 - 3. PVC Piping: Join according to ASTM D2855 and ASTM D2665 appendixes.

3.4 SPECIALTY PIPE FITTING INSTALLATION

- A. Transition Couplings:
 - 1. Install transition couplings at joints of piping with small differences in ODs.
 - 2. In Waste Drainage Piping: Unshielded, nonpressure transition couplings.

3.5 VALVE INSTALLATION

A. Comply with requirements in Section 220523.12 "Ball Valves for Plumbing Piping," Section 220523.13 "Butterfly Valves for Plumbing Piping," Section 220523.14 "Check Valves for Plumbing Piping," and Section 220523.15 "Gate Valves for Plumbing Piping" for general-duty valve installation requirements.

B. Shutoff Valves:

- 1. Install shutoff valve on each sewage pump discharge.
- 2. Install gate or full-port ball valve for piping NPS 2 and smaller.
- 3. Install gate valve for piping NPS 2-1/2 and larger.
- C. Check Valves: Install swing check valve, between pump and shutoff valve, on each sewage pump discharge.
- D. Backwater Valves: Install backwater valves in piping subject to backflow.
 - 1. Horizontal Piping: Horizontal backwater valves. Use normally closed type unless otherwise indicated.
 - 2. Floor Drains: Drain outlet backwater valves unless drain has integral backwater valve.
 - 3. Install backwater valves in accessible locations.

4. Comply with requirements for backwater valve specified in Section 221319 "Sanitary Waste Piping Specialties."

3.6 HANGER AND SUPPORT INSTALLATION

- A. Comply with requirements for seismic-restraint devices specified in Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment."
- B. Comply with requirements for pipe hanger and support devices and installation specified in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment." Section 220548.13 "Vibration Controls for Plumbing Piping and Equipment."
 - 1. Install carbon-steel pipe hangers for horizontal piping in noncorrosive environments.
 - 2. Install carbon-steel pipe support clamps for vertical piping in noncorrosive environments.
 - 3. Install stainless-steel pipe support clamps for vertical piping in corrosive environments.
 - 4. Vertical Piping: MSS Type 8 or Type 42, clamps.
 - 5. Install individual, straight, horizontal piping runs:
 - a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 - b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 - c. Longer Than 100 Feet if Indicated: MSS Type 49, spring cushion rolls.
 - 6. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
 - 7. Base of Vertical Piping: MSS Type 52, spring hangers.
- C. Support horizontal piping and tubing within 12 inches of each fitting, valve, and coupling.
- D. Support vertical piping and tubing at base and at each floor.
- E. Rod diameter may be reduced one size for double-rod hangers, with 3/8-inch minimum rods.
- F. Install hangers for cast-iron soil piping with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1-1/2 and NPS 2 : 60 inches with 3/8-inch rod.
 - 2. NPS 3:60 inches with 1/2-inch rod.
 - 3. NPS 4 and NPS 5: 60 inches with 5/8-inch rod.
 - 4. NPS 6 and NPS 8: 60 inches with 3/4-inch rod.
 - 5. NPS 10 and NPS 12: 60 inches with 7/8-inch rod.
 - 6. Spacing for 10-foot lengths may be increased to 10 feet. Spacing for fittings is limited to 60 inches.
- G. Install supports for vertical cast-iron soil piping every 15 feet.
- H. Install hangers for steel piping with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1-1/4: 84 inches with 3/8-inch rod.
 - 2. NPS 1-1/2: 108 inches with 3/8-inch rod.

- 3. NPS 2: 10 feet with 3/8-inch rod.
- 4. NPS 2-1/2: 11 feet with 1/2-inch rod.
- 5. NPS 3: 12 feet with 1/2-inch rod.
- 6. NPS 4 and NPS 5: 12 feet with 5/8-inch rod.
- 7. NPS 6 and NPS 8: 12 feet with 3/4-inch rod.
- 8. NPS 10 and NPS 12: 12 feet with 7/8-inch rod.
- I. Install supports for vertical steel piping every 15 feet.
- J. Install supports for vertical stainless-steel piping every 10 feet.
- K. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1-1/4: 72 inches with 3/8-inch rod.
 - 2. NPS 1-1/2 and NPS 2: 96 inches with 3/8-inch rod.
 - 3. NPS 2-1/2: 108 inches with 1/2-inch rod.
 - 4. NPS 3 and NPS 5: 10 feet with 1/2-inch rod.
 - 5. NPS 6: 10 feet with 5/8-inch rod.
 - 6. NPS 8: 10 feet with 3/4-inch rod.
- L. Install supports for vertical copper tubing every 10 feet (3 m).
- M. Install hangers for ABS and PVC piping with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1-1/2 and NPS 2 : 48 inches with 3/8-inch rod.
 - 2. NPS 3: 48 inches with 1/2-inch rod.
 - 3. NPS 4 and NPS 5: 48 inches with 5/8-inch rod.
 - 4. NPS 6 and NPS 8: 48 inches with 3/4-inch rod.
 - 5. NPS 10 and NPS 12: 48 inches with 7/8-inch rod.
- N. Install supports for vertical ABS and PVC piping every 48 inches.
- O. Support piping and tubing not listed above according to MSS SP-58 and manufacturer's written instructions.

3.7 CONNECTIONS

- A. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Connect soil and waste piping to exterior sanitary sewerage piping. Use transition fitting to join dissimilar piping materials.
- C. Connect waste and vent piping to the following:
 - 1. Plumbing Fixtures: Connect waste piping in sizes indicated, but not smaller than required by plumbing code.
 - 2. Plumbing Fixtures and Equipment: Connect atmospheric vent piping in sizes indicated, but not smaller than required by authorities having jurisdiction.

- 3. Plumbing Specialties: Connect waste and vent piping in sizes indicated, but not smaller than required by plumbing code.
- 4. Install test tees (wall cleanouts) in conductors near floor and floor cleanouts with cover flush with floor.
- 5. Install horizontal backwater valves with cleanout cover flush with floor.
- 6. Comply with requirements for backwater valves cleanouts and drains specified in Section 221319 "Sanitary Waste Piping Specialties."
- 7. Equipment: Connect waste piping as indicated.
 - a. Provide shutoff valve if indicated and union for each connection.
 - b. Use flanges instead of unions for connections NPS 2-1/2 and larger.
- D. Where installing piping adjacent to equipment, allow space for service and maintenance of equipment.
- E. Make connections according to the following unless otherwise indicated:
 - 1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment.
 - 2. Install flanges, in piping NPS 2-1/2 and larger, adjacent to flanged valves and at final connection to each piece of equipment.

3.8 IDENTIFICATION

- A. Identify exposed sanitary waste and vent piping.
- B. Comply with requirements for identification specified in Section 220553 "Identification for Plumbing Piping and Equipment."

3.9 FIELD QUALITY CONTROL

- A. During installation, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction.
 - 1. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.
 - 2. Final Inspection: Arrange for final inspection by authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.
- B. Reinspection: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for reinspection.
- C. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.
- D. Test sanitary waste and vent piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:
 - 1. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired.

- a. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.
- 2. Leave uncovered and unconcealed new, altered, extended, or replaced waste and vent piping until it has been tested and approved.
 - a. Expose work that was covered or concealed before it was tested.
- 3. Roughing-in Plumbing Test Procedure: Test waste and vent piping except outside leaders on completion of roughing-in.
 - a. Close openings in piping system and fill with water to point of overflow, but not less than 10-foot head of water.
 - b. From 15 minutes before inspection starts to completion of inspection, water level must not drop.
 - c. Inspect joints for leaks.
- 4. Finished Plumbing Test Procedure: After plumbing fixtures have been set and traps filled with water, test connections and prove they are gastight and watertight.
 - a. Plug vent-stack openings on roof and building drains where they leave building. Introduce air into piping system equal to pressure of 1-inch wg.
 - b. Use U-tube or manometer inserted in trap of water closet to measure this pressure.
 - c. Air pressure must remain constant without introducing additional air throughout period of inspection.
 - d. Inspect plumbing fixture connections for gas and water leaks.
- 5. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.
- 6. Prepare reports for tests and required corrective action.

3.10 CLEANING AND PROTECTION

- A. Clean interior of piping. Remove dirt and debris as work progresses.
- B. Protect sanitary waste and vent piping during remainder of construction period to avoid clogging with dirt and debris and to prevent damage from traffic and construction work.
- C. Place plugs in ends of uncompleted piping at end of day and when work stops.
- D. Exposed ABS and PVC Piping: Protect plumbing vents exposed to sunlight with two coats of water-based latex paint.
- E. Repair damage to adjacent materials caused by waste and vent piping installation.

3.11 PIPING SCHEDULE

A. Flanges and unions may be used on aboveground pressure piping unless otherwise indicated.

- B. Aboveground, soil and waste piping NPS 4 and smaller shall be any of the following:
 - 1. Service class, cast-iron soil pipe and fittings; gaskets; and gasketed joints.
 - 2. Copper Type DWV tube, copper drainage fittings, and soldered joints.
 - 3. Solid-wall ABS pipe, ABS socket fittings, and solvent-cemented joints.
 - 4. Solid-wall PVC pipe, PVC socket fittings, and solvent-cemented joints.
 - 5. Dissimilar Pipe-Material Couplings: Unshielded, nonpressure transition couplings.
- C. Aboveground, soil and waste piping NPS 5 and larger shall be any of the following:
 - 1. Service class, cast-iron soil pipe and fittings; gaskets; and gasketed joints.
 - 2. Solid-wall PVC pipe, PVC socket fittings, and solvent-cemented joints.
 - 3. Dissimilar Pipe-Material Couplings: Unshielded, nonpressure transition couplings.
- D. Aboveground, vent piping NPS 4 and smaller shall be any of the following:
 - 1. Service class, cast-iron soil pipe and fittings; gaskets; and gasketed joints.
 - 2. Copper Type DWV tube, copper drainage fittings, and soldered joints.
 - a. Option for Vent Piping, NPS 2-1/2 and NPS 3-1/2: Hard copper tube, Type M; copper pressure fittings; and soldered joints.
 - 3. Solid-wall ABS pipe, ABS socket fittings, and solvent-cemented joints.
 - 4. Solid-wall PVC pipe, PVC socket fittings, and solvent-cemented joints.
 - 5. Dissimilar Pipe-Material Couplings: Unshielded, nonpressure transition couplings.
- E. Aboveground, vent piping NPS 5 and larger shall be any of the following:
 - 1. Service class, cast-iron soil pipe and fittings; gaskets; and gasketed joints.
 - 2. Dissimilar Pipe-Material Couplings: Unshielded, nonpressure transition couplings.
- F. Underground, soil, waste, and vent piping NPS 4 and smaller shall be any of the following:
 - 1. Service class, cast-iron soil piping; gaskets; and gasketed joints.
 - 2. Solid wall ABS pipe, ABS socket fittings, and solvent-cemented joints.
 - 3. Solid wall PVC pipe, PVC socket fittings, and solvent-cemented joints.
 - 4. Dissimilar Pipe-Material Couplings: Unshielded, nonpressure transition couplings.
- G. Underground, soil and waste piping NPS 5 and larger shall be any of the following:
 - 1. Service class, cast-iron soil piping; gaskets; and gasketed joints.
 - 2. Solid-wall PVC pipe; PVC socket fittings; and solvent-cemented joints.
 - 3. Dissimilar Pipe-Material Couplings: Unshielded, nonpressure transition couplings.

END OF SECTION 221316

SECTION 221319 - SANITARY WASTE PIPING SPECIALTIES

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Backwater valves.
- 2. Cleanouts.
- 3. Roof flashing assemblies.
- 4. Miscellaneous sanitary drainage piping specialties.

B. Related Requirements:

- 1. Section 221423 "Storm Drainage Piping Specialties" for trench drains for storm water, channel drainage systems for storm water, roof drains, and catch basins.
- 2. Section 224300 "Healthcare Plumbing Fixtures" for plaster sink interceptors.
- 3. Section 334200 "Stormwater Conveyance" for storm drainage piping and piping specialties outside the building.

1.2 DEFINITIONS

- A. ABS: Acrylonitrile-butadiene-styrene.
- B. PVC: Polyvinyl chloride.

1.3 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.4 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

PART 2 - PRODUCTS

2.1 ASSEMBLY DESCRIPTIONS

- A. Sanitary waste piping specialties shall bear label, stamp, or other markings of specified testing agency.
- B. Comply with NSF 14 for plastic sanitary waste piping specialty components.

2.2 BACKWATER VALVES

A. Horizontal, Cast-Iron Backwater Valves:

- 1. Standard: ASME A112.14.1.
- 2. Size: Same as connected piping.
- 3. Body: Cast iron.
- 4. Cover: Cast iron with bolted or threaded access check valve.
- 5. End Connections: Hub and spigot.
- 6. Type Check Valve: Removable, bronze, swing check, factory assembled or field modified to hang closed.
- 7. Extension: ASTM A74, Service class; full-size, cast-iron, soil-pipe extension to field-installed cleanout at floor; replaces backwater valve cover.

B. Horizontal, Plastic Backwater Valves:

- 1. Size: Same as connected piping.
- 2. Body: PVC.
- 3. Cover: Same material as body with threaded access to check valve.
- 4. Check Valve: Removable swing check.
- 5. End Connections: Socket type.

2.3 CLEANOUTS

A. Cast-Iron Exposed Cleanouts:

- 1. Standard: ASME A112.36.2M for cast iron for cleanout test tee.
- 2. Size: Same as connected drainage piping
- 3. Body Material: Hub-and-spigot, cast-iron soil pipe T-branch as required to match connected piping.
- 4. Closure: Countersunk or raised-head, cast-iron plug.
- 5. Closure Plug Size: Same as or not more than one size smaller than cleanout size.
- 6. Closure: Stainless-steel plug with seal.

B. Cast-Iron Exposed Floor Cleanouts:

- 1. Standard: ASME A112.36.2M for adjustable housing cleanout.
- 2. Size: Same as connected branch.
- 3. Type: Adjustable housing.
- 4. Body or Ferrule: Cast iron.
- 5. Clamping Device: Required.
- 6. Outlet Connection: Inside calk.
- 7. Closure: Cast-iron plug.
- 8. Adjustable Housing Material: Cast iron.
- 9. Frame and Cover Material and Finish: Nickel-bronze, copper alloy.
- 10. Frame and Cover Shape: Round.

- 11. Top Loading Classification: HeavyDuty.
- 12. Riser: ASTM A74, Service class, cast-iron drainage pipe fitting and riser to cleanout.

C. Cast-Iron Wall Cleanouts:

- 1. Standard: ASME A112.36.2M. Include wall access.
- 2. Size: Same as connected drainage piping.
- 3. Body: Hub-and-spigot, cast-iron soil pipe T-branch as required to match connected piping.
- 4. Closure Plug:
 - a. Cast iron.
 - b. Countersunk or raised head.
 - c. Drilled and threaded for cover attachment screw.
 - d. Size: Same as or not more than one size smaller than cleanout size.
- 5. Wall Access: Round, deep, chrome-plated bronze cover plate with screw.
- 6. Wall Access: Round nickel-bronze, copper-alloy, or stainless-steel wall-installation frame and cover.

D. Plastic Floor Cleanouts:

- 1. Size: Same as connected branch.
- 2. Body: PVC.
- 3. Closure Plug: PVC.
- 4. Riser: Drainage pipe fitting and riser to cleanout of same material as drainage piping.

2.4 ROOF FLASHING ASSEMBLIES

A. Roof Flashing Assemblies:

- 1. Description: Manufactured assembly made of 4.0-lb/sq. ft., 0.0625-inch-thick, lead flashing collar and skirt extending at least 6 inches from pipe, with galvanized-steel boot reinforcement and counterflashing fitting.
 - a. Open-Top Vent Cap: Without cap.
 - b. Low-Silhouette Vent Cap: With vandal-proof vent cap.
 - c. Extended Vent Cap: With field-installed, vandal-proof vent cap.

2.5 MISCELLANEOUS SANITARY DRAINAGE PIPING SPECIALTIES

A. Open Drains:

1. Description: Shop or field fabricate from ASTM A74, Service class, hub-and-spigot, castiron soil-pipe fittings. Include P-trap, hub-and-spigot riser section; and where required, increaser fitting joined with ASTM C564 rubber gaskets.

2. Size: Same as connected waste piping with increaser fitting of size indicated.

B. Deep-Seal Traps:

- 1. Description: Cast-iron or bronze casting, with inlet and outlet matching connected piping and cleanout trap-seal primer valve connection.
- 2. Size: Same as connected waste piping.
 - a. NPS 2: 4-inch- minimum water seal.
 - b. NPS 2-1/2 and Larger: 5-inch- minimum water seal.

C. Floor-Drain, Trap-Seal Primer Fittings:

- 1. Description: Cast iron, with threaded inlet and threaded or spigot outlet, and trap-seal primer valve connection.
- 2. Size: Same as floor drain outlet with NPS 1/2 side inlet.

D. Air-Gap Fittings:

- 1. Standard: ASME A112.1.2, for fitting designed to ensure fixed, positive air gap between installed inlet and outlet piping.
- 2. Body: Bronze or cast iron.
- 3. Inlet: Opening in top of body.
- 4. Outlet: Larger than inlet.
- 5. Size: Same as connected waste piping and with inlet large enough for associated indirect waste piping.

E. Sleeve Flashing Device:

- 1. Description: Manufactured, cast-iron fitting, with clamping device that forms sleeve for pipe floor penetrations of floor membrane. Include galvanized-steel pipe extension in top of fitting that will extend 1 inch above finished floor and galvanized-steel pipe extension in bottom of fitting that will extend through floor slab.
- 2. Size: As required for close fit to riser or stack piping.

F. Stack Flashing Fittings:

- 1. Description: Counterflashing-type, cast-iron fitting, with bottom recess for terminating roof membrane, and with threaded or hub top for extending vent pipe.
- 2. Size: Same as connected stack vent or vent stack.

G. Vent Caps:

- 1. Description: Cast-iron body with threaded or hub inlet and vandal-proof design. Include vented hood and setscrews to secure to vent pipe.
- 2. Size: Same as connected stack vent or vent stack.

H. Expansion Joints:

- 1. Standard: ASME A112.6.4.
- 2. Body: Cast iron with bronze sleeve, packing, and gland.

- 3. End Connections: Matching connected piping.
- 4. Size: Same as connected soil, waste, or vent piping.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install backwater valves in building drain piping.
 - 1. For interior installation, provide cleanout deck plate flush with floor and centered over backwater valve cover, and of adequate size to remove valve cover for servicing.
- B. Install cleanouts in aboveground piping and building drain piping according to the following, unless otherwise indicated:
 - 1. Size same as drainage piping up to NPS 4. Use NPS 4 for larger drainage piping unless larger cleanout is indicated.
 - 2. Locate at each change in direction of piping greater than 45 degrees.
 - 3. Locate at minimum intervals of 50 feet for piping NPS 4 and smaller and 100 feet for larger piping.
 - 4. Locate at base of each vertical soil and waste stack.
- C. For floor cleanouts for piping below floors, install cleanout deck plates with top flush with finished floor.
- D. For cleanouts located in concealed piping, install cleanout wall access covers, of types indicated, with frame and cover flush with finished wall.
- E. Install roof flashing assemblies on sanitary stack vents and vent stacks that extend through roof. Comply with requirements in Section 076200, Sheet Metal Flashing and Trim.
- F. Install flashing fittings on sanitary stack vents and vent stacks that extend through roof. Comply with requirements in Section 076200, Sheet Metal Flashing and Trim.
- G. Assemble open drain fittings and install with top of hub 1 inch above floor.
- H. Install deep-seal traps on floor drains and other waste outlets, if indicated.
- I. Install floor-drain, trap-seal primer fittings on inlet to floor drains that require trap-seal primer connection.
 - 1. Exception: Fitting may be omitted if trap has trap-seal primer connection.
 - 2. Size: Same as floor drain inlet.
- J. Install air-gap fittings on draining-type backflow preventers and on indirect-waste piping discharge into sanitary drainage system.
- K. Install sleeve and sleeve seals with each riser and stack passing through floors with waterproof membrane.

- L. Install vent caps on each vent pipe passing through roof.
- M. Install expansion joints on vertical stacks and conductors. Position expansion joints for easy access and maintenance.
- N. Install wood-blocking reinforcement for wall-mounting-type specialties.
- O. Install traps on plumbing specialty drain outlets. Omit traps on indirect wastes unless trap is indicated.

3.2 CONNECTIONS

- A. Comply with requirements in Section 221316 "Sanitary Waste and Vent Piping" for piping installation requirements. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to equipment to allow service and maintenance.
- C. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."
- D. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.3 FLASHING INSTALLATION

- A. Comply with requirements in Section 076200 "Sheet Metal Flashing and Trim."
- B. Fabricate flashing from single piece unless large pans, sumps, or other drainage shapes are required.
- C. Install sheet flashing on pipes, sleeves, and specialties passing through or embedded in floors and roofs with waterproof membrane.
 - 1. Pipe Flashing: Sleeve type, matching pipe size, with minimum length of 10 inches, and skirt or flange extending at least 8 inches around pipe.
 - 2. Sleeve Flashing: Flat sheet, with skirt or flange extending at least 8 inches around sleeve.
 - 3. Embedded Specialty Flashing: Flat sheet, with skirt or flange extending at least 8 inches around specialty.
- D. Set flashing on floors and roofs in solid coating of bituminous cement.
- E. Secure flashing into sleeve and specialty clamping ring or device.
- F. Install flashing for piping passing through roofs with counterflashing or commercially made flashing fittings, according to Section 076200 "Sheet Metal Flashing and Trim."
- G. Extend flashing up vent pipe passing through roofs and turn down into pipe, or secure flashing into cast-iron sleeve having calking recess.

3.4 LABELING AND IDENTIFYING

- A. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit.
 - 1. Nameplates and signs are specified in Section 220553 "Identification for Plumbing Piping and Equipment."

3.5 PROTECTION

- A. Protect drains during remainder of construction period to avoid clogging with dirt or debris and to prevent damage from traffic or construction work.
- B. Place plugs in ends of uncompleted piping at end of each day or when work stops.

END OF SECTION 221319

SECTION 223400 - FUEL-FIRED, DOMESTIC-WATER HEATERS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Commercial, grid-type, finned-tube, gas-fired, domestic-water heaters.

1.2 SUBMITTALS

- A. Product Data: For each type and size of domestic-water heater indicated.
- B. Shop Drawings:
 - 1. Wiring Diagrams: For power, signal, and control wiring.
- C. Product certificates.
- D. Domestic-Water Heater Labeling: Certified and labeled by testing agency acceptable to authorities having jurisdiction.
- E. Source quality-control reports.
- F. Field quality-control reports.
- G. Operation and maintenance data.
- H. Warranty: Sample of special warranty.

1.3 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. ASHRAE/IESNA 90.1 Compliance: Fabricate and label fuel-fired, domestic-water heaters to comply with ASHRAE/IESNA 90.1.
- C. NSF Compliance: Fabricate and label equipment components that will be in contact with potable water to comply with NSF 61, "Drinking Water System Components Health Effects."

1.4 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of fuel-fired, domestic-water heaters that fail in materials or workmanship within specified warranty period.

- 1. Warranty Periods: From date of Substantial Completion.
 - a. Commercial, Finned-Tube, Gas-Fired, Domestic-Water Heaters:
 - 1) Heat Exchanger: Five years.
 - 2) Controls and Other Components: One year.
 - 3) Separate Hot-Water Storage Tanks: Five years.

PART 2 - PRODUCTS

2.1 COMMERCIAL, FINNED-TUBE, GAS-FIRED, DOMESTIC-WATER HEATERS

- A. Commercial, Finned-Tube, Gas-Fired, Domestic-Water Heaters:
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings.
 - a. Smith, A. O. Water Products Co.; a division of A. O. Smith Corporation.
 - 2. Standard: ANSI Z21.13/CSA 4.9 for hot-water-supply boilers.
 - 3. Boiler Construction: ASME code with 160-psig working-pressure rating for hot-water-boiler-type, domestic-water heater.
 - a. Heat Exchanger: Horizontal, straight, finned-copper tubes with bronze headers.
 - b. Connections: Factory fabricated of materials compatible with boiler. Attach to boiler before testing.
 - 1) NPS 2 and Smaller: Threaded ends according to ASME B1.20.1.
 - 2) NPS 2-1/2 and Larger: Flanged ends according to ASME B16.5 for steel and stainless-steel flanges and according to ASME B16.24 for copper and copper-alloy flanges.
 - 4. Boiler Appurtenances:
 - a. Jacket: Steel with enameled finish.
 - b. Burner: For use with grid-type, finned-tube, gas-fired, domestic-water heaters and natural-gas fuel.
 - c. Automatic Ignition: ANSI Z21.20/CSA C22.2 No. 199, intermittent electronic-ignition system.
 - d. Temperature Control: Adjustable, storage-tank temperature-control fitting and flow switch, interlocked with circulator and burner.
 - e. Safety Control: Automatic, high-temperature-limit cutoff device or system.
 - 5. Support: Steel base or skids.
 - 6. Hot-Water Storage Tank: Connected with piping to circulating pump and domestic-water heater.
 - a. Construction: According to ASME Boiler and Pressure Vessel Code: Section VIII, steel with 150-psig working-pressure rating.
 - b. Tappings: Factory fabricated of materials compatible with tank. Attach tappings to tank before testing.
 - 1) NPS 2 and Smaller: Threaded ends according to ASME B1.20.1.

- 2) NPS 2-1/2 and Larger: Flanged ends according to ASME B16.5 for steel and stainless-steel flanges and according to ASME B16.24 for copper and copper-alloy flanges.
- c. Interior Finish: Comply with NSF 61 barrier materials for potable-water tank linings, including extending finish into and through tank fittings and outlets.
- 7. Factory-Installed Storage-Tank Appurtenances:
 - a. Anode Rods: Factory installed.
 - b. Drain Valve: Corrosion-resistant metal complying with ASSE 1005, factory installed.
 - c. Insulation: Complies with ASHRAE/IESNA 90.1. Factory installed around entire storage tank except connections and controls.
 - d. Jacket: Steel with enameled finish.
 - e. Combination Temperature-and-Pressure Relief Valves:
 ANSI Z21.22/CSA 4.4-M. Include one or more relief valves with total relieving capacity at least as great as heat input, and include pressure setting less than domestic-water heater working-pressure rating. Select one relief valve with sensing element that extends into storage tank.
- 8. Circulating Pump: UL 778, all-bronze, centrifugal, overhung-impeller, separately coupled in-line pump as defined in HI 1.1-1.2 and HI 1.3. Include mechanical seals, 125-psig minimum working-pressure rating, and 225 deg F continuous-water-temperature rating.
- 9. Piping: Copper tubing; copper, solder-joint fittings; and brazed or flanged joints.
- 10. Mounting: Domestic-water heater, tank, and accessories factory mounted on skids.
- B. Capacity and Characteristics:
 - 1. Hot-Water Storage-Tank Capacity: 119 gal.
 - 2. Recovery: 507 gph at 100 deg F temperature rise.
 - 3. Temperature Setting: 140 deg F.
 - 4. Fuel Gas Input: 500,000 Btu/h.
 - 5. Gas Pressure Regulator:
 - a. Gas supply pressure: 13.8" W.C. maximum natural gas. 4.5" W.C. minimum Natural gas
 - 6. Electrical Characteristics:
 - a. Volts: 120.
 - b. Phase: Single.
 - c. Hertz: 60.
 - d. Full-Load Amperes: 20A
 - 7. Minimum Vent Diameter: 6 inches.

2.2 DOMESTIC-WATER HEATER ACCESSORIES

- A. Drain Pans: Corrosion-resistant metal with raised edge. Comply with ANSI/CSA LC 3. Include dimensions not less than base of domestic-water heater, and include drain outlet not less than NPS 3/4 with ASME B1.20.1 pipe threads or with ASME B1.20.7 gardenhose threads.
- B. Piping-Type Heat Traps: Field-fabricated piping arrangement according to ASHRAE/IESNA 90.1.
- C. Heat-Trap Fittings: ASHRAE 90.2.
- D. Gas Shutoff Valves: ANSI Z21.15/CSA 9.1-M, manually operated. Furnish for installation in piping.
- E. Gas Pressure Regulators: ANSI Z21.18/CSA 6.3, appliance type. Include 5-psig pressure rating as required to match gas supply.
- F. Automatic Gas Valves: ANSI Z21.21/CSA 6.5, appliance, electrically operated, on-off automatic valve.
- G. Combination Temperature-and-Pressure Relief Valves: Include relieving capacity at least as great as heat input, and include pressure setting less than domestic-water heater working-pressure rating. Select relief valves with sensing element that extends into storage tank.
 - 1. Gas-Fired, Domestic-Water Heaters: ANSI Z21.22/CSA 4.4-M.
- H. Pressure Relief Valves: Include pressure setting less than domestic-water heater working-pressure rating.
 - 1. Gas-Fired, Domestic-Water Heaters: ANSI Z21.22/CSA 4.4-M.
- I. Vacuum Relief Valves: ANSI Z21.22/CSA 4.4-M.
- J. Domestic-Water Heater Stands: Manufacturer's factory-fabricated steel stand for floor mounting, capable of supporting domestic-water heater and water. Provide dimension that will support bottom of domestic-water heater a minimum of 18 inches above the floor.
- K. Domestic-Water Heater Mounting Brackets: Manufacturer's factory-fabricated steel bracket for wall mounting, capable of supporting domestic-water heater and water.

2.3 SOURCE QUALITY CONTROL

- A. Factory Tests: Test and inspect assembled domestic-water heaters and storage tanks specified to be ASME-code construction, according to ASME Boiler and Pressure Vessel Code.
- B. Hydrostatically test domestic-water heaters and storage tanks to minimum of one and one-half times pressure rating before shipment.

- C. Domestic-water heaters will be considered defective if they do not pass tests and inspections. Comply with requirements in Division 01 Section "Quality Requirements" for retesting and reinspecting requirements and Division 01 Section "Execution" for requirements for correcting the Work.
- D. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 DOMESTIC-WATER HEATER INSTALLATION

- A. Commercial, Domestic-Water Heater Mounting: Install commercial domestic-water heaters on concrete base. Comply with requirements for concrete base specified in Division 03 Section "Cast-in-Place Concrete."
 - 1. Exception: Omit concrete bases for commercial domestic-water heaters if installation on stand, bracket, suspended platform, or directly on floor is indicated.
 - 2. Maintain manufacturer's recommended clearances.
 - 3. Arrange units so controls and devices that require servicing are accessible.
 - 4. For supported equipment, install epoxy-coated anchor bolts that extend through instructions, and directions furnished with items to be embedded.
 - 5. Install anchor bolts to elevations required for proper attachment to supported equipment.
 - 6. Anchor domestic-water heaters to substrate.
- B. Install gas-fired, domestic-water heaters according to NFPA 54.
 - 1. Install gas shutoff valves on gas supply piping to gas-fired, domestic-water heaters without shutoff valves.
 - 2. Install gas pressure regulators on gas supplies to gas-fired, domestic-water heaters without gas pressure regulators if gas pressure regulators are required to reduce gas pressure at burner.
 - 3. Install automatic gas valves on gas supplies to gas-fired, domestic-water heaters if required for operation of safety control.
 - 4. Comply with requirements for gas shutoff valves, gas pressure regulators, and automatic gas valves specified in Division 23 Section "Facility Natural-Gas Piping."
- C. Install combination temperature-and-pressure relief valves in top portion of storage tanks. Use relief valves with sensing elements that extend into tanks. Extend commercial-water-heater relief-valve outlet, with drain piping same as domestic-water piping in continuous downward pitch, and discharge by positive air gap onto closest floor drain.

- D. Install combination temperature-and-pressure relief valves in water piping for domestic-water heaters without storage. Extend commercial-water-heater relief-valve outlet, with drain piping same as domestic-water piping in continuous downward pitch, and discharge by positive air gap onto closest floor drain.
- E. Install water-heater drain piping as indirect waste to spill by positive air gap into open drains or over floor drains. Install hose-end drain valves at low points in water piping for domestic-water heaters that do not have tank drains. Comply with requirements for hose-end drain valves specified in Division 22 Section "Domestic Water Piping Specialties."
- F. Install thermometer on outlet piping of domestic-water heaters. Comply with requirements for thermometers specified in Division 22 Section "Meters and Gages for Plumbing Piping."
- G. Install piping-type heat traps on inlet and outlet piping of domestic-water heater storage tanks without integral or fitting-type heat traps.
- H. Fill domestic-water heaters with water.
- I. Charge domestic-water compression tanks with air.

3.2 CONNECTIONS

- A. Comply with requirements for domestic-water piping specified in Division 22 Section "Domestic Water Piping."
- B. Comply with requirements for gas piping specified in Division 23 Section "Facility Natural-Gas Piping."
- C. Drawings indicate general arrangement of piping, fittings, and specialties.
- D. Where installing piping adjacent to fuel-fired, domestic-water heaters, allow space for service and maintenance of water heaters. Arrange piping for easy removal of domestic-water heaters.

3.3 IDENTIFICATION

A. Identify system components. Comply with requirements for identification specified in Division 22 Section "Identification for Plumbing Piping and Equipment."

3.4 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
 - 2. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.

- 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper operation.
- 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- B. Domestic-water heaters will be considered defective if they do not pass tests and inspections. Comply with requirements in Division 01 Section "Quality Requirements" for retesting and reinspecting requirements and Division 01 Section "Execution" for requirements for correcting the Work.
- C. Prepare test and inspection reports.

3.5 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain commercial, gas-fired, storage, domestic-water heaters.

END OF SECTION 223400

SECTION 224213.13 - COMMERCIAL WATER CLOSETS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Water closets.
- 2. Flushometer valves and tanks.
- 3. Toilet seats.
- 4. Supports.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.3 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For flushometer valves and electronic sensors to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 FLOOR-MOUNTED, BOTTOM-OUTLET WATER CLOSETS

- A. Water Closets: Floor mounted, bottom outlet, top spud.
 - 1. Bowl:
 - a. Standards: ASME A112.19.2/CSA B45.1 and ASME A112.19.5.
 - b. Material: Vitreous china.
 - c. Type: Siphon jet.
 - d. Style: Flushometer valve.
 - e. Height: Standard or Handicapped/elderly, complying with ICC/ANSI A117.1.
 - f. Rim Contour: Elongated.
 - g. Water Consumption: 1.28 gal. per flush.
 - h. Spud Size and Location: NPS 1-1/2; top.
 - i. Color: White.
 - 2. Bowl-to-Drain Connecting Fitting: ASTM A1045 or ASME A112.4.3.
 - 3. Flushometer Valve:.
 - 4. Toilet Seat:.

2.2 FLUSHOMETER VALVES

A. Lever-Handle, Diaphragm Flushometer Valves:

- 1. Standard: ASSE 1037.
- 2. Minimum Pressure Rating: 125 psig.
- 3. Features: Include integral check stop and backflow-prevention device.
- 4. Material: Brass body with corrosion-resistant components.
- 5. Exposed Flushometer-Valve Finish: Chrome plated.
- 6. Panel Finish: Chrome plated or stainless steel.
- 7. Style: Exposed.
- 8. Consumption: 1.28 gal. per flush.
- 9. Minimum Inlet: NPS 1.
- 10. Minimum Outlet: NPS 1-1/4.

B. Lever-Handle, Piston Flushometer Valves:

- 1. Standard: ASSE 1037.
- 2. Minimum Pressure Rating: 125 psig.
- 3. Features: Include integral check stop and backflow-prevention device.
- 4. Material: Brass body with corrosion-resistant components.
- 5. Exposed Flushometer-Valve Finish: Chrome plated.
- 6. Panel Finish: Chrome plated or stainless steel.
- 7. Style: Exposed.
- 8. Consumption: 1.28 gal. per flush.
- 9. Minimum Inlet: NPS 1.
- 10. Minimum Outlet: NPS 1-1/4.

2.3 TOILET SEATS

A. Toilet Seats:

- 1. Standard: IAPMO/ANSI Z124.5.
- 2. Material: Plastic.
- 3. Type: Commercial (Standard).
- 4. Shape: Elongated rim, open front.
- 5. Hinge: Check.
- 6. Hinge Material: Noncorroding metal.
- 7. Seat Cover: Required.
- 8. Color: White.

2.4 SUPPORTS

A. Water Closet Carrier:

- 1. Standard: ASME A112.6.1M.
- 2. Description: Waste-fitting assembly, as required to match drainage piping material and arrangement with faceplates, couplings gaskets, and feet; bolts and hardware matching fixture

PART 3 - EXECUTION

3.1 INSTALLATION

A. Water-Closet Installation:

- 1. Install level and plumb according to roughing-in drawings.
- 2. Install floor-mounted water closets on bowl-to-drain connecting fitting attachments to piping or building substrate.
- 3. Install accessible, wall-mounted water closets at mounting height for handicapped/elderly, according to ICC/ANSI A117.1.

B. Support Installation:

- 1. Install supports, affixed to building substrate, for floor-mounted, back-outlet water closets.
- 2. Use carrier supports with waste-fitting assembly and seal.
- 3. Install wall-mounted, back-outlet water-closet supports with waste-fitting assembly and waste-fitting seals; and affix to building substrate.

C. Flushometer-Valve Installation:

- 1. Install flushometer-valve, water-supply fitting on each supply to each water closet.
- 2. Attach supply piping to supports or substrate within pipe spaces behind fixtures.
- 3. Install lever-handle flushometer valves for accessible water closets with handle mounted on open side of water closet.
- 4. Install actuators in locations that are easy for people with disabilities to reach.

D. Install toilet seats on water closets.

E. Wall Flange and Escutcheon Installation:

- 1. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations and within cabinets and millwork.
- 2. Install deep-pattern escutcheons if required to conceal protruding fittings.
- 3. Comply with escutcheon requirements specified in Section 220518 "Escutcheons for Plumbing Piping."

F. Joint Sealing:

- 1. Seal joints between water closets and walls and floors using sanitary-type, one-part, mildew-resistant silicone sealant.
- 2. Match sealant color to water-closet color.
- 3. Comply with sealant requirements specified in Section 079200 "Joint Sealants."

3.2 CONNECTIONS

- A. Connect water closets with water supplies and soil, waste, and vent piping. Use size fittings required to match water closets.
- B. Comply with water piping requirements specified in Section 221116 "Domestic Water Piping."
- C. Comply with soil and waste piping requirements specified in Section 221316 "Sanitary Waste and Vent Piping."
- D. Where installing piping adjacent to water closets, allow space for service and maintenance.

3.3 ADJUSTING

- A. Operate and adjust water closets and controls. Replace damaged and malfunctioning water closets, fittings, and controls.
- B. Adjust water pressure at flushometer valves to produce proper flow.

3.4 CLEANING AND PROTECTION

- A. Clean water closets and fittings with manufacturers' recommended cleaning methods and materials.
- B. Install protective covering for installed water closets and fittings.
- C. Do not allow use of water closets for temporary facilities unless approved in writing by Owner.

END OF SECTION 224213.13

SECTION 224213.16 - COMMERCIAL URINALS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Urinals.
 - 2. Flushometer valves.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.3 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For flushometer valves and electronic sensors to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 WALL-HUNG URINALS

A. Urinals: Wall hung, back outlet, siphon jet.

1. Fixture:

- a. Standards: ASME A112.19.2/CSA B45.1 and ASME A112.19.5.
- b. Material: Vitreous china.
- c. Type: Siphon jet.
- d. Strainer or Trapway: with integral trap.
- e. Water Consumption: Low.
- f. Spud Size and Location: NPS 3/4; top.
- g. Outlet Size and Location: NPS 2; back.
- h. Color: White.
- 2. Flushometer Valve:
- 3. Waste Fitting:
 - a. Standard: ASME A112.18.2/CSA B125.2 for coupling.
 - b. Size: NPS 2.

- 4. Support: Type I Urinal Carrier with fixture support plates and coupling with seal and fixture bolts and hardware matching fixture. Include rectangular, steel uprights.
- 5. Urinal Mounting Height: Standard or Handicapped/elderly according to ICC A117.1.

2.2 URINAL FLUSHOMETER VALVES

- A. Lever-Handle, Diaphragm Flushometer Valves <Insert designation>:
 - 1. < Double click here to find, evaluate, and insert list of manufacturers and products. >
 - 2. Standard: ASSE 1037.
 - 3. Minimum Pressure Rating: 125 psig.
 - 4. Features: Include integral check stop and backflow-prevention device.
 - 5. Material: Brass body with corrosion-resistant components.
 - 6. Exposed Flushometer-Valve Finish: Chrome plated.
 - 7. Style: Exposed.
 - 8. Consumption: 0.5 gal. per flush.
 - 9. Minimum Inlet: NPS 3/4.
 - 10. Minimum Outlet: NPS 3/4.

2.3 SUPPORTS

- A. Type I Urinal Carrier:
 - 1. Standard: ASME A112.6.1M.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before urinal installation.
- B. Examine walls and floors for suitable conditions where urinals will be installed.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Urinal Installation:

- 1. Install urinals level and plumb according to roughing-in drawings.
- 2. Install wall-hung, back-outlet urinals onto waste fitting seals and attached to supports.
- 3. Install wall-hung, bottom-outlet urinals with tubular waste piping attached to supports.
- 4. Install accessible, wall-mounted urinals at mounting height for the handicapped/elderly, according to ICC/ANSI A117.1.
- 5. Install trap-seal liquid in waterless urinals.

B. Support Installation:

- 1. Install supports, affixed to building substrate, for wall-hung urinals.
- 2. Use off-floor carriers with waste fitting and seal for back-outlet urinals.
- 3. Use carriers without waste fitting for urinals with tubular waste piping.
- 4. Use chair-type carrier supports with rectangular steel uprights for accessible urinals.

C. Flushometer-Valve Installation:

- 1. Install flushometer-valve water-supply fitting on each supply to each urinal.
- 2. Attach supply piping to supports or substrate within pipe spaces behind fixtures.
- 3. Install lever-handle flushometer valves for accessible urinals with handle mounted on open side of compartment.
- 4. Install fresh batteries in battery-powered, electronic-sensor mechanisms.

D. Wall Flange and Escutcheon Installation:

- 1. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations.
- 2. Install deep-pattern escutcheons if required to conceal protruding fittings.
- 3. Comply with escutcheon requirements specified in Section 220518 "Escutcheons for Plumbing Piping."

E. Joint Sealing:

- 1. Seal joints between urinals and walls and floors using sanitary-type, one-part, mildew-resistant silicone sealant.
- 2. Match sealant color to urinal color.
- 3. Comply with sealant requirements specified in Section 079200 "Joint Sealants."

3.3 CONNECTIONS

- A. Connect urinals with water supplies and soil, waste, and vent piping. Use size fittings required to match urinals.
- B. Comply with water piping requirements specified in Section 221116 "Domestic Water Piping."
- C. Comply with soil and waste piping requirements specified in Section 221316 "Sanitary Waste and Vent Piping."
- D. Where installing piping adjacent to urinals, allow space for service and maintenance.

3.4 ADJUSTING

- A. Operate and adjust urinals and controls. Replace damaged and malfunctioning urinals, fittings, and controls.
- B. Adjust water pressure at flushometer valves to produce proper flow.

C. Install fresh batteries in battery-powered, electronic-sensor mechanisms.

3.5 CLEANING AND PROTECTION

- A. Clean urinals and fittings with manufacturers' recommended cleaning methods and materials.
- B. Install protective covering for installed urinals and fittings.
- C. Do not allow use of urinals for temporary facilities unless approved in writing by Owner.

END OF SECTION 224213.16

SECTION 224216.13 - COMMERCIAL LAVATORIES

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Lavatories.
 - 2. Faucets.
 - 3. Supports.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Sustainable Design Submittals:
- C. Shop Drawings: Include diagrams for power, signal, and control wiring of automatic faucets.

1.3 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Counter cutout templates for mounting of counter-mounted lavatories.

1.4 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For lavatories and faucets to include in operation and maintenance manuals.
 - 1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 - a. Servicing and adjustments of automatic faucets.

PART 2 - PRODUCTS

2.1 SUPPORTS

- A. Type II Lavatory Carrier:
 - 1. Standard: ASME A112.6.1M.
- B. Type III Lavatory Carrier:
 - 1. Standard: ASME A112.6.1M.

2.2 SUPPLY FITTINGS

- A. NSF Standard: Comply with NSF/ANSI 61 Annex G, "Drinking Water System Components Health Effects," for supply-fitting materials that will be in contact with potable water.
- B. Standard: ASME A112.18.1/CSA B125.1.
- C. Supply Piping: Chrome-plated-brass pipe or chrome-plated copper tube matching water-supply piping size. Include chrome-plated-brass or stainless-steel wall flange.
- D. Supply Stops: Chrome-plated-brass, one-quarter-turn, ball-type or compression valve with inlet connection matching supply piping.
- E. Operation: Loose key.
- F. Risers:
 - 1. NPS 3/8 NPS 1/2.
 - 2. Chrome-plated, soft-copper flexible tube ASME A112.18.6, braided- or corrugated-stainless-steel, flexible hose riser.

2.3 WASTE FITTINGS

- A. Standard: ASME A112.18.2/CSA B125.2.
- B. Drain: Grid type with NPS 1-1/4 offset and straight tailpiece.
- C. Trap:
 - 1. Size: NPS 1-1/2 by NPS 1-1/4.
 - 2. Material: Chrome-plated, two-piece, cast-brass trap and swivel elbow with 0.032-inch-thick brass tube to wall two-piece, cast-brass trap and ground-joint swivel elbow with 0.032-inch-thick brass tube to wall one-piece, cast-brass trap with swivel 0.029-inch-thick tubular brass wall bend; and chrome-plated, brass or steel wall flange.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before lavatory installation.
- B. Examine counters and walls for suitable conditions where lavatories will be installed.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install lavatories level and plumb according to roughing-in drawings.
- B. Install supports, affixed to building substrate, for wall-mounted lavatories.
- C. Install accessible wall-mounted lavatories at handicapped/elderly mounting height for people with disabilities or the elderly, according to ICC/ANSI A117.1.
- D. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations. Use deep-pattern escutcheons if required to conceal protruding fittings. Comply with escutcheon requirements specified in Section 220518 "Escutcheons for Plumbing Piping."
- E. Seal joints between lavatories and counters and walls using sanitary-type, one-part, mildewresistant silicone sealant. Match sealant color to fixture color. Comply with sealant requirements specified in Section 079200 "Joint Sealants."
- F. Install protective shielding pipe covers and enclosures on exposed supplies and waste piping of accessible lavatories. Comply with requirements in Section 220719 "Plumbing Piping Insulation."

3.3 CONNECTIONS

- A. Connect fixtures with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.
- B. Comply with water piping requirements specified in Section 221116 "Domestic Water Piping."
- C. Comply with soil and waste piping requirements specified in Section 221316 "Sanitary Waste and Vent Piping."

3.4 ADJUSTING

- A. Operate and adjust lavatories and controls. Replace damaged and malfunctioning lavatories, fittings, and controls.
- B. Adjust water pressure at faucets to produce proper flow.
- C. Install fresh batteries in battery-powered, electronic-sensor mechanisms.

3.5 CLEANING AND PROTECTION

- A. After completing installation of lavatories, inspect and repair damaged finishes.
- B. Clean lavatories, faucets, and other fittings with manufacturers' recommended cleaning methods and materials.
- C. Provide protective covering for installed lavatories and fittings.

D. Do not allow use of lavatories for temporary facilities unless approved in writing by Owner.

END OF SECTION 224216.13

SECTION 224216.16 - COMMERCIAL SINKS

PART 1 - GENERAL

1.1 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Sustainable Design Submittals:

1.2 CLOSEOUT SUBMITTALS

A. Maintenance data.

PART 2 - PRODUCTS

2.1 SUPPORTS

- A. Type II Sink Carrier:
 - 1. Standard: ASME A112.6.1M.

2.2 SUPPLY FITTINGS

- A. NSF Standard: Comply with NSF 372 for supply-fitting materials that will be in contact with potable water.
- B. Standard: ASME A112.18.1/CSA B125.1.
- C. Supply Piping: Chrome-plated brass pipe or chrome-plated copper tube matching water-supply piping size. Include chrome-plated brass or stainless-steel wall flange.
- D. Supply Stops: Chrome-plated brass, one-quarter-turn, ball-type or compression valve with inlet connection matching supply piping.
- E. Operation: Loose key.
- F. Risers:
 - 1. NPS 3/8.
 - 2. Chrome-plated, rigid-copper pipe.

2.3 WASTE FITTINGS

A. Standard: ASME A112.18.2/CSA B125.2.

- B. Drain: Grid type with NPS 1-1/2 offset and straight tailpiece.
- C. Trap:
 - 1. Size: NPS 1-1/2.
 - 2. Material: Chrome-plated, two-piece, cast-brass trap and swivel elbow with 0.032-inch-thick brass tube to wall; and chrome-plated brass or steel wall flange.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before sink installation.
- B. Examine walls, floors, and counters for suitable conditions where sinks will be installed.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install sinks level and plumb according to roughing-in drawings.
- B. Install supports, affixed to building substrate, for wall-hung sinks.
- C. Install accessible wall-mounted sinks at handicapped/elderly mounting height according to ICC/ANSI A117.1.
- D. Set floor-mounted sinks in leveling bed of cement grout.
- E. Install water-supply piping with stop on each supply to each sink faucet.
 - 1. Exception: Use ball or gate valves if supply stops are not specified with sink. Comply with valve requirements specified in Section 220523.12 "Ball Valves for Plumbing Piping" and Section 220523.15 "Gate Valves for Plumbing Piping."
 - 2. Install stops in locations where they can be easily reached for operation.
- F. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations. Use deep-pattern escutcheons if required to conceal protruding fittings. Comply with escutcheon requirements specified in Section 220518 "Escutcheons for Plumbing Piping."
- G. Seal joints between sinks and counters, floors, and walls using sanitary-type, one-part, mildewresistant silicone sealant. Match sealant color to fixture color. Comply with sealant requirements specified in Section 079200 "Joint Sealants."
- H. Install protective shielding pipe covers and enclosures on exposed supplies and waste piping of accessible sinks. Comply with requirements in Section 220719 "Plumbing Piping Insulation."

COMMERCIAL SINKS 224216.16 - 2

3.3 CONNECTIONS

- A. Connect sinks with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.
- B. Comply with water piping requirements specified in Section 221116 "Domestic Water Piping."
- C. Comply with soil and waste piping requirements specified in Section 221316 "Sanitary Waste and Vent Piping."

3.4 ADJUSTING

- A. Operate and adjust sinks and controls. Replace damaged and malfunctioning sinks, fittings, and controls.
- B. Adjust water pressure at faucets to produce proper flow.

3.5 CLEANING AND PROTECTION

- A. After completing installation of sinks, inspect and repair damaged finishes.
- B. Clean sinks, faucets, and other fittings with manufacturers' recommended cleaning methods and materials.
- C. Provide protective covering for installed sinks and fittings.
- D. Do not allow use of sinks for temporary facilities unless approved in writing by Owner.

END OF SECTION 224216.16

COMMERCIAL SINKS 224216.16 - 3

SECTION 224713 - DRINKING FOUNTAINS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes drinking fountains and related components.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of drinking fountains.

1.3 CLOSEOUT SUBMITTALS

A. Maintenance Data: For drinking fountains to include in maintenance manuals.

PART 2 - PRODUCTS

2.1 DRINKING FOUNTAINS

- A. Drinking Fountains, wall mounted.
 - 1. Standards:
 - a. Comply with ASME A112.19.3/CSA B45.4.
 - b. Comply with NSF 61 Annex G.

2.2 SUPPORTS

- A. Type I Water Cooler Carrier:
 - 1. Standard: ASME A112.6.1M.
- B. Type II Water Cooler Carrier:
 - 1. Standard: ASME A112.6.1M.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine roughing-in for water-supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before fixture installation.
- B. Examine walls and floors for suitable conditions where fixtures will be installed.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install fixtures level and plumb according to roughing-in drawings. For fixtures indicated for children, install at height required by authorities having jurisdiction.
- B. Set pedestal drinking fountains on floor.
- C. Install off-the-floor carrier supports, affixed to building substrate, for wall-mounted fixtures.
- D. Install water-supply piping with shutoff valve on supply to each fixture to be connected to domestic-water distribution piping. Use ball or gate valve. Install valves in locations where they can be easily reached for operation. Valves are specified in Section 220523.12 "Ball Valves for Plumbing Piping" and Section 220523.15 "Gate Valves for Plumbing Piping."
- E. Install trap and waste piping on drain outlet of each fixture to be connected to sanitary drainage system.
- F. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations. Use deep-pattern escutcheons where required to conceal protruding fittings. Comply with escutcheon requirements specified in Section 220518 "Escutcheons for Plumbing Piping."
- G. Seal joints between fixtures and walls using sanitary-type, one-part, mildew-resistant, silicone sealant. Match sealant color to fixture color. Comply with sealant requirements specified in Section 079200 "Joint Sealants."
- H. Adjust fixture flow regulators for proper flow and stream height.

3.3 CONNECTIONS

- A. Connect fixtures with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.
- B. Comply with water piping requirements specified in Section 221116 "Domestic Water Piping."
- C. Install ball or gate shutoff valve on water supply to each fixture. Comply with valve requirements specified in Section 220523.12 "Ball Valves for Plumbing Piping" and Section 220523.15 "Gate Valves for Plumbing Piping."

D. Comply with soil and waste piping requirements specified in Section 221316 "Sanitary Waste and Vent Piping."

3.4 CLEANING

- A. After installation, inspect unit. Remove paint splatters and other spots, dirt, and debris. Repair damaged finish to match original finish.
- B. Clean fixtures, on completion of installation, according to manufacturer's written instructions.
- C. Provide protective covering for installed fixtures.
- D. Do not allow use of fixtures for temporary facilities unless approved in writing by Owner.

END OF SECTION 224713

SECTION 230513 - COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

A. Related Documents:

- 1. Drawings and general provisions of the Subcontract apply to this Section.
- 2. Review these documents for coordination with additional requirements and information that apply to work under this Section.

B. Section Includes:

- 1. Single phase electric motors.
- 2. Three phase electric motors.

C. Related Sections:

- 1. Division 01 Section "General Requirements."
- 2. Division 01 Section "Special Procedures."
- 3. Division 22 Sections specifying plumbing assemblies motorized components.

1.2 REFERENCES

A. General:

- 1. The following documents form part of the Specifications to the extent stated. Where differences exist between codes and standards, the one affording the greatest protection shall apply.
- 2. Unless otherwise noted, the referenced standard edition is the current one at the time of commencement of the Work.
- 3. Refer to Division 01 Section "General Requirements" for the list of applicable regulatory requirements.
- 4. Refer to Division 23 Section "Common Results for HVAC" for codes and standards, and other general requirements.
- B. AFBMA 9 Load Ratings and Fatigue Life for Ball Bearings.
- C. AFBMA 11 Load Ratings and Fatigue Life for Roller Bearings.
- D. IEEE 112 Test Procedure for Polyphase Induction Motors and Generators.
- E. NEMA MG 1 Motors and Generators.
- F. NFPA 70 National Electrical Code.
- G. Conform to all AFBMA, IEEE, NEMA, NFPA, and California Title 24 standards, codes, and regulations.

1.3 SUBMITTALS

A. Submit under provisions of Division 22 Section "Common Results for Plumbing - Review of Materials" and Division 01 Section "General Requirements."

B. Pre-Construction Submittals:

- 1. Submit under provisions of Division 01 Section "General Requirements" for all equipment prior to ordering or fabrication. No deviations from the submittals as approved shall be permitted and materials purchased prior to approval shall be at the sole risk of the Subcontractor.
- 2. All submittal data shall be the same size for group of information and shall be bound or in a three-ring binder as appropriate. All information shall be indexed and tabbed with reference to the specific section of the specification.
- 3. Product Data: Provide wiring diagrams with electrical characteristics and connection requirements.
- 4. Manufacturer's Installation Instructions: Indicate setting, mechanical connections, lubrication, and wiring instructions.
- 5. Field reports: Submit hand-written or printed reports indicating operating conditions after detailed check out of systems prior to construction.

C. Project Record Documents:

- 1. Submit under provisions of Division 01 Section "General Requirements".
- 2. The construction subcontract drawings shall be submitted in "red-line" marked-up form which the University will use to produce the "as-builts".
- 3. Additional shop drawings produced by the subcontractor shall be revised to show the "as-built" conditions prior to submittal. Submit as-built shop drawings and copies of all computer files developed for this subcontract.
- 4. Equipment locations: Show actual locations of all system components and affected equipment including motors, driven equipment, and electrical panels.
- 5. Mounting details: Accurately record mounting details.
- 6. Motor Schedule: Provide an update which includes all connected motors installed.

D. Operating And Maintenance Data:

- 1. Submit under provisions of Division 01 Section "General Requirements".
- 2. Operation Data: Include instructions for safe operating procedures.
- 3. Maintenance Data: Documentation shall include manufacturers model number, manufacturer's installation instructions, assembly drawings, bearing data including replacement sizes, lubrication instructions, adjustment procedures, inspection period, recommended cleaning methods and materials, testing methods, shaft grounding brush replacement procedures and calibration tolerances. In the event such manuals are not obtainable from the manufacturer, it shall be the responsibility of the Subcontractor to compile and include them. Advertising brochures shall not be used in lieu of the required technical manuals.
- 4. Include revised schedules for each electrical panel modified for this project.
- 5. Statement of Guarantee including date of termination.

E. Name, address, and phone number of the service representative to be called in the event of equipment failure.

1.4 QUALITY ASSURANCE

A. Manufacturer Qualifications: Experienced in manufacturing the products specified in this Section with minimum five years documented product development, testing, and manufacturing experience.

1.5 Delivery, storage, and handling

- A. Comply with Division 23 Section "Common Results for HVAC Material Delivery."
- B. Protect motors stored on site from weather and moisture by maintaining factory covers and suitable weather-proof covering. For extended outdoor storage, remove motors from equipment and store separately.

1.6 SEQUENCING AND SCHEDULING

- A. Coordinate work under provisions of Division 01 Section "General Requirements."
- B. Coordinate installation of motors with other mechanical and electrical systems equipment being interfaced such as air handling units and motor control centers.

1.7 WARRANTY

- A. Free maintenance services shall be provided by the Subcontractor for one (1) year after final system acceptance in accordance with Division 01 Section "General Requirements." These services shall consist of manufacturer's factory-trained representatives providing emergency repair service with on-site response within 24 hours of call, all test equipment and hardware necessary for maintenance and repair work and installation of modifications designed to improve system performance or eliminate known problems or deficiencies.
- B. During the warranty period, provide new or revised documentation showing all changes required to solve system problems.
- C. Submit written reports on each service or inspection to the LBNL Project Manager during the warranty period.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Baldor
- B. Dayton
- C. General Electric
- D. Reliance
- E. U.S. Motors
- F. Westinghouse

2.2 GENERAL CONSTRUCTION AND REQUIREMENTS

A. Electrical Service:

- 1. Motors 1/4 HP and smaller: 115 volts, single phase, 60 Hz.
- 2. Motors 3/4 HP and smaller, annual operating hours less than 3,000: 115 volts, single phase, 60 Hz.
- 3. Motors 1/2 HP and larger, annual operating hours greater than 3,000: 460 volts, three phase, 60 Hz.
- 4. Motors larger than 3/4 Horsepower: 460 volts, three phase, 60 Hz.

B. Type:

- 1. Single-phase motors shall be split phase, permanent split capacitor, capacitor start, or capacitor start/capacitor run type as determined by the application. Shaded pole motors are specifically prohibited.
- 2. Three-phase motors shall be open drip-proof or totally enclosed for indoor dry locations and shall be totally enclosed for outdoor or other wet locations.
- 3. Motors located in draw-through cooling towers: Totally enclosed weatherproof epoxy-sealed type.
- 4. Design for continuous operation in 40°C environment.
- 5. Design for temperature rise in accordance with NEMA MG 1 limits for insulation class, service factor, and motor enclosure type.
- C. Visible Nameplate: Indicate manufacturer's name, model number, serial number, horsepower, voltage, phase, frequency, RPM, full load amps, locked rotor amps or code, frame size, service factor, power factor, nominal full-load efficiency, bearing sizes, insulation class, and rated ambient temperature.

D. Wiring Terminations:

- 1. Provide terminal lugs to match branch circuit conductor quantities, sizes, and materials indicated. Enclose terminal lugs in terminal box sized to NFPA 70, threaded for conduit.
- 2. For fractional horsepower motors where connection is made directly, provide threaded conduit connection in end frame.

E. Explosion-Proof Motors: UL approved and labeled for hazard classification, with over-temperature protection.

2.3 SINGLE PHASE POWER - SPLIT PHASE MOTORS

- A. Starting Torque: Less than 150 percent of full load torque.
- B. Starting Current: Less than seven times full load current.
- C. Breakdown Torque: Approximately 200 percent of full load torque.
- D. Open Drip-proof Enclosure: Class A (50(C temperature rise) insulation, NEMA Service Factor, prelubricated sleeve or ball bearings.
- E. Enclosed Motors: Class A (50(C temperature rise) insulation, 1.0 Service Factor, prelubricated ball bearings.

2.4 SINGLE PHASE POWER - PERMANENT-SPLIT CAPACITOR MOTORS

- A. Starting Torque: Capable of exceeding one fourth of full load torque.
- B. Starting Current: Less than six times full load current.
- C. Multiple Speed: Through tapped windings.
- D. Open Drip-proof or Enclosed Air Over Enclosure: Class A (50(C temperature rise) insulation, minimum 1.0 Service Factor, prelubricated sleeve or ball bearings, automatic reset overload protector.

2.5 SINGLE PHASE POWER - CAPACITOR START MOTORS

- A. Starting Torque: Capable of three times full load torque.
- B. Starting Current: Less than five times full load current.
- C. Pull-up Torque: Up to 350 percent of full load torque.
- D. Breakdown Torque: Approximately 250 percent of full load torque.
- E. Capacitor in series with starting winding; provide capacitor-start/capacitor-run motors with two capacitors in parallel with run capacitor remaining in circuit at operating speeds.
- F. Open Drip-proof Enclosure: Class A (50(C temperature rise) insulation, NEMA Service Factor (see Section 3.03), prelubricated ball bearings.

G. Enclosed Motors: Class A (50(C temperature rise) insulation, 1.0 Service Factor, prelubricated ball bearings.

2.6 THREE PHASE POWER - SQUIRREL CAGE MOTORS

- A. Starting Torque: Between 1 and 1-1/2 times full load torque.
- B. Starting Current: Less than six times full load current.
- C. Power Output, Locked Rotor Torque, Breakdown and Pull Out Torque: NEMA Design B characteristics.
- D. Design, Construction, Testing, and Performance: Conform to NEMA MG 1 for Design B motors.
- E. Insulation: NEMA Class F or better.
- F. Testing Procedure: In accordance with IEEE 112B. Load test motors to determine that they are free from electrical or mechanical defects in compliance with performance data.
- G. Motor Frames: NEMA Standard Frames of steel, aluminum, or cast iron with end brackets of cast iron or aluminum with steel inserts.
- H. Thermistor System (Motor Frame Sizes 284T and Larger): Three PTC thermistors imbedded in motor windings and epoxy encapsulated solid state control relay for wiring into motor starter; refer to Division 26 Section "Motor Control Centers".
- I. Bearings: Grease lubricated anti-friction ball bearings with housings equipped with plugged provision for relubrication, rated for minimum AFBMA 9, L-10 life of 20,000 hours L-50 life of 100,000 hours. Calculate bearing load with NEMA minimum V-belt pulley with belt center line at end of NEMA standard shaft extension. Stamp bearing sizes on nameplate.
- J. Sound Power Levels: Motors shall conform to NEMA MG 1.
- K. Part Winding Start where indicated: Use part of winding to reduce locked rotor starting current to approximately 60 percent of full winding locked rotor current while providing approximately 50 percent of full winding locked rotor torque.
- L. Weatherproof Epoxy Sealed Motors: Epoxy seal windings using vacuum and pressure with rotor and stator surfaces protected with epoxy enamel; bearings double shielded with waterproof non-washing grease.

2.7 MOTOR EFFICIENCY

- A. The manufacturer's nominal efficiency for the HP size specified shall be as shown in the Part 3 Schedules at 3/4 load and rated voltage when tested in accordance with IEEE 112B.
- B. Motors 1/2 HP and smaller, with annual operating hours less than 3,000 may be the equipment manufacturer's standard and need not conform to these specifications.

2.8 MOTOR POWER FACTOR

- A. The manufacturer's nominal power factor for the HP size specified shall be as shown in the Part 3 Schedules at 3/4 load and rated voltage when tested in accordance with IEEE 112B.
- B. Motors 1/2 HP and smaller, with annual operating hours less than 3,000 may be the equipment manufacturer's standard and need not conform to these specifications.

2.9 SHAFT GROUNDING

- A. All motors driven by a VFD shall include shaft grounding on the non-drive end of the motor. Shaft ground to be installed by electrical subcontractor. Shaft grounding kits to consist of brass or stainless steel brushes.
- B. Manufacturer: Shaft Grounding Systems or equal.

PART 3 - EXECUTION

3.1 Installation:

- A. Install in accordance with manufacturer's instructions.
- B. Install securely on firm foundation.
- C. Check line voltage and phase and ensure agreement with nameplate.

3.2 VIBRATION

- A. Statically and dynamically balance motors to a vibration displacement not to exceed 2 mils peak to peak.
- B. See Division 23 Section "Testing, Adjusting, and Balancing for HVAC."

END OF SECTION 230513

SECTION 230517 - SLEEVES AND SLEEVE SEALS FOR HVAC PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Sleeves.
- 2. Sleeve-seal systems.
- Grout.
- 4. Silicone sealants.

B. Related Requirements:

1. Section 078413 "Penetration Firestopping" for penetration firestopping installed in fireresistance-rated walls, horizontal assemblies, and smoke barriers, with and without penetrating items.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.3 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

PART 2 - PRODUCTS

2.1 SLEEVES

- A. Cast-Iron Pipe Sleeves: Cast or fabricated of cast or ductile iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop collar.
- B. Steel Pipe Sleeves: ASTM A53/A53M, Type E, Grade B, Schedule 40, anti-corrosion coated or zinc coated, with plain ends and integral welded waterstop collar.
- C. Galvanized-Steel Sheet Pipe Sleeves: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.
- D. PVC Pipe Sleeves: ASTM D1785, Schedule 40.

2.2 SLEEVE-SEAL SYSTEMS

A. Description:

- 1. Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.
- 2. Designed to form a hydrostatic seal of 20-psig.
- 3. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size.
- 4. Pressure Plates: Carbon steel.
- 5. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating, ASTM B633 of length required to secure pressure plates to sealing elements.

2.3 GROUT

- A. Description: Nonshrink, recommended for interior and exterior sealing openings in nonfire-rated walls or floors.
- B. Standard: ASTM C1107/C1107M, Grade B, post-hardening and volume-adjusting, dry, hydraulic-cement grout.
- C. Design Mix: 5000-psi, 28-day compressive strength.
- D. Packaging: Premixed and factory packaged.

2.4 SILICONE SEALANTS

- A. Silicone, S, NS, 25, NT: Single-component, nonsag, plus 25 percent and minus 25 percent movement capability, nontraffic-use, neutral-curing silicone joint sealant, ASTM C920, Type S, Grade NS, Class 25, use NT.
- B. Silicone, S, P, 25, T, NT: Single-component, pourable, plus 25 percent and minus 25 percent movement capability, traffic- and nontraffic-use, neutral-curing silicone joint sealant; ASTM C920, Type S, Grade P, Class 25, Uses T and NT. Grade P Pourable (self-leveling) formulation is for opening in floors and other horizontal surfaces that are not fire rated.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

- A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.
- B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch annular clear space between piping and concrete slabs and walls.
- C. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.

- 1. Cut sleeves to length for mounting flush with both surfaces.
 - a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level.
- 2. Using grout or silicone sealant, seal space outside of sleeves in slabs and walls without sleeve-seal system.
- D. Install sleeves for pipes passing through interior partitions.
 - 1. Cut sleeves to length for mounting flush with both surfaces.
 - 2. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
 - 3. Seal annular space between sleeve and piping or piping insulation; use sealants appropriate for size, depth, and location of joint.
- E. Fire-Resistance-Rated Penetrations, Horizontal Assembly Penetrations, and Smoke-Barrier Penetrations: Maintain indicated fire or smoke rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with fire- and smoke-stop materials. Comply with requirements for firestopping and fill materials specified in Section 078413 "Penetration Firestopping."

3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

- A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.
- B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal-system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

3.3 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Leak Test: After allowing for a full cure, test sleeves and sleeve seals for leaks. Repair leaks and retest until no leaks exist.
- B. Sleeves and sleeve seals will be considered defective if they do not pass tests and inspections.

3.4 SLEEVE AND SLEEVE-SEAL SCHEDULE

- A. Use sleeves and sleeve seals for the following piping-penetration applications:
 - 1. Exterior Concrete Walls Above Grade:
 - a. Piping Smaller Than NPS 6 : Cast-iron pipe sleeves.

- b. Piping NPS 6 and Larger: Cast-iron pipe sleeves.
- 2. Exterior Concrete Walls Below Grade:
 - a. Piping Smaller Than NPS 6: Cast-iron pipe sleeves.
 - 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 - b. Piping NPS 6 and Larger: Cast-iron pipe sleeves.
 - 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
- 3. Concrete Slabs-on-Grade:
 - a. Piping Smaller Than NPS 6: Cast-iron pipe sleeves.
 - 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 - b. Piping NPS 6 and Larger: Cast-iron pipe sleeves.
- 4. Concrete Slabs Above Grade:
 - a. Piping Smaller Than NPS 6 : Steel-pipe sleeves.
 - b. Piping NPS 6 and Larger: Steel-pipe sleeves.
- 5. Interior Partitions:
 - a. Piping Smaller Than NPS 6 : Galvanized-steel pipe sleeves.
 - b. Piping NPS 6 and Larger: Galvanized-steel sheet sleeves.

END OF SECTION 230517

SECTION 230529 - HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

A. Related Documents:

- 1. Drawings and general provisions of the Subcontract apply to this Section.
- 2. Review these documents for coordination with additional requirements and information that apply to work under this Section.

B. Section Includes:

- 1. Pipe, duct, and equipment hangers and supports.
- 2. Anchors, equipment bases and supports.
- 3. Sleeves and seals.
- 4. Flashing, counter flashing and pipe stacks.
- 5. Firestopping.

C. Related Sections:

- 1. Division 01 Section "General Requirements."
- 2. Division 01 Section "Special Procedures."
- 3. Division 01 Section "Lateral Force Provisions" for seismic bracing of ductwork and piping.
- 4. Division 03 Section "Concrete".
- 5. Division 03 Section "Concrete Forming".
- 6. Division 03 Section "Concrete Accessories".
- 7. Division 07 Section "Penetration Firestopping".
- 8. Division 07 Section "Joint Sealants".
- 9. Division 21 Section "Vibration and Seismic Controls for HVAC Piping and Equipment".
- 10. Division 21 Section "HVAC Piping Insulation".
- 11. Division 21 Section "HVAC Equipment Insulation".
- 12. Division 22 Section "Facility HVAC Piping".
- 13. Division 22 Section "Hydronic Piping".

1.2 REFERENCES

A. General:

- 1. The following documents form part of the Specifications to the extent stated. Where differences exist between codes and standards, the one affording the greatest protection shall apply.
- 2. Unless otherwise noted, the referenced standard edition is the current one at the time of commencement of the Work.
- 3. Refer to Division 01 Section "General Requirements" for the list of applicable regulatory requirements.
- 4. Refer to Division 23 Section "Common Results for HVAC" for codes and standards, and other general requirements.

B. Code of Federal Regulations 29 CFR 1910.7:

- 1. Definitions and Requirements for a Nationally Recognized Testing Laboratory (NRTL).
- C. National Fire Protection Association (NFPA)
 - 1. NFPA-13 Installation of Sprinkler Systems
 - 2. NFPA-14 Installation of Standpipe and Hose Systems
- D. Sheet Metal and Air Conditioning Contractors' National Association, Inc. (SMACNA):
 - 1. Seismic Restraint Manual: Guidelines for Mechanical Systems latest edition for the support of ductwork.
- E. Division 01 Section "Lateral Force Provisions" for seismic bracing of ductwork and piping.
- F. UL Fire Resistance Directory, latest edition.

1.3 SUBMITTALS

- A. Submit under provisions of Division 23 Section "Common Results for HVAC, Review of Materials" and Division 01 Section "General Requirements."
- B. Submit calculations showing compliance with Division 01 Section "Lateral Force Provisions", for piece of equipment whether supported or braced from above or below.
- C. Submit calculations showing compliance with Division 01 Section "Lateral Force Provisions" for seismic bracing of ductwork and piping.
- D. Submit shop drawing of hanger and support spacing, framing and attachment methods.
- E. Submit firestopping systems for every application.

1.4 QUALITY ASSURANCE

- A. Comply with the following:
 - 1. Supports for Sprinkler Piping: NFPA 13.
 - 2. Supports for Standpipes: NFPA 14.
- B. Do not use black steel devices, components, fasteners, etc. within the Clean Room interstitial space or in related air flow path. Steel items shall be plated, galvanized, painted, or coated.

PART 2 - PRODUCTS

2.1 PIPE HANGERS AND SUPPORTS

- A. Hangers for Pipe Sizes ½ (12.7 mm) to 1-1/2 Inch (38 mm): Carbon steel, adjustable swivel ring, UL listed, Grinnell Fig. 69 or equal. Use plastic coated hangers at all uninsulated copper piping.
- B. Hangers for Pipe Sizes 2 Inches (50.8 mm) and Cold Pipe Sizes 6 Inches (152.4 mm) and Over: Carbon steel, black or galvanized, adjustable, clevis, UL listed, Grinnell Fig. 260 or equal.

- C. Hangers for Hot Pipe Sizes 6 Inches (152.4 mm) and Over: Adjustable steel yoke, cast iron roll, double hanger.
- D. Trapeze Supports: 12 gauge channel complete with nuts, pipe clamps, pipe straps, and drive-in end caps. Furnish cushion strip on all uninsulated copper piping and; cast iron roll and stand for hot pipe sizes 6 inches and over.
- E. Pipe Supported Tight to Wall, Floor, or Ceiling: Superstrut A1200, Unistrut P1000, or equal, 12 gauge channel complete with pipe clamps, nuts, bolts, and end caps. Furnish cushion strip on all uninsulated copper piping. and adjustable steel yoke and cast iron roll for hot-pipe sizes 6 inches and over.
- F. Vertical Support: Steel riser clamp, UL listed, Grinnell Fig. 261, Superstrut C720, or equal.
- G. Floor Support for Pipe Sizes to 4 Inches (101.6 mm) and Cold Pipe Sizes: Cast iron adjustable pipe saddle, locknut nipple, floor flange, and concrete pier or steel support.
- H. Floor Support for Hot Pipe Sizes 6 Inches (152.4 mm) and Over: Adjustable cast iron roll and stand, steel screws, and concrete pier or steel support.
- I. Shied for Insulated Piping 2 Inches and Smaller: 18-gauge galvanized steel shield over insulation in 180 degree segments, at least 12 inches (300 mm) long at pipe support.
- J. Pipe Shields: Pipe Shields Inc., FRI, or equal, pipe hanger shield with waterproofed calcium silicate insulation encased in a galvanized metal casing completely around the pipe. Provide insulation same thickness as pipe insulation. Furnish the following models:
 - 1. Chilled Water: A2000 with calcium silicate insulation extending 1" beyond the metal casing.
 - 2. All others: A1000.
- K. Concrete Anchors: In accordance with Division 03 Section "Concrete Accessories".

2.2 DUCT SUPPORTS

A. See Division 23 Sections "Metal Ducts" and "Metal Ducts Fittings".

2.3 HANGER RODS

A. Steel, threaded both ends, threaded one end, or continuously threaded.

2.4 ATTACHMENTS TO STRUCTURE

A. Inserts for new formed concrete construction: Malleable iron case of galvanized steel shell and expander plug for threaded connection with lateral adjustment, top slot for reinforcing rods, lugs for attaching to forms; size inserts to suit threaded hanger rods. For Suspension from New Formed Concrete Structure: Grinnell Figure 282, Superstrut 452, or equal, UL listed for the rod sizes, Grinnell, Fig. 282, Superstrut 452, or equal.

- B. Connection to Existing Concrete Structure: Concrete anchors with a current ICC evaluation report for seismic applications in cracked concrete. Do not use powder-driven.
- C. For Suspension from New Formed Concrete Structure: B-Line B3014, Grinnell Figure 282, Superstrut 452, or equal, adjustable concrete insert.
- D. For Support on New Concrete: Galvanized steel headed bolts.
- E. Welded Connection to Steel Beams: B-Line B3083, Grinnell, Superstrut, or equal, steel welded beam attachment.
- F. Clamp Connection to Steel Beams: B-Line, Grinnell, Superstrut, or equal, beam clamp with retaining clip style as required by load.

2.5 SUPPORTS, BRACING, AND ACCESSORIES

- A. Miscellaneous Steel: Angles, channels, brackets, rods, clamps, etc., of new materials conforming to ASTM A36. Hot-dip galvanize steel parts after fabrication where used outdoors or inside the penthouse.
- B. Fasteners: Bolts and nuts, except as otherwise specified, shall conform to ASTM Standard Specifications for Low Carbon Steel Externally and Internally Threaded Standard Fasteners, Designation A307. Bolts shall have heavy hexagon heads, and nuts shall be of the hexagon heavy series. Bolts, washers, nuts, anchor bolts, screws and other hardware used outdoors or inside the penthouse shall be galvanized, and galvanized nuts shall have a free running fit. Provide bolts of ample size and strength for the purpose intended. Ferrous metal components below grade shall be stainless steel.
- C. Sheet Metal Screws: Plated, size 10 minimum.
- D. Pre-engineered duct and pipe bracing systems may be Mason Industries Seismic Sway Brace System or equal.

2.6 COUNTER FLASHING

- A. Metal Flashing: 26-gauge galvanized steel.
- B. Flexible Flashing: 47-mil thick sheet butyl; compatible with roofing.
- C. Caps: Steel, 16 gauge.

2.7 EQUIPMENT CURBS

A. See Architectural and Structural Drawings for the design detail of the equipment curb..

2.8 SLEEVES

- A. Adjust-To-Crete, AMI Products, or equal, 24 gauge, electro-galvanized adjustable sleeve, up to 6" diameter. For 8 inches (200 mm) and larger, provide galvanized standard weight steel pipe sleeves
- B. Sleeves for Round Ductwork: Form with galvanized steel.
- C. Sleeves for Rectangular Ductwork: Form with galvanized steel or wood.
- D. Caulk: Acrylic sealant of quality specified in Division 07 Section "Joint Sealants".

2.9 FIREPROOFING OF FLOOR AND WALL PENETRATIONS

A. Materials and installation shall comply with U.L. "Fire Resistance Directory", for Through-Penetration for Firestop Devices, latest edition. See Division 07 Section "Penetrating Firestopping".:

2.10 FABRICATION

- A. Size sleeves large enough to allow for movement due to expansion and contraction. Provide for continuous insulation wrapping.
- B. Design hangers for installation without disengagement of supported pipe.

2.11 FINISH

- A. Prime-paint exposed steel hangers and supports. Hangers and supports located in crawl spaces, pipe shafts, and suspended ceiling spaces are not considered exposed.
 - 1. Steel in the Clean Room interstitial space is considered exposed.
- B. Hot-dip galvanized outdoors.
 - 1. Repair damage to galvanizing at welds, scratches, etc. using Z.R.C. (no known equal) cold galvanizing compound.

PART 3 - EXECUTION

3.1 ATTACHMENTS TO STRUCTURE

- A. Concrete Structure: Locate anchors from Edge condition and at a spacing to obtain maximum working loads specified in the applicable ICC report.
 - 1. See structural drawings for additional restrictions for locating anchors.
- B. Steel Structure: Attach at beam axis. Avoid eccentric loads wherever possible.
- C. Rating: Ultimate strength at least five times the imposed load.
- D. Submit for structural review pipe hanger locations, point loads and structural attachment details for pipes 6" and larger.

- E. Coordinate installation so that attachments to structure are made prior to fireproofing. If attachments must be made after fireproofing, then thoroughly clean area of fire proofing before welded or bolted attachments are made and replace fireproofing as necessary. Fireproofing material shall match existing.
- F. Where point loads, imposed by work of Division 22, are greater than can safely be carried by the roof or deck, provide structural steel spreader beams tied to the building structure. Submit details of such spreader beams for approval.

G. Inserts:

- 1. Furnish inserts to Division 03 Sections "Concrete" and "Concrete Forming" for placement in concrete form work.
- 2. Furnish inserts for suspending hangers from reinforced concrete slabs and sides of reinforced concrete beams.
- 3. Furnish hooked rod to Division 03 Sections "Concrete" and "Concrete Forming" for inserts carrying pipe larger than 4 inches (100 mm).
- 4. Where concrete slabs form finished ceiling, furnish inserts to be flush with slab surface.
- 5. Where inserts are omitted, submit an attachment plan to the University.

3.2 SUPPORTS, BRACING, AND ACCESSORIES

- A. Common support systems: This section is responsible for the provision, coordination, calculations, and seismic bracing of support systems common to Division 22 work. Individual section shall provide their own horizontal support struts. Division 15 shall coordinate with other divisions of all aspects of hanger installation, horizontal strut installation, pipe/conduit/cable tray/etc. installation, seismic bracing installation, and so on.
- B. Set machines and devices dead level, except where pitch or slope is specified or shown. Securely fasten to the structure unless shown otherwise. Use dry pack cement grout to obtain complete contact between structure and equipment.
- C. This Section is responsible for the concrete work for the support of equipment provided by this Section. Coordinate locations with anchor bolts before concrete is placed.

D. Pipe Hangers and Supports:

1. Support horizontal piping as follows:

Pipe Size	Maximum Hanger Spacing	Hanger Diameter
1/2 to 1-1/4 inch (12.7 to 31.75 mm)	6 feet 6 inches (2 m)	3/8 inch (9.5 mm)
1-1/2 to 2 inch (38.1 to 50.8 mm)	10 feet (3 m)	3/8 inch (9.5 mm)
2-1/2 to 3 inch (63.5 tto 76.2 mm)	10 feet (3 m)	1/2 inch (12.7 mm)
4 to 6 inch (101.6 to 152.4 mm)	10 feet (3 m)	5/8 inch (15.9 mm)
8 to 12 inch (203.2 to 304.8 mm)	14 feet (4.25 m)	7/8 inch (22.2 mm)

14 inch (355.6 mm) and over	20 feet (6 m)	1 inch (25 mm)
PVC (All sizes)	6 feet (1.8 m)	3/8 inch (9.5 mm)
C.I. Bell and Spigot (or No-Hub)	5 feet (1.5 m) at joints	3/8 inch (9.5 mm)

- 2. Install hangers to provide at least 1/2 inch (13 mm) space between finished covering and adjacent work.
- 3. Place a hanger within 12 inches (300 mm) of each horizontal elbow.
- 4. Use hangers with at least 1-1/2 inch (38 mm) vertical adjustment.
- 5. Support horizontal cast iron pipe adjacent to each hub, with 5 feet (1.5 m) maximum spacing between hangers.
- 6. Support vertical piping at every floor. Support vertical cast iron pipe at each floor at hub.
- 7. Where several pipes can be installed in parallel and at same elevation, provide multiple or trapeze hangers. Use specified pipe shields (if applicable). Trapeze size, and support size and spacing shall be governed by the cumulative weight of the supported piping. Maximum trapeze deflection shall be 1/240th of the span on a maximum stress of 15,000 psi (103.5 MPa), whichever is more stringent.
- 8. Support riser piping independently of connected horizontal piping.
- 9. Brace piping longitudinally and transversely as specified and indicated on the drawings. Design of the seismic bracing shall be in accordance with Division 01 Section "Lateral Force Provisions".
- 10. Support pipe from the building structure so that there is no apparent deflection in pipe runs. Fit piping with steel sway braces and anchors to prevent vibration and/or horizontal displacement under load when required. Do not support from, or brace to, ducts, other pipes, conduit, or materials except building structure. Piping or equipment shall be immobile and shall not be supported or hung by wire, rope, plumber's tape, plastic ties, or blocking of any kind. Vertical piping running between floors shall be additionally supported at mid points in a rigid and immobile fashion. Exposed or concealed piping which can be physically moved, and which is not properly supported will not be accepted, and additional support or bracing will be required. Install seismic bracing as at locations as specified in the contract drawings.
- 11. Install and secure equipment with anchors and braces to floors, structural members and walls with sufficient backing, to prevent vibration and/or horizontal displacement under load and seismic force as hereinbefore specified. Follow manufacturer's recommendations for the installation of vibration isolators where required for equipment requiring such.

E. Duct Support and Bracing:

- 1. Support duct risers as shown on the Drawings.
- 2. Ducts Supported From Above: Attach to structure using specified attachments. Minimum rod or bolt size is 3/8 inch (10 mm).
- 3. Support Spacing: See Division 23 Sections "Metal Ducts" and "Metal Ducts Fittings"...
- 4. Double fold strap at attachment to structure.
- 5. Provide special supports where shown on the Drawings.
- 6. Brace ducts longitudinally and transversely as specified in the contract drawings. Design of the seismic bracing shall be in accordance with Division 01 Section "Lateral Force Provisions".
- 7. Brace lay-in ceiling air inlets and outlets.

F. Equipment Bases and Supports:

- 1. Comply with Division 03 Sections "Concrete" and "Concrete Forming" for concrete bases
- 2. Provide templates, anchor bolts, and accessories for mounting and anchoring equipment.
- 3. Construct support of steel members. Brace and fasten with flanges bolted to structure. Level equipment installed on steel rails using shims to compensate for the deflection of the steel.
- 4. Provide rigid anchors for pipes after vibration-isolation components are installed.

G. Counter Flashing:

- 1. See Architectural Drawings for flashings.
- 2. Provide flexible flashing and metal counterflashing where piping and ductwork penetrate weatherproofed or waterproofed walls, floors, and roofs.
- 3. Counterflash vent and soil pipes projecting at least 3 inches (75 mm) above finished roof surface with lead worked at least 1 inch (25 mm) into hub, at least 8 inches (200 mm) clear on sides using 24 inches (600 mm) by 24 inches (600 mm) sheets. For pipes through outside walls, turn flanges back into wall and caulk, metal counterflash, and seal.
- 4. Counterflash floor drains in floors with topping over finished areas with lead, 10 inches (250 mm) clear on sides using at least 36 inches by (900 mm) 36 inches (900 mm) sheets. Fasten flashing to drain clamp device.
- 5. Seal floor, shower, mop sink, and drains watertight to adjacent materials.
- 6. Provide acoustical-lead flashing around ducts and pipes penetrating equipment rooms, installed in accordance with manufacturer's instructions for sound control.
- 7. Provide curbs for mechanical roof installations at least 14 inches (350 mm) high above roofing surface. Counterflash with flexible sheet and counterflash with sheet metal; seal watertight.

H. Sleeves:

- 1. Set sleeves in position in formwork. Provide reinforcing around sleeves.
- 2. Extend sleeves through floors 1 inch (25 mm) above finished floor level. Caulk sleeves full depth and provide floor plate.
- 3. Where piping or ductwork penetrates floor, ceiling, or wall, close-off space between pipe or duct and adjacent work with fire-stopping insulation and caulk airtight. Provide close-fitting metal collar or escutcheon covers at both sides of penetration.
- 4. Install chrome-plated steel escutcheons at finished surfaces.

3.3 SEISMIC RESTRAINTS

A. Provide support hangar system, equipment, ductwork and piping with seismic restraints in accordance with Division 01 Section "Lateral Force Provisions".

Pipe seismic restraints shall not interfere with pipe thermal expansion loop action or pipe building joint expansion loop action.

END OF SECTION 230529

SECTION 230548 - VIBRATION AND SEISMIC CONTROLS FOR HVAC

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Elastomeric isolation pads.
- 2. Elastomeric isolation mounts.
- 3. Restrained elastomeric isolation mounts.
- 4. Open-spring isolators.
- 5. Housed-spring isolators.
- 6. Restrained-spring isolators.
- 7. Housed-restrained-spring isolators.
- 8. Pipe-riser resilient supports.
- 9. Resilient pipe guides.
- 10. Elastomeric hangers.
- 11. Spring hangers.
- 12. Snubbers.
- 13. Restraint channel bracings.
- 14. Restraint cables.
- 15. Seismic-restraint accessories.
- 16. Mechanical anchor bolts.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Delegated-Design Submittal: For each vibration isolation and seismic-restraint device.
 - 1. Include design calculations and details for selecting vibration isolators and seismic restraints complying with performance requirements, design criteria, and analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.3 INFORMATIONAL SUBMITTALS

- A. Welding certificates.
- B. Field quality-control reports.

1.4 QUALITY ASSURANCE

A. Comply with seismic-restraint requirements in the IBC unless requirements in this Section are more stringent.

- B. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- C. Seismic-restraint devices shall have horizontal and vertical load testing and analysis and shall bear anchorage preapproval OPA number from OSHPD, preapproval by ICC-ES, or preapproval by another agency acceptable to authorities having jurisdiction, showing maximum seismic-restraint ratings. Ratings based on independent testing are preferred to ratings based on calculations. If preapproved ratings are unavailable, submittals based on independent testing are preferred. Calculations (including combining shear and tensile loads) to support seismic-restraint designs must be signed and sealed by a qualified professional engineer.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Wind-Restraint Loading:

- 1. Basic Wind Speed: 93 mph.
- 2. Building Classification Category: III.
- 3. Minimum 10 lb/sq. ft. multiplied by maximum area of HVAC component projected on vertical plane normal to wind direction, and 45 degrees either side of normal.

B. Seismic-Restraint Loading:

- 1. Site Class as Defined in the IBC: C.
- 2. Assigned Seismic Use Group or Building Category as Defined in the IBC: III.
 - a. Component Importance Factor: 1.0.
 - b. Component Response Modification Factor: 1.5.
 - c. Component Amplification Factor: 1.0.
- 3. Design Spectral Response Acceleration at Short Periods (0.2 Second):
- 4. Design Spectral Response Acceleration at 1.0-Second Period:

2.2 ELASTOMERIC ISOLATION PADS

A. Elastomeric Isolation Pads:

- 1. Fabrication: Single or multiple layers of sufficient durometer stiffness for uniform loading over pad area.
- 2. Size: Factory or field cut to match requirements of supported equipment.
- 3. Pad Material: Oil and water resistant with elastomeric properties.
- 4. Surface Pattern: Smooth pattern.
- 5. Infused nonwoven cotton or synthetic fibers.
- 6. Load-bearing metal plates adhered to pads.

2.3 ELASTOMERIC ISOLATION MOUNTS

A. Double-Deflection, Elastomeric Isolation Mounts:

1. Mounting Plates:

- a. Top Plate: Encapsulated steel load transfer top plates, factory drilled and threaded with threaded study or bolts.
- b. Baseplate: Encapsulated steel bottom plates with holes provided for anchoring to support structure.
- 2. Elastomeric Material: Molded, oil-resistant rubber, neoprene, or other elastomeric material.

2.4 RESTRAINED ELASTOMERIC ISOLATION MOUNTS

A. Restrained Elastomeric Isolation Mounts:

- 1. Description: All-directional isolator with seismic restraints containing two separate and opposing elastomeric elements that prevent central threaded element and attachment hardware from contacting the housing during normal operation.
 - a. Housing: Cast-ductile iron or welded steel.
 - b. Elastomeric Material: Molded, oil-resistant rubber, neoprene, or other elastomeric material.

2.5 OPEN-SPRING ISOLATORS

- A. Freestanding, Laterally Stable, Open-Spring Isolators:
 - 1. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 2. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - 3. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - 4. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 - 5. Baseplates: Factory-drilled steel plate for bolting to structure with an elastomeric isolator pad attached to the underside. Baseplates shall limit floor load to 500 psig.
 - 6. Top Plate and Adjustment Bolt: Threaded top plate with adjustment bolt and cap screw to fasten and level equipment.

2.6 HOUSED-SPRING ISOLATORS

- A. Freestanding, Laterally Stable, Open-Spring Isolators in Two-Part Telescoping Housing:
 - 1. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 2. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - 3. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - 4. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 - 5. Two-Part Telescoping Housing: A steel top and bottom frame separated by an elastomeric material and enclosing the spring isolators.

- a. Drilled base housing for bolting to structure with an elastomeric isolator pad attached to the underside. Bases shall limit floor load to 500 psig.
- b. Top housing with attachment and leveling bolt.

2.7 RESTRAINED-SPRING ISOLATORS

- A. Freestanding, Laterally Stable, Open-Spring Isolators with Vertical-Limit Stop Restraint:
 - 1. Housing: Steel housing with vertical-limit stops to prevent spring extension due to weight being removed.
 - a. Base with holes for bolting to structure with an elastomeric isolator pad attached to the underside. Bases shall limit floor load to 500 psig.
 - b. Top plate with threaded mounting holes.
 - c. Internal leveling bolt that acts as blocking during installation.
 - 2. Restraint: Limit stop as required for equipment and authorities having jurisdiction.
 - 3. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 4. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - 5. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - 6. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.

2.8 HOUSED-RESTRAINED-SPRING ISOLATORS

- A. Freestanding, Steel, Open-Spring Isolators with Vertical-Limit Stop Restraint in Two-Part Telescoping Housing: .
 - 1. Two-Part Telescoping Housing: A steel top and bottom frame separated by an elastomeric material and enclosing the spring isolators. Housings are equipped with adjustable snubbers to limit vertical movement.
 - a. Drilled base housing for bolting to structure with an elastomeric isolator pad attached to the underside. Bases shall limit floor load to 500 psig.
 - b. Threaded top housing with adjustment bolt and cap screw to fasten and level equipment.
 - 2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - 4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.

2.9 PIPE-RISER RESILIENT SUPPORT

A. Description: All-directional, acoustical pipe anchor consisting of two steel tubes separated by a minimum 1/2-inch- thick neoprene.

- 1. Vertical-Limit Stops: Steel and neoprene vertical-limit stops arranged to prevent vertical travel in both directions.
- 2. Maximum Load Per Support: 500 psig on isolation material providing equal isolation in all directions.

2.10 RESILIENT PIPE GUIDES

- A. Description: Telescopic arrangement of two steel tubes or post and sleeve arrangement separated by a minimum 1/2-inch- thick neoprene.
 - 1. Factory-Set Height Guide with Shear Pin: Shear pin shall be removable and reinsertable to allow for selection of pipe movement. Guides shall be capable of motion to meet location requirements.

2.11 ELASTOMERIC HANGERS

- A. Elastomeric Mount in a Steel Frame with Upper and Lower Steel Hanger Rods:
 - 1. Frame: Steel, fabricated with a connection for an upper threaded hanger rod and an opening on the underside to allow for a maximum of 30 degrees of angular lower hanger-rod misalignment without binding or reducing isolation efficiency.
 - 2. Dampening Element: Molded, oil-resistant rubber, neoprene, or other elastomeric material with a projecting bushing for the underside opening preventing steel to steel contact.

2.12 SPRING HANGERS

- A. Combination Coil-Spring and Elastomeric-Insert Hanger with Spring and Insert in Compression:
 - 1. Frame: Steel, fabricated for connection to threaded hanger rods and to allow for a maximum of 30 degrees of angular hanger-rod misalignment without binding or reducing isolation efficiency.
 - 2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - 4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 - 6. Elastomeric Element: Molded, oil-resistant rubber or neoprene. Steel-washer-reinforced cup to support spring and bushing projecting through bottom of frame.
 - 7. Adjustable Vertical Stop: Steel washer with neoprene washer "up-stop" on lower threaded rod.
 - 8. Self-centering hanger-rod cap to ensure concentricity between hanger rod and support spring coil.

2.13 SNUBBERS

- A. Description: Factory fabricated using welded structural-steel shapes and plates, anchor bolts, and replaceable resilient isolation washers and bushings.
 - 1. Anchor bolts for attaching to concrete shall be seismic-rated, drill-in, and stud-wedge or female-wedge type.
 - 2. Resilient Isolation Washers and Bushings: Oil- and water-resistant neoprene.
 - 3. Maximum 1/4-inch air gap, and minimum 1/4-inch- thick resilient cushion.

2.14 RESTRAINT CHANNEL BRACINGS

A. Description: MFMA-4, shop- or field-fabricated bracing assembly made of slotted steel channels with accessories for attachment to braced component at one end and to building structure at the other end and other matching components and with corrosion-resistant coating; rated in tension, compression, and torsion forces.

2.15 RESTRAINT CABLES

A. Restraint Cables: ASTM A 603 galvanized-steel cables. End connections made of steel assemblies with thimbles, brackets, swivel, and bolts designed for restraining cable service; with a minimum of two clamping bolts for cable engagement.

2.16 SEISMIC-RESTRAINT ACCESSORIES

- A. Hanger-Rod Stiffener: Steel tube or steel slotted-support-system sleeve with internally bolted connections to hanger rod.
- B. Bushings for Floor-Mounted Equipment Anchor Bolts: Neoprene bushings designed for rigid equipment mountings, and matched to type and size of anchor bolts and studs.
- C. Bushing Assemblies for Wall-Mounted Equipment Anchorage: Assemblies of neoprene elements and steel sleeves designed for rigid equipment mountings, and matched to type and size of attachment devices used.
- D. Resilient Isolation Washers and Bushings: One-piece, molded, oil- and water-resistant neoprene, with a flat washer face.
- E. Mechanical Anchor Bolts: Drilled-in and stud-wedge or female-wedge type in zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488.

PART 3 - EXECUTION

3.1 APPLICATIONS

- A. Hanger-Rod Stiffeners: Install hanger-rod stiffeners where indicated or scheduled on Drawings to receive them and where required to prevent buckling of hanger rods due to seismic forces.
- B. Strength of Support and Seismic-Restraint Assemblies: Where not indicated, select sizes of components so strength is adequate to carry present and future static and seismic loads within specified loading limits.

3.2 VIBRATION CONTROL AND SEISMIC-RESTRAINT DEVICE INSTALLATION

- A. Installation of vibration isolators must not cause any change of position of equipment, piping, or ductwork resulting in stresses or misalignment.
- B. Comply with requirements in Section 077200 "Roof Accessories" for installation of roof curbs, equipment supports, and roof penetrations.

C. Equipment Restraints:

- 1. Install seismic snubbers on HVAC equipment mounted on vibration isolators. Locate snubbers as close as possible to vibration isolators and bolt to equipment base and supporting structure.
- 2. Install resilient bolt isolation washers on equipment anchor bolts where clearance between anchor and adjacent surface exceeds 0.125 inch.

D. Piping Restraints:

- 1. Comply with requirements in MSS SP-127.
- 2. Space lateral supports a maximum of 40 feet o.c., and longitudinal supports a maximum of 80 feet o.c.
- 3. Brace a change of direction longer than 12 feet.
- E. Install cables so they do not bend across edges of adjacent equipment or building structure.
- F. Install bushing assemblies for anchor bolts for floor-mounted equipment, arranged to provide resilient media between anchor bolt and mounting hole in concrete base.
- G. Install bushing assemblies for mounting bolts for wall-mounted equipment, arranged to provide resilient media where equipment or equipment-mounting channels are attached to wall.
- H. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.

I. Drilled-in Anchors:

1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling. Notify the structural engineer if reinforcing steel or other embedded items are

- encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
- 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
- 3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
- 4. Set anchors to manufacturer's recommended torque, using a torque wrench.
- 5. Install zinc-coated steel anchors for interior and stainless-steel anchors for exterior applications.

3.3 ACCOMMODATION OF DIFFERENTIAL SEISMIC MOTION

A. Install flexible connections in piping where they cross seismic joints, where adjacent sections or branches are supported by different structural elements, and where the connections terminate with connection to equipment that is anchored to a different structural element from the one supporting the connections as they approach equipment. Comply with requirements in Section 232113 "Hydronic Piping" for piping flexible connections.

3.4 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections:
 - 1. Provide evidence of recent calibration of test equipment by a testing agency acceptable to authorities having jurisdiction.
 - 2. Schedule test with Owner, through Architect, before connecting anchorage device to restrained component (unless postconnection testing has been approved), and with at least seven days' advance notice.
 - 3. Obtain Architect's approval before transmitting test loads to structure. Provide temporary load-spreading members.
 - 4. Test at least four of each type and size of installed anchors and fasteners selected by Architect.
 - 5. Test to 90 percent of rated proof load of device.
 - 6. Measure isolator restraint clearance.
 - 7. Measure isolator deflection.
 - 8. Verify snubber minimum clearances.
- C. Remove and replace malfunctioning units and retest as specified above.
- D. Prepare test and inspection reports.

3.5 ADJUSTING

A. Adjust isolators after piping system is at operating weight.

B. Adjust limit stops on restrained-spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.

END OF SECTION 230548

SECTION 230553 - IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Identifying Devices and Labels
- B. Related Sections:
 - 1. Section 23 05 00 (15050) Common Work Results for HVAC

1.2 REFERENCES

- A. ASTM International (ASTM) Publications: (Former American Society for Testing and Materials)
 - 1. C1036 "Standard Specification for Flat Glass"
- B. The American Society of Mechanical Engineers (ASME) Publications:
 - 1. A13.1 "Scheme for the Identification of Piping Systems"

1.3 SUBMITTALS

- A. General: Submit the following in accordance with Conditions of Contract and Division 01 Specification Sections.
- B. Submit "Letter of Conformance" in accordance with Section 01 33 00 indicating specified items selected for use in project with the following supporting data.
 - 1. Product Data: For identification materials and devices.
 - 2. Samples: Of color, lettering style, and graphic representation required for each identification material and device.
- C. QUALITY ASSURANCE
- D. Comply with ASME A13.1, "Scheme for the Identification of Piping Systems" for lettering size, length of color field, colors, and viewing angles of identification devices.
- E. SEQUENCING AND SCHEDULING
- F. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
- G. Install identifying devices before installing acoustical ceilings and similar concealment.

1.4 PRODUCTS

1.5 GENERAL

- A. General: Products specified are for applications referenced in other Division 23 Sections. If more than single type is specified for listed applications, selection is Installer's option.
- B. Pipes Including Insulation: Full-band pipe markers, extending 360 degrees around pipe at each location.

1.6 IDENTIFYING DEVICES AND LABELS

- A. Lettering: Manufacturer's standard preprinted captions as selected by Owner's Representative.
- B. Lettering: Use piping system terms indicated and abbreviate only as necessary for each application length.
 - 1. Arrows: Either integrally with piping system service lettering, to accommodate both directions, or as separate unit, on each pipe marker to indicate direction of flow.
- C. Plastic Duct Markers: Manufacturer's standard laminated plastic, in the following color codes:
 - 1. Green: Cold-air supply.
 - 2. Yellow: Hot-air supply.
 - 3. Blue: Exhaust, outside, return, and mixed air.
 - 4. Terminology: Include direction of airflow; duct service such as supply, return, and exhaust; duct origin, duct destination, and design flow.
- D. Plastic Tape: Manufacturer's standard color-coded, pressure-sensitive, self-adhesive, vinyl tape, at least 3 mils thick.
 - 1. Width: 1-1/2 inches on pipes with OD, including insulation, less than 6 inches; 2-1/2 inches for larger pipes.
 - 2. Color: Comply with ASME A13.1, unless otherwise indicated.
- E. Valve Tags: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2-inch sequenced numbers. Include 5/32-inch hole for fastener.
 - 1. Material: 0.032-inch thick, polished brass.
 - 2. Size: 1-1/2-inches diameter, unless otherwise indicated.
- F. Valve Tag Fasteners: Brass, wire-link chain and S-hooks.
- G. Access Panel Markers: 1/16-inch thick, engraved plastic-laminate markers, with abbreviated terms and numbers corresponding to concealed valve. Provide 1/8-inch center hole for attachment.
- 1.7 Valve Schedule Frames: Glazed display frame for removable mounting on masonry walls for each page of valve schedule. Include screws.
 - A. Frame: Extruded aluminum.
 - B. Glazing: ASTM C1036, Type I, Class 1, Glazing quality B, 2.5-mm, single-thickness glass.
- 1.8 Lettering and Graphics: Coordinate names, abbreviations, and other designations used in mechanical identification with corresponding designations indicated. Use numbers, letters, and terms indicated for proper identification, operation, and maintenance of mechanical systems and equipment.
 - A. Multiple Systems: Identify individual system number and service if multiple systems of same name are indicated.

1.9 EXECUTION

- A. LABELING AND IDENTIFYING PIPING SYSTEMS
- B. Install pipe markers on each system as indicated below. Include arrows showing normal direction of flow.
 - 1. Gas.
 - 2. Condensate.
 - 3. Vent.
- C. Marker Type: Plastic markers, with application systems. Install on pipe insulation segment where required for hot, noninsulated pipes.
- D. Fasten markers on pipes and insulated pipes by one of following methods:
 - 1. Snap-on application of pretensioned, semirigid plastic pipe marker.
- E. Locate pipe markers where piping is exposed in machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior nonconcealed locations according to the following:
 - 1. Near each valve and control device.
 - 2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Mark each pipe at branch, where flow pattern is not obvious.
 - 3. Near penetrations through walls, floors, ceilings, or nonaccessible enclosures.
 - 4. At access doors, manholes, and similar access points that permit view of concealed piping.
 - 5. Near major equipment items and other points of origination and termination.
 - 6. Spaced at a maximum of 50-foot intervals along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.
 - 7. On piping above removable acoustical ceilings, except omit intermediately spaced markers.

1.10 VALVE TAGS

- A. Install on valves and control devices in piping systems, except check valves, valves within factory-fabricated equipment units, plumbing fixture supply stops, shutoff valves, faucets, convenience and lawn-watering hose connections, and HVAC terminal devices and similar roughing-in connections of end-use fixtures and units. List tagged valves in valve schedule.
- B. Valve Tag Application Schedule: Tag valves according to size, shape, color scheme, and with captions similar to those indicated in the following:
 - 1. Chilled Water
 - 2. Heating Hot Water
 - 3. Condenser Water
- C. Tag Material: Brass.
- D. Tag Size and Shape: According to the following:
 - 1. Cold Water: 1-1/2 inches round.

- 2. Hot Water: 1-1/2 inches round.
- 3. Gas: 1-1/2 inches round.
- E. Install framed valve schedule in each major mechanical equipment room.
- F. Valve schedule and tag locations shall be shown on record drawings.

1.11 LABELING AND IDENTIFYING DUCT SYSTEMS.

- A. Duct Systems: Identify air supply, return, exhaust, intake, and relief ducts with duct markers; or provide stenciled signs and arrows showing service and direction of flow.
 - 1. Location: Locate signs near points where ducts enter into concealed spaces and at maximum intervals of 50 feet in each space where ducts are exposed or concealed by removable ceiling system.

1.12 ADJUSTING AND CLEANING

- A. Relocate HVAC identification materials and devices that have become visually blocked by work of this or other Divisions.
- A. Clean faces of identification devices and glass frames of valve charts

END OF SECTION 230553

SECTION 230593 - TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Balancing Air Systems:
 - a. Constant-volume air systems.
 - b. Variable-air-volume systems.

1.2 DEFINITIONS

- A. AABC: Associated Air Balance Council.
- B. NEBB: National Environmental Balancing Bureau.
- C. TAB: Testing, adjusting, and balancing.
- D. TABB: Testing, Adjusting, and Balancing Bureau.
- E. TAB Specialist: An independent entity meeting qualifications to perform TAB work.
- F. TDH: Total dynamic head.

1.3 ACTION SUBMITTALS

A. TAB Report: Documentation indicating that Work complies with ASHRAE/IES 90.1, Section 6.7.2.3 - "System Balancing."

1.4 INFORMATIONAL SUBMITTALS

A. Certified TAB reports.

1.5 QUALITY ASSURANCE

- A. TAB Specialists Qualifications: Certified by AABC.
 - 1. TAB Field Supervisor: Employee of the TAB specialist and certified by AABC.
 - 2. TAB Technician: Employee of the TAB specialist and certified by AABC as a TAB technician.
- B. TAB Specialists Qualifications: Certified by NEBB or TABB.

- 1. TAB Field Supervisor: Employee of the TAB specialist and certified by NEBB or TABB.
- 2. TAB Technician: Employee of the TAB specialist and certified by NEBB or TABB as a TAB technician.
- C. Instrumentation Type, Quantity, Accuracy, and Calibration: Comply with requirements in ASHRAE 111, Section 4, "Instrumentation."
- D. ASHRAE/IES 90.1 Compliance: Applicable requirements in ASHRAE/IES 90.1, Section 6.7.2.3 "System Balancing."

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems designs that may preclude proper TAB of systems and equipment.
- B. Examine installed systems for balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers. Verify that locations of these balancing devices are applicable for intended purpose and are accessible.
- C. Examine the approved submittals for HVAC systems and equipment.
- D. Examine design data including HVAC system descriptions, statements of design assumptions for environmental conditions and systems output, and statements of philosophies and assumptions about HVAC system and equipment controls.
- E. Examine ceiling plenums and underfloor air plenums used for supply, return, or relief air to verify that they are properly separated from adjacent areas. Verify that penetrations in plenum walls are sealed and fire-stopped if required.
- F. Examine equipment performance data including fan and pump curves.
 - 1. Relate performance data to Project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system.
 - Calculate system-effect factors to reduce performance ratings of HVAC equipment when installed under conditions different from the conditions used to rate equipment performance. To calculate system effects for air systems, use tables and charts found in AMCA 201, "Fans and Systems," or in SMACNA's "HVAC Systems Duct Design." Compare results with the design data and installed conditions.
- G. Examine system and equipment installations and verify that field quality-control testing, cleaning, and adjusting specified in individual Sections have been performed.
- H. Examine test reports specified in individual system and equipment Sections.

- I. Examine HVAC equipment and verify that bearings are greased, belts are aligned and tight, filters are clean, and equipment with functioning controls is ready for operation.
- J. Examine terminal units, such as variable-air-volume boxes, and verify that they are accessible and their controls are connected and functioning.
- K. Examine strainers. Verify that startup screens have been replaced by permanent screens with indicated perforations.
- L. Examine control valves for proper installation for their intended function of throttling, diverting, or mixing fluid flows.
- M. Examine heat-transfer coils for correct piping connections and for clean and straight fins.
- N. Examine system pumps to ensure absence of entrained air in the suction piping.
- O. Examine operating safety interlocks and controls on HVAC equipment.
- P. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values.

3.2 PREPARATION

- A. Prepare a TAB plan that includes strategies and step-by-step procedures for balancing the systems.
- B. Perform system-readiness checks of HVAC systems and equipment to verify system readiness for TAB work. Include, at a minimum, the following:

1. Airside:

- a. Duct systems are complete with terminals installed.
- b. Volume, smoke, and fire dampers are open and functional.
- c. Clean filters are installed.
- d. Fans are operating, free of vibration, and rotating in correct direction.
- e. Variable-frequency controllers' startup is complete and safeties are verified.
- f. Automatic temperature-control systems are operational.
- g. Ceilings are installed.
- h. Windows and doors are installed.
- i. Suitable access to balancing devices and equipment is provided.

3.3 GENERAL PROCEDURES FOR TESTING AND BALANCING

A. Perform testing and balancing procedures on each system according to the procedures contained in AABC's "National Standards for Total System Balance" ASHRAE 111 NEBB's "Procedural Standards for Testing, Adjusting, and Balancing of Environmental Systems" SMACNA's "HVAC Systems - Testing, Adjusting, and Balancing" and in this Section.

- B. Cut insulation, ducts, pipes, and equipment cabinets for installation of test probes to the minimum extent necessary for TAB procedures.
 - 1. After testing and balancing, patch probe holes in ducts with same material and thickness as used to construct ducts.
 - 2. After testing and balancing, install test ports and duct access doors that comply with requirements in Section 233300 "Air Duct Accessories."
 - 3. Install and join new insulation that matches removed materials. Restore insulation, coverings, vapor barrier, and finish according to Section 230713 "Duct Insulation," Section 230716 "HVAC Equipment Insulation," and Section 230719 "HVAC Piping Insulation."
- C. Mark equipment and balancing devices, including damper-control positions, valve position indicators, fan-speed-control levers, and similar controls and devices, with paint or other suitable, permanent identification material to show final settings.
- D. Take and report testing and balancing measurements in inch-pound (IP) units.

3.4 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS

- A. Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and recommended testing procedures. Cross-check the summation of required outlet volumes with required fan volumes.
- B. Prepare schematic diagrams of systems' "as-built" duct layouts.
- C. For variable-air-volume systems, develop a plan to simulate diversity.
- D. Determine the best locations in main and branch ducts for accurate duct-airflow measurements.
- E. Check airflow patterns from the outdoor-air louvers and dampers and the return- and exhaust-air dampers through the supply-fan discharge and mixing dampers.
- F. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.
- G. Verify that motor starters are equipped with properly sized thermal protection.
- H. Check dampers for proper position to achieve desired airflow path.
- I. Check for airflow blockages.
- J. Check condensate drains for proper connections and functioning.
- K. Check for proper sealing of air-handling-unit components.
- L. Verify that air duct system is sealed as specified in Section 233113 "Metal Ducts."

3.5 PROCEDURES FOR CONSTANT-VOLUME AIR SYSTEMS

- A. Adjust fans to deliver total indicated airflows within the maximum allowable fan speed listed by fan manufacturer.
 - 1. Measure total airflow.
 - a. Set outside-air, return-air, and relief-air dampers for proper position that simulates minimum outdoor-air conditions.
 - b. Where duct conditions allow, measure airflow by Pitot-tube traverse. If necessary, perform multiple Pitot-tube traverses to obtain total airflow.
 - c. Where duct conditions are not suitable for Pitot-tube traverse measurements, a coil traverse may be acceptable.
 - d. If a reliable Pitot-tube traverse or coil traverse is not possible, measure airflow at terminals and calculate the total airflow.
 - 2. Measure fan static pressures as follows:
 - a. Measure static pressure directly at the fan outlet or through the flexible connection.
 - b. Measure static pressure directly at the fan inlet or through the flexible connection.
 - c. Measure static pressure across each component that makes up the air-handling system.
 - d. Report artificial loading of filters at the time static pressures are measured.
 - 3. Review Record Documents to determine variations in design static pressures versus actual static pressures. Calculate actual system-effect factors. Recommend adjustments to accommodate actual conditions.
 - 4. Obtain approval from Architect for adjustment of fan speed higher or lower than indicated speed. Comply with requirements in HVAC Sections for air-handling units for adjustment of fans, belts, and pulley sizes to achieve indicated air-handling-unit performance.
 - 5. Do not make fan-speed adjustments that result in motor overload. Consult equipment manufacturers about fan-speed safety factors. Modulate dampers and measure fan-motor amperage to ensure that no overload occurs. Measure amperage in full-cooling, full-heating, economizer, and any other operating mode to determine the maximum required brake horsepower.
- B. Adjust volume dampers for main duct, submain ducts, and major branch ducts to indicated airflows.
 - 1. Measure airflow of submain and branch ducts.
 - 2. Adjust submain and branch duct volume dampers for specified airflow.
 - 3. Re-measure each submain and branch duct after all have been adjusted.
- C. Adjust air inlets and outlets for each space to indicated airflows.
 - 1. Set airflow patterns of adjustable outlets for proper distribution without drafts.
 - 2. Measure inlets and outlets airflow.
 - 3. Adjust each inlet and outlet for specified airflow.
 - 4. Re-measure each inlet and outlet after they have been adjusted.

3.6 PROCEDURES FOR VARIABLE-AIR-VOLUME SYSTEMS

A. Adjust the variable-air-volume systems as follows:

- 1. Verify that the system static pressure sensor is located two-thirds of the distance down the duct from the fan discharge.
- 2. Verify that the system is under static pressure control.
- 3. Select the terminal unit that is most critical to the supply-fan airflow. Measure inlet static pressure, and adjust system static pressure control set point so the entering static pressure for the critical terminal unit is not less than the sum of the terminal-unit manufacturer's recommended minimum inlet static pressure plus the static pressure needed to overcome terminal-unit discharge system losses.
- 4. Calibrate and balance each terminal unit for maximum and minimum design airflow as follows:
 - a. Adjust controls so that terminal is calling for maximum airflow. Some controllers require starting with minimum airflow. Verify calibration procedure for specific project.
 - b. Measure airflow and adjust calibration factor as required for design maximum airflow. Record calibration factor.
 - c. When maximum airflow is correct, balance the air outlets downstream from terminal units.
 - d. Adjust controls so that terminal is calling for minimum airflow.
 - e. Measure airflow and adjust calibration factor as required for design minimum airflow. Record calibration factor. If no minimum calibration is available, note any deviation from design airflow.
 - f. When in full cooling or full heating, ensure that there is no mixing of hot-deck and cold-deck airstreams unless so designed.
 - g. On constant volume terminals, in critical areas where room pressure is to be maintained, verify that the airflow remains constant over the full range of full cooling to full heating. Note any deviation from design airflow or room pressure.
- 5. After terminals have been calibrated and balanced, test and adjust system for total airflow. Adjust fans to deliver total design airflows within the maximum allowable fan speed listed by fan manufacturer.
 - a. Set outside-air, return-air, and relief-air dampers for proper position that simulates minimum outdoor-air conditions.
 - b. Set terminals for maximum airflow. If system design includes diversity, adjust terminals for maximum and minimum airflow so that connected total matches fan selection and simulates actual load in the building.
 - c. Where duct conditions allow, measure airflow by Pitot-tube traverse. If necessary, perform multiple Pitot-tube traverses to obtain total airflow.
 - d. Where duct conditions are not suitable for Pitot-tube traverse measurements, a coil traverse may be acceptable.
 - e. If a reliable Pitot-tube traverse or coil traverse is not possible, measure airflow at terminals and calculate the total airflow.

6. Measure fan static pressures as follows:

a. Measure static pressure directly at the fan outlet or through the flexible connection.

- b. Measure static pressure directly at the fan inlet or through the flexible connection.
- c. Measure static pressure across each component that makes up the air-handling system.
- d. Report any artificial loading of filters at the time static pressures are measured.
- 7. Set final return and outside airflow to the fan while operating at maximum return airflow and minimum outdoor airflow.
 - a. Balance the return-air ducts and inlets the same as described for constant-volume air systems.
 - b. Verify that terminal units are meeting design airflow under system maximum flow.
- 8. Re-measure the inlet static pressure at the most critical terminal unit and adjust the system static pressure set point to the most energy-efficient set point to maintain the optimum system static pressure. Record set point and give to controls contractor.
- 9. Verify final system conditions as follows:
 - a. Re-measure and confirm that minimum outdoor, return, and relief airflows are within design. Readjust to match design if necessary.
 - b. Re-measure and confirm that total airflow is within design.
 - c. Re-measure final fan operating data, rpms, volts, amps, and static profile.
 - d. Mark final settings.
 - e. Test system in economizer mode. Verify proper operation and adjust if necessary. Measure and record all operating data.
 - f. Verify tracking between supply and return fans.

3.7 TOLERANCES

- A. Set HVAC system's airflow rates and water flow rates within the following tolerances:
 - 1. Supply, Return, and Exhaust Fans and Equipment with Fans: Plus or minus 10 percent.
 - 2. Air Outlets and Inlets: Plus or minus 10 percent.
 - 3. Heating-Water Flow Rate: Plus or minus 10 percent.
 - 4. Cooling-Water Flow Rate: Plus or minus 10 percent.
- B. Maintaining pressure relationships as designed shall have priority over the tolerances specified above.

3.8 FINAL REPORT

- A. General: Prepare a certified written report; tabulate and divide the report into separate sections for tested systems and balanced systems.
 - 1. Include a certification sheet at the front of the report's binder, signed and sealed by the certified testing and balancing engineer.
 - 2. Include a list of instruments used for procedures, along with proof of calibration.
 - 3. Certify validity and accuracy of field data.
- B. Final Report Contents: In addition to certified field-report data, include the following:

- 1. Pump curves.
- 2. Fan curves.
- 3. Manufacturers' test data.
- 4. Field test reports prepared by system and equipment installers.
- 5. Other information relative to equipment performance; do not include Shop Drawings and Product Data.
- C. General Report Data: In addition to form titles and entries, include the following data:
 - 1. Title page.
 - 2. Name and address of the TAB specialist.
 - 3. Project name.
 - 4. Project location.
 - 5. Architect's name and address.
 - 6. Engineer's name and address.
 - 7. Contractor's name and address.
 - 8. Report date.
 - 9. Signature of TAB supervisor who certifies the report.
 - 10. Table of Contents with the total number of pages defined for each section of the report. Number each page in the report.
 - 11. Summary of contents including the following:
 - a. Indicated versus final performance.
 - b. Notable characteristics of systems.
 - c. Description of system operation sequence if it varies from the Contract Documents.
 - 12. Nomenclature sheets for each item of equipment.
 - 13. Data for terminal units, including manufacturer's name, type, size, and fittings.
 - 14. Notes to explain why certain final data in the body of reports vary from indicated values.
 - 15. Test conditions for fans and pump performance forms including the following:
 - a. Settings for outdoor-, return-, and exhaust-air dampers.
 - b. Conditions of filters.
 - c. Cooling coil, wet- and dry-bulb conditions.
 - d. Face and bypass damper settings at coils.
 - e. Fan drive settings including settings and percentage of maximum pitch diameter.
 - f. Inlet vane settings for variable-air-volume systems.
 - g. Settings for supply-air, static-pressure controller.
 - h. Other system operating conditions that affect performance.
- D. System Diagrams: Include schematic layouts of air and hydronic distribution systems. Present each system with single-line diagram and include the following:
 - 1. Quantities of outdoor, supply, return, and exhaust airflows.
 - 2. Water and steam flow rates.
 - 3. Duct, outlet, and inlet sizes.
 - 4. Pipe and valve sizes and locations.
 - 5. Terminal units.
 - 6. Balancing stations.
 - 7. Position of balancing devices.

E. Air-Handling-Unit Test Reports: For air-handling units with coils, include the following:

1. Unit Data:

- a. Unit identification.
- b. Location.
- c. Make and type.
- d. Model number and unit size.
- e. Manufacturer's serial number.
- f. Unit arrangement and class.
- g. Discharge arrangement.
- h. Sheave make, size in inches (mm), and bore.
- i. Center-to-center dimensions of sheave and amount of adjustments in inches (mm).
- j. Number, make, and size of belts.
- k. Number, type, and size of filters.

2. Motor Data:

- a. Motor make, and frame type and size.
- b. Horsepower and rpm.
- c. Volts, phase, and hertz.
- d. Full-load amperage and service factor.
- e. Sheave make, size in inches (mm), and bore.
- f. Center-to-center dimensions of sheave and amount of adjustments in inches (mm).

3. Test Data (Indicated and Actual Values):

- a. Total airflow rate in cfm (L/s).
- b. Total system static pressure in inches wg (Pa).
- c. Fan rpm.
- d. Discharge static pressure in inches wg (Pa).
- e. Filter static-pressure differential in inches wg (Pa).
- f. Preheat-coil static-pressure differential in inches wg (Pa).
- g. Cooling-coil static-pressure differential in inches wg (Pa).
- h. Heating-coil static-pressure differential in inches wg (Pa).
- i. Outdoor airflow in cfm (L/s).
- j. Return airflow in cfm (L/s).
- k. Outdoor-air damper position.
- 1. Return-air damper position.
- m. Vortex damper position.

F. Apparatus-Coil Test Reports:

1. Coil Data:

- a. System identification.
- b. Location.
- c. Coil type.
- d. Number of rows.
- e. Fin spacing in fins per inch (mm) o.c.
- f. Make and model number.

- g. Face area in sq. ft. (sq. m).
- h. Tube size in NPS (DN).
- i. Tube and fin materials.
- j. Circuiting arrangement.
- 2. Test Data (Indicated and Actual Values):
 - a. Airflow rate in cfm (L/s).
 - b. Average face velocity in fpm (m/s).
 - c. Air pressure drop in inches wg (Pa).
 - d. Outdoor-air, wet- and dry-bulb temperatures in deg F (deg C).
 - e. Return-air, wet- and dry-bulb temperatures in deg F (deg C).
 - f. Entering-air, wet- and dry-bulb temperatures in deg F (deg C).
 - g. Leaving-air, wet- and dry-bulb temperatures in deg F (deg C).
 - h. Water flow rate in gpm (L/s).
 - i. Water pressure differential in feet of head or psig (kPa).
 - j. Entering-water temperature in deg F (deg C).
 - k. Leaving-water temperature in deg F (deg C).
 - 1. Refrigerant expansion valve and refrigerant types.
 - m. Refrigerant suction pressure in psig (kPa).
 - n. Refrigerant suction temperature in deg F (deg C).
 - o. Inlet steam pressure in psig (kPa).
- G. Gas- and Oil-Fired Heat Apparatus Test Reports: In addition to manufacturer's factory startup equipment reports, include the following:
 - 1. Unit Data:
 - a. System identification.
 - b. Location.
 - c. Make and type.
 - d. Model number and unit size.
 - e. Manufacturer's serial number.
 - f. Fuel type in input data.
 - g. Output capacity in Btu/h (kW).
 - h. Ignition type.
 - i. Burner-control types.
 - j. Motor horsepower and rpm.
 - k. Motor volts, phase, and hertz.
 - 1. Motor full-load amperage and service factor.
 - m. Sheave make, size in inches (mm), and bore.
 - n. Center-to-center dimensions of sheave and amount of adjustments in inches (mm).
 - 2. Test Data (Indicated and Actual Values):
 - a. Total airflow rate in cfm (L/s).
 - b. Entering-air temperature in deg F (deg C).
 - c. Leaving-air temperature in deg F (deg C).
 - d. Air temperature differential in deg F (deg C).
 - e. Entering-air static pressure in inches wg (Pa).
 - f. Leaving-air static pressure in inches wg (Pa).

- g. Air static-pressure differential in inches wg (Pa).
- h. Low-fire fuel input in Btu/h (kW).
- i. High-fire fuel input in Btu/h (kW).
- j. Manifold pressure in psig (kPa).
- k. High-temperature-limit setting in deg F (deg C).
- 1. Operating set point in Btu/h (kW).
- m. Motor voltage at each connection.
- n. Motor amperage for each phase.
- o. Heating value of fuel in Btu/h (kW).
- H. Electric-Coil Test Reports: For electric furnaces, duct coils, and electric coils installed in central-station air-handling units, include the following:
 - 1. Unit Data:
 - a. System identification.
 - b. Location.
 - c. Coil identification.
 - d. Capacity in Btu/h (kW).
 - e. Number of stages.
 - f. Connected volts, phase, and hertz.
 - g. Rated amperage.
 - h. Airflow rate in cfm (L/s).
 - i. Face area in sq. ft. (sq. m).
 - j. Minimum face velocity in fpm (m/s).
 - 2. Test Data (Indicated and Actual Values):
 - a. Heat output in Btu/h (kW).
 - b. Airflow rate in cfm (L/s).
 - c. Air velocity in fpm (m/s).
 - d. Entering-air temperature in deg F (deg C).
 - e. Leaving-air temperature in deg F (deg C).
 - f. Voltage at each connection.
 - g. Amperage for each phase.
- I. Fan Test Reports: For supply, return, and exhaust fans, include the following:
 - 1. Fan Data:
 - a. System identification.
 - b. Location.
 - c. Make and type.
 - d. Model number and size.
 - e. Manufacturer's serial number.
 - f. Arrangement and class.
 - g. Sheave make, size in inches (mm), and bore.
 - h. Center-to-center dimensions of sheave and amount of adjustments in inches (mm).
 - 2. Motor Data:

- a. Motor make, and frame type and size.
- b. Horsepower and rpm.
- c. Volts, phase, and hertz.
- d. Full-load amperage and service factor.
- e. Sheave make, size in inches (mm), and bore.
- f. Center-to-center dimensions of sheave, and amount of adjustments in inches (mm).
- g. Number, make, and size of belts.
- 3. Test Data (Indicated and Actual Values):
 - a. Total airflow rate in cfm (L/s).
 - b. Total system static pressure in inches wg (Pa).
 - c. Fan rpm.
 - d. Discharge static pressure in inches wg (Pa).
 - e. Suction static pressure in inches wg (Pa).
- J. Round, Flat-Oval, and Rectangular Duct Traverse Reports: Include a diagram with a grid representing the duct cross-section and record the following:
 - 1. Report Data:
 - a. System and air-handling-unit number.
 - b. Location and zone.
 - c. Traverse air temperature in deg F (deg C).
 - d. Duct static pressure in inches wg (Pa).
 - e. Duct size in inches (mm).
 - f. Duct area in sq. ft. (sq. m).
 - g. Indicated airflow rate in cfm (L/s).
 - h. Indicated velocity in fpm (m/s).
 - i. Actual airflow rate in cfm (L/s).
 - j. Actual average velocity in fpm (m/s).
 - k. Barometric pressure in psig (Pa).
- K. Air-Terminal-Device Reports:
 - 1. Unit Data:
 - a. System and air-handling unit identification.
 - b. Location and zone.
 - c. Apparatus used for test.
 - d. Area served.
 - e. Make.
 - f. Number from system diagram.
 - g. Type and model number.
 - h. Size.
 - i. Effective area in sq. ft. (sq. m).
 - 2. Test Data (Indicated and Actual Values):
 - a. Airflow rate in cfm (L/s).
 - b. Air velocity in fpm (m/s).

- c. Preliminary airflow rate as needed in cfm (L/s).
- d. Preliminary velocity as needed in fpm (m/s).
- e. Final airflow rate in cfm (L/s).
- f. Final velocity in fpm (m/s).
- g. Space temperature in deg F (deg C).
- L. System-Coil Reports: For reheat coils and water coils of terminal units, include the following:
 - 1. Unit Data:
 - a. System and air-handling-unit identification.
 - b. Location and zone.
 - c. Room or riser served.
 - d. Coil make and size.
 - e. Flowmeter type.
 - 2. Test Data (Indicated and Actual Values):
 - a. Airflow rate in cfm (L/s).
 - b. Entering-water temperature in deg F (deg C).
 - c. Leaving-water temperature in deg F (deg C).
 - d. Water pressure drop in feet of head or psig (kPa).
 - e. Entering-air temperature in deg F (deg C).
 - f. Leaving-air temperature in deg F (deg C).
- M. Instrument Calibration Reports:
 - 1. Report Data:
 - a. Instrument type and make.
 - b. Serial number.
 - c. Application.
 - d. Dates of use.
 - e. Dates of calibration.

3.9 VERIFICATION OF TAB REPORT

- A. If rechecks yield measurements that differ from the measurements documented in the final report by more than the tolerances allowed, the measurements shall be noted as "FAILED."
- B. If the number of "FAILED" measurements is greater than 10 percent of the total measurements checked during the final inspection, the testing and balancing shall be considered incomplete and shall be rejected.
- C. If TAB work fails, proceed as follows:
 - 1. TAB specialists shall recheck all measurements and make adjustments. Revise the final report and balancing device settings to include all changes; resubmit the final report and request a second final inspection.

- 2. If the second final inspection also fails, Owner may contract the services of another TAB specialist to complete TAB work according to the Contract Documents and deduct the cost of the services from the original TAB specialist's final payment.
- D. Prepare test and inspection reports.

3.10 ADDITIONAL TESTS

- A. Within 90 days of completing TAB, perform additional TAB to verify that balanced conditions are being maintained throughout and to correct unusual conditions.
- B. Seasonal Periods: If initial TAB procedures were not performed during near-peak summer and winter conditions, perform additional TAB during near-peak summer and winter conditions.

END OF SECTION 230593

SECTION 230713 - DUCT INSULATION

PART 1 - GENERAL

1.1 SUMMARY

A. Related Documents:

- 1. Drawings and general provisions of the Subcontract apply to this Section.
- 2. Review these documents for coordination with additional requirements and information that apply to work under this Section.

B. Section Includes:

- 1. Ductwork insulation.
- 2. Insulation jackets.
- 3. Insulation vapor barriers.

C. Related Sections:

- 1. Division 01 Section "General Requirements."
- 2. Division 01 Section "Special Procedures."
- 3. Division 23 Section "Ductwork".
- 4. Division 23 Section "Identification for HVAC Piping and Equipment".

1.2 REFERENCES

A. General:

- 1. The following documents form part of the Specifications to the extent stated. Where differences exist between codes and standards, the one affording the greatest protection shall apply.
- 2. Unless otherwise noted, the referenced standard edition is the current one at the time of commencement of the Work.
- 3. Refer to Division 01 Section "General Requirements" for the list of applicable regulatory requirements.
- 4. Refer to Division 23 Section "Common Results for HVAC" for codes and standards, vibration and noise, and other general requirements.

B. ASTM International:

- 1. ASTM C553 Standard Specification for Mineral Fiber Blanket Thermal Insulation for Commercial and Industrial Applications
- 2. ASTM C612 Standard Specification for Mineral Fiber Block and Board Thermal Insulation
- 3. ASTM E84 Standard Test Method for Surface Burning Characteristics of Building Materials
- C. Code of Federal Regulations 29 CFR 1910.7 Definitions and Requirements for a A nationally Recognized Testing Laboratory (NRTL)
- D. NFPA National Fire Protection Association:
 - 1. NFPA 255 Surface Burning Characteristics of Building Materials

- E. Underwriters Laboratory (UL):
 - 1. UL Building Materials List
 - 2. UL 723 Surface Burning Characteristics of Building Materials

1.3 INSULATION WORK REQUIREMENTS

A. Insulate HVAC ductwork as follows:

- 1. Unless indicated otherwise, new HVAC supply and return air ductwork shall be externally insulated.
 - a. Insulate cold room supply and exhaust ducts.
- 2. If ducts are internally insulated, they are not externally insulated unless specifically directed.
- 3. Transfer and exhaust ducts are internally insulated only if specifically directed.
- 4. Install an insulation jacket on externally-insulated HVAC ductwork located outdoors; and indoors except in mechanical rooms and above ceilings.
- 5. Insulate outside air intake ducts if located in non-mechanical room indoors space.

1.4 SUBMITTALS

- A. Submit under provisions of Division 23 Section "Common Results for HVAC Review of Materials" and Division 01 Section "General Requirements."
- B. Product Data: Include product description, list of materials, coating sample, and thickness for each service, manufacturer's installation instructions, and locations.

1.5 QUALITY ASSURANCE

- A. Applicator: Assure that applicator is a company specializing in ductwork insulation application with 3 years relevant experience.
- B. Materials: Listed by a nationally recognized testing laboratory (NRTL) recognized under 29 CFR 1910.7; flame-spread/fuel-contributed/smoke-developed ratings of 25/50/50 in accordance with UL 723.

PART 2 - PRODUCTS

2.1 ACCEPTABLE MANUFACTURERS

- A. Knauf, Manville Corporation, Owens-Corning, Casco, Circliner, or equal.
- B. Substitutions: Under provisions Division 01 Section "General Requirements Materials and Equipment".

2.2 MATERIALS

- A. Type A: For externally-insulated, round ductwork, insulation shall be flexible glass fiber; ASTM C612; commercial grade; "k" value of 0.29 at 75 deg F (24 deg C); 0.002-inch (0.05 mm) foil-scrim facing.
- B. Type B: For externally-insulated, square or rectangular ductwork, insulation shall be rigid glass fiber; ASTMC612, class 1; "k" value of 0.24 at 75 deg F (24 deg C); 0.002-inch (0.05 mm) foil-scrim facing.
- C. Type C: For internally-insulated rectangular ductwork, insulation shall be flexible sheet glass fiber; ASTM C553; "k" value of 0.24 at 75 deg F (24 deg C); 1.5 lb/cu ft. (24 kg/cu. m) minimum density; coated air side for maximum 4,000 ft/min (1219 m/min) air velocity.
- D. Type D: Same as Type C except cover with 2 mil mylar sheeting and 22 gauge (0.85 mm) galvanized metal sheeting with 5/32-inch (4 mm) diameter holes staggered 3/16 inch (4.7 mm) with 60 percent minimum open area over the mylar sheeting.
- E. Type E: For internally-insulated round ductwork, insulation shall consist of pre-formed glass fiber sections tightly fit into round ducts and fittings, consisting of ASTM C553 glass fiber, "K" value of 0.24 at 75 deg F (24 deg C); 1.5 lb/cu ft. (24 kg/cu. m) minimum density, and coated on the air side.
- F. Type F: Fire rated duct wrap 3M Firemaster, GLT Firestop Blanket, or equal. Duct wrap shall be UL listed for air ducts for 1 hour and 2 hour applications.
- G. Indoor Jacket: Polyvinyl chloride (PVC).
- H. Outdoor Jacket: Aluminum, 0.016 inch (0.4 mm) thickness minimum.
- I. Vapor Barrier: Non-flammable, fire-resistant, polymeric resin, compatible with the insulation.
- J. Cellular-Glass, Phenolic, Polyisocyanurate, and Polystyrene Adhesive: Solvent-based resin adhesive, with a service temperature range of minus 75 to plus 300 deg F.
 - 1. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- K. Flexible Elastomeric and Polyolefin Adhesive: Comply with MIL-A-24179A, Type II, Class I.
 - 1. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- L. Lagging Adhesive: Fire resistive in accordance with ASTM E84, NFPA 255, UL 723 or comparable standard by a nationally recognized testing laboratory (NRTL) recognized under 29 CFR 1910.7. Comply with MIL-A-3316C Class I, Grade A and shall be compatible with insulation materials, jackets, and substrates.
 - 1. For indoor applications, use lagging adhesives that have a VOC content of <Insert value> g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- M. PVC Jacket Flashing Sealants:
 - 1. For indoor applications, use sealants that have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- N. Impale Anchors: Galvanized steel, 12 gauge (2.5mm), self-adhesive pad.

- O. Tie Wire: Annealed steel, 16 gauge (1.5mm).
- P. The use of products with asbestos content is prohibited.

2.3 DUCT LINER

- A. Fibrous-Glass Duct Liner: Comply with ASTM C 1071, NFPA 90A, or NFPA 90B; and with NAIMA AH124, "Fibrous Glass Duct Liner Standard."
 - 1. Water-Based Liner Adhesive: Comply with NFPA 90A or NFPA 90B and with ASTM C 916.
 - a. For indoor applications, use adhesive that has a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- B. Flexible Elastomeric Duct Liner: Preformed, cellular, closed-cell, sheet materials complying with ASTM C 534, Type II, Grade 1; and with NFPA 90A or NFPA 90B.
 - 1. Liner Adhesive: As recommended by insulation manufacturer and complying with NFPA 90A or NFPA 90B.
 - a. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- C. Natural-Fiber Duct Liner: 85 percent cotton, 10 percent borate, and 5 percent polybinding fibers, treated with a microbial growth inhibitor and complying with NFPA 90A or NFPA 90B.
 - 1. Liner Adhesive: As recommended by insulation manufacturer and complying with NFPA 90A or NFPA 90B.
 - a. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

PART 3 - EXECUTION

3.1 PREPARATION

- A. Install materials after ductwork has been tested and approved.
- B. Clean surfaces for adhesives.
- C. Install materials in accordance with manufacturer's instructions.
- D. Install without sag on underside of ductwork. Use adhesive or mechanical fasteners where necessary to prevent sagging.
- E. Seal vapor barrier penetrations by mechanical fasteners with vapor barrier adhesive.
- F. Exterior Insulation (Type A or Type B) Application
 - 1. Secure insulation with vapor barrier with wires. Secure insulation without vapor barrier with staples, tape, or wires.
 - 2. Stop and point insulation around access doors and damper operators to allow operation without disturbing wrapping.
 - 3. Seal jacket joints with vapor barrier adhesive or tape to match jacket.
 - 4. Continue insulation with vapor barrier through penetrations.

- G. Rectangular Duct Internal Insulation (Type C and D) Application
 - 1. Insulate ducts where shown on the Drawings, on the inside.
- H. Only where specifically shown on the Drawings, provide specified perforated sheet metal liner over mylar sheeting fully isolating insulation fibers from the air stream.
 - 1. Attach insulation to duct with 100 percent coverage adhesive plus Omark 12 gauge Insul-Pin, Duro Dyne, or equal, metal clips, with self-locking steel washers, attached to sheet metal with pin welder gun on no less than 18 inches (450 mm) O.C. longitudinally 6 inches (150 mm) O.C. along joints, and 4" from sides. Installed insulation shall be rated for 4,000 ft/min (1219 m/min) air velocity. Clip off pins inside ducts.
 - 2. Treat factory, shop, and field cut edges with a high density spray on and/or brush-on mastic to lock in fibers and to keep the liner from tearing.
 - 3. Repair damaged liner prior to installing ductwork.
 - 4. All adhesive and insulation material shall be fire-retardant, and U.L. listed.
 - 5. Submit duct sample of liner, its attachment, and edge treatment.
- I. Round Duct Internal Insulation (Type E) Application:
 - 1. As an option to internally lined round duct, provide internally lined rectangular duct with equivalent cross-sectional area and Type C liner.
 - 2. Insulate ducts where shown on the Drawings, on the inside.
 - 3. Coat interior duct surfaces with adhesive prior to installation.
 - 4. Insert liner sections into straight ducts and fittings, achieving a tight fit.
 - 5. Treat factory, shop, and field cut edges with high density spray-on and/or brush-on mastic to lock in fibers and keep the liner from tearing.
 - 6. Repair damaged liner prior to installing ductwork.
 - 7. All adhesive and insulation material shall be fire-retardant and U.L. listed.
 - 8. Submit duct sample of liner, its attachment, and edge treatment.
- J. Fire Rated Duct Wrap (Type F) Application:
 - 1. Install fire-rated duct wrap in accordance with the manufacturer's directions. Provide number of layers as needed to achieve fire rating. Fire rating shall be as shown on the Drawings or as needed to continue rating of duct or pipe penetration of rated wall, floor, etc.

END OF SECTION 230713

DUCT INSULATION 230713 - 5

SECTION 230719 - HVAC PIPING INSULATION

PART 1 - GENERAL

1.1 SUMMARY

- A. Related Documents:/2rawings and general provisions of the Subcontract apply to this Section.
 - 1. Review these documents for coordination with additional requirements and information that apply to work under this Section.

B. Section Includes:

- 1. Piping insulation.
- 2. Jackets and accessories.

C. Related Sections:

- 1. Division 01 Section "General Requirements."
- 2. Division 01 Section "Special Procedures."
- 3. Division 09 Section "Painting" for painting insulation jacket".
- 4. Division 23 Section "Identification for HVAC Piping and Equipment".

1.2 REFERENCES

A. General:

- 1. The following documents form part of the Specifications to the extent stated. Where differences exist between codes and standards, the one affording the greatest protection shall apply.
- 2. Unless otherwise noted, the referenced standard edition is the current one at the time of commencement of the Work.
- 3. Refer to Division 01 Section "General Requirements" for the list of applicable regulatory requirements.
- 4. Refer to Division 23 Section "Common Results for HVAC" for codes and standards, and other general requirements.

B. ASTM International:

1.	ASTM-B-209	Standard Specification for Aluminum and Aluminum-Alloy Sheet
	and Plate	
2.	ASTM-C-195	Standard Specification for Mineral Fiber Thermal Insulating
		Cement
3.	ASTM C 196	Standard Specification for Expanded or Exfoliated Vermiculite
		Thermal Insulating Cement
4.	ASTM-C-449	Standard Specification for Mineral Fiber Hydraulic-Setting
		Thermal Insulating and Finishing Cement
5.	ASTM-C-533	Standard Specification for Calcium Silicate Block and Pipe
		Thermal Insulation
6.	ASTM C534 / C534	M Standard Specification for Preformed Flexible Elastomeric
		Cellular Thermal Insulation in Sheet and Tubular Form
7.	ASTM-C-547	Standard Specification for Mineral Fiber Pipe Insulation
		1

Standard Specification for Cellular Glass Thermal Insulation

ASTM-C-552

8.

9.	ASTM C553	Standard Specification for Mineral Fiber Blanket Thermal
		Insulation for Commercial and Industrial Applications
10.	ASTM-C-578	Standard Specification for Rigid, Cellular Polystyrene Thermal
		Insulation
11.	ASTM-C-610	Standard Specification for Molded Expanded Perlite Block and
		Pipe Thermal Insulation
12.	ASTM-E-84	Standard Test Method for Surface Burning Characteristics of
		Building Material.
13.	ASTM C 450	Standard Practice for Fabrication of Thermal Insulating Fitting
		Covers for NPS Piping, and Vessel Lagging
14.	ASTM C 921	Standard Practice for Determining the Properties of Jacketing
		Materials for Thermal Insulation
15.	ASTM B 209	Standard Specification for Aluminum and Aluminum-Alloy Sheet
		and Plate
16.	ASTM A666	Standard Specification for Annealed or Cold-Worked Austenitic
		Stainless Steel Sheet, Strip, Plate, and Flat Bar

- C. Code of Federal Regulations 20-CFR-1910.7 Definitions and Requirements for A Nationally Recognized Testing Laboratory (NRTL)
- D. National Fire Protection Association NFPA-90A & NFPA-255 Surface Burning Characteristics of Building Materials
- E. Underwriters Laboratories UL-723 Surface Burning Characteristics of Building Materials

1.3 SUBMITTALS

- A. Submit under provisions of Division 23 Section "Common Results for HVAC, Review of Materials and Division 01 Section "General Requirements."
- B. Subcontractor shall submit the product description, list of materials and thickness for each service, and at each location

1.4 QUALITY ASSURANCE

- A. Subcontractor shall assure applicator is a company specializing in piping insulation application with at least 3-years relevant experience.
- B. Fire Hazard: Provide insulation, jackets, facings adhesives and accessories acceptable to the State Fire Marshal, and meeting the requirements of NFPA 90A. Meet the following hazard classifications stated in accordance with U.L. Test Method of Fire Hazard Classifications of Building Materials, No. 723:
 - 1. Flame-spread: Maximum 25.
 - 2. Fuel Contributed: Maximum 50.
 - 3. Smoke Developed: Maximum 50.

PART 2 - PRODUCTS

2.1 ACCEPTABLE MANUFACTURERS

- A. Manville Corporation, Certain-Teed, or Owens Corning Fiberglass.
- B. Armacell (Armaflex Cellular Insulation) LLC.
- C. No substitutions

2.2 INSULATION MATERIALS

- A. Mineral-Fiber Insulation: Glass fibers bonded with a thermosetting resin complying with the following:
 - 1. Preformed Pipe Insulation: Comply with ASTM C 547, Type I, with factory-applied, all-purpose, vapor-retardant jacket.
 - 2. Blanket Insulation: Comply with ASTM C553, Type II, without facing.
 - 3. Fire-Resistant Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 - a. For indoor applications, use adhesive that has a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 4. Vapor-Retarder Mastics: Fire and water-resistant. Comply with MIL-C 19565C, Type II.
 - a. For indoor applications, use mastics that have a VOC content of <**Insert value**> g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 5. Mineral-Fiber Insulating Cements: Comply with ASTM C 195.
 - 6. Expanded or Exfoliated Vermiculite Insulating Cements: Comply with ASTM C 196.
 - 7. Mineral-Fiber, Hydraulic-Setting Insulating and Finishing Cement: Comply with ASTM C 449/C 449M.
- B. Cellular-Glass Insulation: Inorganic, foamed or cellulated glass, annealed, rigid, hermetically sealed cells, incombustible.
 - 1. Preformed Pipe Insulation, without Jacket: Comply with ASTM C 552, Type II, Class I.
 - 2. Preformed Pipe Insulation, with Jacket: Comply with ASTM C 552, Type II, Class 2.
 - 3. Cellular-Glass, Phenolic, Polyisocyanurate, and Polystyrene Adhesive: Solvent-based resin adhesive, with a service temperature range of minus 75 to plus 300 deg F.
 - a. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- C. Prefabricated Thermal Insulating Fitting Covers: Comply with ASTM C 450 for dimensions used in performing insulation to cover valves, elbows, tees, and flanges.
- D. Elastomeric Cellular Thermal Insulation: Closed cell, fiber-free elastomeric foam, mold resistant, formaldehyde-free, low VOC and nonparticulating.
 - 1. Sheets: Comply with ASTM C 534, Type II Sheet Grade 1, ASTM E84, NFPA 255, UL 723, NFPA 90A, 90B.
 - 2. For above ground installation only.
 - 3. For outdoor installation, a weather resistant protective finish shall be provided per manufacturer's recommendation.

2.3 FIELD-APPLIED JACKETS

A. General: ASTM C 921, Type I, unless otherwise indicated.

- B. Foil and Paper Jacket: Not acceptable.
- C. PVC Jacket: High-impact, ultraviolet-resistant PVC; 20 mils thick; roll stock ready for shop or field cutting and forming.
 - 1. Adhesive: Compatible with PVC jacket, and recommended by insulation material manufacturer.
 - a. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 2. PVC Jacket Color: White
 - 3. PVC Jacket Color: Color-code piping jacket as determined by existing conditions.
 - 4. Not to be used for outdoors.
- D. Heavy PVC Fitting Covers: Factory-fabricated fitting covers manufactured from 30-mil (0.75 mm) thick, high-impact, ultraviolet-resistant PVC.
 - 1. Shapes: 45 and 90-degree, short and long-radius elbows, tees, valves, flanges, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories for the disabled.
 - 2. Adhesive: Compatible with PVC jacket, and recommended by insulation material manufacturer.
 - a. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 3. Not to be used for outdoors.
- E. Aluminum Jacket: Aluminum roll stock, ready for shop or field cutting and forming to indicated sizes. Comply with ASTM B 209 (ASTM B 209M), 3003 alloy, H-14 temper.
 - 1. Finish and Thickness: Smooth finish, 0.010 (0.25 mm) inch thick.
 - 2. Moisture Barrier: 1-mil thick, heat-bonded polyethylene and kraft paper.
 - 3. Elbows: preformed 45 and 90-degree, short and long-radius elbows; same material, finish, and thickness as jacket.
 - 4. Acceptable for outdoor installation.

2.4 ACCESSORIES AND ATTACHMENTS

A. Bands: stainless steel ASTM A666, Type 304, 3/4 inch (20 mm) wide; 0.02 inch (0.050 mm) thick.

2.5 VAPOR RETARDANTS

- A. Mastics: Use materials compatible with insulation materials, jackets, and substrates; comply with MIL-C-19565C, Type II.
 - 1. For indoor applications, use mastics that have a VOC content of less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.6 SEALANTS

A. Joint sealants, PVC and metal jacket flashing sealants: For indoor applications, use sealants that have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions for compliance with requirements for installation and other conditions affecting performance of insulation application.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Install materials after piping has been tested and approved.
- B. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

3.3 GENERAL APPLICATION REQUIREMENTS.

- A. Apply insulation materials, accessories, and finishes according to the manufacturer's written instructions; with smooth, straight, and even surfaces; and free of voids throughout the length of ducts and fittings.
- B. Refer to schedules at the end of this Section for material, form, jacket, and thickness required for each piping system insulation requirements.
- C. Use accessories compatible with insulation materials and suitable for the service. Use accessories that do not corrode, soften or otherwise attack insulation or jacket when in either wet or dry state.
- D. Apply insulation with longitudinal seams at top and bottom of horizontal pipe runs.
- E. Apply multiple layers of insulation with longitudinal and end seams staggered.
- F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.
- G. Seal joints and seams with vapor-retardant mastic on insulation indicated to receive a vapor retardant.
- H. Keep insulation materials dry during application and finishing.
- I. Apply insulation with tight longitudinal seams and end joints. Bond the seams and joints with adhesive recommended by the insulation material manufacturer.
- J. Apply insulation with the least number of joints practical.
- K. Apply insulation over fittings, valves, and specialties, with continuous thermal and vaporretardant integrity, unless otherwise indicated. Refer to special instruction for applying insulation over fittings, valves, and specialties.

- L. Hangers and Anchors: Where vapor retardant is indicated, seal penetrations in insulation at hangers, supports, anchors, and other projections with vapor-retardant mastic.
 - 1. Apply insulation continuously through hangers and around anchor attachments.
 - 2. For insulation application where vapor retardants are indicated, extend insulation on anchor legs at lease 12 inches (300 mm)es from point of attachment to pipe and taper insulation ends. Seal tapered ends with a compound recommended by the insulation material manufacturer to maintain vapor retardant integrity.
 - 3. Install insert materials and apply insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by the insulation material manufacturer.
 - 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect the jacket from tear or puncture by the hanger, support, and shield.
- M. Insulation Terminations: For insulation where vapor retardants are indicated, taper insulation ends. Seal tapered ends with a compound recommended by the insulation material manufacturer to maintain vapor retardant integrity.
- N. Apply adhesives and mastics at the manufacturer's recommended coverage rate.
- O. Apply insulation with integral jackets as follows:
 - 1. Pull jacket tight and smooth.
 - 2. Circumferential Joints: Cover with 3 inches (75 mm) wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip and spaced 4-inches o.c.
 - 3. Longitudinal Seams: Overlap jacket seams at least 1 1/2 inches (38 mm). Apply insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 4-inches o.c.
 - 4. Exception: Do not staple longitudinal laps on insulation having a vapor retardant.
 - 5. Vapor-retardant mastics: Where vapor retardants are indicated, apply mastic on seams and joints and at ends adjacent to flanges, unions, valves, and fittings.
 - 6. At penetrations in jackets for thermometers and pressure gauges, fill and seal voids with vapor-retardant mastic.
- P. Roof Penetrations: Apply insulation for interior applications to a point even with top of roof flashing.
 - 1. Seal penetrations with vapor-retardant mastic.
 - 2. Apply insulation for exterior applications tightly joined to interior insulation ends.
 - 3. Extend metal jacket for exterior insulation occurring outside of roof flashing at least 2-inches below the top of the roof flashing.
 - 4. Seal sheet metal jacket to roof flashing with vapor-retardant mastic.
- Q. Exterior Wall Penetrations: For penetration of below-grade exterior walls, terminate insulation flush with mechanical sleeve seal. Seal terminations with vapor-retardant mastic.
- R. Interior Wall and Partition Penetrations: Apply insulation continuously through walls and floors.
- S. Fire-Rated Wall and Partition Penetrations: Apply insulation continuously through penetrations of fire-rated walls and partitions

- 1. Firestopping and fire-resistive joint sealers are specified in Division 07 "Penetration Firestopping".
- 2. Floor Penetrations: Apply insulation continuously through floor assembly.
- 3. For insulation with vapor retardants, seal insulation with vapor-retardant mastic where floor supports penetrate vapor retardant.

3.4 MINERAL-FIBER INSULATION APPLICATION

- A. Apply insulation to straight pipes and tubes as follows;
 - 1. Secure each layer of preformed pipe insulation to pipe with wire, tape, or bands without deforming insulation materials.
 - 2. Where vapor retarders are indicated, seal longitudinal seams and end joints with vapor-retarder mastic. Apply vapor retarder to ends of insulation at intervals of 15 to 20-feet (4.5 to 6 m) to form a vapor retarder between pipe insulation segments.
 - 3. For insulation with factory-applied jackets, secure laps with outward clinches staples at 6 inches o.c.
 - 4. For insulation with factory-applied jackets with vapor retarders, do not staple longitudinal tabs but secure tabs with additional adhesive as recommended by the insulation material manufacturer and seal with vapor-retarder mastic.
- B. Apply Insulation to flanges as follows:
 - 1. Apply preformed pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation segment the same as overall width of the flange and bolts, plus twice the thickness of the pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
 - 4. Apply canvas jacket material with manufacturer's recommended adhesive, overlapping seams at least 1 inch, and seal joints with vapor-retarder mastic.
- C. Apply insulation to fittings and elbows as follows:
 - 1. Apply premolded insulation sections of the same material as straight segments of pipe insulation when available. Secure according to manufacturer's written instructions.
 - 2. When premolded insulation elbows and fittings are not available, apply mitered sections of pipe insulation, or glass-fiber blanket insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire, tape, or bands.
 - 3. Cover fittings with heavy PVC covers. Overlap PVC covers on pipe insulation jackets at least 1 inch at each end. Secure fitting covers with manufacturer's attachments and accessories. Seal seams with tape and vapor-retarder mastic.
- D. Apply insulation to valves and specialties as follows:
 - 1. Apply premolded insulation sections of the same material as straight segments of pipe insulation when available. Secure according to manufacturer's written instructions.
 - 2. When premolded insulation sections are not available, apply glass-fiber blanket insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation. For check valves, arrange insulation for access to strainer basket without disturbing insulation.
 - 3. Apply insulation to flanges as specified for flange insulation application.
 - 4. Use preformed heavy PVC fitting covers for valve sizes where available. Secure fitting covers with manufacturer's attachments and accessories. Seal seams with tape and vapor-retarder mastic.

5. For larger sizes where PVC fitting covers are not available, seal insulation with canvas jacket and sealing compound recommended by the insulation material manufacturer.

3.5 CELLULAR-GLASS INSULATION APPLICATION

- A. Apply insulation to straight pipes and tubes as follows:
 - 1. Secure each layer of insulation to pipe with bands without deforming insulation.
 - 2. Where vapor retarders are indicated, seal longitudinal seams and end joints with vapor-retarder mastic.
 - 3. For insulation with factory-applied jackets, secure laps with outward clinched staples at 6-inches o.c.
 - 4. For insulation with factory-applied jackets with vapor retarders, do not staple longitudinal tabs but secure tabs with additional adhesive as recommended by the insulation material manufacturer and seal with vapor-retarder mastic.
- B. Apply insulation to flanges as follows:
 - 1. Apply preformed pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation segment the same as overall width of the flange and bolts, plus twice the thickness of the pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of cellular-glass block insulation of the same thickness as pipe insulation
 - 4. Apply insulation to fittings and elbows as follows:
 - 5. Apply premolded insulation sections of the same material as straight segments of pipe insulation when available. Secure according to manufacturer's written instruction.
 - 6. When premolded sections of insulation are not available, apply mitered sections of cellular-glass insulation. Secure insulation materials with bands.
 - 7. Cover fittings with heavy PVC fitting covers. Overlap PVC covers on pipe insulation jackets as least 1 inch at each end. Secure fitting covers with manufacturer's attachments and accessories. Seal seams with tape and vapor-retarder mastic.
- C. Apply insulation to valves and specialties as follows:
 - 1. Apply premolded segments of cellular-glass insulation or glass-fiber blanket insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation. For check valves, arrange insulation for access to strainer basket without disturbing insulation.
 - 2. Apply insulation to flanges as specified for flange insulation application.
 - 3. Use preformed heavy PVC fitting covers for valve sizes where available. Secure fitting covers with manufacturer's attachments and accessories. Seal seams with tape and vapor-retarder mastic.
 - 4. For larger sizes where PVC fitting covers are not available, seal insulation with canvas jacket and sealing compound recommended by the insulation material manufacturer.

3.6 PREFORMED ELASTOMERIC CELLULAR THERMAL INSULATION APPLICAION

- A. Apply insulation to straight pipes and tubes as follows:
 - 1. Install pipe insulation by slitting tubular sections and applying onto pipes. Seams and butt joints shall be adhered and sealed using Armaflex 520 adhesive
 - 2. All edges shall be clean-cut. Rough or jagged edges shall not be permitted.

- B. Apply insulation to valves, flanges and fittings as follows:
 - 1. Insulate with the same insulation thickness as the adjacent piping. Seams and butt joints shall be adhered and sealed with Armaflex 520 adhesive.
 - 2. All edges shall be clean-cut. Rough or jagged edges shall not be permitted.
- C. Outdoor insulation shall be protected as follows:
 - 1. Furnish aluminum jacket and aluminum fitting covers.
 - 2. All jackets shall have the seams located below the horizontal plane of the pipes but not at the bottom of the pipe.
- D. Indoor insulation shall be protected as follows:
 - 1. Furnish PVC jacket and PVC aluminum fitting covers.
 - 2. All jackets shall have the seams located below the horizontal plane of the pipes but not at the bottom of pipe.

3.7 FIELD-APPLIED JACKET APPLICATION

- A. Apply PVC jacket where indicated, with 1 inch overlap at longitudinal seams and end joints. Seal with manufacturer's recommended adhesive.
- B. Apply metal jacket where indicated, with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel band 12 inches (300 mm) o.c. and at end joints.
- C. Insulation and jacket for cold pipes shall include wicks to direct possible condensation to outside the jacket. The product shall be Knauf PermaWick or equal.
- D. Indoor, Concealed Applications: Insulated pipes conveying fluids above or below ambient temperature shall have standard jackets, with or without vapor barrier, factory-applied or field-applied. Insulate fittings, joints and valves with insulation of like material and thickness as adjoining pipe, and finish with glass cloth and adhesive. PVC jackets shall be used.
- E. Indoor, Exposed Applications: For pipe exposed in mechanical equipment rooms or in finished spaces, insulate as for concealed applications. Finish with canvas jacket; size for finish painting. PVC jackets shall be used.
- F. Exterior Applications: Provide vapor-barrier jackets. Cover with aluminum jackets with seams located below the horizontal plane of the horizontal piping route. Insulate fittings, joints, and valves with insulation of like material and thickness as adjoining pipe, and cover with aluminum jackets.
- G. Buried Piping: Provide factory-fabricated assembly with inner all-purpose service jacket with self-sealing lap, and asphalt-impregnated open-mesh glass fabric, with 0.001 inch thick aluminum foil sandwiched between three layers of bituminous compound; outer surface faced with a polyester film.

3.8 FINISHES

- A. Paint insulation as specified in Division 09 Section "Painting".
- B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.

3.9 PIPING SYSTEM APPLICATIONS

- A. Insulation materials and thicknesses are specified in schedules at the end of this Section.
- B. Items Not Insulated: Unless otherwise indicated, do not apply insulation to the following systems, materials, and equipment.
 - 1. Flexible connectors.
 - 2. Vibration control devices.
 - 3. Fire-suppression piping.
 - 4. Drainage piping located in crawl spaces, unless otherwise indicated.
 - 5. Below-grade piping, unless otherwise indicated.
 - 6. Chrome-plated pipes and fittings, unless potential for personal injury.
 - 7. Air chambers, unions, strainers, check valves, plug valves, and flow regulators.

3.10 INSULATION APPLICATION SCHEDULE, GENERAL.

- A. Refer to insulation application schedules for required insulation materials, vapor retarders, and field-applied jackets.
- B. Application schedules identify piping system and indicate pipe size ranges and material, thickness, and jacket requirements.

3.11 INTERIOR INSULATION APPLICATION SCHEDULE

- A. Service: Domestic and Industrial hot water.203.2 mm
 - 1. Operating Temperature: 60 to 140 deg F (15.6 to 60 deg C).
 - 2. Insulation Material: Mineral-fiber
 - 3. Insulation Thickness: Apply the following insulation thicknesses:
 - a. Copper Pipe, Up to 2 inches (50.8 mm): 1 inch (25 mm) Insulation
 - 4. Field-Applied Jacket: PVC
 - 5. Vapor Retarder Required: Yes
 - 6. Finish: As specified in Paragraph 3.8.
- B. Service: Chilled-water supply and return.
 - 1. Operating Temperature: 35 to 75 deg F (2 to 24 deg C).
 - 2. Insulation Material: Mineral-fiber, or expanded closed-cell cellular
 - 3. Insulation Thickness: Apply the following insulation thicknesses:
 - a. Steel Pipe, All sizes: 1 inch (25 mm) Insulation
 - b. Copper All sizes: 1 inch (25 mm) Insulation
 - 4. Field-Applied Jacket: PVC
 - 5. Vapor Retarder Required: Yes

- 6. Finish: As specified in Paragraph 3.8.
- C. Service: Heating hot-water supply and return.
 - 1. Operating Temperature: 100 to 200 deg F (38 to 93 deg C).
 - 2. Insulation Material: Mineral-fiber
 - 3. Insulation Thickness: Apply the following insulation thicknesses:
 - a. Steel Pipe, Up to 2 inches (50.8 mm): 1 inch (25 mm) Insulation
 - b. Copper Pipe, Up to 2 inches (50.8 mm): 1 inch (25 mm) Insulation
 - c. Steel Pipe, 2 1/4 inches (57.2 mm) to 6 inches (152.4 mm): 1 1/2 inch (38 mm) Insulation
 - d. Copper Pipe, 2 1/4 inches (57.2 mm) to 6 inches (152.4 mm): 1 1/2 inch (38 mm) Insulation
 - 4. Field-Applied Jacket: PVC
 - 5. Vapor Retarder Required: Yes
 - 6. Finish: As specified in Paragraph 3.8.
- D. Service: Steam and Condensate:
 - 1. Operating Temperature: 450 deg F (232 deg C) and lower
 - 2. Insulation Material: Mineral-fiber or Calcium Silicate
 - 3. Insulation Thickness: Apply the following insulation thicknesses:
 - a. Steel Pipe, Steam Up to 2 inches (50.8 mm): 1 1/2 inch (38 mm) Insulation
 - b. Steel Pipe, Steam 2 1/4 inches (57.2 mm) to 4 inches (101.6 mm): 3 inches (75 mm) Insulation
 - c. Steel Pipe, Condensate Up to 2 inches (50.8 mm): 1 1/2 inch (38 mm) Insulation
 - 4. Field-Applied Jacket: Aluminum
 - 5. Vapor Retarder Required: No
 - 6. Finish: As specified in Paragraph 3.8.
- E. Service: Process Cold Water (Industrial):
 - 1. Operating Temperature: 30 deg F (1.1 deg C)
 - 2. Insulation Material: Mineral-fiber, or closed-cell cellular
 - 3. Insulation Thickness: Apply the following insulation thicknesses:
 - a. Copper Pipe, All Sizes: 1 inch (25 mm) Insulation
 - 4. Field-Applied Jacket: PVC
 - 5. Vapor Retarder Required: Yes
 - 6. Finish: As specified in Paragraph 3.8.

3.12 EXTERIOR INSULATION APPLICATION SCHEDULE

- A. This application schedule is for aboveground insulation outside the building.
- B. Service: Domestic, industrial and DI Water.
 - 1. Operating Temperature: 60 to 140 deg F (15 to 60 deg C).
 - 2. Insulation Material: Mineral-fiber
 - 3. Insulation Thickness: Apply the following insulation thicknesses:
 - a. Copper pipe, All sizes: 1 inch (25 mm) Insulation
 - b. Polypropylene Pipe 1 inch (25 mm) Insulation
 - 4. Field-Applied Jacket: Aluminum for outdoor
 - 5. Vapor Retarder Required: Yes
 - 6. Finish: As specified in Paragraph 3.8.

- C. Service: Chilled-water supply and return.
 - 1. Operating Temperature: 35 to 75 deg F (2 to 24 deg C).
 - 2. Insulation Material: Mineral-fiber or closed-cell cellular
 - 3. Insulation Thickness: Apply the following insulation thicknesses:
 - a. Steel pipe, All sizes: 1 1/2 inch (38 mm) Insulation, 1" for cellular
 - b. Copper Pipe, All sizes: 1 1/2 inch (38 mm) Insulation, 1" for cellular
 - 4. Field-Applied Jacket: Aluminum for outdoor, PVC for indoor
 - 5. Vapor Retarder Required: Yes
 - 6. Finish: As specified in Paragraph 3.8.
- D. Service: Heating hot-water supply and return.
 - 1. Operating Temperature: 100 to 220 deg F (38 to 104 deg C)
 - 2. Insulation Material: Mineral Fiber
 - 3. Insulation Thickness: Apply the following insulation thicknesses:
 - a. Steel Pipe, All sizes: 1 1/2 inch (38 mm) Insulation
 - b. Copper Pipe, All sizes: 1 1/2 inch (38 mm) Insulation
 - 4. Field-Applied Jacket: Aluminum for outdoor, PVC for outdoor
 - 5. Vapor Retarder Required: Yes
 - 6. Finish: As specified in Paragraph 3.8.
- E. Service: Steam and condensate.
 - 1. Operating Temperature: 450 deg F (232 deg C) and lower.
 - 2. Insulation Material: Mineral Fiber
 - 3. Insulation Thickness: Apply the following insulation thicknesses:
 - a. Steel Pipe, Steam Up to 2 inches (50.8 mm): 2 1/2 inch (63 mm) Insulation
 - b. Steel Pipe, Steam 2 1/4 inches (57.2 mm) to 8 inches (203.2 mm): 3 1/2 inch (89 mm) Insulation
 - c. Steel Pipe, Condensate Up to 2 inches (50.8 mm): 1 1/2 inch (38 mm) Insulation
 - d. Steel Pipe, Condensate 2 1/4 inches (57.2 mm) to 8 inches (203.2 mm): 2 inches (50.8 mm) Insulation
 - 4. Field-Applied Jacket: Aluminum for outdoor, PVC for indoor
 - 5. Vapor Retarder Required: Yes
 - 6. Finish: As specified in Paragraph 3.8.

3.13 ALTERNATE INSULATION APPLICATION

1. Preformed elastomeric cellular insulation may be used as an alternative to the materials in Sections 3.11 and 3.12.

END OF SECTION 230719

SECTION 230923 - DIRECT DIGITAL CONTROL (DDC) SYSTEM FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

A. Furnish and install a complete facility management system (BMS) for all mechanical systems and other facility systems as included in the contract documents. The system shall perform all sequences of operations stated within these specifications or shown on the drawings.

1.2 RELATED WORK SPECIFIED

- A. Section 230500, Common Work Results for HVAC
- B. Section 230553, Identification for HVAC Piping and Equipment
- C. Section 230593, Testing, Adjusting, and Balancing
- D. Section 233300, Air Duct Accessories
- E. Section 233600, Air Terminal Units
- F. Section 283111, Digital, Addressable Fire Alarm System

1.3 REFERENCES

- A. ASHRAE: American Society of Heating, Refrigerating and Air-Conditioning Engineers
 - 1. ASHRAE Chapter 62: Ventilation for Acceptable Indoor
- B. FCC: Federal Communications Commission
 - 1. FCC Part 15: Radio Frequency Devices
- C. ISO: International Organization for Standardization
 - 1. ISO 9001: Quality Management Systems Requirements
- D. NEC: National Electric Code
- E. NEMA: National Electrical Manufacturers' Association
- F. UL: Underwriters Laboratories
- G. US EPA: US Environmental Protection Agency
 - 1. Energy Star Building Recommendations

1.4 QUALITY ASSURANCE

A. General:

- 1. The BMS installer shall be a factory-owned branch office that is regularly engaged in the engineering, programming, installation, and service of BMSs of similar size and complexity.
- 2. The BMS, including all components and appurtenances, shall be configured and installed to yield a mean time between failures of at least 1,000 hours.

B. ISO-9001:

- 1. Provide documentation supporting compliance with ISO-9001 (Model of Quality Assurance in Design/ Development, Production, Installation, and Servicing). Product literature shall contain the ISO-9001 Certification Mark from the applicable registrar. For products that do not comply with the ISO-9001 certification requirement, provide the following information to assure that quality systems are in place which are equivalent to the ISO-9001 standard:
 - a. Marketing specification standards.
 - b. Design file standards.
 - c. Manufacturing test standards.
 - d. Calibration standards.
 - e. Quality system standards.
 - f. Quality system procedures.
 - g. Documented management commitment that all employees participate in quality programs.
 - h. Training procedures.
 - i. Methods by which corrective actions are taken for problems identified within the factory process.

C. FCC Regulation:

1. All electronic equipment shall conform to the requirements of FCC Regulation, Part 15, Section 15, Governing Radio Frequency Electromagnetic Interference, and be so labeled.

D. UL:

- 1. Components shall be UL listed or recognized under the appropriate standard. These standards may include:
 - a. UL 916 for energy management systems.
 - b. UL 864 for fire, smoke and process control systems, as required.
 - c. UL 873 for controllers and temperature indicating and regulating equipment.

1.5 SUBMITTALS

- A. For systems, equipment, and components specified herein, submit product/material data; certified shop drawings; installation, startup, and testing manuals; operation and maintenance data; as-constructed data; operation and maintenance manuals; and as-constructed drawings.
 - 1. System Drawings and Schedules: Include the following:
 - a. For industrial applications provide direct digital control (DDC) panel physical layout and schematics.
 - b. One-line schematics and system flow diagrams showing the location of all control devices. Provide points list for each DDC controller, including tag, point type,

- system name, object name, expanded ID, controller type, address, cable destination, terminal ID, panel, reference drawing, and cable number.
- c. Details of connections to power sources, including grounding.
- d. Details of surge protection device installations.
- e. Sequences of operation.
- f. Complete diagrams of the related pneumatic and electric controls, including a written description of control sequences.
- g. User interface (UI) functional outline. Include each display screen to be provided, data to be displayed, and links to other screens. The outline level hierarchy shall be:
 - 1) Site.
 - 2) Building.
 - 3) Floor.
 - 4) System.
- h. Control Damper and Valve Schedules: Include code number, failure position, pipe or duct size, valve or damper size, damper seal, blade and bearing type, valve body configuration, CV, flow, pressure drop and close-off pressure.
- 2. Prototype graphics for review prior to implementation of the full graphics package.
- 3. Equipment Data: Include complete data for all materials, including field and system equipment. Data provided shall be marked to indicate which specific model or feature will be provided.
- 4. Field Installation Handbook: Show all standard devices, networks, controllers, and enclosures with configurations, cable specifications, wiring and installation methods, termination details, agency listings, and controller specifications.
- 5. Software Data: Provide complete descriptions of system, command, and applications software as specified. Include description of control sequences which are software based using detailed logic flow diagrams. Diagrams shall indicate logic used to achieve control sequence of calculation specified, and shall show relationship between control sequence and application software packages specified.
- 6. Operation and Maintenance Manuals: Provide seven complete sets of manuals bound in loose-leaf binders within 30 days after completing acceptance tests. Identify each manual's contents on cover. Manuals shall include names, addresses, and telephone numbers of each subcontractor installing equipment and systems, and of nearest service representatives for each item of equipment and each system. Place tab sheets at beginning of each chapter or section and at beginning of each appendix. Final copies delivered after completion of the acceptance tests shall include all modifications made during installation, checkout, and acceptance. Operation and maintenance manuals shall include the hardware manual, software manual, operations manual, and maintenance manual.
 - a. Hardware Manual: Describe all equipment provided, including:
 - 1) General description and specifications.
 - 2) Field Installation Handbook: Show all standard devices, networks, controllers and enclosures with configurations, cable specifications, wiring and installation methods, termination details, agency listings and controller specifications.
 - 3) As-built system drawings and schedules.
 - 4) Alignment and calibration procedures.
 - b. Software Manual: Describe all furnished software. Include the following documentation in the DDC software manual:
 - 1) Sequence of operations.

- 2) Program listing of software source code and flow chart diagrams of programming objects for all major systems.
- 3) Printed listing of controller and operator workstation database files.
- 4) Software point name abbreviation list. Include name, description, controller where located, point type and point ID.
- 5) Input/output (I/O) point list. Include point name, controller location, point number, control device, range and span.
- 6) Printouts of all reports, group listings, and alarm messages.
- c. Operator's Manual: Provide all procedures and instructions for operation of the system, including:
 - 1) DDC panels and peripherals.
 - 2) System startup and shutdown procedures.
 - 3) Use of system, command, and applications software.
 - 4) Alarm presentation.
 - 5) Recovery and restart procedures.
 - 6) Report generation.
 - 7) System schematic graphics.
- d. Maintenance Manual: Provide descriptions of maintenance for all equipment including inspection, periodic preventive maintenance, fault diagnosis, and repair or replacement of defective components.
- B. For system, equipment, and components, submit commissioning plans and schedules; checkout, startup, operational, functional and final acceptance test plans, procedures, checklists, and reports; systems manuals; and operation and maintenance training plans.
 - 1. Testing Submittals: Provide test plan and test procedures for approval. Explain in detail, step-by-step, actions and expected results to demonstrate compliance with the requirements of this specification and methods for simulating necessary conditions of operation to demonstrate performance of the system. Test plan and test procedures shall demonstrate capability of system to monitor and control equipment and to accomplish control and monitoring specified.

1.6 COMMISSIONING AND TRAINING

- A. Systems, equipment and component checkout, startup, calibration, operational, functional and final acceptance testing:
 - 1. General: Provide all personnel, equipment, instrumentation, and supplies necessary to commission controls.
 - 2. Commissioning: Commission systems, equipment, and components in accordance with the requirements of the contract documents. Demonstrate compliance of completed control system. Checkout and test all physical, operational, and functional requirements of the controls and related equipment.
 - 3. Six and Twelve Month Callbacks: In addition to the requirements of the contract, the Port may request, at its discretion, a recheck or resetting of any equipment, device or control on two occasions within the first year of operation.

B. Training:

1. General: Conduct training courses for designated personnel in operation and maintenance of system. Training shall be oriented to specific system being installed. Training manuals shall be provided for each trainee, with two additional copies provided

- for archival at project site. Manuals shall include detailed description of the subject matter for each lesson. Copies of audiovisuals shall be delivered to the Port.
- 2. Operator's Training: The course shall be taught at the work site for a period of one training day after completion of the Contractor's field testing. The course shall include instruction on specific hardware configuration of installed system and specific instructions for operating the installed system. Upon completion, each student shall be able to start system, operate the system, recover the system after failure, and describe the specific hardware architecture and operation of system. Repeat course if necessary to include all shift personnel.

PART 2 - PRODUCTS

2.1 MANUFACTURER

- A. The architecture shall consist of the products of a manufacturer regularly engaged in the production of BMS, and shall be the manufacturer's latest standard of design. Controllers and DDC system components shall be current production products.
- B. All other equipment shall be the products of the manufacturer or of an approved manufacturer regularly engaged in production of specialized BMS materials or equipment.
- C. Acceptable Manufacturer: Johnson Controls Group, Inc., Honeywell, Siemens, no substitutions.

2.2 SYSTEM DESCRIPTION

A. First-Tier Network:

- 1. The automation network shall be based on a personal computer (PC) industry standard of Ethernet TCP/IP. Where used, LAN controller cards shall be standard "off-the-shelf" products available through normal PC vendor channels.
- 2. The BMS shall network multiple UI clients, automation engines, system controllers and application-specific controllers (ASC). Provide application and data server(s) as required for systems operation.
 - a. All BMS devices on the automation network shall be capable of operating at a communication speed of 100 Mbps, with full peer-to-peer network communication.
- 3. Network automation engines (NAE) shall reside on the automation network.
 - a. The automation network shall be compatible with other enterprise-wide networks. Where indicated, the automation network shall be connected to the enterprise network and share resources with it by way of standard networking devices and practices.

B. Second-Tier Network:

- 1. NAE shall provide supervisory control over the control network and shall support all three of the following communication protocols:
 - a. BACnet Standard Master-Slave Token Passing (MS/TP) Bus Protocol ASHRAE SSPC-135, Clause 9.
 - 1) The NAE shall be BACnet Testing Labs (BTL) certified and carry the BTL Label.

- 2) The NAE shall be tested and certified as a BACnet Building Controller.
- b. LonWorks enabled devices using the Free Topology Transceiver (FTT-10a).
- c. The Johnson Controls N2 Field Bus.
- d. The Johnson Controls wireless field bus.
- 2. Control networks shall provide peer-to-peer, master-slave, or supervised token passing communications, and shall operate at a minimum communication speed of 9600 baud.
- 3. DDC Controllers shall reside on the control network.
- 4. Control network communication protocol shall be BACnet Standard MS/TP Bus Protocol ASHRAE SSPC-135.
- 5. A BACnet Protocol Implementation Conformance Statement (PICS) shall be provided for each controller device, master or slave, which will communicate on the BACnet MS/TP Bus.

C. Integration Options:

- 1. Hardwired:
 - a. Analog and digital signal values shall be passed from one system to another via hardwired connections.
 - b. There shall be one separate physical point on each system for each point to be integrated between the systems.

2. Wireless:

a. Series Wireless Field Bus System: Series system shall employ ZigBee technology that creates a wireless mesh network to provide wireless connectivity for Metasys BACnet devices at multiple system levels. This includes communications from field equipment controller and VAV modular assembly (VMA) field controllers to sensors and from engines to these field controllers. Wireless devices shall co-exist on the same network with hardwired devices. Hardwired controllers shall be capable of retrofit to wireless devices with no special software.

3. Direct Protocol (Integrator Panel):

- a. The BMS system shall include appropriate hardware equipment and software to allow bi-directional data communications between the BMS system and third-party manufacturers' control panels. The BMS shall receive, react to, and return information from multiple building systems, including but not limited to the chillers, boilers, variable frequency drives, power monitoring system, and medical gas.
- b. All data required by the application shall be mapped into the NAE database, and shall be transparent to the operator.
- c. Point inputs and outputs from the third-party controllers shall have real-time interoperability with BMS software features such as: control software, energy management, custom process programming, alarm management, historical data and trend analysis, totalization, and local area network communications.

4. BACnet Protocol Integration – BACnet:

- a. The neutral protocol used between systems shall be BACnet over Ethernet and comply with the ASHRAE BACnet standard 135-2008.
- b. A complete PICS shall be provided for all BACnet system devices.
- c. Provide the ability to command, share point object data, change of state (COS) data and schedules between the host and BACnet systems.

D. Server/Web Browser/Operator Interfaces:

- 1. Dedicated Web-Based UI:
 - a. Where indicated on the drawings, provide a PC for command entry, information management, network alarm management, and database management functions.

- All real-time control functions including scheduling, history collection, and alarming shall be resident in the NAE to facilitate greater fault tolerance and reliability.
- b. Dedicated UI Architecture: The architecture of the computer shall be implemented to conform to industry standards so that it can accommodate applications provided by the BMS, including but not limited to Microsoft Office applications. Specifically, it shall be implemented to conform to the following interface standards:
 - 1) Microsoft Internet Explorer for UI functions.
 - 2) Microsoft Office Professional for creation, modification, and maintenance of reports, sequences, and other necessary building management functions.
 - 3) Microsoft Outlook or other e-mail program for supplemental alarm functionality and communication of system events and reports.
 - 4) Required network operating system for exchange of data and network functions such as printing of reports, trends, and specific system summaries.
- c. PC Hardware: The PC(s) shall be configured as follows:
 - 1) Memory: 1 GB (512 MB minimum).
 - 2) CPU: Pentium 4 processor. 2.8 GHz clock speed (2.0 GHz minimum).
 - 3) Hard Drive: 80 GB free hard drive space (40 GB minimum)
 - 4) Hard Drive Backup System: CD/RW, DVD/RW, or network backup software provided by IT department.
 - 5) CD ROM Drive: 32X performance.
 - 6) Ports: 2 serial and 1 parallel, 2 USB ports.
 - 7) Keyboard: 101 keyboard and 2 button mouse.
 - 8) CRT Configuration: 1-2 CRTs as follows:
 - a) Each display shall be 17-inch flat panel monitor, 1280x1024 resolution minimum.
 - b) 16 bit or higher color resolution.
 - c) Display card with multiple monitor support.
 - 9) LAN Communication: Ethernet communications board. 3Comm, or equal.
- d. Operating System Software shall be as follows:
 - 1) Windows 7 or 8 Professional.
 - 2) Where UI is not provided via browser, provide complete operator workstation software package including any hardware or software keys. Include the original installation disks and licenses for all included software, device drivers, and peripherals.
 - 3) Provide software registration cards for all included software.
- e. Peripheral Hardware. Provide reports printer meeting the following requirements:
 - 1) Printer Make: Hewlett Packard DeskJet.
 - 2) Print Speed: 600 DPI black, 300 DPI color.
 - 3) Buffer: 64 K input print buffer.
 - 4) Color Printing: Include color kit.
- 2. Distributed Web-Based UI:
 - a. All features and functions of the dedicated UI previously defined in this specification shall be available on any computer connected directly or via a wide area or virtual private network (WAN/VPN) to the automation network and conforming to the following:
 - 1) The software shall run on the Microsoft Internet Explorer (6.0 or higher) browser supporting the following functions:
 - a) Configuration.
 - b) Commissioning.

- c) Data archiving.
- d) Monitoring.
- e) Commanding.
- f) System diagnostics.
- 2) Minimum hardware requirements are as follows:
 - a) 1 GB RAM.
 - b) 2.0 GHz clock speed Pentium 4 microprocessor.
 - c) 100 GB hard drive.
 - d) 1 keyboard with 83 keys, minimum.
 - e) SVGA 1024x768 resolution display with 64K colors and 16 bit color depth.
 - f) Mouse or other pointing device.
- 3. Site Management UI Application Components:
 - a. Operator interface shall meet the following criteria:
 - 1) Integrated browser-based client applications.
 - 2) The system shall have event-driven rather than device polling methodology to dynamically capture and present new data to the user.
 - 3) All inputs, outputs, setpoints, and all other parameters as defined in Part 3 of this section, as shown on the drawings, or as required as part of the system software, shall be displayed for operator viewing and modifying from the operator interface software.
 - 4) UI software shall provide help menus and instructions for each operation and/or application.
 - 5) The system shall support customization of the UI configuration and a home page display for each operator.
 - 6) The system shall support user preferences in the following screen presentations:
 - a) Alarm.
 - b) Trend.
 - c) Display.
 - d) Applications.
 - 7) All controller software operating parameters shall be displayed for the operator to view/modify from the UI. These include, but are not limited to, setpoints, alarm limits, time delays, PID tuning constants, run-times, point statistics, and schedules.
 - 8) The operator interface shall incorporate comprehensive support for functions including, but not necessarily limited to, the following:
 - a) User access for selective information retrieval and control command execution.
 - b) Monitoring and reporting.
 - c) Alarm, non-normal, and return to normal condition annunciation.
 - d) Selective operator override and other control actions.
 - e) Information archiving, manipulation, formatting, display, and reporting.
 - f) BMS internal performance supervision and diagnostics.
 - g) Online access to user Help menus.
 - h) Online access to current BMS as-built records and documentation.
 - i) Means for the controlled reprogramming, reconfiguration of BMS operation, and for the manipulation of BMS database information in compliance with the prevailing codes, approvals, and regulations for individual BMS applications.

- 9) The system shall support a list of applications programs configured by the users that are called up by the following means:
 - a) The Tools menu.
 - b) Hyperlinks within the graphics displays.
 - c) Key sequences.
- 10) The operation of the control system shall be independent of the UI which shall be used for operator communications only. Systems that rely on an operator workstation to provide supervisory control over controller execution of the sequences of operations or system communications will not be acceptable.

b. Navigation Trees:

- 1) The system shall have the capability to display multiple navigation trees that aids the operator in navigating throughout all systems and points connected. At a minimum, provide a tree that identifies all systems on the networks.
- 2) Provide the ability for the operator to add custom trees. The operator shall be able to define any logical grouping of systems or points and arrange them on the tree in any order. Groups shall be able to nest within other groups. Provide at minimum five levels of nesting.
- 3) The navigation trees shall be "dockable" to other displays in the UI, such as graphics. The trees shall appear as part of the display but can be detached and then minimized to the Windows task bar. A simple keystroke shall reattach the navigation to the primary display of the UI.

c. Alarms:

- 1) Alarms shall be routed directly from NAE to PCs and servers. Specific alarms from specific points shall be able to be routed to specific PCs and servers. The alarm management portion of the UI shall, at minimum, provide the following functions:
 - a) Log date and a time of alarm occurrence.
 - b) Generate a pop-up window, with audible alarm, informing a user that an alarm has been received.
 - c) Allow a user, with the appropriate security level, to acknowledge, temporarily silence, or discard an alarm.
 - d) Provide the ability to direct alarms to an e-mail address or alphanumeric pager. This shall be provided in addition to the pop-up window described in this section. Systems that use e-mail and pagers as the exclusive means of annunciating alarms are not acceptable.
 - e) Configuration of which NAE offline alarms are seen by each user.
 - f) Any attribute of any object in the system may be designated to report an alarm.
- 2) The BMS shall annunciate diagnostic alarms indicating system failures and non-normal operating conditions.
- 3) The BMS shall allow a minimum of four categories of alarm sounds, customizable through user-defined .wav files.
- 4) The BMS shall annunciate application alarms at minimum, as required in Part 3 of this section.

d. Reports and Summaries:

- 1) Reports and summaries shall be generated and directed to the UI displays with subsequent assignment to printers, or disk. At a minimum, the system shall provide the following reports:
 - a) All points in the BMS.
 - b) All points in each BMS application.

- c) All points in a specific controller
- d) All points in a user-defined group of points
- e) All points currently in alarm
- f) All points locked out
- g) All user defined and adjustable variables, schedules, interlocks, etc.
- 2) Summaries and reports shall be accessible via standard UI functions and not dependent upon custom programming or user defined HTML pages.
- 3) Selection of a single menu item, tool bar item, or tool bar button shall print any displayed report or summary on the system printer for use as a building management and diagnostics tool.
- 4) Provide the capability to view, command, and modify large quantities of similar data in tailored summaries created online without the use of a secondary application, like a spreadsheet. Summary definition shall allow up to seven user defined columns describing attributes to be displayed, including custom column labels. At a minimum, 100 rows per summary shall be supported. Summary viewing shall be available over the network using a standard Web browser.
- 5) Reports shall be selectable by day, time, area, and device. Each report shall include a color visual summary of essential energy information.

e. Schedules:

- 1) Provide a graphical display for time-of-day scheduling and override scheduling of building operations. At a minimum, the following functions shall be provided:
 - a) Weekly schedules.
 - b) Exception schedules.
 - c) Monthly calendars.
- 2) Provide weekly schedules for each group of equipment with a specific timeuse schedule.
- 3) One or more exception schedules for each schedule, including references to calendars, shall be possible.
- 4) Provide monthly calendars that allow for simplified scheduling of holidays and special days for a minimum of five years in advance. Holidays and special days shall be user-selected with the pointing device or keyboard and shall automatically reschedule equipment operation as previously defined on the exception schedules.
- 5) Changes to schedules made from the UI shall directly modify the NAE schedule database.
- 6) Schedules and calendars shall comply with ASHRAE SP135/2008 BACnet Standard.
- 7) The calendar object shall support an option to add a reference to another calendar object designated to be the master for the facility. Any supervisory and BAC calendars shall be able to be configured to reference a single master global calendar. Changes to the master global calendar shall automatically sync with all calendars that are referenced.
- 8) Selection of a single menu item or tool bar button shall print any displayed schedule on the system printer for use as a building management and diagnostics tool.
- 9) Provide software to configure and implement optimal start and stop programming based on existing indoor and outdoor environmental conditions as well as equipment operating history.

10) The system solar clock shall support the scheduling and energy management functions. The solar clock shall calculate the sunrise, sunset, and sun angle values for a specified latitude and longitude. A time offset may also be specified. An example would be to use the solar clock object as a master to an interlock to turn lights on 30 minutes after sunset and off 30 minutes before sunrise.

f. Security/Passwords:

- 1) Provide multiple-level password access protection via roles and permissions. The feature shall allow the system to base access on a user's job title or role and allow the user/manager access interface control, display, and database manipulation capabilities based on an assigned password.
- 2) Roles may be copied and altered to meet specific roles and permissions based on the particular policies.
- 3) Each user shall have the following: a (Metasys Local) user account name (with a maximum of 30 characters), a complex password or passphrase (with a min of 8 characters and a max of 50 characters), other user account policies (such as session timeout), timesheet access based on day of the week and time of day, and specific user view.
- 4) The system shall allow each user to change his or her password at will.
- 5) When entering or editing passwords, the system shall not echo the actual characters for display on the monitor.
- 6) A maximum of 150 categories may be used to determine or assign areas of responsibilities to each user account. A maximum of 13 of the 150 named categories, shall be specifics such as, "No Access," "View," "Advanced Review," "Operate," "Intervene," "Diagnostic," "Manage Item Events," "Manage Every," and "Configure Items."
- 7) A minimum of 100 unique passwords shall be supported.
- 8) Operators shall be able to perform only those commands available for their respective passwords. Display of menu selections shall be limited to only those items defined for the access level of the password used to log-on.
- 9) Operators shall be further limited to only access, command, and modify those buildings, systems, and subsystems for which they have responsibility. Provide a minimum of 100 categories of systems to which individual operators may be assigned.
- 10) The system shall automatically generate a report of log-on/log-off and system activity for each user. Any action that results in a change in the operation or configuration of the control system shall be recorded, including, but not limited to: modification of point values, schedules or history collection parameters, and all changes to the alarm management system, including the acknowledgment and deletion of alarms.
- 11) The system shall have the ability to provide a Department of Defense specific warning banner for applicable sites that warns the user they are accessing a restricted site.
- 12) After successful login to the Site Management Portal, the last time and date that user name was previously logged in shall be shown on the screen.
- Each login attempt shall be recorded in the system audit log with the option to record the IP address of the PC that made the login.

g. Screen Manager:

1) The system shall allow a customized image on the login screen (i.e., organization name, logo).

- 2) User view navigations may be displayed as either a set of tabs or a drop down list.
- 3) Allow users a preference for assigning a background color for when an object is out of service which will enable the operator to quickly distinguish points that have been commanded to this state.
- 4) Provide the UI with screen management capabilities that allow the user to activate, close, and simultaneously manipulate a minimum of four active display windows plus a network or user defined navigation tree.

h. Dynamic Color Graphics:

- 1) The graphics application program shall be supplied as an integral part of the UI. Browser or workstation applications that rely only upon HTML pages will not be acceptable.
- 2) The graphics applications shall include a create/edit function and a runtime function. The system architecture shall support an unlimited number of graphics documents (graphic definition files) to be generated and executed. The graphics shall be able to display and provide animation based on real-time data that is acquired, derived, or entered.
- 3) Graphics Runtime Functions: A maximum of 16 graphic applications shall be able to execute at any one time on a UI or workstation, with 4 visible to the user. Each graphic application shall be capable of the following functions:
 - a) All graphics shall be fully scalable.
 - b) The graphics shall support a maintained aspect ratio.
 - c) Multiple fonts shall be supported.
 - d) Unique background shall be assignable on a per graphic basis.
 - e) The color of all animations and values on displays shall indicate the status of the object attribute.
 - f) Graphics that represent buildings or systems shall allow natural links and transitions between related detailed tabular views of data that complement the graphic.
- 4) Operation from Graphics: Values (setpoints) and states shall be able to change in system controlled equipment directly from the graphic.
- 5) Floor Plan Graphics: The UI shall provide graphic applications that summarize conditions on a floor. Floor plan graphics shall indicate thermal comfort using dynamic colors to represent zone temperature deviations from zone setpoint(s) and shall display overall metrics for each zone in the floor.
- Aliasing: Many graphic displays representing part of a building and various building components are exact duplicates, with the exception that the various variables are bound to different field values. Consequently, the value of a graphic display shall bind to aliases instead of the physical field tags.
- 7) Graphic Editing Tool: A graphic editing tool shall allow for the creation and editing of graphic files. The graphic editor shall be capable of performing/defining all animations, defining all runtime binding, and shall provide the following:
 - a) A library of standard HVAC equipment, floor plan, lighting, security, and network symbols.
 - b) For the creation and positioning of library symbols by dragging from tool bars or drop-downs and positioning, where required.
 - c) Ability to import AutoCAD drawings for use in the system.

- d) Ability to add additional content to any graphic by importing images in the SVG, PNG, or JPG file formats.
- i. Historical Trending and Data Collection:
 - Each NAE shall store trend and point history data for all analog and digital inputs and outputs, as follows:
 - a) Any point, physical or calculated, may be designated for trending. Two methods of collection shall be allowed: defined time interval or upon a change of value.
 - b) Capacity to store multiple samples for each physical point and software variable based upon available memory, including an individual sample time/date stamp. Points may be assigned to multiple history trends with different collection parameters.
 - Trend and change of value data shall be stored within the engine and upload to a dedicated trend database or exported in a selectable data format via a provided data export utility. Uploads to a dedicated database shall occur based upon one of the following: user-defined interval, manual command, or when the trend buffers are full. Exports shall be as requested by the user or on a time-scheduled basis.
 - 3) The system shall provide a configurable data storage subsystem for the collection of historical data. Data can be stored in SQL database format.
 - 4) The system shall provide data to enable optimization capabilities including fault detection and diagnostics, advanced analytics, and central plant optimization without the need of a gateway or additional hardware.
- j. Trend Data Viewing and Analysis:
 - 1) Provide a trend viewing utility that shall have access to all database points.
 - 2) Retrieving any historical database point for use in displays and reports shall be possible by specifying the point name and associated trend name.
 - 3) The trend viewing utility shall have the capability to define trend study displays to include multiple trends.
 - 4) Displays shall be single or stacked graphs with online selectable display characteristics such as ranging, color, and plot style.
 - 5) Display magnitude and units shall both be selectable by the operator at any time without reconfiguring the processing or collecting data. This shall be a zoom capability.
 - 6) Display magnitude shall automatically be scaled to show full graphic resolution of the data being displayed.
 - 7) The display shall support the user's ability to change colors, sample sizes, and types of markers.
- k. Database Management:
 - 1) Where a separate SQL database is utilized for information storage, the system shall provide a database manager that separates the database monitoring and managing functions by supporting two separate windows.
 - 2) Database secure access shall be accomplished using standard SQL authentication, including the ability to access data for use outside of the building automation application.
 - 3) The database managing function shall include summarized information on trend, alarm, event, and audit for the following database management actions:
 - a) Backup.
 - b) Purge.
 - c) Restore.

- 4) The database manager shall support four tabs:
 - a) Statistics. Display database server information and trend, alarm (event), and audit information on the Metasys databases.
 - b) Maintenance. Provide an easy method of purging records from the Metasys server trend, alarm (event), and audit databases by supporting separate screens for creating a backup prior to purging, selecting the database, and allowing for the retention of a selected number of day's data.
 - c) Backup. Provide the means to create a database backup file and select a storage location.
 - d) Restore. Provide a restricted means of restoring a database by requiring the user to log into an expert mode in order to view the restore screen.
- 5) The status bar shall appear at the bottom of all Metasys database manager tabs and shall provide information on the current database activity. The following icons shall be provided:
 - a) Ready.
 - b) Purging record from a database.
 - c) Action failed.
 - d) Refreshing statistics.
 - e) Restoring database.
 - f) Shrinking a database.
 - g) Backing up a database.
 - h) Resetting internet information services.
 - i) Starting the Metasys device manager.
 - j) Shutting down the Metasys device manager.
 - k) Action successful.
- 6) Access the database manager monitoring functions through the monitoring settings window and continuously read database information once the user has logged in.
- 7) The system shall provide user notification via taskbar icons and e-mail messages when a database value has exceeded a warning or alarm limit.
- 8) The monitoring settings window shall have the following sections:
 - a) General. Allows the user to set and review scan intervals and start times.
 - b) Email. Allows the user to create and review e-mail and phone text messages to be delivered when a warning or alarm is generated.
 - c) Warning. Allows the user to define the warning limit parameters, set the reminder frequency, and link the e-mail message.
 - d) Alarm. Allows the user to define the alarm limit parameters, set the reminder frequency, and link the e-mail message.
 - e) Database login. Protects the system from unauthorized database manipulation by creating a read access and a write access for each trend, alarm (event), and audit database as well as an expert mode required to restore a database.
- 9) The monitoring settings taskbar shall provide the following informational icons:
 - Normal. Indicates by color and size that all databases are within their limits.
 - b) Warning. Indicates by color and size that one or more databases have exceeded their warning limit.

- c) Alarm. Indicates by color and size that one or more databases have exceeded their alarm limit.
- 10) The system shall provide user notification via taskbar icons and e-mail messages when a database value has exceeded a warning or alarm limit.
- 1. Demand Limiting and Load Rolling:
 - 1) The system shall provide a demand limiting and load rolling program for the purpose of limiting peak energy usage and reducing overall energy consumption.
 - 2) The system shall support both sliding window and fixed window methods of predicting demand.
 - 3) The system shall support three levels of sensitivity in the sliding window demand calculations for fine tuning the system.
 - a) Low setting. Sheds loads later and over the shortest amount of time. Maximizes the time the equipment is on.
 - b) Medium setting. Sheds loads earlier over a longer amount of time than the low setting. Increases the time the equipment is on and decreases the probability of exceeding the tariff target over the low setting.
 - c) High Setting. Sheds loads earlier over a longer amount of time than the medium setting. Minimizes the probability of exceeding the tariff target.
 - 4) The system shall have a "Shed" mode and a "Monitor Only" mode of operation.
 - a) When the shed mode is engaged, the system shall actively control the demand
 - b) When the monitor mode is engaged, the system shall simulate the shedding action but shall not take any action.
 - 5) The demand limiting program shall monitor the energy consumption rate and compare it to a user-defined tariff target. The system shall maintain consumption below the target by selectively shedding loads based upon a user-defined strategy.
 - 6) The demand limiting program shall be capable of supporting a minimum of 10 separate load priorities. Each load shall be user assigned to a load priority.
 - 7) The demand limiting program shall be capable of supporting a minimum of 12 separate tariff targets defining the maximum allowed average power during the current interval.
 - 8) The system shall support a maximum shed time for each load as determined by the user. The system shall restore the load before the maximum shed time has expired.
 - 9) The system shall support a minimum shed time for each load as determined by the user. The system shall not restore the load sooner than the minimum shed time has expired.
 - 10) The system shall support a minimum release time for each load as determined by the user. The system shall not shed the load until it has been off for the minimum release time.
 - 11) The system shall support three user-defined options if the meter goes unreliable.
 - a) Shedding. The currently shed loads shall be released as their maximum shed times expire.
 - b) Maintain the current shed rate. The system shall use the demand limiting shed rate that was present when the meter went unreliable.

- c) Use unreliable meter shed rate. The system shall control to a user-defined unreliable shed rate target.
- 12) The load rolling program shall sum the loads currently shed and compare it to a user-defined load rolling target. The system shall maintain consumption below the target by selectively shedding loads based upon a user-defined load priority.
- 13) The load rolling program shall be capable of supporting a minimum of 10 separate load priorities. Each load shall be user assigned to a load priority.
- 14) The load rolling program shall be capable of supporting a minimum of 12 separate tariff targets defining the amount of power by which the demand shall be reduced.
- 15) The system shall provide the user with a load tab that displays all of the demand limiting and load rolling parameters for any selected load.
- 16) The system shall provide the user with a load summary that displays all of the loads associated with the demand limiting and load rolling programs. Status icons for each load shall indicate:
 - a) Load is offline.
 - b) Load is disabled.
 - c) Load is shed.
 - d) Load is locked.
 - e) Load is comfort override.
- 17) The load summary shall include a load summary runtime view listing the following load conditions:
 - a) Load priority.
 - b) Shed strategy.
 - c) Load rating.
 - d) Present value.
 - e) Ineligibility status.
 - f) Active timer.
 - g) Time remaining.
 - h) Last shed time.
- 4. Portable Operator Terminal:
 - a. For systems that do not provide full access to system configuration and definition via the browser-based UI, provide a portable operator terminal for programming purposes. The terminal shall be configured as follows:
 - 1) Personal laptop computer manufacturer: Dell, Compaq, or HP.
 - 2) 1 GB RAM, 256 MB minimum. Microsoft Windows 7 or 8 Professional.
 - 3) 1.8 GHz clock speed Pentium 4 microprocessor, 800 MHz minimum.
 - 4) 40 GB Hard Drive, 40 GB minimum.
 - 5) 1 CD-ROM Drive, 32 x speeds.
 - 6) 1 serial, 1 parallel, 2 USB ports.
 - 7) 1 keyboard with 83 keys, minimum.
 - 8) Integral 2 button track point or track ball.
 - 9) 10-inch SVGA 1024x768 resolution color display.
 - 10) 2 PCMCIA Type II or 1 Type III card slot.
 - 11) Complete operator workstation software package including any hardware or software.
 - 12) Original printed manuals for all software and peripherals.
 - 13) Original installation disks or CD for all software, device drivers, and peripherals.
 - 14) Software registration cards for all included software.

- 15) Carrying case.
- 16) Spare battery.
- 17) External power supply/battery charge.
- b. Proprietary Portable Terminal: Submit technical data sheets for the terminal and all associated software and hardware.
- c. Software:
 - 1) Portable operator terminals shall support all controllers within the system on a direct-connect communications basis.
 - 2) When used to access first or second tier controllers, the portable operator terminal shall utilize the standard operator workstation software, as defined in this section.
 - 3) When used to access application specific controllers, the portable operator terminal shall utilize either the standard operator workstation software, as defined in this section, or controller-specific utility software.

5. Metasys UI:

- a. Provide all computer hardware and software required for the purpose of configuration and consolidation of information and programs required for the delivery of a task focused, web based portal to the BMS. The Metasys UI shall provide a natural, complementary extension to the Metasys site management UI previously described in this section.
- b. The UI architecture shall be implemented to conform to industry standards, accommodating the required applications and communicating information to and from any size control system.
- c. The exact same UI shall be accessible from any type of PC or mobile device running any type of operating system (i.e., iOS, Android, Windows).
- d. The interface shall automatically adapt and optimize the information displayed to fit the screen size of the client device and shall also be touch friendly.
- e. The UI shall organize and display information using customer-specific locations and spaces. At a minimum, the UI shall provide:
 - 1) Organization of all space, equipment, and point information in a familiar way, reducing the need for extensive training prior to use.
 - 2) A navigation mechanism for users to select the specific location or space to display information for, but only spaces and locations in the navigation tree.
 - 3) The ability to search for and/or bookmark any location or space by name for quick access to critical or troublesome areas.
 - 4) The same navigation mechanisms apply across any client device (i.e., smartphone, tablet, PC) for consistency and ease of use.
 - 5) Plug-ins and special native application software (i.e., downloaded and installed from an app store) shall not be required to conduct daily operations of buildings and equipment.
- f. The UI shall clearly display equipment relationships without custom graphic generation.
- g. The UI shall provide a single display of all potential issues in a facility including items currently in alarm, warning, override, out-of-service, and offline.
- h. The UI shall provide a single display of all activity related to a specific piece of equipment including user changes, discarded user changes, pending alarms, discarded alarms, and acknowledged alarms.
- i. The UI shall provide support for up to 100 concurrent users from an unlimited number of individuals with defined password access to the system.
- j. Provide the capability to view, command, and modify large quantities of similar data in tailored summaries without the use of a secondary application, such as a

spreadsheet. These summaries shall be automatically generated or user-defined. User-defined summaries shall allow up to seven user-defined columns describing attributes to be displayed, including custom column labels. Up to 100 rows per summary shall be supported.

6. Ready Access Portal UI:

- a. Provide all computer hardware and software required for the purpose of configuration and consolidation of information and programs required for the delivery of a task focused, web-based portal to the BMS. The ready access portal shall provide a natural, complementary extension to the Metasys site management UI, as described in this section.
- b. Ready Access Portal Architecture: Implement to conform to industry standards, so that it may accommodate the required applications provided as well as communicate information to and from the Metasys system site director.
- c. PC Hardware: The PC(s) shall be configured as follows:
 - 1) Memory: 2 GB, 1 GB Minimum.
 - 2) CPU Pentium 4 processor. 2.8 Hz clock speed, 2.0 GHz minimum.
 - 3) Hard Drive: 200 GB free hard drive space, 80 GB minimum.
 - 4) Hard Drive Backup System: CD/RW, DVD/RW or network backup software provided by IT department.
 - 5) DVD ROM Drive: 16X performance.
 - 6) Ports: 1 Serial and 2 USB ports.
 - 7) Keyboard: 101 keyboard and 2-button mouse.
 - 8) CRT configuration.
 - 9) 17-inch flat panel monitor, 1280 x 1024 resolution minimum.
 - 10) 16 bit or higher color resolution.
 - 11) LAN Communications: Ethernet communications board, 100 Mbps minimum.

d. Operating System Software:

- 1) Windows 7 or 8 Professional, IIS Version 5.1, .Net Version 2.0, SQL server 2005 express software with SP2 or Microsoft Windows Server 2003 OS with SP2, IIS Version 6.0, .Net version 2.0 and SQL Server 2005 with SP2.
- 2) Provide software and hardware required for integration of computing hardware on enterprise IT network.
- 3) Provide software registration cards for all included software.
- e. UI Application Components:
 - 1) The ready access portal shall provide an intuitive UI to key Metasys functions and tasks via web browser.
 - 2) Plug-ins or special software shall not be required for access to alarm, summary, schedule, or trend data.
 - 3) The portal shall include the ability to view full graphical representations of systems and equipment on PC platforms.
 - 4) The control system shall provide secure sockets level and active directory service support. If the active directory service and single sign-on features are enabled and the user is logged in to the Windows desktop, access to the system shall be automatic and the login screen shall not appear.
 - 5) Provide a common tool for graphics creation, schedule creation, custom programming, user access, and hardware definition.
 - 6) Information shall be accessible on both PC and handheld device platforms as follows:
 - a) PCs. Internet Explorer Version 7.0, recommended.

- b) Handheld Devices. Internet Explorer for Window Mobile Version 5.0 or 6.0, recommended, as well as Apple i-Phone, i-Touch, or i-Pad. UI shall be optimized for devices with a 240x320 pixel screen size (QVGA).
- f. Operator Interface:
 - 1) Password access shall be as described in this section for management portal UI
 - 2) Once logged in, the system shall display a pre-selected screen tailored to the task requirements of the individual user.
 - 3) The UI shall utilize an intuitive navigation and display method designed for operators accessing the system for casual information and control or on an infrequent basis. It shall feature three basic components:
 - a) Radio buttons for selecting the type of information to be displayed including alerts, summary, schedules, and diagnostics.
 - b) Navigation tree for selection of the specific data to be displayed on screen for the selected type. The navigation tree may be hidden and expanded by the operator to optimize the display of information.
 - c) A display window that provides the selected information by type in a pre-configured tabular format.
 - 4) The UI software shall provide help menus and instructions for each operation and/or application.
 - 5) The system shall provide support for up to 100 concurrent users from an unlimited universe individuals with defined password access to the system.
 - 6) The system shall utilize secure sockets level support as required to allow the ready access portal to communicate across a network in a way designed to prevent eavesdropping, tampering, and message forgery. It provides endpoint authentication and communications privacy over the network using cryptography.
 - 7) The system shall have the capability to display multiple navigation trees that correspond to the user views configured in the management portal UI.
 - 8) The alert summary of the ready access portal shall, at the minimum, provide the following information:
 - a) Alert or alarm type.
 - b) Date and time of alert occurrence.
 - c) Priority color coded to level.
 - d) Item name.
 - e) Item value, if applicable.
 - f) Message.
 - g) Any attribute of any object in the system may be designated to report an alarm.
 - 9) A standard summary on the ready access portal shall, at minimum, provide the following information:
 - a) Point type graphic icon.
 - b) Item name.
 - c) Item value.
 - d) Item status.
 - e) Access to the change value window, if applicable, for the purpose of setting, holding, or releasing an item value.
 - 10) A custom summary on the ready access portal shall display user-specified summaries of key data sets that can be quickly filtered and sorted. Items within these custom summaries may be commanded.

- 11) A graphic view on the ready access portal shall display, as describe in this section for management portal UI.
- 12) The schedule detail summary of the ready access portal shall, at minimum, provide the following information:
 - a) Scheduled occurrences including time and value.
 - b) Scheduled overrides including start time, end time, and value.
 - c) A list of all scheduled items including name and attribute, value, status, and priority.
 - d) Access to the "add temporary override" window for the purpose of adding a temporary override to the schedule.
- 13) The diagnostic (trend) summary of the ready access portal, as viewed on a personal computing device, shall provide the following information:
 - a) Item name.
 - b) Item status.
 - c) Trend name.
 - d) Trend status.
 - e) Full path name.
 - f) Access to a detailed summary including trended value, time, and date arranged in a user-selectable format of 1, 12, 24, 48, or 72 hours.

E. BMS Architecture:

- 1. The BMS shall use an open architecture and fully support a multi-vendor environment. To accomplish this effectively, the BMS shall support open communication protocol standards and integrate a wide variety of third-party devices and applications. The system shall be designed for use on the Internet, or intranets using "off the shelf," industry standard technology compatible with other Port-provided networks.
- 2. The BMS system shall consist of the following:
 - a. Standalone NAE.
 - b. Field equipment controller(s).
 - c. Input/output module(s) (IOM).
 - d. Local display device(s).
 - e. Portable operator's terminal(s).
 - f. Distributed UI(s).
 - g. Network processing, data storage, and communications equipment.
 - h. Other components required for a complete and working BMS.
- 3. The system shall be modular in nature, and shall permit expansion of both capacity and functionality through the addition of sensors, actuators, controllers, and operator devices, while reusing existing controls equipment.
- 4. System architectural design shall eliminate dependence upon any single device for alarm reporting and control execution. The failure of any single component or network connection shall not interrupt the execution of control strategies at other operational devices.
- 5. Automation Network:
 - a. The automation network shall be based on a PC industry standard of Ethernet TCP/IP. Where used, LAN controller cards shall be standard "off-the-shelf" products available through normal PC vendor channels.
 - b. The BMS shall network multiple UI clients, automation engines, system controllers, and ASC. Provide application and data server(s) as required for systems operation.
 - c. The automation network shall be capable of operating at a communication speed of 100 Mbps, with full peer-to-peer network communication.

- d. NAE shall reside on the automation network.
- e. The automation network shall be compatible with other enterprise-wide networks. Where indicated, the automation network shall be connected to the enterprise network and share resources with it by way of standard networking devices and practices.
- 6. Control Network:
 - a. NAE shall provide supervisory control over the control network.
 - b. BACnet Protocol Integration, BACnet.
 - 1) The neutral protocol used between systems shall be BACnet over Ethernet and comply with the ASHRAE BACnet standard 135-2008.
 - 2) A complete PICS shall be provided for all BACnet system devices.
 - 3) Provide the ability to command, share point object data, COS data and schedules between the host and BACnet systems.
- F. Environmental Conditions: The DDC panels and all other field equipment shall be rated for continuous operation under ambient environmental conditions of 35°F to 120°F dry bulb and 10 percent to 95 percent relative humidity, noncondensing. Instrumentation and control elements shall be rated for continuous operation under the ambient environmental temperature, pressure, humidity, and vibration conditions specified or normally encountered for the installation.
- G. System Accuracy and Display:
 - 1. The DDC system shall control space temperature with a range of $50^{\circ}F$ to $85^{\circ}F \pm 1^{\circ}F$ for conditioned space (display to nearest $0.5^{\circ}F$); $30^{\circ}F$ to $130^{\circ} \pm 1^{\circ}F$ for unconditioned space (display to nearest $0.5^{\circ}F$). Return air humidity shall be controlled to 20 percent RH to 35 percent RH ± 3 percent RH.
 - 2. The DDC system shall control duct temperature with a range of $40^{\circ}F$ to $140^{\circ}F \pm 1^{\circ}F$ (display to nearest $0.5^{\circ}F$).
 - 3. Water temperature shall be displayed with a range of 30°F to 100°F ±1°F (display to nearest 0.5°F); the range of 100°F to 300°F ±2°F (display to nearest 0.5°F); and water temperatures for the purpose of performing BTU calculations using differential temperatures to ±0.5°F using matched sensors (display to nearest 0.5°F).
 - 4. Pressure shall be displayed with a range for the specific application ± 5 percent of range.
 - 5. Airflow or differential airflow shall be displayed with a range for the specific application of ± 4 percent of range (display to nearest 1.0 CFM).

2.3 MATERIALS AND EQUIPMENT

- A. Controls and Power Wiring:
 - 1. General: Electric equipment and wiring shall be in accordance with Division 26. Manual or automatic control and protective or signal devices required for operation specified, and any control wiring required for controls and devices, shall be provided hereunder. Run all control wiring in conduit.
 - 2. Wiring:
 - a. Field and Subfield Panels: Voltage in panels shall not exceed 120 volts. Where devices are wired to higher voltages, mount in suitable individual enclosures or group in separate control panel. Coordinate electrical power supply with Division 26. Provide conduit and wiring required to spare breakers in accordance with Division 26.
 - b. Motor Control Centers: Ensure correct voltage of holding coils and starter wiring in pre-wired motor control centers to interface with automatic controls.

- c. Wiring for the primary peer-to-peer communications network shall be two conductor minimum 18-gauge foil-shielded, stranded twisted pair cable rated at 100 Vdc or more at 80°C.
- d. Cable types shall be of a different color coding for easy identification and troubleshooting. Recommended color coding:
 - 1) Analog Input Cable Yellow
 - 2) Analog Output Cable Tan
 - 3) Binary Input Cable Orange
 - 4) Binary Output Cable Violet
 - 5) 24 Vac Cable Gray
 - 6) General Purpose Cable Natural
- e. Wiring for secondary network shall be three-conductor minimum 22-gauge telephone type wire. If LON works communications are used, provide two-conductor cable.
- 3. Communications Links Surge Protection: Protect all communications equipment against surges induced on communications link. All cables and conductors which serve as communications links shall have surge protection circuits installed that meet the requirements of REA PE-60d.
- 4. Communications Links Overvoltage Protection: Protect communications equipment against overvoltage on communications link conductors. Cables and conductors which serve as communications links shall have overvoltage protection for voltages up to 480 VAC rms, 60 Hz installed. Instrument fuses or fusible resistors will be accepted for this application.

B. Control Panels:

- 1. Wall-mounted control panels shall be provided as required to contain all relays, terminal strips, power supplies and other equipment in the building control system.
- 2. Panels shall be UL listed, minimum NEMA 1, minimum 14-gauge steel with stiffeners, continuous hinge doors, locking handles, single point latch. Alternately, panels may be constructed of structural plastic meeting UL and NEMA requirements.

2.4 CONTROL DEVICES

A. Input:

- 1. Temperature Instruments:
 - a. Room Temperature Sensors: Platinum or nickel RTD type with accuracy of ±0.5°F at 70°F; operating range 50 to 90°F; linear to DDC system; single point sensing element in wall-mounted ventilated enclosure with insulating back plate or ceiling pendant mount. Acceptable manufacturers are JCI, Veris, or pre-bid approved equal. Combination temperature, humidity, and/or carbon dioxide sensors may be used. Sensors shall have:
 - 1) No digital readout display.
 - 2) User adjustment based on DDC programmed offset.
 - 3) A room occupancy sensor installed as shown on the drawings.
 - 4) Wireless capability as shown on the drawings.
 - b. Duct Temperature Sensors: Platinum or nickel RTD element with accuracy of ±0.5°F at 65°F, averaging type consisting of array of single point sensing elements, securely mounted in duct or plenum; operating range 30 to 100°F; linear signal; 20-foot element.

- c. Outside Air Temperature Sensor: Platinum or nickel RTD element with accuracy of ± 0.5 °F at 32°F; Range -50 to 250°F, single element, linear, with weather and sun shield for exterior mounting.
- d. Low Temperature Limit Thermostat: Minimum 1-foot capillary sensing element for 1 square foot of air flow area, triggering on low temperature as sensed by any 6-inch segment; snap acting, normally open contacts, manual reset, line voltage.
- e. Liquid Immersion Temperature Sensor: Platinum or nickel RTD element, with accuracy of ± 0.65 °F at 70°F, stainless steel well and assembly, range -50 to 220°F.

2. Humidity Instruments:

- a. Space Humidity Sensors: Operating range 10 to 95 percent relative humidity, accuracy ±5%, surface mounted ventilated enclosure for wall mounting, Acceptable manufacturers are JCI, Veris, or pre-bid approved equal. Combination temperature, humidity, and/or carbon dioxide sensors may be used. Sensors shall have:
 - 1) No digital readout display.
 - 2) No user adjustment based on DDC programmed offset.
 - 3) Wireless capability as shown on the drawings.
- b. Duct Humidity Transmitter: Capacitive type sensor and transmitter, linear output signal, automatic temperature compensating, air filter, $\pm 2\%$ RH accuracy from 0 to 100% RH, industrial quality.
- 3. Occupancy Sensors: Sensors shall have a manual override button and wireless capability. Acceptable Manufacturers: Johnson WRZ, or pre-bid approved equal.
- 4. Airflow Measuring Station (Fan Inlet):
 - a. Acceptable Manufacturers: Ebtron, Air Monitor, Paragon, Johnson, or pre-bid approved equal.
 - b. Electronic air measuring system consisting of thermistor based sensor probe assemblies and a single microprocessor based transmitter. Each sensor probe assembly shall contain one or more independently wired sensor housings. The airflow and temperature readings calculated for each sensor housing shall be equally weighted and averaged by the transmitter prior to output.
 - c. Fan inlet airflow traverse probe with two bead-in-glass thermistor probes, mounted on 304 stainless steel blocks and feet with adjustable mounting rods.
 - d. Microprocessor and Electronics: Solid state microprocessor, permanent non-volatile memory, regulated power supply, software-based system. 0-5 Vdc, 0-10 Vdc, or 4-20 mA signals, linear flow and temperature outputs, line surge, and transient protection.
 - e. Performance: ±2 percent of reading, +20 FPM across total calibrated range of 0 to 5,000 FPM, for duct mounted, 0-10,000 FPM for fan inlet mounted repeatability better than ±0.4 percent of reading. Pressure drop shall not exceed 0.005 in. WG at 2000 FPM.
 - f. Probes shall be capable of producing steady, non-pulsating signals of standard total and static pressure, without need for flow corrections or factors with an accuracy of 3 percent of actual flow over a fan operating range of 6 to 1 capacity turndown.
- 5. Air Flow Station (Duct-Mounted):
 - a. Acceptable Manufacturers: Ebtron, Kurz, Johnson, or pre-bid approved equal.
 - b. Electronic air measuring system consisting of thermistor based sensor grid and microprocessor based electronics.
 - c. Sensor Probes: Thermistors probes and linear IC's, aluminum casing, duct-mounted, wiring Teflon or kynar coated and encased, 20°F to 160°F operating range, weather resistant finish, flanged welded aluminum frame.

- d. Microprocessor and Electronics: Solid state microprocessor, permanent non-volatile memory, regulated power supply, software based system, 0-5 Vdc, 0-10 Vdc, or 4-20 mA signals, linear flow and temperature outputs, line surge and transient protection.
- e. Performance: ±2 percent, +20 FPM across total calibrated range of 0 to 5000 FPM, for duct mounted, 0-10,000 FPM for fan inlet mounted, repeatability better than ±0.4 percent of reading. Pressure drop shall not exceed 0.005 inches W.G. at 2000 FPM.
- 6. Airflow Transmitters: Provide transmitter with 4-20 mA output signal, 16 character alpha-numeric display capable of displaying airflow, temperature, system status, configuration setting, and diagnostics. Pressure transducers accurate to + 0.25 percent for full range, range selected based on the actual flow element and expected velocity pressure, and linear output on velocity turndown of 10 to 1. Acceptable manufacturers are Ebtron GTA 116, Setra Model C264, or pre-bid approved equal. Provide a calibration certificate for each unit.
- 7. Air Differential Pressure Switch: Required for filter status. Setpoint shall be adjustable with operating range of 0.05 to 5 inches W.G. Contactor shall close when set pressure differential is met or exceeded.
- 8. Air Duct Static Pressure Transmitter: Operating range 0 to 5 inches WC for duct-mounted transmitter and 0 to 12 inches WC for fan high limit transmitters. Sensors shall be diaphragm or rigid element bellows, electronic type. Each transmitter shall be provided with stop cock, and tubing for attaching portable pressure gauge. Sensing tube shall be securely mounted in duct with appropriate fitting.
- 9. Damper Position Indication: Where called for in the sequence of operations or on the drawings, provide a means of indicating damper position. Where two-position electric direct-coupled actuators are used, provide two auxiliary switches with SPDT contacts to indicate the fully open or fully closed positions as required. Where pneumatic or other types of actuators are used, provide an encapsulated mercury switch mated to a damper crank arm, which can be mounted on the damper control shaft to indicate the open or closed position.
- 10. Leak Detection:
 - a. Provide addressable water leak detection system that utilizes water sensing cable to detect the presence of water at any point along its length.
 - b. Detection cable shall each be 40 feet minimum in length and consist of two parallel conductors with a supervised end of line resistor circuit. The conductors shall be individually insulated with a protective outer covering of braided rayon.
 - c. Leak detection shall interface with the DDC system.
- 11. Duct-Mounted Carbon Dioxide Sensors: Self-sufficient CO_2 sampling station with pump to ensure proper air flow to sensing chamber. Solid state sensor, accuracy of ± 2 percent of span, maximum span of 0-2500 ppm. Provide single calibration kit with calibration gas, connecting hoses, and fittings. Acceptable manufacturers are Vulcain, Veris, Johnson Controls, or pre-bid approved equal.
- 12. Wall-Mounted Carbon Dioxide Sensors: Infrared sensing, microprocessor controlled digital transmitting carbon dioxide gas monitor suitable for wall mounting. Sensors shall be hard wired, unless drawings indicate sensor to be wireless. Combination temperature, humidity, and/or carbon dioxide sensors may be used.

Detection Range: 0-2000 ppm, *0-2% OR *0-5%

Accuracy: +/- 13%

Response Time: <60 seconds (for 90% of the reading)
Outputs: 4-20mA (optional: SPDT Relay rated 5A)
Relay Output Rating: 5A, 30 Vdc or 250 Vac (resistive load)

Power Requirement: 17-27 Vac or 24-38 Vdc, 200 mA
Operating Temperature Range: 32°F to 100°F (0°C to 40°C)
Operating Humidity Range: 0% - 95% RH, Non-Condensing

Display: Sensor shall not be provided with digital display. Acceptable Manufacturers: Vulcain Series, Veris, Johnson Controls, or pre-

bid approved equal.

13. Current Sensing Switches:

- a. The current sensing switch shall be self-powered with solid state circuitry and a dry contact output. It shall consist of a current transformer, a solid state current sensing circuit, adjustable trip point, solid state switch, SPDT relay, and an LED indicating the on or off status. A conductor of the load shall be passed through the window of the device. It shall accept over-current up to twice its trip point range.
- b. Current sensing switches shall be used for run status for fans, pumps, and other miscellaneous motor loads.
- c. Current sensing switches shall be calibrated to show a positive run status only when the motor is operating under load. A motor running with a broken belt or coupling shall indicate a negative run status.
- d. Acceptable manufacturers: Veris Industries or pre-bid approved equal.

14. Air Pressure Safety Switches:

- a. Air pressure safety switches shall be of the manual reset type with SPDT contacts rated for 2 amps at 120 Vac.
- b. Pressure range shall be adjustable with appropriate scale range and differential adjustment for intended service.
- c. Acceptable Manufacturers: Johnson Controls, Cleveland Controls, Dwyer, or pre-bid approved equal.

B. Output:

- 1. Motorized control valves, pressure independent type, for use in variable flow heating and chilled water systems:
 - a. Acceptable Manufacturers: Flow Control, Inc. Delta P Valve, or pre-bid approved equal.

b. Description:

- 1) Pressure independent control valves shall be dynamic, modulating two-way, control device for use in variable flow chilled water and heating water systems.
- 2) Dynamic control valve shall accurately control flow, independent of system pressure fluctuation, from 0 to 100 percent full rated flow.
- 3) Test ports shall be furnished with valve.

c. Valve Actuator:

- 1) Valve actuator shall be factory-mounted and calibrated to provide full design flow at end of stroke and 100 percent control signal.
- 2) Actuator shall accept 2-10 Vdc, 4-20mA or 3-point floating electric signal and shall include resistor to facilitate any of these signals.
- 3) Actuator shall be capable of providing 4-20mA or 2-10 Vdc feedback signal to the control system.
- 4) Actuator shall be capable of control between maximum and minimum signal. End stroke of actuator at full design shall be factory set at design flow indicated on the drawings from performance curves furnished with valves. For example, 100 percent control signal would control 100 percent design flow, 50 percent signal would control 50 percent design flow.

- 5) Actuators shall power valve to either open or closed position from any position in case of power failure.
- 6) External LED read-out of current valve position and maximum valve position setting shall be available.
- 7) Provide current limiting for stalled actuators.
- 8) Actuators shall be sized to provide the required close off torque and be able to open a valve in 200 seconds or less.
- d. Valve Body:
 - 1) Valves 1/2 inch to 2 inches shall be constructed of brass, rated at 150 psi working pressure.
 - 2) Valves 3 inches and greater shall be constructed of ductile iron, rated at 150 psi working pressure.
- e. Flow Regulation Unit: Flow regulation unit shall be capable of controlling flow within ±5 percent of rated flow, due to system pressure fluctuations.
- 2. Motorized control valves, pressure dependent type, for use in constant flow heating systems: Equip with modulating plug or V-port inner valve with composition disc for tight shutoff. Two-position valves shall be line size, modulating water valves shall be sized at 3 psi drop or as shown on the drawings. Screwed ends except 2 1/2-inch and larger valves with flanged ends. Select valves to modulate smoothly at all system pressures and flows. Select valves with close-off ratings and spring ranges designed to operate at the maximum flows and maximum available pump heads scheduled without leakage or spring range shift. Bubble tight butterfly valves acceptable on 2 1/2-inch lines and above for two-position action only. Use pressure dependent, two position, motorized valves for controlling water flow to cabinet unit heaters and unit heaters in variable flow heating water systems.
- 3. Electronic Valve and Damper Operators:
 - a. Electronic modulating type with low voltage DC or current positioning signal or low voltage AC motive power.
 - 1) Each actuator shall have current limiting circuitry incorporated in its design to prevent damage to the actuator.
 - 2) Modulating and two-position actuators shall be provided as required by the sequence of operations. Actuators shall provide the minimum torque required for proper valve close-off against the system pressure for the required application. The valve actuator size shall be based on the valve manufacturer's recommendations for flow and pressure differential. The spring return feature shall permit normally open or normally closed positions of the valves, as required. All direct shaft mount rotational actuators shall have external adjustable stops to limit the travel in either direction.
 - 3) Modulating actuators shall accept 24 VAC or Vdc power supply and be UL listed. The control signal shall be 2-10 Vdc or 4-20 mA. Where required by sequence, the actuator shall provide a clamp position feedback signal of 2-10 Vdc. The feedback signal shall be independent of the input signal, and may be used to parallel other actuators and provide true position indication. The feedback signal of each valve actuator (except terminal valves) shall be wired back to a terminal strip in the control panel for troubleshooting purposes. Use 120 Vac as shown on the drawings.
 - 4) Two-position or open/closed actuators shall accept 24 Vac power supply and be UL listed. Butterfly isolation and other valves, as specified in the sequence of operations, shall be furnished with adjustable end switches to

indicate open/closed position or be hard wired to start/stop the associated pump or chiller. Use 120 Vac as shown on the drawings.

2.5 LOCAL CONTROL PANELS

- A. All control panels shall be factory constructed, incorporating the BMS manufacturer's standard designs and layouts. All control panels shall be UL inspected and listed, as an assembly, and carry a UL 508 label listing compliance. Control panels shall be fully enclosed with perforated sub-panel, hinged door, and slotted flush latch.
- B. General: The control panels shall consist of the DDC controller(s), display module as shown on the drawings, and I/O devices such as relays, transducers, etc., that are not required to be located external to the control panel due to function. The display module shall be flush mounted in the panel face where specified.
- C. All I/O connections on the DDC controller shall be provide via removable or fixed screw terminals.
- D. Low and line voltage wiring shall be segregated. All provided terminal strips and wiring shall be UL listed, 300-volt service, and provide adequate clearance for field wiring. All wiring shall be neatly installed in plastic trays or tie-wrapped.
- E. Provide a 120 volt convenience outlet, fused on/off power switch, and required transformers in each enclosure.
- F. DC power supplies shall be sized for the connected device load. Total rated load shall not exceed 75 percent of the rated capacity of the power supply. An appropriately sized fuse and fuse block shall be provided and located next to the power supply. A power disconnect switch shall be provided next to the power supply.
 - 1. Input: 120 Vac +10%, 60Hz.
 - 2. Output: 24 Vdc.
 - 3. Line Regulation: +0.05% for 10% line change.
 - 4. Load Regulation: +0.05% for 50% load change.
 - 5. Ripple and Noise: 1 mV rms, 5 mV peak to peak.

2.6 INPUT/OUTPUT (I/O) FUNCTIONS

- A. Analog Inputs (AI): The AI function shall monitor each analog input, perform A-to-D conversion, and hold the digital value in a buffer for interrogation. Provide signal conditioning for each analog input. Individually calibrate all analog inputs for zero and span, in hardware or in software.
- B. Analog Outputs (AO): The AO function shall accept digital data, perform D-to-A conversion, and output a signal compatible with the operator. Individually calibrate all analog outputs for zero and span. Provide short circuit protection.
- C. Digital Inputs (DI): The DI function shall accept on/off, open/close, or other COS (two-state data) indications. Provide isolation and protection against input voltage up to 180 Vac peak.

D. Digital Outputs (DO): The DO function shall provide contact closures for momentary and maintained operation of output devices. Closures shall have a minimum duration of 0.1 second.

PART 3 - EXECUTION

3.1 INSTALLATION PRACTICES

- A. Mounting Panels: Locate panels where shown on the drawings or near item of equipment to be controlled, but not on equipment itself.
- B. DDC Field Panels: Locations shown on the drawings are recommended locations and do not indicate actual quantity or location. Provide number of panels required to accommodate all DI, DO, AI, and AO points and all hardware and software to accomplish specified control sequences. Locate all panels in mechanical or electrical rooms. Submit proposed locations for approval prior to preparing control drawings.

C. Electrical:

- 1. Provide control wiring for all control devices and control panels.
- 2. Provide power wiring for all control devices and control panels. Obtain power from spare circuits in emergency power panels.
- 3. All wiring, including low voltage wiring, shall be installed in minimum 3/4-inch conduit in mechanical rooms or other locations susceptible to damage. Plenum rated cable shall be used in other locations.
- 4. Grounding: Instrumentation and communication grounding shall be installed as necessary to preclude ground loops, noise, and surges from adversely affecting system operation.
- 5. Control voltage shall be limited to a maximum of 120 volts.
- 6. Where relay coil is connected to load side of motor starter to energize with motor operation, external control circuit shall be properly fused with fuse block located in respective starter enclosure.
- 7. Where relays are used to control single phase motors directly, provide contacts rated for not less than horsepower rating of largest motor switched by relay.
- 8. UPS: Provide UPS systems to power all NCM panels. Provide UPS systems to power all combination fire/smoke dampers.
- D. Identification: Provide engraved nameplates identifying all switches, lights and starters, and each control device where control function is not readily apparent.
- E. Room Sensors: Mount at height of 4 feet for wall-mounted sensor and thermostats with adjustment on face. Mount at height of 5 feet for all wall-mounted thermostats and sensors which do not have adjustment face. Provide insulating back on thermostats mounted on exterior walls. Provide one sensor for each zone of temperature control.
- F. Carbon Dioxide Sensors and Oxygen Detectors:
 - 1. Mount at 5 feet above finished floor, or as shown on the drawings.
 - 2. Provide quantity as required by coverage rating (20-foot radius, maximum), or as shown on the drawings.
 - 3. Carbon dioxide sensor shall alarm above 850 PPM.

- 4. Oxygen detector operating system to maintain 19.5 percent. Alarm if levels exceed 23 percent for longer than 15 minutes.
- 5. See Sequence of Operations Article in this section for more information.
- G. Airflow Station (Duct-Mounted): Install grid array in ductwork where shown. Provide gasket between frame and duct. Mount electronic components in nearest temperature control panel. Install in accordance with the manufacturer's instructions.
- H. Airflow Station (Fan Inlet): Install in fan inlet bell in accordance with the manufacturer's instructions.
 - 1. Water Flow Meters: Install devices in accordance with the manufacturer's recommendations, with sufficient upstream and downstream straight pipe to obtain accurate readings.

END OF SECTION 230923

SECTION 232300 - REFRIGERANT PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Refrigerant pipes and fittings.
- 2. Refrigerant piping valves and specialties.
- 3. Refrigerants.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of valve, refrigerant piping, and refrigerant piping specialty.
- B. Shop Drawings:
 - 1. Show piping size and piping layout, including oil traps, double risers, specialties, and pipe and tube sizes to accommodate, as a minimum, equipment provided, elevation difference between compressor and evaporator, and length of piping to ensure proper operation and compliance with warranties of connected equipment.
 - 2. Show interface and spatial relationships between piping and equipment.
 - 3. Shop Drawing Scale: 1/4 inch equals 1 foot.

1.3 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For refrigerant valves and piping specialties to include in maintenance manuals.

1.5 QUALITY ASSURANCE

- A. Comply with ASHRAE 15, "Safety Code for Refrigeration Systems."
- B. Comply with ASME B31.5, "Refrigeration Piping and Heat Transfer Components."

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Line Test Pressure for Refrigerant R-410A:
 - 1. Suction Lines for Air-Conditioning Applications: 300 psig.
 - 2. Suction Lines for Heat-Pump Applications: 535 psig.
 - 3. Hot-Gas and Liquid Lines: 535 psig.

2.2 COPPER TUBE AND FITTINGS

- A. Copper Tube: ASTM B88, Type K or L ASTM B280, Type ACR.
- B. Wrought-Copper Fittings: ASME B16.22.
- C. Wrought-Copper Unions: ASME B16.22.
- D. Solder Filler Metals: ASTM B32. Use 95-5 tin antimony or alloy HB solder to join copper socket fittings on copper pipe.
- E. Brazing Filler Metals: AWS A5.8/A5.8M.
- F. Flexible Connectors:
 - 1. Body: Tin-bronze bellows with woven, flexible, tinned-bronze-wire-reinforced protective jacket.
 - 2. End Connections: Socket ends.
 - 3. Offset Performance: Capable of minimum 3/4-inch misalignment in minimum 7-inchlong assembly.
 - 4. Working Pressure Rating: Factory test at minimum 500 psig.
 - 5. Maximum Operating Temperature: 250 deg F.

2.3 REFRIGERANTS

A. ASHRAE 34, R-410A: Pentafluoroethane/Difluoromethane.

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS FOR REFRIGERANT R-410A

A. Suction Lines: Copper, Type ACR, annealed-temper tubing and wrought-copper fittings with brazed or soldered joints.

REFRIGERANT PIPING 232300 - 2

3.2 VALVE AND SPECIALTY APPLICATIONS

- A. Install service valves for gage taps at inlet and outlet of hot-gas bypass valves and strainers if they are not an integral part of valves and strainers.
- B. Install a check valve at the compressor discharge and a liquid accumulator at the compressor suction connection.
- C. Install a full-size, three-valve bypass around filter dryers.
- D. Install solenoid valves upstream from each expansion valve and hot-gas bypass valve. Install solenoid valves in horizontal lines with coil at top.
- E. Install thermostatic expansion valves as close as possible to distributors on evaporators.
 - 1. Install valve so diaphragm case is warmer than bulb.
 - 2. Secure bulb to clean, straight, horizontal section of suction line using two bulb straps. Do not mount bulb in a trap or at bottom of the line.
 - 3. If external equalizer lines are required, make connection where it will reflect suction-line pressure at bulb location.
- F. Install safety relief valves where required by 2010 ASME Boiler and Pressure Vessel Code. Pipe safety-relief-valve discharge line to outside according to ASHRAE 15.
- G. Install moisture/liquid indicators in liquid line at the inlet of the thermostatic expansion valve or at the inlet of the evaporator coil capillary tube.
- H. Install strainers upstream from and adjacent to the following unless they are furnished as an integral assembly for the device being protected:
 - 1. Solenoid valves.
 - 2. Thermostatic expansion valves.
 - 3. Hot-gas bypass valves.
 - 4. Compressor.
- I. Install filter dryers in liquid line between compressor and thermostatic expansion valve, and in the suction line at the compressor.
- J. Install receivers sized to accommodate pump-down charge.
- K. Install flexible connectors at compressors.

3.3 PIPING INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems; indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Shop Drawings.
- B. Install refrigerant piping according to ASHRAE 15.

- C. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
- D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- F. Install piping adjacent to machines to allow service and maintenance.
- G. Install piping free of sags and bends.
- H. Install fittings for changes in direction and branch connections.
- I. Select system components with pressure rating equal to or greater than system operating pressure.
- J. Refer to Section 230923 "Direct Digital Control (DDC) System for HVAC" and Section 230993.11 "Sequence of Operations for HVAC DDC" for solenoid valve controllers, control wiring, and sequence of operation.
- K. Install piping as short and direct as possible, with a minimum number of joints, elbows, and fittings.
- L. Arrange piping to allow inspection and service of refrigeration equipment. Install valves and specialties in accessible locations to allow for service and inspection. Install access doors or panels as specified in Section 083113 "Access Doors and Frames" if valves or equipment requiring maintenance is concealed behind finished surfaces.
- M. Install refrigerant piping in protective conduit where installed belowground.
- N. Install refrigerant piping in rigid or flexible conduit in locations where exposed to mechanical injury.
- O. Slope refrigerant piping as follows:
 - 1. Install horizontal hot-gas discharge piping with a uniform slope downward away from compressor.
 - 2. Install horizontal suction lines with a uniform slope downward to compressor.
 - 3. Install traps and double risers to entrain oil in vertical runs.
 - 4. Liquid lines may be installed level.
- P. When brazing or soldering, remove solenoid-valve coils and sight glasses; also remove valve stems, seats, and packing, and accessible internal parts of refrigerant specialties. Do not apply heat near expansion-valve bulb.
- Q. Install piping with adequate clearance between pipe and adjacent walls and hangers or between pipes for insulation installation.

- R. Identify refrigerant piping and valves according to Section 230553 "Identification for HVAC Piping and Equipment."
- S. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."
- T. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."
- U. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 230518 "Escutcheons for HVAC Piping."

3.4 PIPE JOINT CONSTRUCTION

- A. Ream ends of pipes and tubes and remove burrs.
- B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- C. Soldered Joints: Construct joints according to ASTM B828 or CDA's "Copper Tube Handbook."
- D. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," Chapter "Pipe and Tube."
 - 1. Use Type BCuP (copper-phosphorus) alloy for joining copper socket fittings with copper pipe.
 - 2. Use Type BAg (cadmium-free silver) alloy for joining copper with bronze or steel.

3.5 HANGERS AND SUPPORTS

A. Comply with requirements for pipe hangers and supports specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."

3.6 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Comply with ASME B31.5, Chapter VI.
 - 2. Test refrigerant piping, specialties, and receivers. Isolate compressor, condenser, evaporator, and safety devices from test pressure if they are not rated above the test pressure.
 - 3. Test high- and low-pressure side piping of each system separately at not less than the pressures indicated in "Performance Requirements" Article.
 - a. Fill system with nitrogen to the required test pressure.

- b. System shall maintain test pressure at the manifold gage throughout duration of test.
- c. Test joints and fittings with electronic leak detector or by brushing a small amount of soap and glycerin solution over joints.
- d. Remake leaking joints using new materials, and retest until satisfactory results are achieved.
- B. Prepare test and inspection reports.

3.7 SYSTEM CHARGING

- A. Charge system using the following procedures:
 - 1. Install core in filter dryers after leak test but before evacuation.
 - 2. Evacuate entire refrigerant system with a vacuum pump to 500 micrometers. If vacuum holds for 12 hours, system is ready for charging.
 - 3. Break vacuum with refrigerant gas, allowing pressure to build up to 2 psig.
 - 4. Charge system with a new filter-dryer core in charging line.

3.8 ADJUSTING

- A. Adjust thermostatic expansion valve to obtain proper evaporator superheat.
- B. Adjust high- and low-pressure switch settings to avoid short cycling in response to fluctuating suction pressure.
- C. Adjust set-point temperature of air-conditioning or chilled-water controllers to the system design temperature.
- D. Perform the following adjustments before operating the refrigeration system, according to manufacturer's written instructions:
 - 1. Open shutoff valves in condenser water circuit.
 - 2. Verify that compressor oil level is correct.
 - 3. Open compressor suction and discharge valves.
 - 4. Open refrigerant valves except bypass valves that are used for other purposes.
 - 5. Check open compressor-motor alignment and verify lubrication for motors and bearings.
- E. Replace core of replaceable filter dryer after system has been adjusted and after design flow rates and pressures are established.

END OF SECTION 232300

REFRIGERANT PIPING 232300 - 6

SECTION 233113 - METAL DUCTS

PART 1 - GENERAL

1.1 SUMMARY

Related Documents:

- 1. Drawings and general provisions of the Subcontract apply to this Section.
- 2. Review these documents for coordination with additional requirements and information that apply to work under this Section.

Section Includes:

- 3. Low-pressure ducts.
- 4. Medium- and high-pressure ducts.
- 5. Plenums.
- 6. Duct cleaning.

Related Sections:

- 7. Division 01 Section "General Requirements."
- 8. Division 01 Section "Special Procedures."
- 9. Division 01 Section "Construction Waste Management".
- 10. Division 09 Section "Painting".
- 11. Division 23 Section "Hangers and Supports for HVAC Piping and Equipment" for sleeves.
- 12. Division 23 Section "Vibration and Seismic Controls for HVAC Piping and Equipment".
- 13. Division 23 Section "Duct Insulation".
- 14. Division 23 Section "Metal Ducts Fittings".
- 15. Division 23 Section "Air Terminal Units".
- 16. Division 23 Section "Air Inlets and Outlets".
- 17. Division 23 Section "Testing, Adjusting, and Balancing for HVAC".

1.2 REFERENCES

General:

- 1. The following documents form part of the Specifications to the extent stated. Where differences exist between codes and standards, the one affording the greatest protection shall apply.
- 2. Unless otherwise noted, the referenced standard edition is the current one at the time of commencement of the Work.
- 3. Refer to Division 01 Section "General Requirements" for the list of applicable regulatory requirements.
- 4. Refer to Division 23 Section "Common Results for HVAC" for codes and standards, and other general requirements.

Code of Federal Regulation (CFR):

5. 29 CFR 1910.7 Definitions and Requirements for a Nationally Recognized Testing Laboratory (NRTL)

American Conference of Governmental Industrial Hygienists (ACGIH):

6. ACGIH Industrial Ventilation

American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE):

- 7. ASHRAE Handbook Series Fundamentals: Ch. 2. Duct Design
- 8. ASHRAE Handbook Series Equipment: Ch 6. Duct Construction

ASTM International:

- 9. ASTM A90 / A90M Standard Test Method for Weight Mass of Coating on Iron and Steel Articles with Zinc or Zinc-Alloy Coatings
- 10. ASTM A 167 Standard Specification for Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet, and Strip
- 11. ASTM A653 / A653M Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process

International Conference of Building Officials (ICBO):

12. ICBO UMC Chapter 11

National Fire Protection Association (NFPA):

- 13. NFPA 90A Installation of Air Conditioning and Ventilating Systems
- 14. NFPA 90B Installation of Warm Air Heating and Air Conditioning Systems

Sheet Metal and Air Conditioning Subcontractors National Association (SMACNA):

- 15. SMACNA HVAC Duct Construction Standards
- 16. SMACNA Round Industrial Duct Construction Standards
- 17. SMACNA Rectangular Duct Construction Standards
- 18. IAQ Guidelines for Occupied Buildings Under Construction.

Underwriters Laboratories Inc. (UL):

19. UL 181 Factory-Made Air Ducts and Air Connectors

1.3 DEFINITIONS

Medium pressure ductwork includes:

- 1. All duct risers enclosed in shafts.
- 2. All exhaust ductwork connected to fans with scheduled static pressure exceeding 2" water column.
- 3. All supply ductwork upstream of airflow control (or VAV) terminals or reheat coils.
- 4. Other ductwork noted or specified as medium pressure construction.

Low pressure ductwork includes:

5. All galvanized ductwork downstream of air terminals and reheat coils, horizontal toilet exhaust duct, and ducts not included under medium pressure ductwork above.

Glass Wash Exhaust Ductwork: Stainless steel construction conforming to medium pressure standards.

Fume Exhaust Ductwork:

- 6. See Drawings for locations and extent of stainless steel, coated steel ductwork, and galvanized ductwork.
- 7. General extent of stainless steel ductwork includes laboratory exhaust risers, horizontal penetrations through shafts to a floor, and the common exhaust plenums at the roof.
- 8. General extent of coated steel ductwork includes Clean Room exhaust up to point of connection to the common exhaust plenum at the roof.

Duct pressure classification shall be as specified herein and not as recommended in SMACNA publications.

Do not use black steel ductwork, sheet metal, duct reinforcing, devices, supports, or fasteners in the Clean Room interstitial space. Such items shall be galvanized, plated, coated, or painted.

1.4 LEED REQUIREMENTS

Credit EQ 3.1: Construction Indoor Air Quality Management Plan

- 1. Conform to the requirements of Division 01 Section "Construction IAQ Management Plan".
- 2. Protect stored on-site and installed absorptive materials from moisture damage.
- 3. Maintain ductwork internal cleanliness as specified.
- 4. If air handlers must be used during construction, provide filtration media at return and exhaust air inlets as specified.
- 5. Replace filtration media immediately prior to occupancy. This filtration media replacement is the same as required by EQ 3.2 100 percent outside air flush-out.

Credit EQ 3.2: Construction Indoor Air Quality Management Plan:

- 6. After construction ends and prior to occupancy, provide a minimum two weeks building 100 percent outside air flush-out with specified filtration media.
- 7. After flush-out, replace filtration media as specified.

Credit EQ 4.1: Low-Emitting Materials:

8. Meet or exceed VOC limits for adhesives and sealants. Adhesives must meet or exceed the VOC limits of South Coast Air Quality Management District Rule #1168 by, and sealants used as a filler must meet or exceed Bay Area Air Quality Management District Reg. 8, Rule 51.

Credit ID 1.1:

9. Meet or exceed VOC limits for adhesives and sealants used in the exterior of the building. Adhesives must meet or exceed the VOC limits of South Coast Air Quality Management District Rule #1168 by, and sealants used as a filler must meet or exceed Bay Area Air Quality Management District Reg. 8, Rule 51.

1.5 SUBMITTALS

Submit under provisions of Division 23 Section "Common Results for HVAC, Review of Materials and Division 01 Section "General Requirements."

Ductwork.

Single and double wall plenums.

Shop Drawings:

- 1. Duct reinforcement and construction schedules.
- 2. Duct support details.
- 3. Detailed duct shop drawings at 1/4" 1'-0" scale in accordance with Division 23 Section "Common Results for HVAC", of mechanical rooms, riser elevations, and floor plans.
- 4. Single wall plenums.
- 5. Double wall acoustic plenums. Include calculations stamp & sign by a registered structural engineer.

Written program outlining protection of ductwork from contamination with dirt and procedures for cleaning contaminated ductwork.

Samples:

- 6. Stainless Steel Fume Exhaust Duct and Plenum Welding Specimens: Provide hand-welded and machine-welded specimens of each gauge of welded stainless steel fume exhaust duct. Samples shall be 10" diameter showing the joining of round duct sections as will be done in the field. Submit detailed description of weld techniques, including method, shielding gas, gas rate, filler metal and size, filler feed rate, welding current and voltage, and welding speed.
- 7. Coated Steel Duct: Provide 10 inches x 10 inches and 10 inches diameter specimens showing welding, sand blasting, coatings, galvanizing repair, sealing, and joining. Submit detailed description of fabrication, sand blasting, coating, galvanizing repair, sealing, and joining.
- 8. Internal Duct Liner: Provide a specimen of duct liner, specified in Division 23 Section "Ductwork Insulation", mounted on an 8 inches x 8 inches 24 gauge plate indicating method of attachment at edge treatment.

LEED Submittals:

- 9. Credit EQ 3.1: Construction Indoor Air Quality Management Plan: Submit documentation that an Indoor Air Quality Management Plan was developed, what it was, and that it was implemented, including:
 - a. SMACNA IAQ Guidelines Chapter 3
 - b. Protection of absorptive materials
 - c. Maintaining ductwork internal cleanliness
 - d. Filtration used at return and exhaust air inlets if air handlers were used during construction
 - e. Filtration replaced immediately prior to construction
- 10. Credit EQ 3.2: Construction Indoor Air Quality Management Plan:
 - a. Submit documentation that the minimum two weeks building 100 percent outside air flush-out was completed, including dates when the flush-out was begun and completed and what steps were taken to guarantee 100 percent outside air usage.
 - b. Submit documentation for the filtration media used during the flush-out period, including filtration media manufacturer's name, model number, and MERV value.

c. Submit documentation that filtration was replaced immediately, prior to occupancy including filtration media manufacturer's name, model number, and MERV value.

11. Credit EQ 4.1: Low Emitting Materials:

- a. Provide a cut sheet and a Material Safety Data Sheet for each adhesive used in the building highlighting compliance with South Coast Air Quality Management District Rule #1168. Include printed statement of VOC content.
- b. Provided a cut sheet and a Material Safety data Sheet for each sealant used in the building highlighting compliance with Bay Area Air Quality Management District Reg. 8, Rule 51. Include printed statement of VOC content.

12. Credit ID 1.1:

- a. Provide a cut sheet and a material Safety Data Sheet for each adhesive used in the exterior of the building highlighting compliance with South Coast Air Quality Management District Rule #1168.
- b. Provide a cut sheet and a Material Safety Data Sheet for each sealant used in the exterior of the building highlighting compliance with bay Area Air Quality management District Reg. 8, Rule 51.
- 13. Product Data for Prerequisite EQ 1: Documentation indicating that duct systems comply with ASHRAE 62.1-2004, Section 5 "Systems and Equipment."
- 14. Duct-Cleaning Test Report for Prerequisite EQ 1: Documentation of work performed for compliance with ASHRAE 62.1-2004, Section 7.2.4 "Ventilation System Start-Up."
- 15. Product Data for Prerequisite EA 2: Documentation indicating that duct systems comply with ASHRAE/IESNA 90.1-2004, Section 6.4.4 "HVAC System Construction and Insulation."
- 16. Leakage Test Report for Prerequisite EA 2: Documentation of work performed for compliance with ASHRAE/IESNA 90.1-2004, Section 6.4.4.2.2 "Duct Leakage Tests."
- 17. Duct-Cleaning Test Report for Prerequisite EQ 1: Documentation of work performed for compliance with ASHRAE 62.1-2004, Section 7.2.4 "Ventilation System Start-Up."

1.6 ENVIRONMENTAL GUIDELINES

Comply with -Division 01 Section "Construction Waste Management".

Minimize the use of virgin material and waste during construction. Use low-VOC mastics.

1.7 QUALITY ASSURANCE

ASHRAE Compliance: Applicable requirements in ASHRAE 62.1-2004, Section 5 - "Systems and Equipment" and Section 7 - "Construction and System Start-Up."

ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1-2004, Section 6.4.4 - "HVAC System Construction and Insulation."

1.8 PERFORMANCE REQUIREMENTS

Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1-2004.

PART 2 - PRODUCTS

2.1 DUCTWORK:

Sheet Metal for Ducts: G90 galvanized steel sheets with 1.25oz./sq. ft. coating on each side, conforming to ASTM A-525 and A-527, lock-forming grade, of gauges as specified hereinafter, except where another material is specifically indicated. See PART 3 - EXECUTION, and drawings for duct construction requirements.

1. Recycled content: 28 percent minimum total recycled content containing a minimum of 16 percent post consumer steel.

Fume Exhaust Ducts, Fume Exhaust Plenums, Glass Wash Exhaust Duct.

- 2. Type 316L Stainless Steel, 16 gauge.
- 3. Internally coated, externally galvanized sheet metal, 16 gauge. Coating specified hereinafter.
- 4. See Drawings for extent of stainless steel and coated steel ductwork. Use galvanized sheet metal where stainless steel or coated steel are not indicated.
- 5. See Part 3 Execution for duct construction requirements.

Flexible Ducts: See Division 23 Section "Metal Duct Fittings".

2.2 SINGLE WALL PLENUMS:

Machine formed panels, 18 gauge steel with 3" standing seams 16" on center.

General Duty: Galvanized steel.

2.3 DUCT SEALANT

For non-fume exhaust duty and galvanized fume exhaust duty: United Duct Sealer, 3M #800, or equal, non-flammable, U.L. labeled.

For coated steel fume exhaust duty: Epoxy sealant specified hereinafter.

Two-Part Tape Sealing System:

1. For indoor applications, use sealant that has a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

Solvent-Based Joint and Seam Sealant:

- 2. For indoor applications, use sealant that has a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- 3. VOC: Maximum 395 g/L.

Flanged Joint Sealant: Comply with ASTM C 920.

1. For indoor applications, use sealant that has a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.4 GASKET MATERIAL

For non-fume exhaust duty and galvanized fume exhaust duct duty: Tremco 440, Ductmate 440, or equal, minimum 3/16" thick by 1/2" wide.

For stainless steel and coated fume exhaust duct duty: Where removable sections are required, use hypalon gaskets with silicone mastic.

2.5 INTERNAL DUCT COATINGS

The coatings shall be a cross-linked epoxy-phenolic material cured with an alkaline curing agent.

The coating shall have a chemical, abrasive and temperature resistance no less than that of Plasite 7122L.

The coating shall be specifically approved by the manufacturer for internal lining of steel exhaust ducts.

- 1. Follow manufacturer's specific direction equal to Plasite 7122L, Zone A useage requiring sand blasting of the galvanized steel duct surface and multiple layers for a total film thickness of 12-13 mils.
- 2. The coating manufacturer shall provide specific instruction for minor and major coating repair procedures including repair of holidays, scratches, and cutting ductwork and connecting new ductwork.

Seams and joints shall be sealed with Plasite 7122 Joint Adhesive Sealant (JAS) or Tnemec 63-1500, unless removable gasketed joints are specified.

Transportation, storage, use application, curing and disposal of coating shall conform to environmental regulations including those of the Bay Area Air Quality Management District.

Acceptable Manufacturer – Internal Duct Coatings:

3. Plasite 7122L or TNEMEC 282.

Acceptable Substitute – Internal Duct Coatings:

4. 3M Skotchkote 134 Fusion-Bonded Epoxy.

PART 3 - EXECUTION

3.1 DUCTWORK

Where not otherwise specified herein, shown, noted, or required by codes, work shall conform to "HVAC Duct Construction Standards, Metal and Flexible," latest edition, as

published by the Sheet Metal and Air Conditioning Contractors National Association, Inc., (SMACNA).

- 1. 4 inches (100 mm) w.g. class for herein specified medium pressure ductwork.
- 2. 2 inches (50 mm) w.g. class for herein specified low pressure ductwork.
- 3. At the Subcontractor's option, round ducts may be substituted for rectangular ducts or rectangular ducts may be substituted for round ducts, providing that the substituted duct has a cross-sectional area of the original duct. As with other substitutions, the Subcontractor bears the responsibility for equivalency, fit, clearances, coordination, etc.

Do not use black steel materials in the Clean Room interstitial space or in related air flow paths.

Construction Indoor Air Quality:

- 4. Follow control measures of SMACNA IAQ Guidelines for Occupied Buildings Under Construction, Chapter 3, latest edition as described in Division 01 Section "Construction IAQ Management Plan".
- 5. Protect stored on-site or installed absorptive materials from moisture damage.
- 6. After fabrication in the shop, wipe down interior of each piece of supply air and return air ductwork with a lint-free rag, using a solution of 30 percent isopropyl alcohol and 70 percent water. Cap/seal supply, return, and exhaust air air duct openings immediately after fabrication or cleaning. Schedule deliveries to the job site to match installation to avoid excessive storage a the job site. Store ductwork at the job site in closed trailers or in the immediate area in which is will be installed. Ducts at the site that have opening seals perforated are to be recleaned per shop cleaning requirements and re-sealed until needed for installation. Maintain caps/seals on openings of installed ducts. If openings of installed ducts have their seals perforated, re-clean contaminated duct sections per shop cleaning requirements. Demonstrate the cleanliness quality control to the University.
- 7. Prior to operating air handling systems, verify internal cleanliness of air handlers, plenums, and ducts, and that filters are in place. Contamination requires recleaning per shop cleaning requirements. Demonstrate to the University the cleanliness of the systems before operation. Provide security protocol to limit access to systems to avoid contamination.
- 8. No supply, return, or exhaust air systems are to be operated without the specific permission of the University.
- 9. Provide filtration at return and exhaust air inlets of systems that are operated prior to completion of construction. Filtration shall have a Minimum Efficiency Reporting Value (MERV) of 8, as determined by ASHRAE 52.2-1999.
- 10. After construction ends and prior to occupancy, conduct a minimum two-week building flush-out with new specified filtration media at 100 percent outside air.

Duct Placement and Fittings:

- 11. Fabricate ducts to net inside clear dimensions using specified sizes. Where internal duct liner is used, enlarge duct sizes so that specified sizes result in net clearance dimensions inside lining.
- 12. Form transitions with uniform taper not exceeding 15 degree included angle, unless shown otherwise on Drawings.
- 13. Offsets over 15 degrees shall have two radius turns or square turning vanes.

- 14. Where it is not possible to insulate ducts after installation, ducts shall be insulated before final installation. Tightness of work will not be accepted as a valid reason for omitting insulation. Where insulation is omitted, ducts will be removed, insulated and reinstalled.
- 15. Exposed Ducts: Exercise extreme care to produce neat and pleasing-in-appearance joints, connections, supports and other modifications. Ducts shall have no offsets, dents or dings. They shall be clean and grease-free. Remove excess sealant. Appearance must be acceptable to the University.
- 16. Install ducts true to line and grade.
- 17. Make changes of direction by curved sections with inside radius equal to duct width or square elbows with turning vanes as shown. Where square elbows are definitely shown, radius turns may not be used.
- 18. Closely fit and accurately place ducts and coordinate with work of other trades. Ducts must be so placed that piping, ceiling support grid, ceilings, and light fixtures may be installed without warping, springing or deforming ducts.
- 19. Angles and standing seams on ducts exposed in occupied areas shall have the corners chamfered 45 degrees with 1/4" rounded edges and ground smooth.
- 20. Seal duct penetrations through walls and floors.
- 21. Provide inlet and outlet duct transitions at reheat coils, constant, variable, and air flow control terminal whether or not such transition is shown on the drawings.
- 22. Provide openings in ductwork wherer required to accommodate sensors.
- 23. Closely coordinate roof penetrations with architectural details.

Low Pressure Rectangular Ductwork:

- 24. Longitudinal seams: Flat crimped Pittsburgh lock with specified sealant, applied over seam.
- 25. Transverse Joints: Ductmate 35, TDC, or equal with specified gasket.
- 26. Cross break or bead sides.
- 27. Construction and Reinforcement:

Largest Dimension of Duct	US STD. Gauge GSM	Max. Joint Spacing	Transverse Joint Size	Intermediate Angle Stiffener ¹
Thru 12 inches (Thru 355 mm)	26 (0.7 mm)	96 inches (2438 mm)	As specified	None
13 to 30 inches (330 to 762 mm)	24 (0.7 mm)	60 inches (1524 mm)	As specified	None
31 to 36 inches (787 to 914 mm)	22 (0.85 mm)	60 inches (1524 mm)	As specified	None
37 to 48 inches (940 to 1220 mm)	20 (1 mm)	60 inches (1524 mm)	As specified	None

Largest Dimension of Duct	US STD. Gauge GSM	Max. Joint Spacing	Transverse Joint Size	Intermediate Angle Stiffener ¹
49 to 60 inches (1245 to 1524)	18 (1.31 mm)	60 inches (1524 mm)	As specified	None
61 to 84 inches ² (1550 to 2134 mm)	18 (1.31 mm)	60 inches (1524 mm)	As specified	1-1/2 by 1-1/2 by 1/8 inches (38 by 38 by 3 mm)

Required on four sides. Weld or bolt angles where they join. Mild steel.

Medium Pressure Rectangular Ductwork:

- 28. Longitudinal seams: Same as for low pressure ductwork.
- 29. Transverse Joints Ductmate 35, TDC, or equal, with specified gaskets.
- 30. Cross break or bead sides of ducts.
- 31. Seal flanged joints, companion angle joints, and Ductmate joints with specified gasket material, triple lapped at corners. Torque bolts evenly to 1/16" compression of tape. Alternate: Apply 3/8" bead of specified sealant to both faces before bolting.
- 32. Construction and Reinforcement:

Largest Dimension of Duct	US STD. Gauge GSM	Max. Joint Spacing	Transverse Joint Size	Intermediate Angle Stiffener ¹
Thru 12 inches (Thru 355 mm)	24 (0.7 mm)	60 inches (1524 mm)	As specified	None
13 to 18 inches (330 to 457 mm)	22 (0.85 mm)	60 inches (1524 mm)	As specified	None
19 to 24 inches (483 to 610 mm)	22 (0.85 mm)	60 inches (1524 mm)	As specified	None
25 to 36 inches (635 to 914 mm)	24 (0.7 mm)	60 inches (1524 mm)	As specified	1-1/2 by 1-1/2 by 1/8 inches (38 by 38 by 3 mm)

Provide 3/8 inches (10 mm) diameter tie rods maximum 36 inches (914 mm) o.c. at each joint.

Largest Dimension of Duct	US STD. Gauge GSM	Max. Joint Spacing	Transverse Joint Size	Intermediate Angle Stiffener ¹
37 to 48 inches (940 to 1220 mm)	22 (0.85 mm)	60 inches (1524 mm)	As specified	1-1/2 by 1-1/2 by 1/8 inches (38 by 38 by 3 mm)
49 to 60 inches (1245 to 1524)	20 (1 mm)	60 inches (1524 mm)	As specified	2 by 2 by 3/16 inches (50 by 50 by 4.7 mm)
61 to 96 inches ² (1550 to 2438 mm)	18 (1.31 mm)	60 inches (1524 mm)	As specified	2-1/2 by 2-1/2 by 3/16 inches (62 by 62 by 4.7 mm)
Over 96 inches ³⁻⁴ (Over 2438 mm)	16 (1.61 mm)	48 inches (1220 mm)	3 by 3 by 3/16 inches C.F. (75 by 75 by 4.7 mm)	3 by 3 by 3/16 inches (75 by 75 by 4.7 mm)

Required on four sides. Weld or bolt angles where they join. Mild steel.

joint.

Weld 24 (610 mm) long 3/4 (18 mm) round knee brace inside duct at each corner to intermediate stiffener 8 feet (2.4 m) on center.

C.F. = Companion angle flanges.

Round Ductwork - HVAC:

- 33. Provide spiral round ductwork where shown on the Drawings.
- 34. Duct Gauges:

Size	Low Pressure	Medium Pressure
Thru 8 inches (Thru 200 mm)	26	26
9 to 14 inches (230 to 355 mm)	26	26
14 to 26 inches (355 to 660 mm)	26	24

- 35. Fittings: United McGill, Western Engineering Co., Lindab, or equal.
 - a. Low Pressure:
 - 1) Elbows: 26 gauge smooth. Pleated not allowed.
 - 2) Other: 26 gauge Uniweld. Spot welded and sealed joints.
 - b. Medium Pressure:
 - 1) Elbows: 20 gauge die-stamped. All-welded joints.
 - 2) Other: 20 gauge Uniform. All-welded joints.

Provide 3/8 inches (10 mm) diameter tie rods maximum 36 inches (914 mm) o.c. at each

- c. Elbows: Radius to center of duct shall not be less than 1.5 times the diameter of the duct.
- d. Reducers: Machine formed to ASME short flow nozzle shape.
- e. Tees: Conical tap machine formed to short flow nozzle shape.
- f. Laterals: Machine formed to ASME short flow nozzle, conical tap at 45 degrees F.
- g. Round tap fittings: Saddle type for round duct or conical for rectangular ducts as shown on the Drawings.
- 36. Round Duct Joints: Join by means of couplings with swaged bead in center and secured with sheet metal screws at each end of coupling. Make duct-to-fittings joints by either a tight slip fit of the fitting lapped inside the duct or by means of couplings with swaged bead in center, secured with sheet metal screws. Screw spacing: 6 inches (150 mm) unless otherwise shown on the Drawings. Seal joints and seams with specified internal sealant applied continuously around the coupling.

Watertight Ducts: Glass Wash:

- 37. Fabricate duct with all-welded joints and seams and reinforce according to the stainless steel fume exhaust duct standard.
- 38. Make 100 percent watertight.
- 39. Slope ducts back towards equipment, canopy hoods, drain points, etc. or as shown on the drawings.

Fume Exhaust Ductwork and Plenums:

- 40. Galvanized Steel Construction: Conform to the requirements of medium pressure ductwork specified hereinbefore but minimum duct gauge shall be 18 gauge (1.31 mm).
- 41. Stainless Steel Construction:
 - a. Round ducts and fittings: Longitudinal seam 316L 16 gauge stainless steel for all sizes with welded seams and fitting joints.
 - b. Rectangular ducts and fittings: 316L 16 gauge stainless steel for all sizes conforming to medium pressure duct reinforcing requirements. Form duct with only one longitudinal welded seam.
 - c. All stainless steel joint construction to be continuously butt welded (use appropriate filler rod) using Surface Tension Power (STT) system with 10 percent CO2 shielding gas by Lincoln Electric Invertec STT II, or equal (no known equal). Welding must be done by a welder certified to butt weld 16 gauge 316L or 304 stainless steel. Welding and welding certification shall be in accordance with AWS 1964. Exterior welds on exposed ducts to be ground smooth. Identify field welds on shop drawings and provide access for field inspection of same.
 - d. Provide specfied flanged joints with gaskets and mastic where there is no room for welding and/or where shown on Drawings, only where approved in advance by the University. There may be no more than 5 percent flanged joints out of joints, including shop and field welded joints.
 - e. Provide welded-in stainless steel threaded nipples where required for pipe connections such as for drains, storage cabinet vents, etc.
 - f. Finished stainless steel items shall have edges, joints and welds ground smooth and have a mill finish. There are to be no visible weld marks, discoloration, or scratches.

42. Coated Steel Construction:

a. Round Ductwork:

- Longitudinal seams shall be continuously butt-welded construction.
 Install with seams at top of duct. Cover seam joints with specified sealant.
- 2) Construction and Reinforcement:

Largest Dimension of Duct	US STD. Gauge GSM	Max. Joint Spacing	Transverse Joint Size	Companion Angle Vanstone Flange Connection	Intermediate Angle Stiffener
Thru 14 (Thru 355 mm)	16 (1.61 mm)	48 inches (1220 mm)	1 by 1 by 1/8 inches (25 by 25 by 3 mm)	C.F.	None
15 to 24 inches (381 to 610 mm)	16 (1.61 mm)	48 inches (1220 mm)	1-1/2 by 1-1/2 by 1/8 inches (38 by 38 by 3 mm)	c.f.	None

3) Metal Gauge: Use 16 gauge (1.61 mm) regardless of size where regular welding is required.

b. Round Fittings:

- 1) Elbows: Elbows shall have a centerline radius of minimum 1.5 times the duct diameter. Elbows up to 15 degrees shall be 3 pieces, 30 degrees 4 pieces, and 5 pieces between 31 to 90 degrees. Elbows shall be fabricated from continuously butt-welded gore sections. Gore sections shall be welded and finish ground to eliminate internal and external projections.
- 2) Increasers and Reducers: ASME short flow nozzle shape, continuously butt-welded.
- 3) Tees: Conical short flow nozzle shape continuously butt-welded.
- 4) Laterals: Conical ASME short flow nozzle shape at 30 degrees to 45 degrees, continuously butt-welded.
- 5) Round Tap Fittings: 45 degrees conical taps, continuously butt-welded.
- 6) Join fittings using companion–angle Vanstone flange connection. Seal connection with specified sealant or gasket when a removable connection is required.

c. Rectangular or Square Ductwork

- 1) Longitudinal seams shall be continuously welded. Fabricate duct sections with one longitudinal seam and install with seam at top of duct. Cover seam with specified sealant.
- 2) Construction and Reinforcement:

Largest Dimension of Duct	US STD. Gauge GSM	Max. Joint Spacing	Transverse Joint Size	TDC, or equal, flange- form system	Intermediate Angle Stiffener
Up to 24 inches (Thru 610 mm)	16 (1.61 mm)	48 inches (1220 mm)	1 by 1 inches by 16 gauge (25 by 25 by 1.61 mm)	TDC	1 by 1 inches by 16 gauge (25 by 25 by 1.61 mm)
25 to 26 inches (381 to 610 mm)	16 (1.61 mm)	48 inches (1220 mm)	1-1/2 by 1-1/2 by 1/8 inches (38 by 38 by 3 mm)	TDC	1-1/2 by 1-1/2 by 1/8 inches (38 by 38 by 3 mm)
37 inches and over (940 mm and over)	16 (1.61 mm)	48 inches (1220 mm)	2 by 2 by 1/8 inches (50 by 50 by 2 mm)	TDC	2 by 2 by 1/8 inches (50 by 50 by 2 mm)

- 3) Metal Gauge: Use 16 gauge (1.61 mm) regardless of size where regular welding is required.
- 4) Weld in minimum 1/4-inch (6 mm) fillet at each corner of formed flange. Grind flush with flange faces.
- 5) Angles: Reinforcing and stiffening angles shall be required on four sides. Angles shall be galvanized steel
- 6) Cross break duct on four sides between transverse joints and angle stiffeners.
- 7) Spot weld stiffeners to duct o.c. and at corners where they join.
- 8) Rectangular or Square Fittings and Transitions: Longitudinal seams shall be continuously butt-welded. Fabricate fittings and transitions with one or two seams at top of duct. Fittings and transition shall be fabricated of 16 gauge (1.61 mm) sheet metal.
- 9) Seal joints with specified sealant or gasket when a removable connection is required.

43. Manual Balancing Dampers:

- 1) Fabricate as specified. Leave 1/8 (3 mm) maximum gap between damper blade and duct wall.
- 2) Install dampers in separate, flanged, bolted, removable duct sections.
- b. Coat fume exhaust ducts requiring internal coating, as specified hereinafter.
- c. Prior to construction of ductwork, coordinate pitot transverse hole locations and requirements with Division 23 Section "Testing, Adjusting, and Balancing for HVAC" for testing and balancing. Locate sensor holes for fume hood Magnahelic gauges, storage cabinet vents, etc. Pre-drill holes prior to coating ductwork.
- d. Single Thickness Turning Vanes: Use only where shown or required for tight turns. Vanes shall be minimum 16 gauge (1.61 mm) continuously

- welded to duct at both ends. Welded joints shall be ground smooth and sand blasted before applying coating.
- e. Square turns and/or hollow turning vanes are not allowed.
- f. Closely coordinate with other trades in layout ductwork. Exercise extreme care in making field measurements to determine location of ducts.
- g. Repair damage to galvanizing due to welding or scratches using Z.R.C., no known equal, cold galvanizing compound

Galvanized plenums:

- 44. Fabricate plenums and access doors as shown on the Drawings or per manufacturer's directions.
- 45. Plenum roofs shall be able to support people load.
- 46. Provide air lock vents in access doors where required for air lock access application.
- 47. Openings for fans and ductwork connections where required shall be provided by the plenum manufacturer. Pipes and conduit penetrations shall be located and cut in the field and sealed in accordance with the manufacturer's instructions.
- 48. Provide for expansion compensation and building structure deflection for plenum panels spanning from floor to structure above.
- 49. Seismically brace all free-standing plenums, per Division 01 Section "Lateral Force Procedures".

Duct Support

- 50. Attachments to Structure: See Division 23 Section "Hangers and Supports for HVAC Piping and Equipment". Minimum rod or bolt size is 3/8 (9 mm).
- 51. Suspend horizontal galvanized rectangular ductwork 48 inches (1220 mm) or less in largest dimension from construction by 1 inch by 18 gauge (25 mm by 1.3 mm) galvanized strap hangers screwed 8 inches (200 mm) o.c. to ducts. Use three screws minimum per strap. Bend strap under duct and screw into bottom of duct.
- 52. Suspend horizontal rectagular stainless steel and coated ductwork 48 inches (1220 mm) or less in largest dimension from construction by 1 inch by 18 gauge (25 mm by 1.3 mm) galvanized steel strap hangers bolted to mating flanges at minimum of three locations. (Top, middle, and bottom).
- 53. Ducts over 48 inches (1220 mm) in largest dimension support from Unistrut, Superstrut, or equal, trapeze hangers sized for the load, per SMACNA standards.
- 54. Support round steel ductwork from construction by 1 inch by 18 gauge (25 mm by 1.3 mm) galvanized strap hangers with inside radius of loop hanger equal to outside radius of duct. For ducts under 12" diameter, provide supports 10 feet (3 m) o.c.; 12 feet (3.6 m) and over, 6 feet (1.8 m) o.c. Provide not less than one hanger per branch and at each change of direction.
- 55. Support round flexible ductwork from construction by 2 inches by 26 gauge (50 mm by 0.55 mm) galvanized strap hangers with inside radius of loop hanger equal to outside radius of duct. Locate supports to avoid kinks and sharp bends.
- 56. Double fold straps at attachment to structure.
- 57. Space Hangers not over 96 inches (2440 mm) on center for ducts smaller than 18 inches (457 mm) in largest dimension; 60 inches (1524 mm) o.c. for ducts 18 inches (457 mm) and over.

Weather Protection:

- 58. Cover galvanized ducts and plenums at the roof with 20 gauge (1 mm) galvanized sheet metal.
 - a. Pitch to drain.
 - b. External covers at least 2 inches (50 mm) beyond edges of protected ducts and plenums.
 - c. Overlap and seal covering materials.
 - d. Support at duct reinforcement intervals.

3.2 SEALING:

Where firestopping is not required, seal duct, pipe, and conduit penetrations through partitions with G.E. silicone sanitary sealant, Dow Corning 8650 Interior Sealant, or equal.

1. Provide 0.125- to 0.25-inch (3 mm to 6 mm) gap to be filled with specified sealant for noise control.

Seal ducts to the following seal classes according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible":

- 2. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- 3. Outdoor, Supply-Air Ducts: Seal Class A.
- 4. Outdoor, Exhaust Ducts: Seal Class C.
- 5. Outdoor, Return-Air Ducts: Seal Class C.
- 6. Unconditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg and Lower: Seal Class B.
- 7. Unconditioned Space, Supply-Air Ducts in Pressure Classes Higher Than 2-Inch wg: Seal Class A.
- 8. Unconditioned Space, Exhaust Ducts: Seal Class C.
- 9. Unconditioned Space, Return-Air Ducts: Seal Class B.
- 10. Conditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg and Lower: Seal Class C.
- 11. Conditioned Space, Supply-Air Ducts in Pressure Classes Higher Than 2-Inch wg Seal Class B.
- 12. Conditioned Space, Exhaust Ducts: Seal Class B.
- 13. Conditioned Space, Return-Air Ducts: Seal Class C.

Do not seal at fire dampers in a way that violates UL or code installation requirements.

3.3 COATING FOR FUME EXHAUST DUCTWORK AND PLENUMS

Metal surfaces shall be prepared as follows or as otherwise required by the coating manufacturer so that a continuous film of uniform thickness can be applied.

- 1. Round sharp corners and thin edges to 1 mm radius by grinding or filing.
- 2. Fill sand holes or seams by welding.
- 3. Welded seams shall be continuous and ground smooth.
- 4. Remove weld spatter by grinding or other means.

Sandblasting:

5. The interior surfaces and edges, of ductwork and plenums including reinforcing and supports, shall be sandblasted. Surfaces shall be degreased if necessary and then blasted to SSPC-SP5 (white metal). The blasting media used shall be a natural abrasive, or steel grit, or slag grit. These abrasives shall be sharp with a hardcutting surface, properly graded, dry and of the best quality. The media shall be of proper size and free of objectionable contaminants to obtain an anchor pattern approximately 20 to 25 percent of the total film thickness. Abrasive shall be used with the recommended nozzle air pressure to give the specified anchor pattern. Traces of grit or dust shall be removed by vacuum or brushing.

Coating of Interior Surface of Ductwork and Plenums:

- 6. Surfaces to be free from scale, rust, grease, oil or previous coatings.
- 7. Shop coat interior surfaces and edges of ductwork and plenums with the specified coating. The first coat shall be applied the same day as blasting.
- 8. Coating shall be shop applied by an industrial applicator familiar with the type of coating. The applicator shall observe the applicable local and national safety codes covering working conditions, lighting, and ventilation requirements for coating application, and the rules and regulations of the Bay Area Air Quality Management District.
- 9. Apply the first coat using standard air atomizing, or airless, spray equipment as recommended by the coating manufacturer. The applicator shall be careful to ensure uniform coverage. Runs and sags shall not be allowed.
- 10. The inside coating system shall be continued on the mating surfaces/flanges of ducts and plenums. The requirement shall apply to the first and second coat, and the third coat.
- 11. After at least an overnight cure, at a minimum temperature of the first coat, seams and interlocks shall be filled and smoothed with JAS sealant by using a stiff bristle brush, or caulking gun and spatula technique. Care shall be taken to ensure that crevices be filled and high points covered with sealer. Remove excess sealant.
- 12. After the first coat and the sealant has cured the second coat shall be applied. The curing time shall be as recommended by the coating manufacturer. Allow extra curing time due to low temperature and/or high humidity. Do not apply coating at ambient temperature lower than the recommended temperature of the manufacturer.
- 13. Apply multiple coats in number and thickness as recommended by the coating manufacturer for severe duty usage fume exhaust application equivalent to Plasite Zone A usage. Each coat shall be a different color.
- 14. Test the final dry film thickness with Microtest, Elcometer, or equal, thickness gauge.

Inspection:

- 15. The University, at its option, shall have a representative on the job who shall inspect and give approval to each phase of the work, including abrasives, equipment to be used, surface preparation, coating application, holiday testing, dry film thickness testing and installation procedures.
- 16. The inspector shall approve blasting abrasive prior to its use by the coating applicator for surface preparation. after blasting a section of ductwork, the coating applicator shall submit this to the inspector for his approval before proceeding with further blasting or coating application. Oil, fingerprints, oxidation or other contaminants must be removed before the coating can be applied.
- 17. The inspector may observe and approve the method of coating application. Care must be taken by the applicator to ensure uniform coverage. After approval of the coating procedures, the applicator may proceed with coating application subject to spot checks by the inspector.
- 18. After the coating has cured for five days or longer, at 70 deg F (21 deg C), or higher, test the interior of ducts for holidays using a Tinker and Razor wet sponge detector, or equal (no known equal), low voltage holiday detector. Mark holidays and recoat as needed to obtain required dry film thickness. Submit written certification that duct sections have been tested and holidays have been repaired.
- 19. After holidays have been coated and allowed to cure for five days, spot check the interior and exterior of each duct for dry film thickness. Make at least five readings with an approved film thickness measuring device on each duct section. Recoat duct sections that indicates non-uniform film thickness. Re-coat duct section which produces readings less than 80 percent of the minimum required dry film thickness. Submit written certification that duct sections have been tested and deficiencies in dry film thickness have been corrected.
- Label each duct section with measured average coating thickness and dates of coating thickness and dates of coating thickness measurement and holiday detection testing.

Use prefabricated components. No field cutting or drilling of coated ducts or plenums shall be allowed.

Ensure that coatings adhere thoroughly. Brace rectangular ducts to avoid cracking of coating at corners during handling and transport. Ducts, fittings, and plenum panels shall be carefully and adequately protected against damage during transit and installation.

All scratches or chipped coatings shall be sanded, wire brushed or acid etched, then washed and re-coated with sufficient coatings to produce required overall film thickness. Field repair procedure shall be in accordance with manufacturer's written instructions: Repair Procedures Air Dry/Air Dry, Dec., current edition.

All sharp edges introduced in the field due to the approved cutting or drilling shall be prepared as herein specified and coated with a brush to produce required overall film thickness, in accordance with manufacturer's written instructions and holiday detection testing.

Duct shall be joined by sealing with a liberal application of specified sealant to the female end and to the edge of the male end so that the edge becomes completely covered during insertion and the entire cavity is filled with sealant. After insertion, the joint shall be wiped with sealant inside and outside to completely seal and smooth out coating surface at the joint. Mechanical support shall be provided for the joint until the sealant sets up.

Design and fabricate fume exhaust plenums with seams and standing joints on the outside. Avoid bolts and reinforcings exposed in the airstream. Where absolutely necessary, bolts, nuts, and washers shall be type 316 stainless steel when exposed in exhaust air stream. After final assembly, clean exposed bolts, nuts, and washers and field coat them with two coats of specified coating for a total dry film thickness of approximately 12-15 mils.

3.4 GALVANIZING REPAIRS

Repair galvanizing damaged by welding, scratches, etc., using Z.R.C., no known equal, cold galvanizing compound.

3.5 DUCT AND PLENUM LEAK TESTING

Leak test 100% of ducts, coated ducts, stainless steel ducts, and plenums: Use extreme care in the fabrication and installation of the ductwork and plenums to ensure that it will be airtight. Test ductwork and plenums for leaks in sections as the work progresses before insulating. Fire dampers, smoke/fire dampers, access panels and appropriate branch ducts shall be in place during the testing. Seal off open ends and then test by the following.

- Duct Leak Test for Medium Pressure ductwork: The equipment required for this testing comprises a high pressure blower, orifice test pipe assembly and manometer with necessary valves and tubing. The ductwork section shall be placed under an air pressure of 6 inches (150 mm) of water with the blower, while leakage flow through the orifice is measured on the manometer. The manometer readings shall be converted to CFM from a calibrated test curve. The leakage shall not exceed 6 CFM/100 s.f. for rectangular seal class "A" ductwork and 3 CFM/100 sf for round seal class "A" ductwork. No less than 50 square feet of duct shall be tested at one time. The Subcontractor shall provide test conditions, including the total square feet of ductwork under test. Fire dampers and access panels shall be installed. Testing of complete sections of the ductwork must be made before installation of the finished ceiling or before the ductwork is furred in inaccessible space, and must be witnessed by the University. Leaks found must be repaired, or joints remade and the section retested until tight. Leaks that cause objectionable noise must be repaired, regardless of the amount of the leakage. Perform tests in the presence of the University. Maintain a set of Drawings for recording and sign off of each tested section. After completion of testing, turn drawings over to the University.
- 2. Duct Leak Test for Low Pressure Ductwork: Tests and leakage requirements are the same as for medium pressure ductwork except test at an air pressure of 2 inches (50 mm) of water. Test one representative low pressure supply air duct section on each floor consisting of ductwork between the terminal (reheat coil, or

- VAV terminal) and the outlets. Section tested shall not have less than two outlets. Test one representative low pressure exhaust duct branch at each floor from the inlets to the riser. The University shall select the representative low pressure ducts to be tested.
- 3. Duct leak test for fume exhaust ducts, and stainless steel welded ducts: The duct section under test shall be pressurized to 7 inches (177 mm) w.g. and the air "locked-in" to the duct. The pressure will be allowed to fall to 5 (125 mm) of water for an average of 6 inches (150 mm) of water. The time in seconds shall be measured for this drop in duct pressure. Leakage shall not exceed 0.1 cubic feet per minute per 100 square feet of surface area. The time, in seconds, that is equivalent to this leakage rate is found by the formula t = duct I.D. x 6.23. The duct inside diameter shall be in inches. Test entire duct run. Test from the fume hood collar to the fume exhaust plenum of fan inlet flexible connection.
- 4. Leak Test for Non-Fume Exhaust Plenums: Same as for medium pressure ductwork.
- 5. Leak Test for Fume Exhaust Plenums: Same as for medium pressure ductwork, except leakage rate shall not exceed 0.1 CFM/100 square feet of plenum surface area.

3.6 WASTE MANAGEMENT

Conform with Division 01 Section "Construction Waste Management."

Collect off cuts and scrap and place in designated areas for recycling.

Separate other materials, including packaging and banding, in accordance with the Waste Management Plan and place in designated areas for recycling.

3.7 SEISMIC RESTRAINTS

All ductwork, piping, and mechanical equipment, with or without vibration isolation, shall be provided with seismic restraints in accordance with Division 01 Section "Lateral Force Procedures".

END OF SECTION 233113

SECTION 233300 - AIR DUCT ACCESSORIES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section describes medium and low pressure HVAC duct accessories, sealants and tapes, flexible connectors, combination fire/smoke dampers, access doors, spin-in fittings, extractors, drain pans, back draft dampers, and airflow measuring stations.

1.2 RELATED WORK SPECIFIED ELSEWHERE

- A. Section 230719, HVAC Insulation
- B. Section 230900, Instrumentation and Controls of HVAC Systems
- C. Section 233113, Low Pressure Ductwork
- D. Section 233114. Medium Pressure Ductwork

1.3 REFERENCES

- A. NFPA: National Fire Protection Association
 - 1. NFPA 90A: Standard for the Installation of Air-Conditioning and Ventilating Systems
- B. SMACNA: Sheet Metal and Air Conditioning Contractors' National Association, Inc.
 - 1. SMACNA HVAC Duct Construction Standards Metal and Flexible

1.4 SUBMITTALS

- A. For systems, equipment, and components specified herein, submit product/material data; shop drawings; operation and maintenance data; as-constructed data; installation, startup, and testing manuals; operation and maintenance manuals; and as-constructed drawings.
 - 1. Include the manufacturer's installation instructions.

1.5 QUALITY ASSURANCE

- A. Work shall be performed by qualified, experienced mechanics in accordance with SMACNA and these specifications.
- B. Install entire ductwork system, including materials and installation, in accordance with NFPA 90A.

C. Flexible connectors, flexible equipment connections, tapes and sealants shall be listed as UL 181, Class I air duct; flame spread rating shall not exceed 25 and smoke developed rating shall not exceed 50.

PART 2 - PRODUCTS

2.1 MEDIUM PRESSURE HVAC DUCT ACCESSORIES

- A. Acceptable Manufacturers: As indicated, or equal.
- B. Duct Sealer: Duro Dyne, EC900, S-2; 3M, United, or equal.
- C. Duct Tape: Duro Dyne, FT-2, Hardcast, Nashua, United; or equal.
- D. Tape and Adhesive/Activator System for Sheet Metal: Hardcast, or equal.
- E. Flexible Connector:
 - 1. Acceptable Manufacturers: Kinetics, Model KNM-100B, or equal.
 - 2. Description: One pound per square foot density, barium sulphate load vinyl material with fiberglass reinforcing.

F. Access Doors:

- 1. Acceptable Manufacturers: United Sheet Metal APR or ASR; Metco; Semco; Cesco; Ruskin; Nailor-Hart, or equal.
- 2. Description: Round, oval or rectangular to match duct, single wall to open against positive duct pressure, fastened with spring clips, pressure seal gasket, fastened with chain. Double wall access doors similar except provide insulated frame and insulated door.
- G. Bell Mouth Fittings: Round or flat oval, radius of 0.20 D minimum.

2.2 LOW PRESSURE HVAC DUCT ACCESSORIES

- A. Acceptable Manufacturers: As indicated, or equal.
- B. Damper Regulators:
 - 1. Ventlok model numbers used; similar products by Young or Durodyne are acceptable.
 - 2. Dial Regulator: Concealed or exposed duct in unfinished spaces, blade lengths 18-inch and less, 3/8-inch, Ventlock 635 or 638 for insulated duct. For blade lengths 19 inches and more, similar except 1/2-inch shafts.
 - 3. Dial Regulator: Exposed duct finished space, 3/8-inch, Ventlock 640.
 - 4. Dial Regulator: Concealed, not accessible, blade lengths 18-inch and less, 3/8-inch Ventlock 666 regulator with 680 mitered gear assembly where right angle turn is necessary. Blade lengths 19 inches and more, similar except 1/2-inch shafts.
 - 5. End Bearings: For ducts rated to 1-inch W.G., open end, Ventlock 607. For ducts rated above 1-inch W.G., closed end, Ventlock 609. Exposed ductwork, finished spaces, Ventlock 609. Spring end bearings will not be allowed.

C. Volume Damper Fabrication:

- 1. Single blade dampers shall be reinforced or crimped for rigidity, with pivot rod extending through duct. Dampers over 12 inches high shall use multiple opposed blade damper. Single blade damper shall be no larger than 12 inches by 48 inches. Multiple blade damper factory fabricated, Ruskin MD-35.
- 2. Construct mnimum gauge and duct in accordance with SMACNA "HVAC Duct Construction Standards Metal and Flexible."
- 3. Splitter and butterfly dampers shall be fabricated of 18-gauge galvanized steel.
- 4. Dampers shall be of length suitable to close branch ducts without damper flutter.
- 5. Damper blade shall be aligned with handle and index pointer.
- D. Flexible Equipment Connections: 30 oz. Ventfabrics Ventglas or Duro Dyne Durolon neoprene coated fire retardant glass fabric.
- E. Extractors (EX): Gang operated blades, steel construction, blades at 1-inch centers, slide operator set 15 degrees into main trunk duct. Titus AG-45 with No. 1 operator; Carnes; Anemostat; Barber-Coleman; Nailor-Hart.

F. Spin-In Fittings:

- 1. Sheet Metal Duct: Straight pattern sheet metal spin-in fitting designed for connection to sheet metal ductwork, volume damper, and locking quadrant. Construct with spot welds or rivets. Button-punch fabrication prohibited.
- 2. Fiberglass Duct: Straight pattern sheet metal spin-in fitting designed for connection to fiberglass ductwork volume damper, and locking quadrant. Construct with spot welds or rivets. Button-punch fabrication prohibited.
- G. Duct Sealer: United; Duro Dyne, S-2; 3M, EC900; Atlas, Multi-Purpose.
- H. Duct Tape for Sheet Metal: ARNO, C520; United; Duro Dyne; Nashua.
- I. Tape and Adhesive/Activator System for Sheet Metal: Hardcast.
- J. Turning Vane Assemblies:
 - 1. Sheet Metal Vanes: Multiple radius hollow vane air foil type 2-inch (small vane) or 4 1/2-inch (large vane) inside radius, galvanized steel construction.
 - 2. Runners: Push-on type.
 - 3. Acoustical Vanes: Multiple radius air foil type, perforated steel construction with fiberglass fill. AirSan Acoustiturn.

K. Access Doors:

- 1. Acceptable Manufacturers: Air Balance; Ruskin; Metco; Durodyne; Cesco; Nailor-Hart.
- 2. Doors shall be complete with steel frame, steel door with backing plate, cam latches (two on units 14-inch by 14-inch and larger), hinge and gasketing. Doors on insulated or lined ducts shall be insulated.
- 3. Size:

<u>Duct Width or Duct Diameter</u>	Net Access Door Opening
Up to 8"	6" x 6"
9" to 12"	8" x 8"
13" to 20"	12" x 12"

21" to 30"	16" x 14"
31" to 42"	18" x 14"
Over 42"	Two 16" x 14"

L. Backdraft Dampers:

- 1. Acceptable Manufacturers: Air Balance; Ruskin; Cesco; Advanced Air; Nailor-Hart.
- 2. Description: Gravity operated, vinyl edged, metal bladed backdraft dampers.
- M. Drip Pans: Provide Type 304 stainless steel drip pans for cooling coils.
- N. Louver Blank-Off Panels: At air intake or exhaust louvers which are only partially active area, blank off inactive area with sheet metal closure panels caulked airtight, secured to louver frame and insulated with 2-inch rigid fiberglass insulation in accordance with Section 230719, HVAC Insulation.

2.3 COMBINATION FIRE/SMOKE DAMPERS

- A. Acceptable Manufacturers: Where Ruskin is the only manufacturer indicated, equivalent products by Air Balance, Inc.; Prefco; National Controlair; Nailor Hart; Safeair; or equal may be furnished.
- B. Combination Smoke and Fire Dampers (FSD): Multiblade damper with linkage, extended control rod, damper end switch and damper operator with 1-1/2 hour UL Fire Damper Label. Provide round or oval duct connections where required. Operator shall be factory-installed, electric type, 120V with spring return to closed position. Stall type motors are not acceptable. Ruskin Model FSD-36 or equal, for low pressure ductwork. Ruskin Models FSD-60 or FSDR-25 with airfoil shape blades for medium pressure ductwork.

2.4 AIR FLOW STATION (DUCT-MOUNTED AND FAN INLET)

- A. General: Electronic air measuring system consisting of thermistor based sensor probes and microprocessor based electronics.
- B. Acceptable Manufacturers: Ebtron, Duct-Mounted XP000 Series, Fan Inlet XF000 Series; Kurz; or pre-bid approved equal.
- C. SensorProbes: Thermistors probes and linear ICs, aluminum casing, duct-mounted, wiring Teflon or Kynar coated and encased, -20°F to 160°F operating range, weather resistant finish, flanged welded aluminum frame.
- D. Microprocessor and Electronics: Solid state microprocessor, permanent non-volatile memory, regulated power supply, software-based system. 0-5 vdc, 0-10 vdc, or 4-20 mA signals, linear flow and temperature outputs, line surge and transient protection.
- E. Performance: ±2 percent, +20 FPM across total calibrated range of 0 to 5000 FPM for duct-mounted, 0-10,000 FPM for fan inlet-mounted, repeatability better than ±0.4 percent of reading. Pressure drop shall not exceed 0.005-inch W.G. at 2000 fpm.

2.5 AIRFLOW STATION (FAN INLET)

- A. Acceptable Manufacturers: Air Monitor VOLU-probe/FI; Paragon; Pace; or pre-bid approved equal.
- B. Fan inlet airflow traverse probe, multiple total and static pressure sensors placed at concentric area centers along exterior surface of cylindrical probe, internally connected to averaging manifolds.
- C. Dual end support swivel brackets suitable for mounting in fan inlet bell, aluminum construction, hard anodized finish.
- D. Probes shall be capable of producing steady, non-pulsating signals of standard total and static pressure, without need for flow corrections or factors with an accuracy of 3 percent of actual flow over a fan operating range of 6 to 1 capacity turndown.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install all devices in accordance with the manufacturer's recommendations.
- B. Install medium pressure duct accessories in accordance with Section 233114, Medium Pressure Ductwork.
- C. Install low pressure duct accessories in accordance with Section 233113, Low Pressure Ductwork.
- D. Combination Fire/Smoke Dampers:
 - 1. Install dampers in accordance with NFPA 90A and the manufacturer's recommendations.
 - 2. Size and locate dampers as shown on the drawings.
 - 3. Where dampers are not accessible for servicing by removing an outlet, provide access doors for servicing. Doors shall be compatible with the duct in which they are installed.
- E. Access Doors: Install where indicated and at all automatic control dampers, fire dampers, and air flow stations to provide access for cleaning and maintenance.
- F. Back Draft Dampers: Install where indicated and at the discharge (or inlet) of exhaust fans where automatic dampers are not indicated.
- G. Automatic Dampers: Install in accordance with Section 230900, Instrumentation and Controls of HVAC Systems. Coordinate damper operators with Section 230900.
- H. Louver Blank-Off Panels: Install blank-off panels on unused portions of louvers.
- I. Airflow Station (Duct-Mounted): Install grid array in ductwork where indicated. Provide gasket between frame and duct. Mount electronic components in nearest temperature control panel. Install in accordance with the manufacturer's instructions.

J. Airflow Station (Fan Inlet): Install in fan inlet bell in accordance with the manufacturer's instructions.

3.2 TESTING

1. Check out, start up, and test systems, equipment, and components specified herein.

END OF SECTION 233300

SECTION 233423 - HVAC POWER VENTILATORS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Ceiling-mounted ventilators.
- 2. Centrifugal ventilators roof downblast.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings:
 - 1. Include plans, elevations, sections, and attachment details.
 - 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 3. Include diagrams for power, signal, and control wiring.
 - 4. Design Calculations: Calculate requirements for selecting vibration isolators and seismic restraints.
- C. Delegated-Design Submittal: For unit hangars and supports indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 - 1. Design Calculations: Calculate requirements for selecting vibration isolators and seismic restraints and for designing vibration isolation bases.

1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Floor plans, reflected ceiling plans, and other details, or BIM model, drawn to scale and coordinated with all building trades.
- B. Seismic Qualification Data: For fans, accessories, and components, from manufacturer.
- C. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design vibration isolation and seismic restraints, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

2.2 CEILING-MOUNTED VENTILATORS

- A. Housing: Steel, lined with acoustical insulation.
- B. Fan Wheel: Centrifugal wheels directly mounted on motor shaft. Fan shrouds, motor, and fan wheel removable for service.
- C. Back-draft damper: Integral.
- D. Grille: Plastic Aluminum, louvered grille with flange on intake and thumbscrew or spring retainer attachment to fan housing.
- E. Electrical Requirements: Junction box for electrical connection on housing and receptacle for motor plug-in.

F. Accessories:

- 1. Variable-Frequency Motor Controller: Solid-state control to reduce speed from 100 to less than 50 percent.
- 2. Manual Starter Switch: Single-pole rocker switch assembly with cover and pilot light.
- 3. Time-Delay Switch: Assembly with single-pole rocker switch, timer, and cover plate.
- 4. Motion Sensor: Motion detector with adjustable shutoff timer.
- 5. Ceiling Radiation Damper: Fire-rated assembly with ceramic blanket, stainless steel springs, and fusible link.
- 6. Filter: Washable aluminum to fit between fan and grille.
- 7. Isolation: Rubber-in-shear vibration isolators.
- 8. Manufacturer's standard roof jack or wall cap, and transition fittings.

2.3 CENTRIFUGAL VENTILATORS - ROOF DOWNBLAST

- A. Housing: Downblast; removable spun-aluminum dome top and outlet baffle; square, one-piece aluminum base with venturi inlet cone.
- B. Fan Wheels: Aluminum hub and wheel with backward-inclined blades.

C. Belt Drives:

- 1. Resiliently mounted to housing.
- 2. Fan Shaft: Turned, ground, and polished steel; keyed to wheel hub.
- 3. Shaft Bearings: Permanently lubricated, permanently sealed, self-aligning ball bearings.
- 4. Fan Pulleys: Cast iron or cast steel with split, tapered bushing; dynamically balanced at factory.
- 5. Motor Pulleys: Adjustable pitch for use with motors through 5 hp. Select pulley so pitch adjustment is at the middle of adjustment range at fan design conditions. Provide fixed pitch for use with motors larger than 5 hp.
- 6. Fan and motor isolated from exhaust airstream.

D. Accessories:

- 1. Variable-Frequency Motor Controller: Solid-state control to reduce speed from 100 to less than 50 percent.
- 2. Disconnect Switch: Nonfusible type, with thermal-overload protection mounted outside fan housing, factory wired through an internal aluminum conduit.
- 3. Bird Screens: Removable, 1/2-inch mesh, aluminum or brass wire.
- 4. Dampers: Counterbalanced, parallel-blade, backdraft dampers mounted in curb base; factory set to close when fan stops.
- 5. Motorized Dampers: Parallel-blade dampers mounted in curb base with electric actuator; wired to close when fan stops.
- 6. Spark-resistant, all-aluminum wheel construction.
- 7. Mounting Pedestal: Galvanized steel with removable access panel.
- E. Prefabricated Roof Curbs: Galvanized steel; mitered and welded corners; 1-1/2-inch- thick, rigid, fiberglass insulation adhered to inside walls; and 1-1/2-inch wood nailer. Size as required to suit roof opening and fan base.
 - 1. Configuration: Self-flashing without a cant strip, with mounting flange Built-in cant and mounting flange.
 - 2. Overall Height: 12.
 - 3. Hinged sub-base to provide access to damper or as cleanout for grease applications.
 - 4. Metal Liner: Galvanized steel.
 - 5. Mounting Pedestal: Galvanized steel with removable access panel.

2.4 MOTORS

- A. Comply with NEMA designation, temperature rating, service factor, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
 - 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.

2.5 SOURCE QUALITY CONTROL

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by an NRTL, and marked for intended location and application.
- B. AMCA Certification: Fans shall comply with AMCA 11 and bear the AMCA-Certified Ratings Seal.
- C. Fan Sound Ratings: Comply with AMCA 311, and label fans with the AMCA-Certified Ratings Seal. Sound ratings shall comply with AMCA 301. The fans shall be tested according to AMCA 300.
- D. Fan Performance Ratings: Comply with AMCA 211 and label fans with AMCA-Certified Rating Seal. The fans shall be tested for air performance flow rate, fan pressure, power, fan efficiency, air density, speed of rotation, and fan efficiency according to AMCA 210/ASHRAE 51.
- E. Operating Limits: Classify according to AMCA 99.
- F. UL Standards: Power ventilators shall comply with UL 705. Power ventilators for use for restaurant kitchen exhaust shall also comply with UL 762.

PART 3 - EXECUTION

3.1 INSTALLATION OF HVAC POWER VENTILATORS

- A. Install power ventilators level and plumb.
- B. Equipment Mounting:
 - 1. Comply with requirements for vibration isolation devices specified in Section 230548.13 "Vibration Controls for HVAC."
- C. Secure roof-mounted fans to roof curbs with zinc-plated hardware. See Section 077200 "Roof Accessories" for installation of roof curbs.
- D. Ceiling Units: Suspend units from structure; use steel wire or metal straps.
- E. Install units with clearances for service and maintenance.
- F. Label units according to requirements specified in Section 230553 "Identification for HVAC Piping and Equipment."

3.2 DUCTWORK CONNECTIONS

A. Drawings indicate general arrangement of ducts and duct accessories. Make final duct connections with flexible connectors. Flexible connectors are specified in Section 233300 "Air Duct Accessories."

3.3 ELECTRICAL CONNECTIONS

- A. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
- B. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."
- C. Install electrical devices furnished by manufacturer, but not factory mounted, according to NFPA 70 and NECA 1.
 - 1. Nameplate shall be laminated acrylic or melamine plastic signs, as specified in Section 260553 "Identification for Electrical Systems."
 - 2. Nameplate shall be laminated acrylic or melamine plastic signs with a black background and engraved white letters at least 1/2 inch high.

3.4 CONTROL CONNECTIONS

- A. Install control and electrical power wiring to field-mounted control devices.
- B. Connect control wiring according to Section 260523 "Control-Voltage Electrical Power Cables."

3.5 FIELD QUALITY CONTROL

- A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.
- B. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- C. Perform tests and inspections.
- D. Tests and Inspections:
 - 1. Verify that shipping, blocking, and bracing are removed.
 - 2. Verify that unit is secure on mountings and supporting devices and that connections to ducts and electrical components are complete. Verify that proper thermal-overload protection is installed in motors, starters, and disconnect switches.
 - 3. Verify that there is adequate maintenance and access space.
 - 4. Verify that cleaning and adjusting are complete.
 - 5. Disconnect fan drive from motor, verify proper motor rotation direction, and verify fan wheel free rotation and smooth bearing operation. Reconnect fan drive system, align and adjust belts, and install belt guards.
 - 6. Adjust belt tension.
 - 7. Adjust damper linkages for proper damper operation.
 - 8. Verify lubrication for bearings and other moving parts.
 - 9. Verify that manual and automatic volume control and fire and smoke dampers in connected ductwork systems are in fully open position.
 - 10. Disable automatic temperature-control operators, energize motor and adjust fan to indicated rpm, and measure and record motor voltage and amperage.

- 11. Shut unit down and reconnect automatic temperature-control operators.
- 12. Remove and replace malfunctioning units and retest as specified above.
- E. Test and adjust controls and safeties. Controls and equipment will be considered defective if they do not pass tests and inspections.
- F. Prepare test and inspection reports.

3.6 ADJUSTING

- A. Adjust damper linkages for proper damper operation.
- B. Adjust belt tension.
- C. Comply with requirements in Section 230593 "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing procedures.
- D. Replace fan and motor pulleys as required to achieve design airflow.
- E. Lubricate bearings.

3.7 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain centrifugal fans.

END OF SECTION 233423

SECTION 233600 - AIR TERMINAL UNITS

PART 1 - GENERAL

1.1 SUMMARY

A. Related Documents:

- 1. Drawings and general provisions of the Subcontract apply to this Section.
- 2. Review these documents for coordination with additional requirements and information that apply to work under this Section.

B. Section Includes:

- 1. Constant volume terminal units.
- 2. Variable volume terminal units.
- 3. Dual duct terminal units.
- 4. Fan powered terminal units.
- 5. Variable volume regulators.
- 6. Integral sound attenuator.
- 7. Integral heating coils.
- 8. Integral damper motor operators.
- 9. Integral controls.

C. Related Sections:

- 1. Division 01 Section "General Requirements."
- 2. Division 01 Section "Special Procedures."
- 3. Division 23 Section "Common Motor Requirements for HVAC Equipment".
- 4. Division 23 Section "Hydronic Piping" for connections to heating coils.
- 5. Division 23 Section "Hydronic Specialties" for connections to heating coils.
- 6. Division 23 Section "Metal Ducts".
- 7. Division 23 Section "Metal Ducts Fittings" for backdraft dampers.
- 8. Division 23 Section "Air Outlets and Inlets".
- 9. Division 23 Section "Instrumentation and Control Devices for HVAC" for thermostats and control components.

D. Products Furnished But Not Installed Under This Section:

- 1. Thermostats and control components.
- E. Products Installed But Not Furnished Under This Section:
 - 1. Owner furnished air terminal units (excess stock).

1.2 REFERENCES

A. General:

AIR TERMINAL UNITS 233600 - 1

- 1. The following documents form part of the Specifications to the extent stated. Where differences exist between codes and standards, the one affording the greatest protection shall apply.
- 2. Unless otherwise noted, the referenced standard edition is the current one at the time of commencement of the Work.
- 3. Refer to Division 01 Section "General Requirements" for the list of applicable regulatory requirements.
- 4. Refer to Division 23 Section "Common Results for HVAC" for codes and standards, and other general requirements.
- B. NFPA 90A Installation of Air Conditioning and Ventilation Systems.
- C. UL 181 Factory-Made Air Ducts and Connectors.
- D. ADC 1062 Air Distribution and Control Device Test Code.

1.3 SUBMITTALS

- A. Submit under provisions of Division 23 Section "Common Results for HVAC, Review of Materials and Division 01 Section "General Requirements."
- B. Submit shop drawings indicating configuration, general assembly, and materials used in fabrication.
- C. Submit product data indicating configuration, general assembly, and materials used in fabrication. Include catalog performance ratings which indicate air flow, static pressure, and NC designation.
- D. Include schedules listing discharge and radiated sound power level for each of second through sixth octave bands at inlet static pressures of one to 4 inch wg (250 to 1000 Pa).
- E. Submit manufacturer's installation instructions.
- F. Operation and Maintenance Data:
 - 1. Include manufacturer's descriptive literature, operating instructions, maintenance and repair data, and parts lists.
 - 2. Include directions for resetting constant volume regulators.
- G. LEED Submittals:
 - 1. Product Data for Prerequisite EQ 1: Documentation indicating that units comply with ASHRAE 62.1-2004, Section 5 "Systems and Equipment."

1.4 QUALITY ASSURANCE

A. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1-2004, Section 5 - "Systems and Equipment" and Section 7 - "Construction and Startup."

AIR TERMINAL UNITS 233600 - 2

1.5 WARRANTY

- A. Provide one year manufacturer's warranty.
- B. Warranty: Include coverage of system powered control systems. operating controls. electric motors.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Titus
- B. Price
- C. Kruger
- D. Substitutions: Under provisions of Division 01 Section "General Requirements."

2.2 MANUFACTURED UNITS

- A. Ceiling mounted variable air volume fan powered supply air control terminals for connection to single medium pressure duct.
- B. Identify each airflow unit with clearly marked identification label and airflow indicator. Label shall include unit nominal air flow, maximum factory set air flow, minimum factory set air flow, and coil type.

2.3 FABRICATION

- A. A.Casings: 0.034-inch steel.
- B. Lining: Minimum 1/2 inch thick neoprene or vinyl coated fibrous glass insulation, 1.5 lb/cu ft density, meeting NFPA 90A requirements and UL 181 erosion requirements. Line attenuator sections with 2 inch thick insulation.
- C. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1-2004.
- D. Assembly: Air volume damper, fans, and controls in single cabinet.
- E. Plenum Air Inlets: Round stub connections for duct attachment.
- F. Mixing Sections: Multiple deflection baffles designed for mixing air with minimum pressure loss.

2.4 VOLUME DAMPER

AIR TERMINAL UNITS

- A. Locate air volume damper and automatic flow control assembly inside unit casing. Construct from extruded aluminum or 20 gage (0.9 mm) galvanized steel components. Key damper blades into shaft with nylon fitted pivot points.
- B. Automatic flow control assembly shall combine spring rates matched for each volume regulator size with machined dashpot for stable operation.
- C. Mount manually operated damper quadrant or automatic damper operator, and automatic flow control assembly externally or provide access doors.
- D. Air volume control damper shall be factory calibrated assembly consisting of damper and damper shaft extension for connection to externally mounted control actuator.
- E. Externally mounted electric actuator shall position damper normally open as indicated.
- F. Provide self-contained system-air powered bellows section consisting of polypropylene bellows actuating pivot drive plate mechanically linked to extruded aluminum damper, with nylon fitted pivot points. Polypropylene material shall perform at temperatures of 0 to 140 degrees F and be impervious to moisture and fungus. Design bellows for 10 inches static pressure and factory check for leaks.

2.5 HEATING COILS

A. Electric Heating Coil: Slip-in type, open coil design, factory wired and installed, and equipped with primary and secondary over-temperature protection, integral control box with built-in magnetic contactors, minimum airflow switches, and relays, UL listed.

2.6 FAN ASSEMBLY

- A. Forward curved centrifugal type fan with direct drive permanent split capacitor type, thermally protected motor. Refer to Division 23 Section "Common Motor Requirements for HVAC Equipment".
- B. Provide infinitely adjustable speed control with electric/pneumatic and electronic controls.
- C. Internally suspend and isolate fan/motor assembly from casing on rubber isolators.

2.7 WIRING

- A. Factory mount and wire controls. Mount electrical components in control box with removable cover. Incorporate single point electrical connection to power source.
- B. Factory mount transformer for control voltage on electric and electronic control units. Provide terminal strip in control box for field wiring of thermostat and power source.
- C. Factory wire fan to terminal strip.
- D. Provide unfused disconnect.

2.8 CONTROLS

- A. Automatic Damper Operator:
 - 1. Operate: Air volume damper.
 - 2. Electric Actuator: 24 volt.
- B. Thermostat: Wall-mounted electric type with appropriate mounting hardware.
- C. System Powered Controls:
 - 1. Suitable for operation with duct pressures between 0.25 and 3.0 inches static pressure.
 - 2. Factory mounted and piped 5 micron filter, velocity resetting adjustable high limit control and amplifying relay.
 - 3. Aspiring wall mounted thermostats.
 - 4. Mount controls in sheet metal enclosure on unit.
 - 5. Provide morning warmup control to sense duct temperature and control unit at maximum airflow during heating mode.

2.9 FAN POWERED UNIT CONTROLS

- A. Electronic Controls: Contain in NEMA-1 enclosure with access panel sealed from air flow and mounted on side of unit. Factory mount controls and thermostat to accomplish the following specified sequence of operation.
- B. Electronic Control, Central System Fan "On" Occupied Mode:
 - 1. When duct pressure is sensed indicating primary air system operating, thermostat and primary variable volume damper proportions air flow from central system.
 - 2. As thermostat senses reduced cooling demand, volume damper closes. At field adjustable point, unit fan is energized. As cooling demand continues to fall, volume damper closes and fan speed increases.
 - 3. If central duct system pressure varies, volume damper maintains constant primary air flow.
 - 4. As thermostat senses no cooling, control system closes volume damper. Before heating is initiated, control enters field adjustable no load band. On sensing need for heat, heating coil is energized proportionally.
- C. Electronic Control, Central System Fan "Off" Unoccupied Mode:
 - 1. Provide field adjustable temperature setback. On need for heat, terminal unit fan and heating coil are energized.
 - 2. Hold volume damper closed.

2.10 TESTS

- A. Provide testing of units under provisions of Division 01 Section "General Requirements."
- B. Test run fan/motor combinations, volume dampers and controls. Check sequence of operation and air flow limits corrected for project altitude at factory prior to shipment.
- C. Base performance on tests conducted in accordance with ADC 1062.

- D. D.Automatic flow controller shall be capable of maintaining air flow to within 5 percent of set point with inlet static pressure variations up to 2 inches.
- E. Maximum Casing Leakage: 2 percent of design air flow at rated inlet static pressure.
- F. Maximum Damper Leakage: 2 percent of design air flow at one inch inlet static pressure.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install in accordance with manufacturer's instructions.
- B. Provide ceiling access doors or locate units above easily removable ceiling components.
- C. Support units individually from structure. Do not support from adjacent ductwork.
- D. Connect to ductwork in accordance with Division 23 Section "Air Coils".
- E. Provide minimum of feet of 1 inch 2 thick lined ductwork downstream of units.
- F. Install heating coils in accordance with Division 23 Section "Air Coils".

3.2 ADJUSTING

A. Reset volume with damper operator attached to assembly allowing flow range modulation from 100 percent of design flow to 20 percent full flow. Set units with heating coils for minimum 50 percent full flow.

3.3 TERMINAL UNIT SCHEDULE

- A. Drawing Code:
 - 1. Location
 - 2. Minimum/Maximum Minimum
 - 3. Coil Airflow:
 - 4. Static Pressure:
 - 5. Heat Output:
- B. Size:
- C. Air Flow Range:
 - 1. Minimum:
 - 2. Maximum:
- D. Sound Power dB
 - 1. @ 1.5 inch:
 - 2. Static Pressure:

E. Radiated:

- 2nd Octave: 1.
- 2. 3rd Octave:
- 3. 4th Octave:
- 5th Octave: 4.
- 5. 6th Octave:
- 6. Noise Criterion:

F. Discharge:

- 1. 2nd Octave:
- 2. 3rd Octave:
- 3. 4th Octave:
- 5th Octave: 4.
- 5. 6th Octave:
- Noise Criterion: 6.

G. Coil at Minimum Air

- Heat Output: 1.
- Entering Air Temp: Air Temp Rise: 2.
- 3.
- Number of Rows: 4.
- Entering Water Temp: 5.
- Leaving Water Temp: Electric Input: 6.
- 7.

END OF SECTION 233600

233600 - 7 AIR TERMINAL UNITS

SECTION 233713.23 - REGISTERS AND GRILLES

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Adjustable blade face registers and grilles.
- 2. Fixed face registers and grilles.

B. Related Requirements:

- 1. Section 233300 "Air Duct Accessories" for fire and smoke dampers and volume-control dampers not integral to registers and grilles.
- 2. Section 233713.13 "Air Diffusers" for various types of air diffusers.
- 3. Section 233713.43 "Security Registers and Grilles" for security registers and security grilles.
- 4. Section 233716 "Fabric Air-Diffusion Devices" for continuous tubular diffusers.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

PART 2 - EXECUTION

2.1 INSTALLATION

- A. Install registers and grilles level and plumb.
- B. Outlets and Inlets Locations: Drawings indicate general arrangement of ducts, fittings, and accessories. Air outlet and inlet locations have been indicated to achieve design requirements for air volume, noise criteria, airflow pattern, throw, and pressure drop. Make final locations where indicated, as much as practical. For units installed in lay-in ceiling panels, locate units in the center of panel. Where architectural features or other items conflict with installation, notify Architect for a determination of final location.
- C. Install registers and grilles with airtight connections to ducts and to allow service and maintenance of dampers, air extractors, and fire dampers.

2.2 ADJUSTING

- A. After installation, adjust registers and grilles to air patterns indicated, or as directed, before starting air balancing.
- B. END OF SECTION 233713.23

SECTION 233716 - FABRIC AIR-DISTRIBUTION DEVICES

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes continuous, tubular, fabric air-distribution devices.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: For fabric air-distribution devices.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

2.2 PERFORMANCE REQUIREMENTS

- A. Continuous tubular diffuser materials shall be listed and labeled as complying with UL 2518, UL 723, NFPA 90A, and NFPA 90B.
- B. Air permeability of fabric will comply with ASTM D737.

2.3 CONTINUOUS TUBULAR DIFFUSERS

A. Description:

- 1. Fabric: Woven polyethylene polyester, anti-microbial polyester, vinyl coated polyester, anti-static polyester, high-temperature fiberglass, permeable polyester.
- 2. Shape: Round.
- 3. Air-Outlet Configuration: Permeable fabric.
- 4. Air-Outlet Configuration: Lengthwise mesh.
- 5. Air-Outlet Configuration: Lengthwise hole pattern; with diffusion-hole.
- 6. Air-Outlet Configuration: Periodic nozzles.
- 7. Air-Outlet Configuration: Linear vents.
- B. Duct Connection Type: Round worm-gear band, radial securing clips, or zipper.

C. Accessories:

- 1. Quick-connect joint.
- 2. Snap hooks.

- 3. Cleanout zipper.
- 4. Condensate drain.
- 5. Fabric damper.
- 6. End cap.
- 7. Draw cords.
- 8. Removable support hoops.
- 9. Elbows.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Drawings indicate general arrangement of ducts, fittings, and accessories. Air outlet locations have been indicated to achieve design requirements for air volume, noise criteria, airflow pattern, throw, and pressure drop. Make final locations where indicated, as much as practical. Where architectural features or other items conflict with installation, notify Architect for a determination of final location.

END OF SECTION 233716

SECTION 235123 - GAS VENTS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes: Listed double-wall vents.

B. Related Requirements:

- 1. Section 235113.11 "Draft Control Fans" for draft inducer fans, venturi-draft inducer fans, mechanical-draft vent fans, vent exhaust fans, and combustion-air fans.
- 2. Section 235113.16 "Vent Dampers" for motorized and barometric dampers.
- 3. Section 235116 "Fabricated Breechings and Accessories" for listed, refractory-lined metal breechings and field-fabricated metal breechings.
- 4. Section 235133 "Insulated Sectional Chimneys" for listed chimney liners; listed building-heating-appliance chimneys; listed, refractory-lined metal chimneys; and field-fabricated chimneys.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: For vents.
 - 1. Include plans, elevations, sections, and attachment details.
 - 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 3. Detail fabrication and assembly of hangers and seismic restraints.

1.3 QUALITY ASSURANCE

- A. Welding Qualifications: Qualify procedures and personnel according to the following:
 - 1. AWS D1.1/D1.1M, "Structural Welding Code Steel," for hangers and supports.
 - 2. AWS D9.1/D9.1M, "Sheet Metal Welding Code," for shop and field welding of joints and seams in vents.
- B. Certified Sizing Calculations: Manufacturer shall certify venting system sizing calculations.

GAS VENTS 235123 - 1

PART 2 - PRODUCTS

2.1 LISTED TYPE B AND BW VENTS

- A. Description: Double-wall metal vents tested according to UL 441 and rated for 480 deg F continuously for Type B or 550 deg F continuously for Type BW; with neutral or negative flue pressure complying with NFPA 211.
- B. Construction: Inner shell and outer jacket separated by at least a 1/4-inch (6-mm) airspace.
- C. Inner Shell: ASTM B209, Type 1100 aluminum ASTM B209, Type 3003 aluminum ASTM B209, Type 3105 aluminum.
- D. Outer Jacket: Galvanized steel.
- E. Accessories: Tees, elbows, increasers, draft-hood connectors, terminations, adjustable roof flashings, storm collars, support assemblies, thimbles, firestop spacers, and fasteners; fabricated from similar materials and designs as vent-pipe straight sections; all listed for same assembly.
 - 1. Termination: Stack cap designed to exclude minimum 90 percent of rainfall.
 - 2. Termination: Exit cone with drain section incorporated into riser.
 - 3. Termination: Antibackdraft.

PART 3 - EXECUTION

3.1 APPLICATION

A. Listed Type B and BW Vents: Vents for certified gas appliances.

3.2 INSTALLATION OF LISTED VENTS

- A. Comply with minimum clearances from combustibles and minimum termination heights according to product listing or NFPA 211, whichever is most stringent.
- B. Seal between sections of positive-pressure vents according to manufacturer's written installation instructions, using sealants recommended by manufacturer.
- C. Support vents at intervals recommended by manufacturer to support weight of vents and all accessories, without exceeding appliance loading.
- D. Lap joints in direction of flow.
- E. After completing system installation, including outlet fittings and devices, inspect exposed finish. Remove burrs, dirt, and construction debris, and repair damaged finishes.

END OF SECTION 235123

GAS VENTS 235123 - 2

SECTION 237413 - PACKAGE OUTDOOR CENTRAL STATION AIR HANDLER UNIT

PART 1 - GENERAL

1.1 SUBMITTALS

- A. Product Data: Include manufacturer's technical data for each RTU, including rated capacities, dimensions, required clearances, characteristics, furnished specialties, and accessories.
- B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 1. Wiring Diagrams: Power, signal, and control wiring.
- C. Operation and maintenance data.
- D. Warranty.

1.2 QUALITY ASSURANCE

A. ARI Compliance:

- 1. Comply with ARI 210/240 and ARI 340/360 for testing and rating energy efficiencies for RTUs.
- 2. Comply with ARI 270 for testing and rating sound performance for RTUs.

B. ASHRAE Compliance:

- 1. Comply with ASHRAE 15 for refrigerant system safety.
- 2. Comply with ASHRAE 33 for methods of testing cooling and heating coils.
- 3. Comply with ASHRAE/IESNA 90.1 for minimum efficiency of heating and cooling.
- C. NFPA Compliance: Comply with NFPA 90A and NFPA 90B.
- D. UL Compliance: Comply with UL 1995.
- E. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

1.3 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to replace components of RTUs that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period for Compressors: Manufacturer's standard, but not less than 5 years from date of Substantial Completion.
 - 2. Warranty Period for Gas Furnace Heat Exchangers: Manufacturer's standard, but not less than 10 years from date of Substantial Completion.

- 3. Warranty Period for Solid-State Ignition Modules: Manufacturer's standard, but not less than 1 years from date of Substantial Completion.
- 4. Warranty Period for Control Boards: Manufacturer's standard, but not less than 3 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.01 Manufacturer

- A. Carrier
- B. Trane
- C. Daiken

2.02 General Description

- A. Unit shall be factory assembled and tested including helium leak testing of the coils, pressure testing of the refrigeration circuit, and run testing of the completed unit. Run test report shall be supplied with the unit in the controls compartment's literature pocket.
- B. Unit shall have decals and tags to indicate lifting and rigging, service areas, and caution areas for safety and to assist service personnel.
- C. Unit components shall be labeled, including pipe stub outs, refrigeration system components, and electrical and controls components.
- D. Estimated sound power levels (dB) shall be shown on the unit ratings sheet.
- E. Installation, Operation, and Maintenance manual shall be supplied within the unit.
- F. Laminated color-coded wiring diagram shall match factory installed wiring and be provided in both point-to-point and ladder form and affixed to the interior of the control compartment's hinged access door.
- G. Unit nameplate shall be provided in two locations on the unit, affixed to the exterior of the unit and affixed to the interior of the control compartment's hinged access door.

2.03 Construction

A. All cabinet walls, access doors and roof shall be fabricated of rigid, impact resistant, double wall, high performance composite panels with G90 galvanized steel on both sides and a closed cell polyurethane foam interior core.

- B. Foam shall have a minimum density of 2 pounds/cubic foot and shall be tested in accordance with ASTM D-1929 for a minimum flash ignition temperature of 610°F.
- C. Panel deflection shall not exceed L/240 ratio at 125% of design static pressure, maximum 8 inches of positive or negative static pressure. Deflection shall be measured at the midpoint of the panel height and width.
- D. Cabinet leakage rate shall not exceed 1% when tested at 6 inches of static pressure.
- E. Insulation shall have an R-value of 13.
- F. All cabinet walls, access doors and roof shall have a thermal break with no metal path to inside to outside.
- G. Units with cooling coils shall include double sloped 304 stainless steel drain pans and a factory provided p-trap, for field installation.
- H. Roof of the air tunnel shall be sloped to provide complete drainage.
- I. Unit shall have rain break overhangs above access doors.
- J. Exterior paint finish shall be capable of withstanding at least 2500 hours, with no visible corrosive effects, when tested in a salt spray and fog atmosphere in accordance with ASTM B 117-95 test procedure.
- K. Access to filters, dampers, economizers, cooling coils, power exhaust and return blowers, controls, compressors, and heaters shall be through hinged access doors with quarter turn, zinc cast, lockable handles. Full length stainless steel piano hinges shall be included on the doors.
- L. All openings through the base pan of the unit shall have upturned flanges of at least 0.5 inches in height around the opening through the base pan.
- M. Unit shall include lifting lugs on the top of the unit.
- N. Unit shall include interior corrosion protection which shall be capable of withstanding at least 2500 hours, with no visible corrosive effects, when tested in a salt spray and fog atmosphere in accordance with ASTM B 117-95 test procedure. Air tunnel, blowers, dampers, and economizer shall all include the corrosion protection.

2.04 Electrical

- 1. Unit shall be provided with factory installed and factory wired, non-fused disconnect switch in the unit control panel.
- 2. Unit shall be provided with factory installed and factory wired 115V, 13 amp GFI outlet with outlet disconnect switch in the unit control panel.
- 3. Unit shall be provided with phase and brown out protection which shuts down all motors in the unit if the electrical phases are more that 10% out of balance on voltage, the voltage is more that 10% under design voltage, or on phase reversal.

2.05 Supply Blowers

- A. Unit shall include direct drive, unhoused, backward curved, plenum supply blower
- B. Blowers and motors shall be dynamically balanced and mounted on rubber isolators.
- C. Motors shall be premium efficiency ODP with ball bearings rated for 200,000 hours service with external lubrication points. Variable frequency drive(s) shall be factory wired and mounted in the unit.

2.06 Cooling Coils

A. Evaporator Coil(s)

- 1. Coils shall be designed for use with R-410A refrigerant and constructed of copper tubes with aluminum fins mechanically bonded to the tubes and galvanized steel end casings. Fin design shall be sine wave rippled.
- 2. Coils shall have interlaced circuitry and shall be 6 row high capacity.
- 3. Coils shall be helium leak tested.
- 4. Coil shall be furnished with a factory installed thermostatic expansion valve.

2.07 Refrigeration System

- A. Unit shall be factory charged with R-410A refrigerant.
- B. Compressors shall be scroll type with thermal overload protection, independently circuited, and carry a 5 year non-prorated warranty.

- C. Compressors shall be mounted in an isolated service compartment which can be accessed without affecting unit operation. Lockable hinged compressor access doors shall be fabricated of double wall, high performance composite panels with an R-value of 13 to prevent the transmission of noise outside the cabinet.
- D. Compressors shall be isolated from the base pan with the compressor manufacturer's recommended rubber vibration isolators, to reduce any transmission of noise from the compressor into the building area.
- E. Each refrigeration circuit shall be equipped with thermostatic expansion valve type refrigerant flow control.
- F. Each refrigeration circuit shall be equipped with automatic reset low pressure and manual reset high pressure refrigerant safety controls, Schrader type service fittings on both the high pressure and low pressure sides, and factory installed liquid line filter driers.
- G. Digital scroll compressors: Unit shall include a modulating capacity scroll compressor on the first refrigeration circuit which shall be capable of modulation from 10-100% of its capacity.

2.08 Condensers

A. Air-Cooled Condenser

- 1. Condenser fans shall be vertical discharge axial flow direct drive fans.
- 2. Coils shall be designed for use with R-410A refrigerant and constructed of copper tubes with aluminum fins mechanically bonded to the tubes and galvanized steel end casings. Fin design shall be sine wave rippled
- 3. Coils shall be designed for a minimum of 10 degrees of refrigerant sub-cooling.
- 4. Coils shall be helium leak tested.

2.09 Gas Heating

- A. Unit shall include a natural gas furnace with 2 or 4 stages of capacity.
- B. Aluminized steel heat exchanger furnaces shall carry a 15 year non-prorated warranty.

- C. Gas furnace shall consist of aluminized steel heat exchangers with multiple concavities, an induced draft blower, and an electronic pressure switch to lockout the gas valve until the combustion chamber is purged and combustion airflow is established.
- D. Furnace shall include a gas ignition system consisting of an electronic igniter to a pilot system, which will be continuous when the heater is operating, but will shut off the pilot when heating is not required.
- E. Unit shall have gas supply piping entrances in the unit base for through-the-curb gas piping and in the outside cabinet wall for across the roof gas piping.

2.10 Filters

- 1. Unit shall include a 2 inch thick, permanent filter frame with replaceable media, upstream of the cooling coil.
- 2. Unit shall include a clogged filter switch

2.11 Outside Air

1. Unit shall include 0-100% modulating damper consisting of a motor operated outside air damper and return air damper assembly constructed of extruded aluminum, hollow core, airfoil blades with rubber edge seals and aluminum end seals. Damper blades shall be gear driven and designed to have no more than 15 CFM of leakage per sq. ft. of damper area when subjected to 2 inches w.g. air pressure differential across the damper. Damper assembly shall be controlled by a (DDC) actuator. Unit shall include outside air opening bird screen, outside air hood with rain lip, and barometric relief dampers.

Unit shall be furnished with return air CO₂ override.

2.12 Controls

- A. Factory Installed and Factory Provided Controller
 - 1. Unit controller shall be capable of controlling all features and options of the unit. Controller shall be factory installed in the unit controls compartment and factory tested. Controller is configurable for standalone control or integrated third party control.
 - 2. A field installed supply air temperature sensor shall be furnished for installation by contractor.

- 3. Controller shall have an onboard clock and calendar functions that allow for occupancy scheduling.
- 4. Controller shall include non-volatile memory to retain all programmed values without the use of a battery, in the event of a power failure.
- 5. Controller shall contain diagnostics to indicate controller power, communications, unit alarms, and sensor failures.
- 6. Controller capable of the following:
 - a. Average up to 3 space temperature/humidity sensors
 - b. Interlock with up to 4 exhaust fans with incremental adjustable outside air damper positions
 - c. Minimum outside air damper with CO2 override
 - d. Control up to 2 heat reclaim stages

Inputs:

- 1) Heat 1 Mode Enable (HEAT RECLAIM)
- 2) Heat 2 Mode Enable (GAS HEAT ENABLE)
- 3) Cooling Mode Enable
- 4) Dehumidification Mode Enable
- 5) System Enable
- 6) Occupied
- 7) Outside air damper

Outputs:

- 8) Heating Fail
- 9) Cooling Fail
- 10) Airflow/fan Fail
- 11) Dirty Filter Alarm
- 12) Heat Reclaim Alarm
- 12) Heat Reclaim Enable Stage 1
- 13) Heat Reclaim Enable stage 2

2.14 Curbs

- A. Curbs shall to be fully gasketed between the curb top and unit bottom with the curb providing full perimeter support, cross structure support and air seal for the unit. Curb gasket shall be furnished within the control compartment of the rooftop unit to be mounted on the curb immediately before mounting of the rooftop unit
- B. Knockdown curb shall be factory furnished for field assembly.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Roof Curb: Install on roof structure or concrete base, level and secure, according to ARI Guideline B. Install RTUs on curbs and coordinate roof penetrations and flashing with roof construction specified in Division 07 Section "Roof Accessories." Secure RTUs to upper curb rail, and secure curb base to roof framing or concrete base with anchor bolts.
- B. Install condensate drain, minimum connection size, with trap and indirect connection to nearest roof drain or area drain.
- C. Install piping adjacent to RTUs to allow service and maintenance.
 - 1. Gas Piping: Comply with applicable requirements in Division 23 Section "Facility Natural-Gas Piping." Connect gas piping to burner, full size of gas train inlet, and connect with union and shutoff valve with sufficient clearance for burner removal and service.
- D. Duct installation requirements are specified in other Division 23 Sections. Drawings indicate the general arrangement of ducts. The following are specific connection requirements:
 - 1. Install ducts to termination at top of roof curb.
 - 2. Remove roof decking only as required for passage of ducts. Do not cut out decking under entire roof curb.
 - 3. Connect supply ducts to RTUs with flexible duct connectors specified in Division 23 Section "Air Duct Accessories."
 - 4. Install return-air duct continuously through roof structure.

3.2 FIELD QUALITY CONTROL

- A. Perform tests and inspections and prepare test reports.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing. Report results in writing.
- B. Tests and Inspections:
 - 1. After installing RTUs and after electrical circuitry has been energized, test units for compliance with requirements.
 - 2. Inspect for and remove shipping bolts, blocks, and tie-down straps.
 - 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 - 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- C. Remove and replace malfunctioning units and retest as specified above.

3.3 CLEANING AND ADJUSTING

After completing system installation and testing, adjusting, and balancing RTU and air-distribution systems, clean filter housings and install new filters.

END OF SECTION 238126

SECTION 238126 - SPLIT-SYSTEM AIR-CONDITIONERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General Conditions and Division 01 Specification Sections, apply to this Section.
- B. Specifications throughout all Divisions of the Project Manual are directly applicable to this Section, and this Section is directly applicable to them.

1.2 SUMMARY

- A. Provide split system air conditioning system consisting of indoor air handling/fan coil unit(s), outdoor condensing unit(s), refrigerant piping, fittings, valves and accessories, and controls.
- B. Perform all Work required to provide and install the factory assembled split-system air-conditioning and / or heat-pump system refrigerant piping, valves, filters driers, and any refrigerant specialties equipment such as suction accumulators, site glass, receivers, strainers, etc. as specified in this specification, indicated, or noted on the Owner's Contract Documents with supplementary items necessary for proper installation and testing and operation of the unit(s).

1.3 REFERENCE STANDARDS

- A. The latest published edition of a reference shall be applicable to this Project unless identified by a specific edition date.
- B. All reference amendments adopted prior to the effective date of this Contract shall be applicable to this Project.
- C. All materials, installation and workmanship shall comply with the applicable requirements and standards addressed within the following references:
 - 1. ANSI/AMCA Standard 205-12 Energy Efficiency Classification for Fans.
 - 2. ANSI/ARI 410 Forced Circulation Air-Cooling and Air-Heating Coils.
 - 3. ANSI/ARI 460 Remote Mechanical-Draft Air Cooled Refrigerant Condensers.
 - 4. ANSI/ARI 210/240 Unitary Air-Conditioning and Air-Source Heat Pump Equipment.
 - 5. ANSI/ARI 340-360 Commercial and Industrial Unitary Air-Conditioning and Heat Pump Equipment.
 - 6. ANSI/ARI 270 -Sound Rating of Outdoor Unitary Equipment.
 - 7. ANSI/ARI 365 Commercial and Industrial Unitary Air-Conditioning Condensing Unit(s)...
 - 8. ANSI/ARI 500-2000 Variable Capacity Positive Displacement Refrigerant Compressors and Compressor Unit(s). for Air Conditioners and Heat Pump Applications.

- 9. ANSI/ASHRAE 90.1 Energy Standard for Buildings Except Low-Rise Residential. Buildings.
- 10. ASHRAE 15 Safety Code for Mechanical Refrigeration.
- 11. NEMA MG 1 Motors and Generators.
- 12. NFPA 70 National Electrical Code
- 13. ASTM B280 Seamless Copper Tube for Air Conditioning and Refrigeration Field Service.
- 14. ASTM B117 Standard Practice for Operating Salt Spray (Fog) Apparatus.
- 15. NFPA 90A Standard for the Installation of Air Conditioning and Ventilating Systems.
- 16. AWS A5.8 Specification for Brazing Filler Metal.
- 17. ASME B31.5 Refrigeration Piping.
- 18. SMACNA HVAC Duct Construction Standards Metal and Flexible.

1.4 QUALITY ASSURANCE

- A. Manufacturer Qualifications: Company specializing in manufacturing the products specified in this Section with minimum three (3) years documented experience, who issues complete catalog data on total product.
- B. Provide capacity ratings with ARI certification. Energy Efficiency Rating (EER) and Coefficient of Performance (COP) not less than prescribed by ASHRAE 90.1 when used in combination with compressors and evaporator coils when tested in accordance with ARI Standards.
- C. Insulation shall be a flexible, closed-cell elastomeric pipe insulation AP Armaflex, AC Accoflex. Adhesive shall be Armaflex 520, 520 Black or 520 BLV Adhesive. The insulation must conform to ASTM C534 Grade 1, Type, and shall have a maximum thermal conductivity of 0.27 Btu-in./h-ft2-°F at a 75°F mean temperature as tested in accordance with ASTM C 177 or ASTM C 518.
- D. Insulation materials shall have a flame-spread index of less than 25 and a smoke-developed index of less than 50 as tested in accordance with ASTM E 84. In addition, the products, when tested, shall not melt or drip flaming particles, and the flame shall not be progressive.

1.5 SUBMITTALS

A. Product Data:

- 1. Provide literature that indicates dimensions, weights, and supply air fan performance such as capacity, brake horsepower, wheel type and finishes of materials. Submit electrical load characteristics, voltage, amperage, and rough-in connection requirements for electrical and refrigerant tubing.
- 2. Submit electrical requirements for power supply wiring including wiring diagrams for signal interlocks and control wiring, clearly indicating factory-installed and field-installed wiring.

B. Record Documents:

- 1. Electrical and refrigerant tubing drawings with noted seal procedures and sealant material products and product material data sheets.
- 2. Include manufacturer's install installation instructions.
- 3. Provide operation and maintenance manual.
- 4. Submit manufacturer's certificate that coils are tested in accordance with and rated in accordance with ARI 410.
- 5. Manufacturer's warranty form in which manufacturer agrees to repair or replace failed components, materials or workmanship within specified warranty period.

C. Operation and Maintenance Data

- 1. The contractor shall provide closeout documents for the unit(s) which includes emergency operation (if applicable), normal operating and maintenance (O&M) manuals, in addition to any field change documents that affect the operation or maintenance of the unit(s).
- 2. Permanently mount condensate trapping calculation instructions within the unit O&M Manual that illustrates the unit casing at the condensate drain connection.
- 3. Per the Manufacturer's Instructions: Provide Start-up information and maintenance required prior to Start-up of the unit(s).

1.6 DELIVERY, STORAGE and HANDLING

- A. Deliver, store, protect and handle products to the Project Site under provisions of Division 01 and Division 20.
- B. Accept products on site in factory-fabricated protective containers, with factory-installed shipping skids and lifting lugs. Inspect for damage and make any necessary replacement. If the damage can be repaired notify Owner for acceptance prior to preforming work. Any replacement or repair due to damage to a product will be at no expense to the Owner.
- C. Store in clean dry place and protect from weather and construction traffic. Handle carefully to avoid damage to components, enclosures, and finish.
- D. Protect openings in casing and seal them with plywood and plastic sheeting to keep dirt, debris moisture from entering the air handler and, also protect coils connections from entry of dirt and moisture with pipe caps or plugs.
- E. Protect all coils to avoid damage; if the coils are damage they shall be replaced.

1.7 WARRANTY

A. A minimum 5 year compressor warranty, 10 year warranty on condenser coil, and evaporator coil, 1 year parts and labor warranty on the rest of the system controls and components.

PART 2 - PRODUCTS

2.1 GENERAL

- A. All materials shall meet or exceed all applicable referenced standards, federal, state and local requirements, and conform to codes and ordinances of authorities having jurisdiction.
- B. Provide one refrigerant line filter drier and outside pressure taps in each refrigerant circuit on brazed tubing refrigerant piping systems.

2.2 manufacturers

- A. American Standard
- B. Trane
- C. York
- D. Daikin / McQuay
- E. Mitsubishi

2.3 AIR HANDLING / FAN COIL UNIT

- 1. Cabinet: Enameled steel with removable panels on front and ends in color selected by Architect, and discharge drain pans with drain connection.
- 2. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins and thermal-expansion valve. Comply with ARI 206/110.
- 3. Fan: Direct drive, centrifugal.
- 4. Fan Motors:
 - a. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
 - b. Multitapped, multispeed with internal thermal protection and permanent lubrication.
 - c. Enclosure Type: Totally enclosed, fan cooled.
 - d. NEMA Premium (TM) efficient motors as defined in NEMA MG 1.
 - e. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in electrical Sections.
 - f. Mount unit-mounted disconnect switches on exterior of unit.
- 5. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
- 6. Condensate Drain Pans:

- a. Fabricated with one percent slope in at least two planes to collect condensate from cooling coils (including coil piping connections, coil headers, and return bends) and to direct water toward drain connection.
- b. Single-wall, galvanized-steel sheet.
- c. Drain Connection: Located at lowest point of pan and sized to prevent overflow. Terminate with threaded nipple on one end of pan.

7. Air Filtration Section:

- a. General Requirements for Air Filtration Section:
 - 1) Comply with NFPA 90A.
 - 2) Minimum Arrestance: According to ASHRAE 52.1 and MERV according to ASHRAE 52.2.
 - 3) Filter-Holding Frames: Arranged for flat or angular orientation, with access doors on both sides of unit. Filters shall be removable from one side or lifted out from access plenum.

b. Disposable Panel Filters:

- 1) Factory-fabricated, viscous-coated, flat-panel type.
- 2) Thickness: 1 inch.
- 3) Arrestance according to ASHRAE 52.1: 80.
- 4) Merv according to ASHRAE 52.2: 5.
- 5) Frame: Galvanized steel, with metal grid on outlet side, steel rod grid on inlet side, and hinged; with pull and retaining handles.

2.4 cOILS

- A. Coils shall be comprised of aluminum fins mechanically bonded to copper tubes. If the cooling coils are used to cool mixed air (outside air and return air) the coil shall be comprised of copper fins mechanically bonded to copper tubes.
- B. Test all coils for maximum system design working pressure and or static pressure based on the type of refrigerant being used.
- C. Heating and cooling coils shall be sized as required to meet or exceed industry standards, capacities, and notes, on the Drawings.

2.5 air cooled condensing units

- A. Provide air cooled condensing units as scheduled. Units shall be self-contained, packaged, factory assembled and pre-wired suitable for outdoor use consisting of cabinet, compressors, condensing coil and fans, integral sub-cooling coil, controls, liquid receiver and screens.
- B. Provide corrosion resistant materials for unit parts which come in contact with refrigerant.

- C. Provide timer conduits to prevent rapid cycling of compressor.
- D. Fabricate cabinet from galvanized steel, equipped with removable access doors or panels with quick fasteners. The cabinet and framing shall be protected from environmental elements using a powder coat or epoxy paint finish capable of withstanding 500-hour salt spray exposure per ASTM B117.
- E. Compressor: Hermetically sealed scroll with capacity modulation type with positive lubrication, crank case heater, un-loader for capacity modulation, motor over load protection, service valves, filter drier, suction and discharge valves, with gauge ports, and high and low pressure safety controls.

F. Condenser:

- 1. Coils shall be made from seamless copper tubing with mechanically bonded aluminum fins and capable of withstanding 500-hour salt spray exposure per ASTM B117.
- 2. Provide condenser fans which discharge, vertically and that have direct drive fans resiliently mounted with guard and motor.
- G. Provide unit with high and low pressure cutouts for compressor, non-recycling pump down, reset relay and oil pressure safety control (7 1/2 ton units and larger).
- H. Provide anti-short cycle timer for loss of power conditions to protect the compressor.
- I.Low suction pressure cut out switch to reduce probability of pulling non condensable gases into the refrigerant system.

2.6 PipinG

A. Copper Tube and Fittings:

- 1. Drawn-Temper Copper Tube per ASTM B 280, Type ACR, clean, dry and capped.
- 2. Annealed-Temper Copper Tube per ASTM B 280, Type ACR, clean, dry and capped. Annealed copper tubing shall not be used for piping larger than 0.625 O.D.
- 3. Wrought-Copper Fittings: ASME B16.22.
- 4. Bronze Filler Metals: AWS A5.8, Classification BAg-7 (50% silver), BCuP5 (15% Silver).

PART 3 - EXECUTION

3.1 PREPARATION

- A. Coordinate layout and installation of refrigerant piping and piping suspension and support system components with other construction trades, including light fixtures, HVAC ducts and equipment, fire-suppression-system piping, equipment components, and fire and/or smoke partition assemblies.
 - 1. Coordinate pipe sleeve installations through wall or foundation penetrations.

- 2. Coordinate and verify core bores for conduit and pipe sleeve installations on existing facilities to preclude cutting rebar in the concrete floor or conduit supported directly on the bottom of the concrete floor.
- B. Verify the proper sleeve penetration detail is being applied prior to core boring or drilling for fire and or smoke wall partitions and floors.
- C. Assure refrigerant piping, valves and specialty items are stamped or certified to meet refrigerant design pressures for the following refrigerants.
 - 1. Select pipe, fittings, and components that have design pressure ratings per ASHRAE 15 but not less than the following system design pressures:

Refrigerant Type	Low Side (psig)	High Side (psig)
R-134a (Air Cooled)	115	225
R-410a (Air Cooled)	260	510

3.2 INSTALLATION

- A. Installation shall meet or exceed all applicable federal, state and local requirements, referenced standards and conform to codes and ordinances of authorities having jurisdiction.
- B. All installations shall be in accordance with manufacturer's recommendations:
 - 1. Air cooled condensing units shall have the proper clearance requirements that not only meet space requirements to permit proper air flow and for maintenance or removal needs.
 - 2. Air handling or fan-coil units should be located to allow full access to perform preventative and replacement maintenance which also includes space for coil removal. Units shall not be located above or near electrical panels or electronic control panels.
 - 3. Provide sufficient access space and install refrigerant valves, strainers, and driers at a height that is easily accessible for maintenance.
 - 4. Contractor shall furnish and maintain and replace clean pre-filter media in each air handling unit as listed in the equipment schedule on the Drawings during start-up and construction. The Contractor shall install the tagged set of new filter products provided by the air handling unit manufacturer for each unit after it has been tested, commissioned and receives final acceptance by the Owner.
 - 5. Condensate P-traps shall be properly sized for air handling unit design negative or positive static pressure based on relevant location of fan being upstream or downstream of the coil.
- C. Installation of refrigerant piping hangers and supports:
 - 1. Purging with 99.9% nitrogen gas must be used when brazing copper tubing, fittings, and valves. The brazing filler material is specified in piping section of this specification.
 - 2. Manufacturer's requirements must be followed when brazing specialty items and valves.

- 3. All piping shall be rigidly supported from the building structure by means of adjustable ring-type hangers. Unistrut® type trapeze hangers shall be used where pipes run side by side. Hanger spacing shall be as follows:
 - a. Horizontal:

Copper Piping	Maximum Spacing	
3/8-inch and under	4 feet	
1/2-inch through 3/4-inch	6 feet	
1 – inch through 1-1/2-inch	8' feet	
2 – inch through 1-1/2-inch	10' feet	

- b. Vertical copper piping shall be supported at 10 feet intervals maximum.
- c. Round rods supporting the pipe hangers shall be of the following dimensions:

Piping Diameter	Rod Diameter	
2-inch and under	3/8-inch	
2-1/2 to 3-inch	1/2-inch	

- d. Rods for trapeze hangers shall be minimum of 3/8 inch and shall have the equivalent cross section listed above per pipe supported. The use of pipe hooks, chains, perforated iron strapping or wire for pipe supports is not permitted.
- e. Insulated pipes shall be protected using galvanized steel shields similar to Grinnel Figure 167 or 360 or equal, galvanized steel shield by Pipe Shields Incorporated.
- f. Place a hanger within 1'-0" of each side for each horizontal elbow.
- g. Use hangers which are vertically adjustable 1-1/2" minimum after piping is erected.
- h. Use plastic coated straps on copper pipe.
- i. Where permitted by the A/E or Owner soft copper tubing shall be fastened to the building structure with Unistrut® type supports, Unistrut® type clamps and cushion inserts. Clamps shall not be spaced greater than 4'-0" apart.

3.3 TESTING

A. Leak Testing Requirements:

- 1. If the copper tubing is charged with refrigerant to connect the air cooled condensing unit with the air handler or fan coil unit use proper leak detection instruments to assure no refrigerant is leaking from the mechanical tube connections between the cooling coil and the condensing unit.
- 2. Brazed refrigerant copper tubing shall be evacuated using the deep vacuum method the system is thoroughly dry to ensure the system is thoroughly dry and free of non-condensibles and leaks.
 - a. A micron gauge with a range from 50 to 9,000 micron shall be used to read the vacuum reading.

- b. Evacuation is considered to be complete when a system holds an absolute vacuum at 500 microns for 20 minutes.
- B. Performance Testing:

Performance test shall be in accordance with manufacturer's pressure and temperature charts for entering air temperatures of the outside coil and inside coil including amperage and voltage readings, to assure the unit is operating properly.

END OF SECTION 238126

SECTION 238239- UNIT HEATERS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Cabinet unit heaters with centrifugal fans and electric-resistance heating coils.
- B. Propeller unit heaters with electric-resistance heating coils.
- C. Wall and ceiling heaters with propeller fans and electric-resistance heating coils.

1.2 RELATED WORK

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General mechanical requirements and items which are common to more than one section of Division 23.
- B. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC EQUIPMENT.
- C. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- D. Section 26 05 21, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW).
- E. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. National Fire Protection Association (NFPA):

7	0-2014	. National Electrical Code (NEC)
9	0A-2015	. Standard for the Installation of Air-Conditioning and
		Ventilating Systems

C. Underwriters Laboratories (UL):

499-2014..... Electric Heating Appliances

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 23 82 39, UNIT HEATERS", with applicable paragraph identification.

- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
- D. Product Data: Include rated capacities, operating characteristics, furnished specialties, and accessories for each type of product indicated.
- E. Complete operating and maintenance manuals including wiring diagrams, technical data sheets, information for ordering replacement parts, and troubleshooting guide:
 - 1. Include complete list indicating all components of the systems.
 - 2. Include complete diagrams of the internal wiring for each item of equipment.
 - 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
- F. Completed System Readiness Checklist provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- G. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

1.5 QUALITY ASSURANCE

A. Refer to paragraph QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

PART 2 - PRODUCTS

2.1 WALL AND CEILING HEATERS

- A. Description: Factory-packaged units constructed according to UL 499. An assembly including chassis, electric heating coil, fan, motor, and controls.
- B. Cabinet:
 - 1. Front Panel: Stamped steel louver, with removable panels fastened with tamperproof fasteners.
 - 2. Finish: Baked enamel over baked-on primer with color selected by Architect, applied to factory-assembled and factory-tested wall and ceiling heaters before shipping.
- C. Surface Mounted Cabinet Enclosure: Steel with finish to match cabinet.

- D. Electric-Resistance Heating Coil: Nickel-chromium heating wire, free from expansion noise and hum, embedded in magnesium oxide refractory and sealed in corrosion-resistant metallic sheath. Terminate elements in stainless steel, machine-staked terminals secured with stainless steel hardware, and limit controls for high temperature protection. Provide integral circuit breaker for overcurrent protection.
- E. Fan: Aluminum propeller directly connected to motor.
- F. Motor: Permanently lubricated. Comply with requirements in Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC EQUIPMENT.
- G. Controls: Unit-mounted thermostat. Low-voltage relay with transformer kit.
- H. Electrical Connection: Factory wire motors and controls for a single field connection with disconnect switch.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas to receive unit heaters for compliance with requirements for installation tolerances and other conditions affecting performance.
- B. Examine roughing-in for electrical connections to verify actual locations before unit heater installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install wall boxes in finished wall assembly; seal and weatherproof.
- B. Install cabinet unit heaters to comply with NFPA 90A.
- C. Install propeller unit heaters level and plumb.
- D. Suspend propeller unit heaters from structure with all-thread hanger rods and elastomeric hangers.

3.3 CONNECTIONS

- A. Ground electric convection heating units according to Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.
- B. Connect wiring according to Section 26 05 21, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW).

3.4 STARTUP AND TESTING

- A. Make tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with the system of which each item is an integral part.
- B. When any defects are detected, correct defects and repeat test at no additional cost or time to the Government.
- C. The Commissioning Agent will observe startup and contractor testing of selected equipment. Provide a minimum notice of 10 working days prior to startup and testing.

3.5 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- B. Components provided under this section of the specification will be tested as part of a larger system.

3.6 DEMONSTRATION AND TRAINING

A. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

END OF SECTION 238239

SECTION 260519 - LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Copper building wire rated 600 V or less.
- 2. Aluminum building wire rated 600 V or less.
- 3. Metal-clad cable, Type MC, rated 600 V or less.
- 4. Fire-alarm wire and cable.
- 5. Connectors, splices, and terminations rated 600 V and less.

B. Related Requirements:

- 1. Section 260513 "Medium-Voltage Cables" for single-conductor and multiconductor cables, cable splices, and terminations for electrical distribution systems with 601 to 35,000 V.
- 2. Section 260523 "Control-Voltage Electrical Power Cables" for control systems communications cables and Classes 1, 2, and 3 control cables.
- 3. Section 271500 "Communications Horizontal Cabling" for cabling used for voice and data circuits.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Product Schedule: Indicate type, use, location, and termination locations.

1.3 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

PART 2 - PRODUCTS

2.1 COPPER BUILDING WIRE

A. Description: Flexible, insulated and uninsulated, drawn copper current-carrying conductor with an overall insulation layer or jacket, or both, rated 600 V or less.

B. Standards:

1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.

- 2. RoHS compliant.
- 3. Conductor and Cable Marking: Comply with wire and cable marking according to UL's "Wire and Cable Marking and Application Guide."
- C. Conductors: Copper, complying with ASTM B3 for bare annealed copper and with ASTM B8 for stranded conductors.

D. Conductor Insulation:

- 1. Type NM: Comply with UL 83 and UL 719.
- 2. Type RHH and Type RHW-2: Comply with UL 44.
- 3. Type USE-2 and Type SE: Comply with UL 854.
- 4. Type THHN and Type THWN-2: Comply with UL 83.
- 5. Type THW and Type THW-2: Comply with NEMA WC-70/ICEA S-95-658 and UL 83.
- 6. Type XHHW-2: Comply with UL 44.

2.2 ALUMINUM BUILDING WIRE

A. Description: Flexible, insulated and uninsulated, drawn aluminum current-carrying conductor with an overall insulation layer or jacket, or both, rated 600 V or less.

B. Standards:

- 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
- 2. RoHS compliant.
- 3. Conductor and Cable Marking: Comply with wire and cable marking according to UL's "Wire and Cable Marking and Application Guide."
- C. Conductors: Aluminum, complying with ASTM B800 and ASTM B801.

D. Conductor Insulation:

- 1. Type NM: Comply with UL 83 and UL 719.
- 2. Type RHH and Type RHW-2: Comply with UL 44.
- 3. Type USE-2 and Type SE: Comply with UL 854.
- 4. Type THHN and Type THWN-2: Comply with UL 83.
- 5. Type THW and Type THW-2: Comply with NEMA WC-70/ICEA S-95-658 and UL 83.
- 6. Type XHHW-2: Comply with UL 44.

2.3 METAL-CLAD CABLE, TYPE MC

- A. Description: A factory assembly of one or more current-carrying insulated conductors in an overall metallic sheath.
- B. Standards:

- 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
- 2. Comply with UL 1569.
- 3. RoHS compliant.
- 4. Conductor and Cable Marking: Comply with wire and cable marking according to UL's "Wire and Cable Marking and Application Guide."

C. Circuits:

- 1. Single circuit and multi-circuit with color-coded conductors.
- 2. Power-Limited Fire-Alarm Circuits: Comply with UL 1424.
- D. Conductors: Copper, complying with ASTM B3 for bare annealed copper and with ASTM B8 for stranded conductors. Aluminum, complying with ASTM B800 and ASTM B801.
- E. Ground Conductor: Bare and Insulated.
- F. Conductor Insulation:
 - 1. Type TFN/THHN/THWN-2: Comply with UL 83.
 - 2. Type XHHW-2: Comply with UL 44.
- G. Armor: Steel and Aluminum, interlocked.
- H. Jacket: PVC applied over armor.

2.4 FIRE-ALARM WIRE AND CABLE

- A. General Wire and Cable Requirements: NRTL listed and labeled as complying with NFPA 70, Article 760.NFPA 70 permits wire sizes down to No. 16 AWG.
- B. Signaling Line Circuits: Twisted, shielded pair, size as recommended by system manufacturer.
 - 1. Circuit Integrity Cable: Twisted shielded pair, NFPA 70, Article 760, Classification CI, for power-limited fire-alarm signal service Type FPL. NRTL listed and labeled as complying with UL 1424 and UL 2196 for a two-hour rating.
- C. Non-Power-Limited Circuits: Solid-copper conductors with 600-V rated, 75 deg C, color-coded insulation, and complying with requirements in UL 2196 for a two-hour rating.
 - 1. Low-Voltage Circuits: No. 16 AWG, minimum, in pathway.
 - 2. Line-Voltage Circuits: No. 12 AWG, minimum, in pathway.
 - 3. Multiconductor Armored Cable: NFPA 70, Type MC, copper conductors, Type TFN/THHN conductor insulation, copper drain wire, copper armor with outer jacket with red identifier stripe, NTRL listed for fire-alarm and cable tray installation, plenum rated.

2.5 CONNECTORS AND SPLICES

- A. Description: Factory-fabricated connectors, splices, and lugs of size, ampacity rating, material, type, and class for application and service indicated; listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
- B. Jacketed Cable Connectors: For steel and aluminum jacketed cables, zinc die-cast with set screws, designed to connect conductors specified in this Section.
- C. Lugs: One piece, seamless, designed to terminate conductors specified in this Section.
 - 1. Material: Copper or Aluminum.
 - 2. Type: Two hole with standard barrels.
 - 3. Termination: Compression.

PART 3 - EXECUTION

3.1 CONDUCTOR MATERIAL APPLICATIONS

- A. Feeders: Copper; solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.
- B. Feeders: Copper for feeders smaller than No. 4 AWG; copper or aluminum for feeders No. 4 AWG and larger. Conductors shall be solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.
- C. Branch Circuits: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.
- D. Branch Circuits: Copper. Solid for No. 12 AWG and smaller; stranded for No. 10 AWG and larger.
- E. Power-Limited Fire Alarm and Control: Solid for No. 12 AWG and smaller.

3.2 CONDUCTOR INSULATION AND MULTICONDUCTOR CABLE APPLICATIONS AND WIRING METHODS

- A. Service Entrance: Type XHHW-2, single conductors in raceway and Multiconductor cable, Type SE.
- B. Exposed Feeders: Type XHHW-2, single conductors in raceway.
- C. Feeders Concealed in Ceilings, Walls, Partitions, and Crawlspaces: Type THHN/THWN-2, single conductors in raceway and Metal-clad cable, Type MC.
- D. Feeders Concealed in Concrete, below Slabs-on-Grade, and Underground: Type XHHW-2, single conductors in raceway.
- E. Feeders in Cable Tray: Type THHN/THWN-2, single conductors in raceway and Type XHHW-2, single conductors larger than No. 1/0 AWG.

- F. Exposed Branch Circuits, Including in Crawlspaces: Type THHN/THWN-2, single conductors in raceway.
- G. Branch Circuits Concealed in Ceilings, Walls, and Partitions: Type THHN/THWN-2, single conductors in raceway and Metal-clad cable, Type MC.
- H. Branch Circuits Concealed in Concrete, below Slabs-on-Grade, and Underground: Type XHHW-2, single conductors in raceway.

3.3 INSTALLATION OF CONDUCTORS AND CABLES

- A. Conceal cables in finished walls, ceilings, and floors unless otherwise indicated.
- B. Complete raceway installation between conductor and cable termination points according to Section 260533 "Raceways and Boxes for Electrical Systems" prior to pulling conductors and cables.
- C. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
- D. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway.
- E. Install exposed cables parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible.
- F. Support cables according to Section 260529 "Hangers and Supports for Electrical Systems."

3.4 INSTALLATION OF FIRE-ALARM WIRING

- A. Comply with NECA 1 and NFPA 72.
- B. Wiring Method: Install wiring in metal pathway according to Section 280528 "Pathways for Electronic Safety and Security."
 - 1. Install plenum cable in environmental airspaces, including plenum ceilings.
 - 2. Fire-alarm circuits and equipment control wiring associated with fire-alarm system shall be installed in a dedicated pathway system. This system shall not be used for any other wire or cable.

C. Wiring Method:

- 1. Cables and pathways used for fire-alarm circuits, and equipment control wiring associated with fire-alarm system, may not contain any other wire or cable.
- 2. Fire-Rated Cables: Use of two-hour, fire-rated fire-alarm cables, NFPA 70, Types MI and CI, are not permitted.
- 3. Signaling Line Circuits: Power-limited fire-alarm cables shall not be installed in the same cable or pathway as signaling line circuits.

- D. Wiring within Enclosures: Separate power-limited and non-power-limited conductors as recommended by manufacturer. Install conductors parallel with or at right angles to sides and back of the enclosure. Bundle, lace, and train conductors to terminal points with no excess. Connect conductors that are terminated, spliced, or interrupted in any enclosure associated with fire-alarm system to terminal blocks. Mark each terminal according to system's wiring diagrams. Make all connections with approved crimp-on terminal spade lugs, pressure-type terminal blocks, or plug connectors.
- E. Cable Taps: Use numbered terminal strips in junction, pull, and outlet boxes, cabinets, or equipment enclosures where circuit connections are made.
- F. Color-Coding: Color-code fire-alarm conductors differently from the normal building power wiring. Use one color-code for alarm circuit wiring and another for supervisory circuits. Color-code audible alarm-indicating circuits differently from alarm-initiating circuits. Use different colors for visible alarm-indicating devices. Paint fire-alarm system junction boxes and covers red.
- G. Risers: Install at least two vertical cable risers to serve the fire-alarm system. Separate risers in close proximity to each other with a minimum one-hour-rated wall, so the loss of one riser does not prevent receipt or transmission of signals from other floors or zones.
- H. Wiring to Remote Alarm Transmitting Device: 1-inch (25-mm) conduit between the fire-alarm control panel and the transmitter. Install number of conductors and electrical supervision for connecting wiring as needed to suit monitoring function.

3.5 CONNECTIONS

- A. Tighten electrical connectors and terminals according to manufacturer's published torquetightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A-486B.
- B. Make splices, terminations, and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors.
 - 1. Use oxide inhibitor in each splice, termination, and tap for aluminum conductors.
- C. Wiring at Outlets: Install conductor at each outlet, with at least 6 inches (150 mm) of slack.
- D. Comply with requirements in Section 284621.11 "Digital, Addressable Fire-Alarm System" for connecting, terminating, and identifying wires and cables.

3.6 IDENTIFICATION

- A. Identify and color-code conductors and cables according to Section 260553 "Identification for Electrical Systems."
- B. Identify each spare conductor at each end with identity number and location of other end of conductor, and identify as spare conductor.

3.7 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 260544 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."

3.8 FIRESTOPPING

A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly according to Section 078413 "Penetration Firestopping."

END OF SECTION 260519

SECTION 260526 - GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes grounding and bonding systems and equipment.
- B. Section includes grounding and bonding systems and equipment, plus the following special applications:
 - 1. Underground distribution grounding.
 - 2. Ground bonding common with lightning protection system.
 - 3. Foundation steel electrodes.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.3 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Plans showing dimensioned as-built locations of grounding features specified in "Field Quality Control" Article.
- B. Qualification Data: For testing agency and testing agency's field supervisor.
- C. Field quality-control reports.

1.4 CLOSEOUT SUBMITTALS

- A. Operation and maintenance data.
 - 1. Plans showing as-built, dimensioned locations of system described in "Field Quality Control" Article, including the following:
 - a. Test wells.
 - b. Ground rods.
 - c. Ground rings.
 - d. Grounding arrangements and connections for separately derived systems.
 - 2. Instructions for periodic testing and inspection of grounding features at test wells, ground rings, grounding connections for separately derived systems based on NFPA 70B.
 - a. Tests shall determine if ground-resistance or impedance values remain within specified maximums, and instructions shall recommend corrective action if values do not.

b. Include recommended testing intervals.

1.5 QUALITY ASSURANCE

A. Testing Agency Qualifications: Certified by NETA.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Comply with UL 467 for grounding and bonding materials and equipment.

2.2 CONDUCTORS

- A. Insulated Conductors: Copper or tinned-copper wire or cable insulated for 600 V unless otherwise required by applicable Code or authorities having jurisdiction.
- B. Bare Copper Conductors:
 - 1. Solid Conductors: ASTM B3.
 - 2. Stranded Conductors: ASTM B8.
 - 3. Tinned Conductors: ASTM B33.
 - 4. Bonding Cable: 28 kcmil, 14 strands of No. 17 AWG conductor, 1/4 inch (6 mm) in diameter.
 - 5. Bonding Conductor: No. 4 or No. 6 AWG, stranded conductor.
 - 6. Bonding Jumper: Copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches (41 mm) wide and 1/16 inch (1.6 mm) thick.
 - 7. Tinned Bonding Jumper: Tinned-copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches (41 mm) wide and 1/16 inch (1.6 mm) thick.
- C. Grounding Bus: Predrilled rectangular bars of annealed copper, 1/4 by 4 inches (6.3 by 100 mm) in cross section, with 9/32-inch (7.14-mm) holes spaced 1-1/8 inches (28 mm) apart. Stand-off insulators for mounting shall comply with UL 891 for use in switchboards, 600 V and shall be Lexan or PVC, impulse tested at 5000 V.

2.3 CONNECTORS

- A. Listed and labeled by an NRTL acceptable to authorities having jurisdiction for applications in which used and for specific types, sizes, and combinations of conductors and other items connected.
- B. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.

- C. Bus-Bar Connectors: Mechanical type, cast silicon bronze, solderless compression or exothermic-type wire terminals, and long-barrel, two-bolt connection to ground bus bar.
- D. Bus-Bar Connectors: Compression type, copper or copper alloy, with two wire terminals.
- E. Beam Clamps: Mechanical type, terminal, ground wire access from four directions, with dual, tin-plated or silicon bronze bolts.
- F. Cable-to-Cable Connectors: Compression type, copper or copper alloy.
- G. Cable Tray Ground Clamp: Mechanical type, zinc-plated malleable iron.
- H. Conduit Hubs: Mechanical type, terminal with threaded hub.
- I. Ground Rod Clamps: Mechanical type, copper or copper alloy, terminal with hex head bolt.
- J. Ground Rod Clamps: Mechanical type, copper or copper alloy, terminal with hex head bolt.
- K. Lay-in Lug Connector: Mechanical type, aluminum and copper rated for direct burial terminal with set screw.
- L. Service Post Connectors: Mechanical type, bronze alloy terminal, in short- and long-stud lengths, capable of single and double conductor connections.
- M. Signal Reference Grid Clamp: Mechanical type, stamped-steel terminal with hex head screw.
- N. Straps: Solid copper, copper lugs. Rated for 600 A.
- O. Tower Ground Clamps: Mechanical type, copper or copper alloy, terminal one-piece clamp.
- P. U-Bolt Clamps: Mechanical type, copper or copper alloy, terminal listed for direct burial.
- Q. Water Pipe Clamps:
 - 1. Mechanical type, two pieces with stainless-steel bolts.
 - a. Material: Tin-plated aluminum.
 - b. Listed for direct burial.
 - 2. U-bolt type with malleable-iron clamp and copper ground connector rated for direct burial.

2.4 GROUNDING ELECTRODES

- A. Ground Rods: Copper-clad steel, sectional type; 3/4 inch by 10 feet (19 mm by 3 m).
- B. Ground Plates: 1/4 inch (6 mm) thick, hot-dip galvanized.

PART 3 - EXECUTION

3.1 APPLICATIONS

- A. Conductors: Install solid conductor for No. 8 AWG and smaller, and stranded conductors for No. 6 AWG and larger unless otherwise indicated.
- B. Underground Grounding Conductors: Install bare tinned-copper conductor, No. 2/0 AWG minimum.
 - 1. Bury at least 30 inches (750 mm) below grade.
- C. Grounding Bus: Install in electrical equipment rooms, in rooms housing service equipment, and elsewhere as indicated.
 - 1. Install bus horizontally, on insulated spacers 2 inches (50 mm) minimum from wall, 6 inches (150 mm) above finished floor unless otherwise indicated.
 - 2. Where indicated on both sides of doorways, route bus up to top of door frame, across top of doorway, and down; connect to horizontal bus.
- D. Conductor Terminations and Connections:
 - 1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.
 - 2. Underground Connections: Welded connectors except at test wells and as otherwise indicated.
 - 3. Connections to Ground Rods at Test Wells: Bolted connectors.
 - 4. Connections to Structural Steel: Welded connectors.

3.2 GROUNDING AT THE SERVICE

A. Equipment grounding conductors and grounding electrode conductors shall be connected to the ground bus. Install a main bonding jumper between the neutral and ground buses.

3.3 GROUNDING SEPARATELY DERIVED SYSTEMS

A. Generator: Install grounding electrode(s) at the generator location. The electrode shall be connected to the equipment grounding conductor and to the frame of the generator.

3.4 GROUNDING UNDERGROUND DISTRIBUTION SYSTEM COMPONENTS

- A. Comply with IEEE C2 grounding requirements.
- B. Grounding Manholes and Handholes: Install a driven ground rod through manhole or handhole floor, close to wall, and set rod depth so 4 inches (100 mm) will extend above finished floor. If necessary, install ground rod before manhole is placed and provide No. 1/0 AWG bare, tinned-copper conductor from ground rod into manhole through a waterproof sleeve in manhole wall. Protect ground rods passing through concrete floor with a double wrapping of pressure-sensitive

insulating tape or heat-shrunk insulating sleeve from 2 inches (50 mm) above to 6 inches (150 mm) below concrete. Seal floor opening with waterproof, nonshrink grout.

- C. Grounding Connections to Manhole Components: Bond exposed-metal parts such as inserts, cable racks, pulling irons, ladders, and cable shields within each manhole or handhole, to ground rod or grounding conductor. Make connections with No. 4 AWG minimum, stranded, hard-drawn copper bonding conductor. Train conductors level or plumb around corners and fasten to manhole walls. Connect to cable armor and cable shields according to written instructions by manufacturer of splicing and termination kits.
- D. Pad-Mounted Transformers and Switches: Install two ground rods and ground ring around the pad. Ground pad-mounted equipment and noncurrent-carrying metal items associated with substations by connecting them to underground cable and grounding electrodes. Install tinned-copper conductor not less than No. 2 AWG for ground ring and for taps to equipment grounding terminals. Bury ground ring not less than 6 inches (150 mm) from the foundation.

3.5 EQUIPMENT GROUNDING

- A. Install insulated equipment grounding conductors with all feeders and branch circuits.
- B. Install insulated equipment grounding conductors with the following items, in addition to those required by NFPA 70:
 - 1. Feeders and branch circuits.
 - 2. Lighting circuits.
 - 3. Receptacle circuits.
 - 4. Single-phase motor and appliance branch circuits.
 - 5. Three-phase motor and appliance branch circuits.
 - 6. Flexible raceway runs.
 - 7. Armored and metal-clad cable runs.
 - 8. Busway Supply Circuits: Install insulated equipment grounding conductor from grounding bus in the switchgear, switchboard, or distribution panel to equipment grounding bar terminal on busway.
 - 9. X-Ray Equipment Circuits: Install insulated equipment grounding conductor in circuits supplying x-ray equipment.
- C. Air-Duct Equipment Circuits: Install insulated equipment grounding conductor to duct-mounted electrical devices operating at 120 V and more, including air cleaners, heaters, dampers, humidifiers, and other duct electrical equipment. Bond conductor to each unit and to air duct and connected metallic piping.
- D. Water Heater, Heat-Tracing, and Antifrost Heating Cables: Install a separate insulated equipment grounding conductor to each electric water heater and heat-tracing cable. Bond conductor to heater units, piping, connected equipment, and components.
- E. Poles Supporting Outdoor Lighting Fixtures: Install grounding electrode and a separate insulated equipment grounding conductor in addition to grounding conductor installed with branch-circuit conductors.

3.6 FENCE GROUNDING

- A. Fence Grounding: Install at maximum intervals of 1500 feet (450 m) except as follows:
 - 1. Fences within 100 Feet (30 m) of Buildings, Structures, Walkways, and Roadways: Ground at maximum intervals of 750 feet (225 m).
 - a. Gates and Other Fence Openings: Ground fence on each side of opening.
- B. Protection at Crossings of Overhead Electrical Power Lines: Ground fence at location of crossing and at a maximum distance of 150 feet (45 m) on each side of crossing.
- C. Fences Enclosing Electrical Power Distribution Equipment: Ground as required by IEEE C2 unless otherwise indicated.

3.7 INSTALLATION

- A. Grounding Conductors: Route along shortest and straightest paths possible unless otherwise indicated or required by Code. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.
- B. Ground Bonding Common with Lightning Protection System: Comply with NFPA 780 and UL 96 when interconnecting with lightning protection system. Bond electrical power system ground directly to lightning protection system grounding conductor at closest point to electrical service grounding electrode. Use bonding conductor sized same as system grounding electrode conductor, and install in conduit.
- C. Ground Rods: Drive rods until tops are 2 inches (50 mm) below finished floor or final grade unless otherwise indicated.
 - 1. Interconnect ground rods with grounding electrode conductor below grade and as otherwise indicated. Make connections without exposing steel or damaging coating if any.
- D. Bonding Straps and Jumpers: Install in locations accessible for inspection and maintenance except where routed through short lengths of conduit.
 - 1. Bonding to Structure: Bond straps directly to basic structure, taking care not to penetrate any adjacent parts.
 - 2. Bonding to Equipment Mounted on Vibration Isolation Hangers and Supports: Install bonding so vibration is not transmitted to rigidly mounted equipment.
 - 3. Use exothermic-welded connectors for outdoor locations; if a disconnect-type connection is required, use a bolted clamp.

E. Grounding and Bonding for Piping:

1. Metal Water Service Pipe: Install insulated copper grounding conductors, in conduit, from building's main service equipment, or grounding bus, to main metal water service entrances to building. Connect grounding conductors to main metal water service pipes; use a bolted clamp connector or bolt a lug-type connector to a pipe flange by using one of

- the lug bolts of the flange. Where a dielectric main water fitting is installed, connect grounding conductor on street side of fitting. Bond metal grounding conductor conduit or sleeve to conductor at each end.
- 2. Water Meter Piping: Use braided-type bonding jumpers to electrically bypass water meters. Connect to pipe with a bolted connector.
- 3. Bond each aboveground portion of gas piping system downstream from equipment shutoff valve.

3.8 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections:
 - 1. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements.
 - 2. Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer's written instructions.
 - 3. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal, at ground test wells, and at individual ground rods. Make tests at ground rods before any conductors are connected.
 - a. Measure ground resistance no fewer than two full days after last trace of precipitation and without soil being moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural ground resistance.
 - b. Perform tests by fall-of-potential method according to IEEE 81.
 - 4. Prepare dimensioned Drawings locating each test well, ground rod and ground-rod assembly, and other grounding electrodes. Identify each by letter in alphabetical order, and key to the record of tests and observations. Include the number of rods driven and their depth at each location, and include observations of weather and other phenomena that may affect test results. Describe measures taken to improve test results.
- C. Grounding system will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.
- E. Report measured ground resistances that exceed the following values:
 - 1. Power and Lighting Equipment or System with Capacity of 500 kVA and Less: 10 ohms.
 - 2. Power and Lighting Equipment or System with Capacity of 500 to 1000 kVA: 5 ohms.
 - 3. Power and Lighting Equipment or System with Capacity More Than 1000 kVA: 3 ohms.
 - 4. Power Distribution Units or Panelboards Serving Electronic Equipment: 1 ohm(s).
 - 5. Substations and Pad-Mounted Equipment: 5 ohms.
 - 6. Manhole Grounds: 10 ohms.

F. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Architect promptly and include recommendations to reduce ground resistance.

END OF SECTION 260526

SECTION 260529 - HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Steel slotted support systems.
- 2. Conduit and cable support devices.
- 3. Support for conductors in vertical conduit.
- 4. Structural steel for fabricated supports and restraints.
- 5. Mounting, anchoring, and attachment components, including powder-actuated fasteners, mechanical expansion anchors, concrete inserts, clamps, through bolts, toggle bolts, and hanger rods.
- 6. Fabricated metal equipment support assemblies.

B. Related Requirements:

1. Section 260548.16 "Seismic Controls for Electrical Systems" for products and installation requirements necessary for compliance with seismic criteria.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: For fabrication and installation details for electrical hangers and support systems.
 - 1. Hangers. Include product data for components.
 - 2. Slotted support systems.
 - 3. Equipment supports.
 - 4. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.
- C. Delegated-Design Submittal: For hangers and supports for electrical systems.
 - 1. Include design calculations and details of hangers.
 - 2. Include design calculations for seismic restraints.

1.3 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plan(s) and other details, drawn to scale, and coordinated with each other, using input from installers of the items involved.

- B. Seismic Qualification Data: Certificates, for hangers and supports for electrical equipment and systems, accessories, and components, from manufacturer.
- C. Welding certificates.

1.4 QUALITY ASSURANCE

- A. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M.
- B. Welding Qualifications: Qualify procedures and personnel according to the following:
 - 1. AWS D1.1/D1.1M.
 - 2. AWS D1.2/D1.2M.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design hanger and support system.
- B. Seismic Performance: Hangers and supports shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 - 1. The term "withstand" means "the supported equipment and systems will remain in place without separation of any parts when subjected to the seismic forces specified and the supported equipment and systems will be fully operational after the seismic event."
 - 2. Component Importance Factor: 1.5.
- C. Surface-Burning Characteristics: Comply with ASTM E84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 - 1. Flame Rating: Class 1.
 - 2. Self-extinguishing according to ASTM D635.

2.2 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

- A. Steel Slotted Support Systems: Preformed steel channels and angles with minimum 13/32-inch-(10-mm-) diameter holes at a maximum of 8 inches (200 mm) o.c. in at least one surface.
 - 1. Standard: Comply with MFMA-4 factory-fabricated components for field assembly.
 - 2. Material for Channel, Fittings, and Accessories: Stainless steel, Type 304.
 - 3. Channel Width: Selected for applicable load criteria.
 - 4. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4.

- 5. Nonmetallic Coatings: Manufacturer's standard PVC, polyurethane, or polyester coating applied according to MFMA-4.
- 6. Painted Coatings: Manufacturer's standard painted coating applied according to MFMA-4.
- 7. Protect finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.
- B. Conduit and Cable Support Devices: Steel and malleable-iron hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.
- C. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for nonarmored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be made of malleable iron.
- D. Structural Steel for Fabricated Supports and Restraints: ASTM A36/A36M steel plates, shapes, and bars; black and galvanized.
- E. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:
 - 1. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete, steel, or wood, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 - 2. Mechanical-Expansion Anchors: Insert-wedge-type, stainless steel, for use in hardened portland cement concrete, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 - 3. Concrete Inserts: Steel or malleable-iron, slotted support system units are similar to MSS Type 18 units and comply with MFMA-4 or MSS SP-58.
 - 4. Clamps for Attachment to Steel Structural Elements: MSS SP-58 units are suitable for attached structural element.
 - 5. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM F3125/F3125M,Grade A325 (Grade A325M).
 - 6. Toggle Bolts: Stainless-steel springhead type.
 - 7. Hanger Rods: Threaded steel.

2.3 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES

- A. Description: Welded or bolted structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.
- B. Materials: Comply with requirements in Section 055000 "Metal Fabrications" for steel shapes and plates.

PART 3 - EXECUTION

3.1 APPLICATION

- A. Comply with the following standards for application and installation requirements of hangers and supports, except where requirements on Drawings or in this Section are stricter:
 - 1. NECA 1.
 - 2. NECA 101
 - 3. NECA 102.
 - 4. NECA 105.
 - 5. NECA 111.
- B. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping materials and installation for penetrations through fire-rated walls, ceilings, and assemblies.
- C. Comply with requirements for raceways and boxes specified in Section 260533 "Raceways and Boxes for Electrical Systems."
- D. Maximum Support Spacing and Minimum Hanger Rod Size for Raceways: Space supports for EMT, IMC, and RMC as required by NFPA 70. Minimum rod size shall be 1/4 inch (6 mm) in diameter.
- E. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slotted or other support system, sized so capacity can be increased by at least 25 percent in future without exceeding specified design load limits.
 - 1. Secure raceways and cables to these supports with two-bolt conduit clamps.
- F. Spring-steel clamps designed for supporting single conduits without bolts may be used for 1-1/2-inch (38-mm) and smaller raceways serving branch circuits and communication systems above suspended ceilings, and for fastening raceways to trapeze supports.

3.2 SUPPORT INSTALLATION

- A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this article.
- B. Raceway Support Methods: In addition to methods described in NECA 1, EMT, IMC, and RMC may be supported by openings through structure members, according to NFPA 70.
- C. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb (90 kg).
- D. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:

- 1. To Wood: Fasten with lag screws or through bolts.
- 2. To New Concrete: Bolt to concrete inserts.
- 3. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
- 4. To Existing Concrete: Expansion anchor fasteners.
- 5. Instead of expansion anchors, powder-actuated driven threaded studs provided with lock washers and nuts may be used in existing standard-weight concrete 4 inches (100 mm) thick or greater. Do not use for anchorage to lightweight-aggregate concrete or for slabs less than 4 inches (100 mm) thick.
- 6. To Steel: Welded threaded studs complying with AWS D1.1/D1.1M, with lock washers and nuts.
- 7. To Light Steel: Sheet metal screws.
- 8. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate by means that comply with seismic-restraint strength and anchorage requirements.
- E. Drill holes for expansion anchors in concrete at locations and to depths that avoid the need for reinforcing bars.

3.3 INSTALLATION OF FABRICATED METAL SUPPORTS

- A. Comply with installation requirements in Section 055000 "Metal Fabrications" for site-fabricated metal supports.
- B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.
- C. Field Welding: Comply with AWS D1.1/D1.1M.

END OF SECTION 260529

SECTION 260533 - RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Metal conduits and fittings.
- 2. Nonmetallic conduits and fittings.
- 3. Metal wireways and auxiliary gutters.
- 4. Nonmetal wireways and auxiliary gutters.
- 5. Surface raceways.
- 6. Boxes, enclosures, and cabinets.
- 7. Handholes and boxes for exterior underground cabling.

B. Related Requirements:

- 1. Section 078413 "Penetration Firestopping" for firestopping at conduit and box entrances.
- 2. Section 260543 "Underground Ducts and Raceways for Electrical Systems" for exterior ductbanks, manholes, and underground utility construction.
- 3. Section 270528 "Pathways for Communications Systems" for conduits, wireways, surface pathways, innerduct, boxes, faceplate adapters, enclosures, cabinets, and handholes serving communications systems.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: For custom enclosures and cabinets. Include plans, elevations, sections, and attachment details.

1.3 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Conduit routing plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of items involved:
 - 1. Structural members in paths of conduit groups with common supports.
 - 2. HVAC and plumbing items and architectural features in paths of conduit groups with common supports.
- B. Seismic Qualification Data: Certificates, for enclosures, cabinets, and conduit racks and their mounting provisions, including those for internal components, from manufacturer.

PART 2 - PRODUCTS

2.1 METAL CONDUITS AND FITTINGS

A. Metal Conduit:

- 1. Listing and Labeling: Metal conduits, tubing, and fittings shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- 2. GRC: Comply with ANSI C80.1 and UL 6.
- 3. ARC: Comply with ANSI C80.5 and UL 6A.
- 4. IMC: Comply with ANSI C80.6 and UL 1242.
- 5. PVC-Coated Steel Conduit: PVC-coated rigid steel conduit.
 - a. Comply with NEMA RN 1.
 - b. Coating Thickness: 0.040 inch (1 mm), minimum.
- 6. EMT: Comply with ANSI C80.3 and UL 797.
- 7. FMC: Comply with UL 1; zinc-coated steel or aluminum.
- 8. LFMC: Flexible steel conduit with PVC jacket and complying with UL 360.
- B. Metal Fittings: Comply with NEMA FB 1 and UL 514B.
 - 1. Listing and Labeling: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. Fittings, General: Listed and labeled for type of conduit, location, and use.
 - 3. Conduit Fittings for Hazardous (Classified) Locations: Comply with UL 1203 and NFPA 70.
 - 4. Fittings for EMT:
 - a. Material: Steel.
 - b. Type: compression.
 - 5. Expansion Fittings: PVC or steel to match conduit type, complying with UL 651, rated for environmental conditions where installed, and including flexible external bonding jumper.
 - 6. Coating for Fittings for PVC-Coated Conduit: Minimum thickness of 0.040 inch (1 mm), with overlapping sleeves protecting threaded joints.
- C. Joint Compound for IMC, GRC, or ARC: Approved, as defined in NFPA 70, by authorities having jurisdiction for use in conduit assemblies, and compounded for use to lubricate and protect threaded conduit joints from corrosion and to enhance their conductivity.

2.2 NONMETALLIC CONDUITS AND FITTINGS

- A. Nonmetallic Conduit:
- B. Listing and Labeling: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 1. ENT: Comply with NEMA TC 13 and UL 1653.

- 2. RNC: Type EPC-40-PVC, complying with NEMA TC 2 and UL 651 unless otherwise indicated.
- 3. LFNC: Comply with UL 1660.

C. Nonmetallic Fittings:

- 1. Fittings, General: Listed and labeled for type of conduit, location, and use.
- 2. Fittings for ENT and RNC: Comply with NEMA TC 3; match to conduit or tubing type and material.
- 3. Fittings for LFNC: Comply with UL 514B.
- 4. Solvents and Adhesives: As recommended by conduit manufacturer.

2.3 METAL WIREWAYS AND AUXILIARY GUTTERS

- A. Description: Sheet metal, complying with UL 870 and NEMA 250, sized according to NFPA 70.
 - 1. Metal wireways installed outdoors shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Fittings and Accessories: Include covers, couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.

2.4 NONMETALLIC WIREWAYS AND AUXILIARY GUTTERS

- A. Listing and Labeling: Nonmetallic wireways and auxiliary gutters shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Description: PVC, extruded and fabricated to required size and shape, and having snap-on cover, mechanically coupled connections, and plastic fasteners.
- C. Fittings and Accessories: Couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings shall match and mate with wireways as required for complete system.
- D. Solvents and Adhesives: As recommended by conduit manufacturer.

2.5 BOXES, ENCLOSURES, AND CABINETS

- A. General Requirements for Boxes, Enclosures, and Cabinets: Boxes, enclosures, and cabinets installed in wet locations shall be listed for use in wet locations.
- B. Sheet Metal Outlet and Device Boxes: Comply with NEMA OS 1 and UL 514A.
- C. Cast-Metal Outlet and Device Boxes: Comply with NEMA FB 1, aluminum, Type FD, with gasketed cover.

- D. Nonmetallic Outlet and Device Boxes: Comply with NEMA OS 2 and UL 514C.
- E. Metal Floor Boxes:
 - 1. Material: Cast metal or sheet metal.
 - 2. Type: Fully adjustable.
 - 3. Shape: Rectangular.
 - 4. Listing and Labeling: Metal floor boxes shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- F. Nonmetallic Floor Boxes: Nonadjustable, round or rectangular.
 - 1. Listing and Labeling: Nonmetallic floor boxes shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- G. Luminaire Outlet Boxes: Nonadjustable, designed for attachment of luminaire weighing 50 lb (23 kg). Outlet boxes designed for attachment of luminaires weighing more than 50 lb (23 kg) shall be listed and marked for the maximum allowable weight.
- H. Paddle Fan Outlet Boxes: Nonadjustable, designed for attachment of paddle fan weighing 70 lb (32 kg).
 - 1. Listing and labeling: Paddle fan outlet boxes shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- I. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.
- J. Cast-Metal Access, Pull, and Junction Boxes: Comply with NEMA FB 1 and UL 1773, cast aluminum with gasketed cover.
- K. Box extensions used to accommodate new building finishes shall be of same material as recessed box.
- L. Device Box Dimensions: 4 inches square by 2-1/8 inches deep (100 mm square by 60 mm deep).
- M. Gangable boxes are allowed.
- N. Hinged-Cover Enclosures: Comply with UL 50 and NEMA 250, with continuous-hinge cover with flush latch unless otherwise indicated.
 - 1. Metal Enclosures: Steel, finished inside and out with manufacturer's standard enamel.
 - 2. Nonmetallic Enclosures: Plastic.
 - 3. Interior Panels: Steel; all sides finished with manufacturer's standard enamel.
- O. Cabinets:

- 1. NEMA 250, galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.
- 2. Hinged door in front cover with flush latch and concealed hinge.
- 3. Key latch to match panelboards.
- 4. Metal barriers to separate wiring of different systems and voltage.
- 5. Accessory feet where required for freestanding equipment.
- 6. Nonmetallic cabinets shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.6 HANDHOLES AND BOXES FOR EXTERIOR UNDERGROUND WIRING

- A. General Requirements for Handholes and Boxes:
 - 1. Boxes and handholes for use in underground systems shall be designed and identified as defined in NFPA 70, for intended location and application.
 - 2. Boxes installed in wet areas shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Polymer-Concrete Handholes and Boxes with Polymer-Concrete Cover: Molded of sand and aggregate, bound together with polymer resin, and reinforced with steel, fiberglass, or a combination of the two.
 - 1. Standard: Comply with SCTE 77.
 - 2. Configuration: Designed for flush burial with integral closed bottom unless otherwise indicated.
 - 3. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure and handhole location.
 - 4. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
 - 5. Cover Legend: Molded lettering, "ELECTRIC.".
 - 6. Conduit Entrance Provisions: Conduit-terminating fittings shall mate with entering ducts for secure, fixed installation in enclosure wall.
- C. Fiberglass Handholes and Boxes: Molded of fiberglass-reinforced polyester resin, with frame and covers of hot-dip galvanized-steel diamond plate.
 - 1. Standard: Comply with SCTE 77.
 - 2. Configuration: Designed for flush burial with integral closed bottom unless otherwise indicated.
 - 3. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure and handhole location.
 - 4. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
 - 5. Cover Legend: Molded lettering, "ELECTRIC." Retain "Conduit Entrance Provisions" Subparagraph below if conduit enters enclosure through the side. Otherwise, entry is made through an open bottom or through side openings cut in the field, as specified in "Installation of Underground Handholes and Boxes" Article. Coordinate with Drawings.
 - 6. Conduit Entrance Provisions: Conduit-terminating fittings shall mate with entering ducts for secure, fixed installation in enclosure wall.

PART 3 - EXECUTION

3.1 RACEWAY APPLICATION

- A. Outdoors: Apply raceway products as specified below unless otherwise indicated:
 - 1. Exposed Conduit: GRC.
 - 2. Concealed Conduit, Aboveground: IMC.
 - 3. Underground Conduit: RNC, Type EPC-40-PVC, Type EPC-80-PVC, direct buried or concrete encased.
 - 4. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): LFMC or LFNC.
 - 5. Boxes and Enclosures, Aboveground: NEMA 250, Type 3R or Type 4 as specified.
- B. Indoors: Apply raceway products as specified below unless otherwise indicated.
 - 1. Exposed, Not Subject to Physical Damage: EMT.
 - 2. Exposed, Not Subject to Severe Physical Damage: EMT.
 - 3. Exposed and Subject to Severe Physical Damage: GRC. Raceway locations include the following:
 - a. Loading dock.
 - b. Corridors used for traffic of mechanized carts, forklifts, and pallet-handling units.
 - c. Mechanical rooms.
 - d. Gymnasiums.
 - 4. Concealed in Ceilings and Interior Walls and Partitions: EMT.
 - 5. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): FMC, except use LFMC in damp or wet locations.
 - 6. Damp or Wet Locations: GRC.
 - 7. Boxes and Enclosures: NEMA 250, Type 1, except use NEMA 250, Type 4 stainless steel in institutional and commercial kitchens and damp or wet locations.
- C. Minimum Raceway Size: 3/4-inch (21-mm) trade size.
- D. Raceway Fittings: Compatible with raceways and suitable for use and location.
 - 1. Rigid and Intermediate Steel Conduit: Use threaded rigid steel conduit fittings unless otherwise indicated. Comply with NEMA FB 2.10.
 - 2. PVC Externally Coated, Rigid Steel Conduits: Use only fittings listed for use with this type of conduit. Patch and seal all joints, nicks, and scrapes in PVC coating after installing conduits and fittings. Use sealant recommended by fitting manufacturer and apply in thickness and number of coats recommended by manufacturer.
 - 3. EMT: Use compression steel. Comply with NEMA FB 2.10.
 - 4. Flexible Conduit: Use only fittings listed for use with flexible conduit. Comply with NEMA FB 2.20.
- E. Do not install aluminum conduits, boxes, or fittings in contact with concrete or earth.

- F. Install surface raceways only where indicated on Drawings.
- G. Do not install nonmetallic conduit where ambient temperature exceeds 120 deg F (49 deg C)

3.2 INSTALLATION

- A. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for hangers and supports.
- B. Comply with NECA 1 and NECA 101 for installation requirements except where requirements on Drawings or in this article are stricter. Comply with NECA 102 for aluminum conduits. Comply with NFPA 70 limitations for types of raceways allowed in specific occupancies and number of floors.
- C. Do not install raceways or electrical items on any "explosion-relief" walls or rotating equipment.
- D. Do not fasten conduits onto the bottom side of a metal deck roof.
- E. Keep raceways at least 6 inches (150 mm) away from parallel runs of flues and steam or hotwater pipes. Install horizontal raceway runs above water and steam piping.
- F. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for hangers and supports.
- G. Arrange stub-ups so curved portions of bends are not visible above finished slab.
- H. Install no more than the equivalent of three 90-degree bends in any conduit run except for control wiring conduits, for which fewer bends are allowed. Support within 12 inches (300 mm) of changes in direction.
- I. Make bends in raceway using large-radius preformed ells. Field bending shall be according to NFPA 70 minimum radii requirements. Use only equipment specifically designed for material and size involved.
- J. Conceal conduit and EMT within finished walls, ceilings, and floors unless otherwise indicated. Install conduits parallel or perpendicular to building lines.
- K. Support conduit within 12 inches (300 mm) of enclosures to which attached.
- L. Raceways Embedded in Slabs:
 - 1. Run conduit larger than 1-inch (27-mm) trade size, parallel or at right angles to main reinforcement. Where at right angles to reinforcement, place conduit close to slab support. Secure raceways to reinforcement at maximum 10-foot (3-m) intervals.
 - 2. Arrange raceways to cross building expansion joints at right angles with expansion fittings.
 - 3. Arrange raceways to keep a minimum of 2 inches (50 mm) of concrete cover in all directions.

- 4. Do not embed threadless fittings in concrete unless specifically approved by Architect for each specific location.
- 5. Change from ENT to GRC before rising above floor.

M. Stub-ups to Above Recessed Ceilings:

- 1. Use EMT, IMC, or RMC for raceways.
- 2. Use a conduit bushing or insulated fitting to terminate stub-ups not terminated in hubs or in an enclosure.
- N. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of raceway and fittings before making up joints. Follow compound manufacturer's written instructions.
- O. Coat field-cut threads on PVC-coated raceway with a corrosion-preventing conductive compound prior to assembly.
- P. Raceway Terminations at Locations Subject to Moisture or Vibration: Use insulating bushings to protect conductors including conductors smaller than No. 4 AWG.
- Q. Terminate threaded conduits into threaded hubs or with locknuts on inside and outside of boxes or cabinets. Install bushings on conduits up to 1-1/4-inch (35-mm) trade size and insulated throat metal bushings on 1-1/2-inch (41-mm) trade size and larger conduits terminated with locknuts. Install insulated throat metal grounding bushings on service conduits.
- R. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb (90-kg) tensile strength. Leave at least 12 inches (300 mm) of slack at each end of pull wire. Cap underground raceways designated as spare above grade alongside raceways in use.

S. Surface Raceways:

- 1. Install surface raceway with a minimum 2-inch (50-mm) radius control at bend points.
- 2. Secure surface raceway with screws or other anchor-type devices at intervals not exceeding 48 inches (1200 mm) and with no less than two supports per straight raceway section. Support surface raceway according to manufacturer's written instructions. Tape and glue are not acceptable support methods.
- T. Install raceway sealing fittings at accessible locations according to NFPA 70 and fill them with listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces.
- U. Install devices to seal raceway interiors at accessible locations. Locate seals so no fittings or boxes are between the seal and the following changes of environments. Seal the interior of all raceways at the following points:
 - 1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
 - 2. Where an underground service raceway enters a building or structure.
 - 3. Conduit extending from interior to exterior of building.
 - 4. Conduit extending into pressurized duct and equipment.

- 5. Conduit extending into pressurized zones that are automatically controlled to maintain different pressure set points.
- 6. Where otherwise required by NFPA 70.

V. Expansion-Joint Fittings:

- 1. Install in each run of aboveground RNC that is located where environmental temperature change may exceed 30 deg F (17 deg C) and that has straight-run length that exceeds 25 feet (7.6 m).
- 2. Install type and quantity of fittings that accommodate temperature change listed for each of the following locations:
 - a. Outdoor Locations Not Exposed to Direct Sunlight: 125 deg F (70 deg C) temperature change.
 - b. Outdoor Locations Exposed to Direct Sunlight: 155 deg F (86 deg C) temperature change.
 - c. Indoor Spaces Connected with Outdoors without Physical Separation: 125 deg F (70 deg C) temperature change.
 - d. Attics: 135 deg F (75 deg C) temperature change.

e.

- 3. Install fitting(s) that provide expansion and contraction for at least 0.00041 inch per foot of length of straight run per degree F (0.06 mm per meter of length of straight run per degree C) of temperature change for PVC conduits.
- 4. Install expansion fittings at all locations where conduits cross building or structure expansion joints.
- 5. Install each expansion-joint fitting with position, mounting, and piston setting selected according to manufacturer's written instructions for conditions at specific location at time of installation. Install conduit supports to allow for expansion movement.
- W. Flexible Conduit Connections: Comply with NEMA RV 3. Use a maximum of 72 inches (1830 mm) of flexible conduit for recessed and semirecessed luminaires, equipment subject to vibration, noise transmission, or movement; and for transformers and motors.
 - 1. Use LFMC in damp or wet locations subject to severe physical damage.
 - 2. Use LFMC or LFNC in damp or wet locations not subject to severe physical damage.
- X. Mount boxes at heights indicated on Drawings. If mounting heights of boxes are not individually indicated, give priority to ADA requirements. Install boxes with height measured to center of box unless otherwise indicated.
- Y. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block, and install box flush with surface of wall. Prepare block surfaces to provide a flat surface for a raintight connection between the box and cover plate or the supported equipment and box.
- Z. Horizontally separate boxes mounted on opposite sides of walls so they are not in the same vertical channel.
- AA. Locate boxes so that cover or plate will not span different building finishes.

- BB. Support boxes of three gangs or more from more than one side by spanning two framing members or mounting on brackets specifically designed for the purpose.
- CC. Fasten junction and pull boxes to or support from building structure. Do not support boxes by conduits.
- DD. Set metal floor boxes level and flush with finished floor surface.
- EE. Set nonmetallic floor boxes level. Trim after installation to fit flush with finished floor surface.

3.3 INSTALLATION OF UNDERGROUND CONDUIT

A. Direct-Buried Conduit:

- 1. Excavate trench bottom to provide firm and uniform support for conduit. Prepare trench bottom as specified in Section 312000 "Earth Moving" for pipe less than 6 inches (150 mm) in nominal diameter.
- 2. Install backfill as specified in Section 312000 "Earth Moving."
- 3. After installing conduit, backfill and compact. Start at tie-in point, and work toward end of conduit run, leaving conduit at end of run free to move with expansion and contraction as temperature changes during this process. Firmly hand tamp backfill around conduit to provide maximum supporting strength. After placing controlled backfill to within 12 inches (300 mm) of finished grade, make final conduit connection at end of run and complete backfilling with normal compaction as specified in Section 312000 "Earth Moving."
- 4. Install manufactured duct elbows for stub-up at poles and equipment and at building entrances through floor unless otherwise indicated. Encase elbows for stub-up ducts throughout length of elbow.
- 5. Install manufactured rigid steel conduit elbows for stub-ups at poles and equipment and at building entrances through floor.
 - a. Couple steel conduits to ducts with adapters designed for this purpose, and encase coupling with 3 inches (75 mm) of concrete for a minimum of 12 inches (300 mm) on each side of the coupling.
 - b. For stub-ups at equipment mounted on outdoor concrete bases and where conduits penetrate building foundations, extend steel conduit horizontally a minimum of 60 inches (1500 mm) from edge of foundation or equipment base. Install insulated grounding bushings on terminations at equipment.
- 6. Underground Warning Tape: Comply with requirements in Section 260553 "Identification for Electrical Systems."

3.4 INSTALLATION OF UNDERGROUND HANDHOLES AND BOXES

A. Install handholes and boxes level and plumb and with orientation and depth coordinated with connecting conduits to minimize bends and deflections required for proper entrances.

- B. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from 1/2-inch (12.5-mm) sieve to No. 4 (4.75-mm) sieve and compacted to same density as adjacent undisturbed earth.
- C. Elevation: In paved areas, set so cover surface will be flush with finished grade. Set covers of other enclosures 1 inch (25 mm) above finished grade.
- D. Install handholes with bottom below frost line, below grade.
- E. Field-cut openings for conduits according to enclosure manufacturer's written instructions. Cut wall of enclosure with a tool designed for material to be cut. Size holes for terminating fittings to be used, and seal around penetrations after fittings are installed.

3.5 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 260544 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."

3.6 FIRESTOPPING

A. Install firestopping at penetrations of fire-rated floor and wall assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

3.7 PROTECTION

- A. Protect coatings, finishes, and cabinets from damage and deterioration.
 - 1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
 - 2. Repair damage to PVC coatings or paint finishes with matching touchup coating recommended by manufacturer.

END OF SECTION 260533

SECTION 260543 - UNDERGROUND DUCTS AND RACEWAYS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Metal conduits and fittings, including GRC and PVC-coated steel conduit.
- 2. Rigid nonmetallic duct.
- 3. Flexible nonmetallic duct.
- 4. Duct accessories.
- 5. Precast concrete handholes.
- 6. Polymer concrete handholes and boxes with polymer concrete cover.
- 7. Fiberglass handholes and boxes with polymer concrete cover.
- 8. Fiberglass handholes and boxes.
- 9. High density plastic boxes.
- 10. Precast manholes.
- 11. Utility structure accessories.

1.2 DEFINITIONS

- A. Direct Buried: Duct or a duct bank that is buried in the ground, without any additional casing materials such as concrete.
- B. Duct: A single duct or multiple ducts. Duct may be either installed singly or as component of a duct bank.
- C. Duct Bank:
 - 1. Two or more ducts installed in parallel, with or without additional casing materials.
 - 2. Multiple duct banks.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings:
 - 1. Precast or Factory-Fabricated Underground Utility Structures:
 - a. Include plans, elevations, sections, details, attachments to other work, and accessories.
 - b. Include duct entry provisions, including locations and duct sizes.
 - c. Include reinforcement details.
 - d. Include frame and cover design and manhole chimneys.
 - e. Include ladder and step details.

- f. Include grounding details.
- g. Include dimensioned locations of cable rack inserts, pulling-in and lifting irons, and sumps.
- h. Include joint details.
- 2. Factory-Fabricated Handholes and Boxes Other Than Precast Concrete:
 - a. Include dimensioned plans, sections, and elevations, and fabrication and installation details.
 - b. Include duct entry provisions, including locations and duct sizes.
 - c. Include cover design.
 - d. Include grounding details.
 - e. Include dimensioned locations of cable rack inserts, and pulling-in and lifting irons.

1.4 INFORMATIONAL SUBMITTALS

- A. Duct and Duct-Bank Coordination Drawings: Show duct profiles and coordination with other utilities and underground structures. Drawings shall be signed and sealed by a qualified professional engineer.
- B. Qualification Data: For professional engineer and testing agency responsible for testing nonconcrete handholes and boxes.
- C. Product Certificates: For concrete and steel used in precast concrete manholes and handholes, as required by ASTM C858.
- D. Source quality-control reports.
- E. Field quality-control reports.

1.5 OUALITY ASSURANCE

A. Testing Agency Qualifications: Qualified according to ASTM E329 for testing indicated.

PART 2 - PRODUCTS

2.1 METAL CONDUIT AND FITTINGS

- A. GRC: Comply with ANSI C80.1 and UL 6.
- B. Coated Steel Conduit: PVC-coated GRC.
 - 1. Comply with NEMA RN 1.
 - 2. Coating Thickness: 0.040 inch (1 mm), minimum.
- C. Listed and labeled as defined in NFPA 70, by a nationally recognized testing laboratory, and marked for intended location and application.

2.2 RIGID NONMETALLIC DUCT

- A. Underground Plastic Utilities Duct: Type EPC-80-PVC and Type EPC-40-PVC RNC, complying with NEMA TC 2 and UL 651, with matching fittings complying with NEMA TC 3 by same manufacturer as duct.
- B. Underground Plastic Utilities Duct: Type DB-60 PVC and Type DB-120 PVC RNC, complying with NEMA TC 6 & 8 and ASTM F512 for direct burial, with matching fittings complying with NEMA TC 9 by same manufacturer as duct.
- C. Listed and labeled as defined in NFPA 70, by a nationally recognized testing laboratory, and marked for intended location and application.
- D. Solvents and Adhesives: As recommended by conduit manufacturer.

2.3 FLEXIBLE NONMETALLIC DUCTS

- A. HDPE Duct: Type EPEC-40 HDPE, complying with NEMA TC 7 and UL 651A.
- B. Listed and labeled as defined in NFPA 70, by a nationally recognized testing laboratory, and marked for intended location and application.

2.4 DUCT ACCESSORIES

- A. Duct Spacers: Factory-fabricated, rigid, PVC interlocking spacers; sized for type and size of duct with which used, and selected to provide minimum duct spacing indicated while supporting duct during concreting or backfilling.
- B. Underground-Line Warning Tape: Comply with requirements for underground-line warning tape specified in Section 260553 "Identification for Electrical Systems."

2.5 PRECAST CONCRETE HANDHOLES AND BOXES

- A. Description: Factory-fabricated, reinforced-concrete, monolithically poured walls and bottom unless open-bottom enclosures are indicated. Frame and cover shall form top of enclosure and shall have load rating consistent with that of handhole or box.
- B. Comply with ASTM C858 for design and manufacturing processes.
- C. Frame and Cover: Weatherproof cast-iron frame, with cast-iron cover with recessed cover hook eyes and tamper-resistant, captive, cover-securing bolts.
- D. Frame and Cover: Weatherproof steel frame, with steel cover with recessed cover hook eyes and tamper-resistant, captive, cover-securing bolts.
- E. Frame and Cover: Weatherproof steel frame, with hinged steel access door assembly with tamper-resistant, captive, cover-securing bolts.
 - 1. Cover Hinges: Concealed, with hold-open ratchet assembly.

- 2. Cover Handle: Recessed.
- F. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
- G. Cover Legend: Molded lettering, "ELECTRIC."
- H. Configuration: Units shall be designed for flush burial and have integral closed bottom unless otherwise indicated.
- I. Extensions and Slabs: Designed to mate with bottom of enclosure. Same material as enclosure.
 - 1. Extension shall provide increased depth of 12 inches (300 mm).
 - 2. Slab: Same dimensions as bottom of enclosure, and arranged to provide closure.
- J. Joint Sealant: Asphaltic-butyl material with adhesion, cohesion, flexibility, and durability properties necessary to withstand maximum hydrostatic pressures at the installation location with the ground-water level at grade.
- K. Knockout Panels: Precast openings in walls, arranged to match dimensions and elevations of approaching duct, plus an additional 12 inches (300 mm) vertically and horizontally to accommodate alignment variations.
- L. Duct Entrances in Handhole Walls: Cast end-bell or duct-terminating fitting in wall for each entering duct.
- M. Handholes 12 inches wide by 24 inches long (300 mm wide by 600 mm long) and larger shall have inserts for cable racks and pulling-in irons installed before concrete is poured.

2.6 POLYMER CONCRETE HANDHOLES AND BOXES WITH POLYMER CONCRETE COVER

- A. Description: Molded of sand and aggregate, bound together with a polymer resin, and reinforced with steel or fiberglass or a combination of the two.
- B. Standard: Comply with SCTE 77. Comply with tier requirements in "Underground Enclosure Application" Article.
- C. Color: Gray.
- D. Configuration: Units shall be designed for flush burial and have integral closed bottom unless otherwise indicated.
- E. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure.
- F. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
- G. Cover Legend: Molded lettering, "ELECTRIC."

- H. Direct-Buried Wiring Entrance Provisions: Knockouts equipped with insulated bushings or endbell fittings, selected to suit box material, sized for wiring indicated, and arranged for secure, fixed installation in enclosure wall.
- I. Duct Entrance Provisions: Duct-terminating fittings shall mate with entering duct for secure, fixed installation in enclosure wall.
- J. Handholes 12 inches wide by 24 inches long (300 mm wide by 600 mm long) and larger shall have factory-installed inserts for cable racks and pulling-in irons.

2.7 FIBERGLASS HANDHOLES AND BOXES WITH POLYMER CONCRETE FRAME AND COVER

- A. Description: Sheet-molded, fiberglass-reinforced, polyester resin enclosure joined to polymer concrete top ring or frame.
- B. Standard: Comply with SCTE 77. Comply with tier requirements in "Underground Enclosure Application" Article.
- C. Color: Gray.
- D. Configuration: Units shall be designed for flush burial and have integral closed bottom unless otherwise indicated.
- E. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure.
- F. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
- G. Cover Legend: Molded lettering, "ELECTRIC."
- H. Direct-Buried Wiring Entrance Provisions: Knockouts equipped with insulated bushings or endbell fittings, selected to suit box material, sized for wiring indicated, and arranged for secure, fixed installation in enclosure wall.
- I. Duct Entrance Provisions: Duct-terminating fittings shall mate with entering duct for secure, fixed installation in enclosure wall.
- J. Handholes 12 inches wide by 24 inches long (300 mm wide by 600 mm long) and larger shall have factory-installed inserts for cable racks and pulling-in irons.

2.8 FIBERGLASS HANDHOLES AND BOXES

- A. Description: Molded of fiberglass-reinforced polyester resin, with covers made of hot-dip galvanized-steel diamond plate.
- B. Standard: Comply with SCTE 77. Comply with tier requirements in "Underground Enclosure Application" Article.
- C. Color: Gray.

- D. Configuration: Units shall be designed for flush burial and have integral closed bottom unless otherwise indicated.
- E. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure.
- F. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
- G. Cover Legend: Molded lettering, "ELECTRIC."
- H. Direct-Buried Wiring Entrance Provisions: Knockouts equipped with insulated bushings or endbell fittings, selected to suit box material, sized for wiring indicated, and arranged for secure, fixed installation in enclosure wall.
- I. Duct Entrance Provisions: Duct-terminating fittings shall mate with entering duct for secure, fixed installation in enclosure wall.
- J. Handholes 12 inches wide by 24 inches long (300 mm wide by 600 mm long) and larger shall have factory-installed inserts for cable racks and pulling-in irons.

2.9 HIGH-DENSITY PLASTIC BOXES

- A. Description: Injection molded of HDPE or copolymer-polypropylene. Cover shall be made of hot-dip galvanized-steel diamond plate.
- B. Standard: Comply with SCTE 77. Comply with tier requirements in "Underground Enclosure Application" Article.
- C. Color: Gray.
- D. Configuration: Units shall be designed for flush burial and have integral closed bottom unless otherwise indicated.
- E. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure.
- F. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
- G. Cover Legend: Molded lettering, "ELECTRIC."
- H. Direct-Buried Wiring Entrance Provisions: Knockouts equipped with insulated bushings or endbell fittings, selected to suit box material, sized for wiring indicated, and arranged for secure, fixed installation in enclosure wall.
- I. Duct Entrance Provisions: Duct-terminating fittings shall mate with entering duct for secure, fixed installation in enclosure wall.
- J. Handholes 12 inches wide by 24 inches long (300 mm wide by 600 mm long) and larger shall have factory-installed inserts for cable racks and pulling-in irons.

2.10 PRECAST MANHOLES

- A. Description: One-piece units and units with interlocking mating sections, complete with accessories, hardware, and features.
- B. Comply with ASTM C858.
- C. Structural Design Loading: Comply with requirements in "Underground Enclosure Application" Article.
- D. Knockout Panels: Precast openings in walls, arranged to match dimensions and elevations of approaching duct, plus an additional 12 inches (300 mm) vertically and horizontally to accommodate alignment variations.
- E. Duct Entrances in Manhole Walls: Cast end-bell or duct-terminating fitting in wall for each entering duct.
- F. Ground Rod Sleeve: Provide a 3-inch (75-mm) PVC sleeve in manhole floors 2 inches (50 mm) from the wall adjacent to, but not underneath, the duct entering the structure.
- G. Joint Sealant: Asphaltic-butyl material with adhesion, cohesion, flexibility, and durability properties necessary to withstand maximum hydrostatic pressures at the installation location with the ground-water level at grade.

2.11 UTILITY STRUCTURE ACCESSORIES

- A. Accessories for Utility Structures: Utility equipment and accessory items used for utility structure access and utility support, listed and labeled for intended use and application.
- B. Manhole Frames, Covers, and Chimney Components: Comply with structural design loading specified for manhole.
 - 1. Frame and Cover: Weatherproof, gray cast iron complying with ASTM A48/A48M, Class 30B with milled cover-to-frame bearing surfaces; diameter, 26 inches (660 mm).
 - a. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
 - 2. Cover Legend: Cast in. Selected to suit system.
 - a. Legend: "ELECTRIC-LV" for duct systems with power wires and cables for systems operating at 600~V and less.
 - 3. Manhole Chimney Components: Precast concrete rings with dimensions matched to those of roof opening.
 - a. Mortar for Chimney Ring and Frame and Cover Joints: Comply with ASTM C270, Type M, except for quantities less than 2.0 cu. ft. (60 L) where packaged mix complying with ASTM C387, Type M, may be used.

- b. Seal joints watertight using preformed plastic or rubber complying with ASTM C990. Install sealing material according to sealant manufacturers' written instructions.
- C. Manhole Sump Frame and Grate: ASTM A48/A48M, Class 30B, gray cast iron.
- D. Pulling Eyes in Concrete Walls: Eyebolt with reinforcing-bar fastening insert, 2-inch- (50-mm-) diameter eye, and 1-by-4-inch (25-by-100-mm) bolt.
 - 1. Working Load Embedded in 6-Inch (150-mm), 4000-psi (27.6-MPa) Concrete: 13,000-lbf (58-kN) minimum tension.
- E. Pulling Eyes in Nonconcrete Walls: Eyebolt with reinforced fastening, 1-1/4-inch- (31-mm-) diameter eye, rated 2500-lbf (11-kN) minimum tension.
- F. Pulling-in and Lifting Irons in Concrete Floors: 7/8-inch- (22-mm-) diameter, hot-dip galvanized, bent steel rod; stress relieved after forming; and fastened to reinforcing rod. Exposed triangular opening.
 - 1. Ultimate Yield Strength: 40,000-lbf (180-kN) shear and 60,000-lbf (270-kN) tension.
- G. Bolting Inserts for Concrete Utility Structure Cable Racks and Other Attachments: Flared, threaded inserts of noncorrosive, chemical-resistant, nonconductive thermoplastic material; 1/2-inch (13-mm) ID by 2-3/4 inches (69 mm) deep, flared to 1-1/4 inches (31 mm) minimum at base.
 - 1. Tested Ultimate Pullout Strength: 12,000 lbf (53 kN) minimum.
- H. Ground Rod Sleeve: 3-inch (75-mm) PVC sleeve in manhole floors 2 inches (50 mm) from the wall adjacent to, but not underneath, the ducts routed from the facility.
- I. Cable Rack Assembly: Steel, hot-dip galvanized, except insulators.
 - 1. Stanchions: T-section or channel with provisions to connect to other sections or channels to form a continuous unit; 1-1/2 inches (38 mm) in width by nominal 24 inches (600 mm) long; punched with 14 hook holes on 1-1/2-inch (38-mm) centers for cable-arm attachment.
 - 2. Arms: 1-1/2 inches (38 mm) wide, lengths ranging from 3 inches (75 mm) with 450-lb (204-kg) minimum capacity to 18 inches (450 mm) with 250-lb (114-kg) minimum capacity. Arms shall have slots along full length for cable ties and be arranged for secure mounting in horizontal position at any vertical location on stanchions.
 - 3. Insulators: High-glaze, wet-process porcelain arranged for mounting on cable arms.
- J. Cable Rack Assembly: Nonmetallic. Components fabricated from nonconductive, fiberglass-reinforced polymer.
 - 1. Stanchions: Nominal 36 inches (900 mm) high by 4 inches (100 mm) wide, with provisions to connect to other sections to form a continuous unit, with minimum of nine holes for arm attachment.
 - 2. Arms: Arranged for secure, drop-in attachment in horizontal position at any location on cable stanchions, and capable of being locked in position. Arms shall be available in

lengths ranging from 3 inches (75 mm) with 450-lb (204-kg) minimum capacity to 20 inches (500 mm) with 250-lb (114-kg) minimum capacity. Top of arm shall be nominally 4 inches (100 mm) wide, and arm shall have slots along full length for cable ties.

- K. Duct-Sealing Compound: Nonhardening, safe for contact with human skin, not deleterious to cable insulation, and workable at temperatures as low as 35 deg F (2 deg C). Capable of withstanding temperature of 300 deg F (150 deg C) without slump and adhering to clean surfaces of plastic ducts, metallic conduit, conduit and duct coatings, concrete, masonry, lead, cable sheaths, cable jackets, insulation materials, and common metals.
- L. Fixed Manhole Ladders: Arranged for attachment to wall and floor of manhole. Ladder and mounting brackets and braces shall be fabricated from hot-dip galvanized steel.
- M. Portable Manhole Ladders: UL-listed, heavy-duty fiberglass specifically designed for portable use for access to electrical manholes. Minimum length equal to distance from deepest manhole floor to grade plus 36 inches (900 mm). One required.
- N. Cover Hooks: Heavy duty, designed for lifts 60 lbf (270 N) and greater. Two required.

2.12 SOURCE QUALITY CONTROL

- A. Test and inspect precast concrete utility structures according to ASTM C1037.
- B. Nonconcrete Handhole and Pull-Box Prototype Test: Test prototypes of manholes and boxes for compliance with SCTE 77. Strength tests shall be for specified tier ratings of products supplied.
 - 1. Tests of materials shall be performed by an independent testing agency.
 - 2. Strength tests of complete boxes and covers shall be by an independent testing agency or manufacturer. A qualified registered professional engineer shall certify tests by manufacturer.
 - 3. Testing machine pressure gages shall have current calibration certification, complying with ISO 9000 and ISO 10012, and traceable to NIST standards.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Coordinate layout and installation of duct, duct bank, manholes, handholes, and boxes with final arrangement of other utilities, site grading, and surface features as determined in the field. Notify Architect if there is a conflict between areas of excavation and existing structures or archaeological sites to remain.
- B. Coordinate elevations of duct and duct-bank entrances into manholes, handholes, and boxes with final locations and profiles of duct and duct banks, as determined by coordination with other utilities, underground obstructions, and surface features. Revise locations and elevations as required to suit field conditions and to ensure that duct and duct bank will drain to manholes and handholes, and as approved by Architect.

3.2 UNDERGROUND DUCT APPLICATION

- A. Duct for Electrical Feeders 600 V and Less: RNC Type EPC-40-PVC, concrete-encased unless otherwise indicated.
- B. Duct for Electrical Feeders 600 V and Less: RNC Type EPC-40-PVC, direct-buried unless otherwise indicated.
- C. Duct for Electrical Branch Circuits: RNC Type EPC-40-PVC, direct-buried unless otherwise indicated.
- D. Bored Underground Duct: Type EPEC-40 HDPE unless otherwise indicated.
- E. Underground Ducts Crossing Paved PathsWalk sand Driveways Roadways and Railroads: RNC Type EPC-40 PVC, encased in reinforced concrete.
- F. Stub-ups: Concrete-encased PVC-coated GRC.

3.3 UNDERGROUND ENCLOSURE APPLICATION

- A. Handholes and Boxes for 600 V and Less:
 - 1. Units in Roadways and Other Deliberate Traffic Paths: Precast concrete. AASHTO HB 17, H-20 structural load rating.
 - 2. Units in Driveway, Parking Lot, and Off-Roadway Locations, Subject to Occasional, Nondeliberate Loading by Heavy Vehicles: Precast concrete, AASHTO HB 17, H-20 structural load rating.
 - 3. Units in Sidewalk and Similar Applications with a Safety Factor for Nondeliberate Loading by Vehicles: Precast concrete, AASHTO HB 17, H-10 structural load rating.
 - 4. Units Subject to Light-Duty Pedestrian Traffic Only: Fiberglass-reinforced polyester resin, structurally tested according to SCTE 77 with 3000-lbf (13 345-N) vertical loading.
 - 5. Cover design load shall not exceed the design load of the handhole or box.

B. Manholes: Precast concrete.

- 1. Units Located in Roadways and Other Deliberate Traffic Paths by Heavy or Medium Vehicles: H-20 structural load rating according to AASHTO HB 17.
- 2. Units Not Located in Deliberate Traffic Paths by Heavy or Medium Vehicles: H-10 load rating according to AASHTO HB 17.

3.4 EARTHWORK

- A. Excavation and Backfill: Comply with Section 312000 "Earth Moving," but do not use heavy-duty, hydraulic-operated, compaction equipment.
- B. Restoration: Replace area immediately after backfilling is completed or after construction vehicle traffic in immediate area is complete.

- C. Restore surface features at areas disturbed by excavation, and re-establish original grades unless otherwise indicated. Replace removed sod immediately after backfilling is completed.
- D. Restore areas disturbed by trenching, storing of dirt, cable laying, and other work. Restore vegetation and include necessary topsoiling, fertilizing, liming, seeding, sodding, sprigging, and mulching. Comply with Section 329200 "Turf and Grasses" and Section 329300 "Plants."
- E. Cut and patch existing pavement in the path of underground duct, duct bank, and underground structures according to "Cutting and Patching" Article in Section 017300 "Execution."

3.5 DUCT AND DUCT-BANK INSTALLATION

- A. Where indicated on Drawings, install duct, spacers, and accessories into the duct-bank configuration shown. Duct installation requirements in this Section also apply to duct bank.
- B. Install duct according to NEMA TCB 2.
- C. Slope: Pitch duct a minimum slope of 1:300 down toward manholes and handholes and away from buildings and equipment. Slope duct from a high point between two manholes, to drain in both directions.
- D. Curves and Bends: Use 5-degree angle couplings for small changes in direction. Use manufactured long sweep bends with a minimum radius of 48 inches (1200 mm), both horizontally and vertically, at other locations unless otherwise indicated.
 - 1. Duct shall have maximum of two 90 degree bends or the total of all bends shall be no more 180 degrees between pull points.
- E. Joints: Use solvent-cemented joints in duct and fittings and make watertight according to manufacturer's written instructions. Stagger couplings so those of adjacent duct do not lie in same plane.
- F. Installation Adjacent to High-Temperature Steam Lines: Where duct is installed parallel to underground steam lines, perform calculations showing the duct will not be subject to environmental temperatures above 40 deg C. Where environmental temperatures are calculated to rise above 40 deg C, and anywhere the duct crosses above an underground steam line, install insulation blankets listed for direct burial to isolate the duct bank from the steam line.
- G. End Bell Entrances to Manholes and Concrete and Polymer Concrete Handholes: Use end bells, spaced approximately 10 inches (250 mm) o.c. for 5-inch (125-mm) duct, and vary proportionately for other duct sizes.
- H. Terminator Entrances to Manholes and Concrete and Polymer Concrete Handholes: Use manufactured, cast-in-place duct terminators, with entrances into structure spaced approximately 6 inches (150 mm) o.c. for 4-inch (100-mm) duct, and vary proportionately for other duct sizes.
- I. Building Wall Penetrations: Make a transition from underground duct to GRC at least 10 feet (3 m) outside the building wall, without reducing duct line slope away from the building and without forming a trap in the line. Use fittings manufactured for RNC-to-GRC transition. Install

GRC penetrations of building walls as specified in Section 260544 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."

- J. Sealing: Provide temporary closure at terminations of duct with pulled cables. Seal spare duct at terminations. Use sealing compound and plugs to withstand at least 15-psig (1.03-MPa) hydrostatic pressure.
- K. Pulling Cord: Install 200-lbf- (1000-N-) test nylon cord in empty ducts.
- L. Concrete-Encased Ducts and Duct Bank:
 - 1. Excavate trench bottom to provide firm and uniform support for duct. Prepare trench bottoms as specified in Section 312000 "Earth Moving" for pipes less than 6 inches (150 mm) in nominal diameter.
 - 2. Width: Excavate trench 12 inches (300 mm) wider than duct on each side.
 - 3. Width: Excavate trench 3 inches (75 mm) wider than duct on each side.
 - 4. Depth: Install so top of duct envelope is at least 24 inches (600 mm) below finished grade in areas not subject to deliberate traffic, and at least 30 inches (750 mm) below finished grade in deliberate traffic paths for vehicles unless otherwise indicated.
 - 5. Support duct on duct spacers coordinated with duct size, duct spacing, and outdoor temperature.
 - 6. Spacer Installation: Place spacers close enough to prevent sagging and deforming of duct, with not less than four spacers per 20 feet (6 m) of duct. Place spacers within 24 inches (600 mm) of duct ends. Stagger spacers approximately 6 inches (150 mm) between tiers. Secure spacers to earth and to duct to prevent floating during concreting. Tie entire assembly together using fabric straps; do not use tie wires or reinforcing steel that may form conductive or magnetic loops around ducts or duct groups.
 - 7. Minimum Space between Duct: 3 inches (75 mm) between edge of duct and exterior envelope wall, 2 inches (50 mm) between ducts for like services, and 4 inches (100 mm) between power and communications ducts.
 - 8. Elbows: Use manufactured duct elbows for stub-ups, at building entrances, and at changes of direction in duct unless otherwise indicated. Extend encasement throughout length of elbow.
 - 9. Elbows: Use manufactured GRC elbows for stub-ups, at building entrances, and at changes of direction in duct run.
 - 10. Reinforcement: Reinforce concrete-encased duct where crossing disturbed earth and where indicated. Arrange reinforcing rods and ties without forming conductive or magnetic loops around ducts or duct groups.
 - 11. Forms: Use walls of trench to form side walls of duct bank where soil is self-supporting and concrete envelope can be poured without soil inclusions; otherwise, use forms.
 - 12. Concrete Cover: Install a minimum of 3 inches (75 mm) of concrete cover between edge of duct to exterior envelope wall, 2 inches (50 mm) between duct of like services, and 4 inches (100 mm) between power and communications ducts.
 - 13. Concreting Sequence: Pour each run of envelope between manholes or other terminations in one continuous operation.
 - 14. Pouring Concrete: Comply with requirements in "Concrete Placement" Article in Section 033000 "Cast-in-Place Concrete." Place concrete carefully during pours to prevent voids under and between duct and at exterior surface of envelope. Do not allow a heavy mass of concrete to fall directly onto ducts. Allow concrete to flow around duct and rise up in middle, uniformly filling all open spaces. Do not use power-driven agitating equipment unless specifically designed for duct-installation application.

M. Direct-Buried Duct and Duct Bank:

- 1. Excavate trench bottom to provide firm and uniform support for duct. Comply with requirements in Section 312000 "Earth Moving" for preparation of trench bottoms for pipes less than 6 inches (150 mm) in nominal diameter.
- 2. Width: Excavate trench 12 inches (300 mm) wider than duct on each side.
- 3. Width: Excavate trench 3 inches (75 mm) wider than duct on each side.
- 4. Depth: Install top of duct at least 36 inches (900 mm) below finished grade unless otherwise indicated.
- 5. Set elevation of bottom of duct bank below frost line.
- 6. Support ducts on duct spacers coordinated with duct size, duct spacing, and outdoor temperature.
- 7. Spacer Installation: Place spacers close enough to prevent sagging and deforming of duct, with not less than four spacers per 20 feet (6 m) of duct. Place spacers within 24 inches (600 mm) of duct ends. Stagger spacers approximately 6 inches (150 mm) between tiers. Secure spacers to earth and to ducts to prevent floating during concreting. Tie entire assembly together using fabric straps; do not use tie wires or reinforcing steel that may form conductive or magnetic loops around ducts or duct groups.
- 8. Install duct with a minimum of 3 inches (75 mm) between ducts for like services and 6 inches (150 mm) between power and communications duct.
- 9. Elbows: Install manufactured duct elbows for stub-ups, at building entrances, and at changes of direction in duct direction unless otherwise indicated. Encase elbows for stub-up ducts throughout length of elbow.
- 10. Install manufactured GRC elbows for stub-ups, at building entrances, and at changes of direction in duct.
- 11. After installing first tier of duct, backfill and compact. Start at tie-in point and work toward end of duct run, leaving ducts at end of run free to move with expansion and contraction as temperature changes during this process. Repeat procedure after placing each tier. After placing last tier, hand place backfill to 4 inches (100 mm) over duct and hand tamp. Firmly tamp backfill around ducts to provide maximum supporting strength. Use hand tamper only. After placing controlled backfill over final tier, make final duct connections at end of run and complete backfilling with normal compaction. Comply with requirements in Section 312000 "Earth Moving" for installation of backfill materials.
 - a. Place minimum 3 inches (75 mm) of sand as a bed for duct. Place sand to a minimum of 6 inches (150 mm) above top level of duct.
 - b. Place minimum 6 inches (150 mm) of engineered fill above concrete encasement of duct.
- N. Underground-Line Warning Tape: Bury nonconducting underground line specified in Section 260553 "Identification for Electrical Systems" no less than 12 inches (300 mm) above all concrete-encased duct and duct banks and approximately 12 inches (300 mm) below grade. Align tape parallel to and within 3 inches (75 mm) of centerline of duct bank. Provide an additional warning tape for each 12-inch (300-mm) increment of duct-bank width over a nominal 18 inches (450 mm). Space additional tapes 12 inches (300 mm) apart, horizontally.

3.6 INSTALLATION OF CONCRETE MANHOLES, HANDHOLES, AND BOXES

A. Precast Concrete Handhole and Manhole Installation:

- 1. Comply with ASTM C891 unless otherwise indicated.
- 2. Install units level and plumb and with orientation and depth coordinated with connecting duct, to minimize bends and deflections required for proper entrances.
- 3. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from 1-inch (25-mm) sieve to No. 4 (4.75-mm) sieve and compacted to same density as adjacent undisturbed earth.

B. Elevations:

- 1. Manhole Roof: Install with rooftop at least 15 inches (375 mm) below finished grade.
- 2. Manhole Frame: In paved areas and trafficways, set frames flush with finished grade. Set other manhole frames 1 inch (25 mm) above finished grade.
- 3. Install handholes with bottom below frost line, below grade.
- 4. Handhole Covers: In paved areas and trafficways, set surface flush with finished grade. Set covers of other handholes 1 inch (25 mm) above finished grade.
- 5. Where indicated, cast handhole cover frame integrally with handhole structure.
- C. Drainage: Install drains in bottom of manholes where indicated. Coordinate with drainage provisions indicated.
- D. Manhole Access: Circular opening in manhole roof; sized to match cover size.
 - 1. Manholes with Fixed Ladders: Offset access opening from manhole centerlines to align with ladder.
 - 2. Install chimney, constructed of precast concrete collars and rings, to support cast-iron frame to connect cover with manhole roof opening. Provide moisture-tight masonry joints and waterproof grouting for frame to chimney.
- E. Waterproofing: Apply waterproofing to exterior surfaces of manholes and handholes after concrete has cured at least three days. Waterproofing materials and installation are specified. After duct has been connected and grouted, and before backfilling, waterproof joints and connections, and touch up abrasions and scars. Waterproof exterior of manhole chimneys after mortar has cured at least three days.
- F. Dampproofing: Apply dampproofing to exterior surfaces of manholes and handholes after concrete has cured at least three days. Dampproofing materials and installation are specified in Section 071113 "Bituminous Dampproofing." After ducts are connected and grouted, and before backfilling, dampproof joints and connections, and touch up abrasions and scars. Dampproof exterior of manhole chimneys after mortar has cured at least three days.
- G. Hardware: Install removable hardware, including pulling eyes, cable stanchions, and cable arms, and insulators, as required for installation and support of cables and conductors and as indicated.
- H. Fixed Manhole Ladders: Arrange to provide for safe entry with maximum clearance from cables and other items in manholes.
- I. Field-Installed Bolting Anchors in Manholes and Concrete Handholes: Do not drill deeper than 3-7/8 inches (97 mm) for manholes and 2 inches (50 mm) for handholes, for anchor bolts installed in the field. Use a minimum of two anchors for each cable stanchion.

3.7 INSTALLATION OF HANDHOLES AND BOXES OTHER THAN PRECAST CONCRETE

- A. Install handholes and boxes level and plumb and with orientation and depth coordinated with connecting duct, to minimize bends and deflections required for proper entrances. Use box extension if required to match depths of duct, and seal joint between box and extension as recommended by manufacturer.
- B. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from 1/2-inch (12.5-mm) sieve to No. 4 (4.75-mm) sieve and compacted to same density as adjacent undisturbed earth.
- C. Elevation: In paved areas and trafficways, set cover flush with finished grade. Set covers of other handholes 1 inch (25 mm) above finished grade.
- D. Install handholes and boxes with bottom below frost line, below grade.
- E. Install removable hardware, including pulling eyes, cable stanchions, cable arms, and insulators, as required for installation and support of cables and conductors and as indicated. Select arm lengths to be long enough to provide spare space for future cables, but short enough to preserve adequate working clearances in enclosure.
- F. Field cut openings for duct according to enclosure manufacturer's written instructions. Cut wall of enclosure with a tool designed for material to be cut. Size holes for terminating fittings to be used, and seal around penetrations after fittings are installed.
- G. For enclosures installed in asphalt paving and subject to occasional, nondeliberate, heavy-vehicle loading, form and pour a concrete ring encircling, and in contact with, enclosure and with top surface screeded to top of box cover frame. Bottom of ring shall rest on compacted earth.
 - 1. Concrete: 3000 psi (20 kPa), 28-day strength, complying with Section 033000 "Cast-in-Place Concrete," with a troweled finish.
 - 2. Dimensions: 10 inches wide by 12 inches deep (250 mm wide by 300 mm deep).

3.8 GROUNDING

A. Ground underground ducts and utility structures according to Section 260526 "Grounding and Bonding for Electrical Systems."

3.9 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Demonstrate capability and compliance with requirements on completion of installation of underground duct, duct bank, and utility structures.
 - 2. Pull solid aluminum or wood test mandrel through duct to prove joint integrity and adequate bend radii, and test for out-of-round duct. Provide a minimum 12-inch- (300-mm-) long mandrel equal to duct size minus 1/4 inch (6 mm). If obstructions are indicated, remove obstructions and retest.

- 3. Test manhole and handhole grounding to ensure electrical continuity of grounding and bonding connections. Measure and report ground resistance as specified in Section 260526 "Grounding and Bonding for Electrical Systems."
- B. Correct deficiencies and retest as specified above to demonstrate compliance.
- C. Prepare test and inspection reports.

3.10 CLEANING

- A. Pull leather-washer-type duct cleaner, with graduated washer sizes, through full length of duct until duct cleaner indicates that duct is clear of dirt and debris. Follow with rubber duct swab for final cleaning and to assist in spreading lubricant throughout ducts.
- B. Clean internal surfaces of manholes, including sump.
 - 1. Sweep floor, removing dirt and debris.
 - 2. Remove foreign material.

END OF SECTION 260543

SECTION 260544 - SLEEVES AND SLEEVE SEALS FOR ELECTRICAL RACEWAYS AND CABLING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Sleeves for raceway and cable penetration of non-fire-rated construction walls and floors.
- 2. Sleeve-seal systems.
- 3. Sleeve-seal fittings.
- 4. Grout.
- 5. Silicone sealants.

B. Related Requirements:

1. Section 078413 "Penetration Firestopping" for penetration firestopping installed in fireresistance-rated walls, horizontal assemblies, and smoke barriers, with and without penetrating items.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 SLEEVES

A. Wall Sleeves:

- 1. Steel Pipe Sleeves: ASTM A53/A53M, Type E, Grade B, Schedule 40, zinc coated, plain ends.
- 2. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.
- B. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies: Galvanized-steel sheet; 0.0239-inch (0.6-mm) minimum thickness; round tube closed with welded longitudinal joint, with tabs for screw-fastening the sleeve to the board.
- C. Sleeves for Rectangular Openings:
 - 1. Material: Galvanized sheet steel.
 - 2. Minimum Metal Thickness:

- a. For sleeve cross-section rectangle perimeter less than 50 inches (1270 mm) and with no side larger than 16 inches (400 mm), thickness shall be 0.052 inch (1.3 mm).
- b. For sleeve cross-section rectangle perimeter 50 inches (1270 mm) or more and one or more sides larger than 16 inches (400 mm), thickness shall be 0.138 inch (3.5 mm).

2.2 SLEEVE-SEAL SYSTEMS

- A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable.
 - 1. Sealing Elements: EPDM rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 - 2. Pressure Plates: Stainless steel.
 - 3. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements.

2.3 SLEEVE-SEAL FITTINGS

A. Description: Manufactured plastic, sleeve-type, waterstop assembly made for embedding in concrete slab or wall. Unit shall have plastic or rubber waterstop collar with center opening to match piping OD.

2.4 GROUT

- A. Description: Nonshrink; recommended for interior and exterior sealing openings in non-fire-rated walls or floors.
- B. Standard: ASTM C1107/C1107M, Grade B, post-hardening and volume-adjusting, dry, hydraulic-cement grout.
- C. Design Mix: 5000-psi (34.5-MPa), 28-day compressive strength.
- D. Packaging: Premixed and factory packaged.

2.5 SILICONE SEALANTS

- A. Silicone Sealants: Single-component, silicone-based, neutral-curing elastomeric sealants of grade indicated below.
 - 1. Grade: Pourable (self-leveling) formulation for openings in floors and other horizontal surfaces that are not fire rated.
- B. Silicone Foams: Multicomponent, silicone-based liquid elastomers that, when mixed, expand and cure in place to produce a flexible, nonshrinking foam.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION FOR NON-FIRE-RATED ELECTRICAL PENETRATIONS

- A. Comply with NECA 1.
- B. Comply with NEMA VE 2 for cable tray and cable penetrations.
- C. Sleeves for Conduits Penetrating Above-Grade Non-Fire-Rated Concrete and Masonry-Unit Floors and Walls:
 - 1. Interior Penetrations of Non-Fire-Rated Walls and Floors:
 - a. Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Section 079200 "Joint Sealants."
 - b. Seal space outside of sleeves with mortar or grout. Pack sealing material solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect material while curing.
 - 2. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.
 - 3. Size pipe sleeves to provide 1/4-inch (6.4-mm) annular clear space between sleeve and raceway or cable unless sleeve seal is to be installed or unless seismic criteria require different clearance.
 - 4. Install sleeves for wall penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of walls. Cut sleeves to length for mounting flush with both surfaces of walls. Deburr after cutting.
 - 5. Install sleeves for floor penetrations. Extend sleeves installed in floors 2 inches (50 mm) above finished floor level. Install sleeves during erection of floors.
- D. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies:
 - 1. Use circular metal sleeves unless penetration arrangement requires rectangular sleeved opening.
 - 2. Seal space outside of sleeves with approved joint compound for gypsum board assemblies.
- E. Roof-Penetration Sleeves: Seal penetration of individual raceways and cables with flexible boot-type flashing units applied in coordination with roofing work.
- F. Aboveground, Exterior-Wall Penetrations: Seal penetrations using steel pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch (25-mm) annular clear space between pipe and sleeve for installing mechanical sleeve seals.
- G. Underground, Exterior-Wall and Floor Penetrations: Install cast-iron pipe sleeves. Size sleeves to allow for 1-inch (25-mm) annular clear space between raceway or cable and sleeve for installing sleeve-seal system.

3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

- A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at raceway entries into building.
- B. Install type and number of sealing elements recommended by manufacturer for raceway or cable material and size. Position raceway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.3 SLEEVE-SEAL-FITTING INSTALLATION

- A. Install sleeve-seal fittings in new walls and slabs as they are constructed.
- B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.
- C. Secure nailing flanges to concrete forms.
- D. Using grout, seal the space around outside of sleeve-seal fittings.

END OF SECTION 260544

SECTION 260548.16 - SEISMIC CONTROLS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Restraint channel bracings.
- 2. Restraint cables.
- 3. Seismic-restraint accessories.
- 4. Mechanical anchor bolts.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Illustrate and indicate style, material, strength, fastening provision, and finish for each type and size of seismic-restraint component used.
 - a. Tabulate types and sizes of seismic restraints, complete with report numbers and rated strength in tension and shear as evaluated by an agency acceptable to authorities having jurisdiction.
 - b. Annotate to indicate application of each product submitted and compliance with requirements.
- B. Delegated-Design Submittal: For each seismic-restraint device.
 - 1. Include design calculations and details for selecting seismic restraints complying with performance requirements, design criteria, and analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 - 2. Design Calculations: Calculate static and dynamic loading caused by equipment weight, operation, and seismic forces required to select seismic restraints and for designing vibration isolation bases.
 - a. Coordinate design calculations with wind load calculations required for equipment mounted outdoors. Comply with requirements in other Sections for equipment mounted outdoors.

3. Seismic-Restraint Details:

- a. Design Analysis: To support selection and arrangement of seismic restraints. Include calculations of combined tensile and shear loads.
- b. Details: Indicate fabrication and arrangement. Detail attachments of restraints to the restrained items and to the structure. Show attachment locations, methods, and spacings. Identify components, list their strengths, and indicate directions and

- values of forces transmitted to the structure during seismic events. Indicate association with vibration isolation devices.
- c. Coordinate seismic-restraint and vibration isolation details with wind-restraint details required for equipment mounted outdoors. Comply with requirements in other Sections for equipment mounted outdoors.
- d. Preapproval and Evaluation Documentation: By an agency acceptable to authorities having jurisdiction showing maximum ratings of restraint items and the basis for approval (tests or calculations).

1.3 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Show coordination of seismic bracing for electrical components with other systems and equipment in the vicinity, including other supports and seismic restraints.
- B. Welding certificates.
- C. Field quality-control reports.

1.4 QUALITY ASSURANCE

- A. Comply with seismic-restraint requirements in the IBC unless requirements in this Section are more stringent.
- B. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- C. Seismic-restraint devices shall have horizontal and vertical load testing and analysis. They shall bear anchorage preapproval from OSHPD in addition to preapproval, showing maximum seismic-restraint ratings, by ICC-ES or another agency acceptable to authorities having jurisdiction. Ratings based on independent testing are preferred to ratings based on calculations. If preapproved ratings are not available, submittals based on independent testing are preferred. Calculations (including combining shear and tensile loads) that support seismic-restraint designs must be signed and sealed by a qualified professional engineer.
- D. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Wind-Restraint Loading:
 - 1. Basic Wind Speed: 120 mph
 - 2. Building Classification Category: III.
 - 3. Minimum 10 lb/sq. ft. (48.8 kg/sq. m) multiplied by maximum area of component projected on vertical plane normal to wind direction and 45 degrees either side of normal.

B. Seismic-Restraint Loading:

- 1. Site Class as Defined in the IBC: C.
- 2. Assigned Seismic Use Group or Building Category as Defined in the IBC: III.
 - a. Component Importance Factor: 1.5.

2.2 RESTRAINT CHANNEL BRACINGS

A. Description: MFMA-4, shop- or field-fabricated bracing assembly made of slotted steel channels with accessories for attachment to braced component at one end and to building structure at the other end, with other matching components, and with corrosion-resistant coating; rated in tension, compression, and torsion forces.

2.3 RESTRAINT CABLES

A. Restraint Cables: ASTM A603 galvanized cables. End connections made of steel assemblies with thimbles, brackets, swivel, and bolts designed for restraining cable service; with a minimum of two clamping bolts for cable engagement.

2.4 SEISMIC-RESTRAINT ACCESSORIES

- A. Hanger-Rod Stiffener: Steel tube or steel slotted-support-system sleeve with internally bolted connections to hanger rod.
- B. Hinged and Swivel Brace Attachments: Multifunctional steel connectors for attaching hangers to rigid channel bracings and restraint cables.
- C. Bushings for Floor-Mounted Equipment Anchor Bolts: Neoprene bushings designed for rigid equipment mountings and matched to type and size of anchor bolts and studs.
- D. Bushing Assemblies for Wall-Mounted Equipment Anchorage: Assemblies of neoprene elements and steel sleeves designed for rigid equipment mountings and matched to type and size of attachment devices used.
- E. Resilient Isolation Washers and Bushings: One-piece, molded, oil- and water-resistant neoprene, with a flat washer face.

2.5 MECHANICAL ANCHOR BOLTS

A. Mechanical Anchor Bolts: Drilled-in and stud-wedge or female-wedge type in zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E488.

PART 3 - EXECUTION

3.1 **APPLICATIONS**

- A. Multiple Raceways or Cables: Secure raceways and cables to trapeze member with clamps approved for application by an agency acceptable to authorities having jurisdiction.
- В. Hanger-Rod Stiffeners: Install hanger-rod stiffeners where indicated or scheduled on Drawings to receive them and where required to prevent buckling of hanger rods caused by seismic forces.
- C. Strength of Support and Seismic-Restraint Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static and seismic loads within specified loading limits.

3.2 SEISMIC-RESTRAINT DEVICE INSTALLATION

- Coordinate the location of embedded connection hardware with supported equipment A. attachment and mounting points and with requirements for concrete reinforcement and formwork specified in Section 033000 "Cast-in-Place Concrete."
- Equipment and Hanger Restraints: B.
 - 1. Install resilient, bolt-isolation washers on equipment anchor bolts where clearance between anchor and adjacent surface exceeds 0.125 inch (3.2 mm).
 - Install seismic-restraint devices using methods approved by an agency acceptable to 2. authorities having jurisdiction providing required submittals for component.
- Install cables so they do not bend across edges of adjacent equipment or building structure. C.
- D. Install bushing assemblies for mounting bolts for wall-mounted equipment, arranged to provide resilient media where equipment or equipment-mounting channels are attached to wall.
- Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at E. flanges of beams, at upper truss chords of bar joists, or at concrete members.

Drilled-in Anchors: F.

- 1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
- Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved 2. full design strength.
- Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty 3. sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
- Adhesive Anchors: Clean holes to remove loose material and drilling dust prior to 4. installation of adhesive. Place adhesive in holes proceeding from the bottom of the hole

100% SUBMITTAL

- and progressing toward the surface in such a manner as to avoid introduction of air pockets in the adhesive.
- 5. Set anchors to manufacturer's recommended torque using a torque wrench.
- 6. Install zinc-coated steel anchors for interior and stainless-steel anchors for exterior applications.

3.3 ACCOMMODATION OF DIFFERENTIAL SEISMIC MOTION

A. Install flexible connections in runs of raceways, cables, wireways, cable trays, and busways where they cross seismic joints, where adjacent sections or branches are supported by different structural elements, and where connection is terminated to equipment that is anchored to a different structural element from the one supporting them as they approach equipment.

3.4 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Obtain Architect's approval before transmitting test loads to structure. Provide temporary load-spreading members.
 - 2. Test at least one of each type and size of installed anchors and fasteners selected by Architect.
 - 3. Test to 90 percent of rated proof load of device.
- B. Seismic controls will be considered defective if they do not pass tests and inspections.
- C. Prepare test and inspection reports.

END OF SECTION 260548.16

SECTION 260553 - IDENTIFICATION FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Color and legend requirements for raceways, conductors, and warning labels and signs.
- 2. Labels.
- 3. Bands and tubes.
- 4. Tapes and stencils.
- 5. Tags.
- 6. Signs.
- 7. Cable ties.
- 8. Paint for identification.
- 9. Fasteners for labels and signs.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Samples: For each type of label and sign to illustrate composition, size, colors, lettering style, mounting provisions, and graphic features of identification products.
- C. Delegated-Design Submittal: For arc-flash hazard study.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Comply with ASME A13.1 and IEEE C2.
- B. Comply with NFPA 70.
- C. Comply with 29 CFR 1910.144 and 29 CFR 1910.145.
- D. Comply with ANSI Z535.4 for safety signs and labels.

- E. Comply with NFPA 70E and Section 260573.19 "Arc-Flash Hazard Analysis" requirements for arc-flash warning labels.
- F. Adhesive-attached labeling materials, including label stocks, laminating adhesives, and inks used by label printers, shall comply with UL 969.
- G. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes.
 - 1. Temperature Change: 120 deg F (67 deg C), ambient; 180 deg F (100 deg C), material surfaces.

2.2 COLOR AND LEGEND REQUIREMENTS

- A. Raceways and Cables Carrying Circuits at 600 V or Less:
 - 1. Black letters on an orange field.
 - 2. Legend: Indicate voltage and system or service type.
- B. Color-Coding for Phase- and Voltage-Level Identification, 600 V or Less: Use colors listed below for ungrounded service feeder and branch-circuit conductors.
 - 1. Color shall be factory applied or field applied for sizes larger than No. 8 AWG if authorities having jurisdiction permit.
 - 2. Colors for 208/120-V Circuits:
 - a. Phase A: Black.
 - b. Phase B: Red.
 - c. Phase C: Blue.
 - 3. Colors for 240-V Circuits:
 - a. Phase A: Black.
 - b. Phase B: Red.
 - 4. Colors for 480/277-V Circuits:
 - a. Phase A: Brown.
 - b. Phase B: Orange.
 - c. Phase C: Yellow.
 - 5. Color for Neutral: White.
 - 6. Color for Equipment Grounds: Green.
 - 7. Colors for Isolated Grounds: Green two or more yellow stripes.
- C. Warning Label Colors:
 - 1. Identify system voltage with black letters on an orange background.
- D. Warning labels and signs shall include, but are not limited to, the following legends:

- 1. Multiple Power Source Warning: "DANGER ELECTRICAL SHOCK HAZARD EQUIPMENT HAS MULTIPLE POWER SOURCES."
- 2. Workspace Clearance Warning: "WARNING OSHA REGULATION AREA IN FRONT OF ELECTRICAL EQUIPMENT MUST BE KEPT CLEAR FOR 36 INCHES (915 MM)."

E. Equipment Identification Labels:

1. Black letters on a white field.

2.3 LABELS

- A. Vinyl Wraparound Labels: Preprinted, flexible labels laminated with a clear, weather- and chemical-resistant coating and matching wraparound clear adhesive tape for securing label ends.
- B. Snap-around Labels: Slit, pretensioned, flexible, preprinted, color-coded acrylic sleeves, with diameters sized to suit diameter and that stay in place by gripping action.
- C. Self-Adhesive Wraparound Labels: Preprinted, 3-mil- (0.08-mm-) thick, vinyl flexible label with acrylic pressure-sensitive adhesive.
 - 1. Self-Lamination: Clear; UV-, weather- and chemical-resistant; self-laminating, protective shield over the legend. Labels sized such that the clear shield overlaps the entire printed legend.
 - 2. Marker for Labels: Permanent, waterproof, black ink marker recommended by tag manufacturer.
 - 3. Marker for Labels: Machine-printed, permanent, waterproof, black ink recommended by printer manufacturer.
- D. Self-Adhesive Labels: Vinyl, thermal, transfer-printed, 3-mil- (0.08-mm-) thick, multicolor, weather- and UV-resistant, pressure-sensitive adhesive labels, configured for intended use and location.
 - 1. Minimum Nominal Size:
 - a. 1-1/2 by 6 inches (37 by 150 mm) for raceway and conductors.
 - b. 3-1/2 by 5 inches (76 by 127 mm) for equipment.
 - c. As required by authorities having jurisdiction.

2.4 BANDS AND TUBES

- A. Snap-around, Color-Coding Bands: Slit, pretensioned, flexible, solid-colored acrylic sleeves, 2 inches (50 mm) long, with diameters sized to suit diameter and that stay in place by gripping action.
- B. Heat-Shrink Preprinted Tubes: Flame-retardant polyolefin tubes with machine-printed identification labels, sized to suit diameters of and shrunk to fit firmly around item being identified. Full shrink recovery occurs at a maximum of 200 deg F (93 deg C). Comply with UL 224.

2.5 TAPES AND STENCILS

- A. Marker Tapes: Vinyl or vinyl-cloth, self-adhesive wraparound type, with circuit identification legend machine printed by thermal transfer or equivalent process.
- B. Self-Adhesive Vinyl Tape: Colored, heavy duty, waterproof, fade resistant; not less than 3 mils (0.08 mm) thick by 1 to 2 inches (25 to 50 mm) wide; compounded for outdoor use.
- C. Tape and Stencil: 4-inch- (100-mm-) wide black stripes on 10-inch (250-mm) centers placed diagonally over orange background and is 12 inches (300 mm) wide. Stop stripes at legends.
- D. Floor Marking Tape: 2-inch- (50-mm-) wide, 5-mil (0.125-mm) pressure-sensitive vinyl tape, with black and white stripes and clear vinyl overlay.

E. Underground-Line Warning Tape:

- 1. Tape:
 - a. Recommended by manufacturer for the method of installation and suitable to identify and locate underground electrical and communications utility lines.
 - b. Printing on tape shall be permanent and shall not be damaged by burial operations.
 - c. Tape material and ink shall be chemically inert and not subject to degradation when exposed to acids, alkalis, and other destructive substances commonly found in soils.

2. Color and Printing:

- a. Comply with ANSI Z535.1, ANSI Z535.2, ANSI Z535.3, ANSI Z535.4, and ANSI Z535.5.
- b. Inscriptions for Red-Colored Tapes: "ELECTRIC LINE, HIGH VOLTAGE".
- c. Inscriptions for Orange-Colored Tapes: "TELEPHONE CABLE, CATV CABLE, COMMUNICATIONS CABLE, OPTICAL FIBER CABLE".

3. Tag: Type I:

- a. Pigmented polyolefin, bright colored, continuous-printed on one side with the inscription of the utility, compounded for direct-burial service.
- b. Width: 3 inches (75 mm).
- c. Thickness: 4 mils (0.1 mm).
- d. Weight: 18.5 lb/1000 sq. ft. (9.0 kg/100 sq. m).
- e. Tensile according to ASTM D882: 30 lbf (133.4 N) and 2500 psi (17.2 MPa).

4. Tag: Type ID:

- a. Detectable three-layer laminate, consisting of a printed pigmented polyolefin film, a solid aluminum-foil core, and a clear protective film that allows inspection of the continuity of the conductive core; bright colored, continuous-printed on one side with the inscription of the utility, compounded for direct-burial service.
- b. Width: 3 inches (75 mm).
- c. Overall Thickness: 5 mils (0.125 mm).
- d. Foil Core Thickness: 0.35 mil (0.00889 mm).
- e. Weight: 28 lb/1000 sq. ft. (13.7 kg/100 sq. m).

- f. Tensile according to ASTM D882: 70 lbf (311.3 N) and 4600 psi (31.7 MPa).
- F. Stenciled Legend: In nonfading, waterproof, black ink or paint. Minimum letter height shall be 1 inch (25 mm).

2.6 TAGS

A. Write-on Tags:

- 1. Marker for Tags: Permanent, waterproof, black ink marker recommended by tag manufacturer.
- 2. Marker for Tags: Machine-printed, permanent, waterproof, black ink marker recommended by printer manufacturer.

2.7 SIGNS

A. Baked-Enamel Signs:

- 1. Preprinted aluminum signs, high-intensity reflective, unched or drilled for fasteners, with colors, legend, and size required for application.
- 2. 1/4-inch (6.4-mm) grommets in corners for mounting.
- 3. Nominal Size: 7 by 10 inches (180 by 250 mm).

B. Metal-Backed Butyrate Signs:

- 1. Weather-resistant, nonfading, preprinted, cellulose-acetate butyrate signs, with 0.0396-inch (1-mm) galvanized-steel backing, punched and drilled for fasteners, and with colors, legend, and size required for application.
- 2. 1/4-inch (6.4-mm) grommets in corners for mounting.
- 3. Nominal Size: 10 by 14 inches (250 by 360 mm).

C. Laminated Acrylic or Melamine Plastic Signs:

- 1. Engraved legend.
- 2. Thickness:
 - a. For signs up to 20 sq. in. (129 sq. cm), minimum 1/16 inch (1.6 mm) thick.
 - b. For signs larger than 20 sq. in. (129 sq. cm), 1/8 inch (3.2 mm) thick.
 - c. Engraved legend with black letters on white face.
 - d. Punched or drilled for mechanical fasteners with 1/4-inch (6.4-mm) grommets in corners for mounting.
 - e. Framed with mitered acrylic molding and arranged for attachment at applicable equipment.

2.8 CABLE TIES

- A. General-Purpose Cable Ties: Fungus inert, self-extinguishing, one piece, self-locking, and Type 6/6 nylon.
 - 1. Minimum Width: 3/16 inch (5 mm).
 - 2. Tensile Strength at 73 Deg F (23 Deg C) according to ASTM D638: 12,000 psi (82.7 MPa).

- 3. Temperature Range: Minus 40 to plus 185 deg F (Minus 40 to plus 85 deg C).
- 4. Color: Black, except where used for color-coding.
- B. UV-Stabilized Cable Ties: Fungus inert, designed for continuous exposure to exterior sunlight, self-extinguishing, one piece, self-locking, and Type 6/6 nylon.
 - 1. Minimum Width: 3/16 inch (5 mm).
 - 2. Tensile Strength at 73 Deg F (23 Deg C) according to ASTM D638: 12,000 psi (82.7 MPa).
 - 3. Temperature Range: Minus 40 to plus 185 deg F (Minus 40 to plus 85 deg C).
 - 4. Color: Black.
- C. Plenum-Rated Cable Ties: Self-extinguishing, UV stabilized, one piece, and self-locking.
 - 1. Minimum Width: 3/16 inch (5 mm).
 - 2. Tensile Strength at 73 Deg F (23 Deg C) according to ASTM D638: 7000 psi (48.2 MPa).
 - 3. UL 94 Flame Rating: 94V-0.
 - 4. Temperature Range: Minus 50 to plus 284 deg F (Minus 46 to plus 140 deg C).
 - 5. Color: Black.

2.9 MISCELLANEOUS IDENTIFICATION PRODUCTS

- A. Paint: Comply with requirements in painting Sections for paint materials and application requirements. Retain paint system applicable for surface material and location (exterior or interior).
- B. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Verify and coordinate identification names, abbreviations, colors, and other features with requirements in other Sections requiring identification applications, Drawings, Shop Drawings, manufacturer's wiring diagrams, and operation and maintenance manual. Use consistent designations throughout Project.
- B. Install identifying devices before installing acoustical ceilings and similar concealment.
- C. Verify identity of each item before installing identification products.
- D. Coordinate identification with Project Drawings, manufacturer's wiring diagrams, and operation and maintenance manual.
- E. Apply identification devices to surfaces that require finish after completing finish work.

- F. Install signs with approved legend to facilitate proper identification, operation, and maintenance of electrical systems and connected items.
- G. Self-Adhesive Identification Products: Before applying electrical identification products, clean substrates of substances that could impair bond, using materials and methods recommended by manufacturer of identification product.
- H. System Identification for Raceways and Cables under 600 V: Identification shall completely encircle cable or conduit. Place identification of two-color markings in contact, side by side.
 - 1. Secure tight to surface of conductor, cable, or raceway.
- I. System Identification for Raceways and Cables over 600 V: Identification shall completely encircle cable or conduit. Place adjacent identification of two-color markings in contact, side by side.
 - 1. Secure tight to surface of conductor, cable, or raceway.
- J. Auxiliary Electrical Systems Conductor Identification: Identify field-installed alarm, control, and signal connections.
- K. Emergency Operating Instruction Signs: Install instruction signs with white legend on a red background with minimum 3/8-inch- (10-mm-) high letters for emergency instructions at equipment used for power transfer
- L. Elevated Components: Increase sizes of labels, signs, and letters to those appropriate for viewing from the floor.
- M. Accessible Fittings for Raceways: Identify the covers of each junction and pull box of the following systems with the wiring system legend and system voltage. System legends shall be as follows:
 - 1. "EMERGENCY POWER."
 - 2. "POWER."
 - 3. "UPS."
- N. Vinyl Wraparound Labels:
 - 1. Secure tight to surface at a location with high visibility and accessibility.
 - 2. Attach labels that are not self-adhesive type with clear vinyl tape, with adhesive appropriate to the location and substrate.
- O. Snap-around Labels: Secure tight to surface at a location with high visibility and accessibility.
- P. Self-Adhesive Wraparound Labels: Secure tight to surface of raceway or cable at a location with high visibility and accessibility.
- Q. Self-Adhesive Labels:
 - 1. On each unit of equipment, install unique designation label that is consistent with wiring diagrams, schedules, and operation and maintenance manual.

- 2. Unless otherwise indicated, provide a single line of text with 1/2-inch- (13-mm-) high letters on 1-1/2-inch- (38-mm-) high label; where two lines of text are required, use labels 2 inches (50 mm) high.
- R. Snap-around Color-Coding Bands: Secure tight to surface at a location with high visibility and accessibility.
- S. Heat-Shrink, Preprinted Tubes: Secure tight to surface at a location with high visibility and accessibility.
- T. Marker Tapes: Secure tight to surface at a location with high visibility and accessibility.
- U. Self-Adhesive Vinyl Tape: Secure tight to surface at a location with high visibility and accessibility.
 - 1. Field-Applied, Color-Coding Conductor Tape: Apply in half-lapped turns for a minimum distance of 6 inches (150 mm) where splices or taps are made. Apply last two turns of tape with no tension to prevent possible unwinding.
- V. Tape and Stencil: Comply with requirements in painting Sections for surface preparation and paint application.
- W. Floor Marking Tape: Apply stripes to finished surfaces following manufacturer's written instructions.
- X. Underground Line Warning Tape:
 - 1. During backfilling of trenches, install continuous underground-line warning tape directly above cable or raceway at 6 to 8 inches (150 to 200 mm) below finished grade. Use multiple tapes where width of multiple lines installed in a common trench or concrete envelope exceeds 16 inches (400 mm) overall.
 - 2. Limit use of underground-line warning tape to direct-buried cables.
 - 3. Install underground-line warning tape for direct-buried cables and cables in raceways.

Y. Write-on Tags:

- 1. Place in a location with high visibility and accessibility.
- 2. Secure using general-purpose cable ties.

Z. Baked-Enamel Signs:

- 1. Attach signs that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.
- 2. Unless otherwise indicated, provide a single line of text with 1/2-inch- (13-mm-) high letters on minimum 1-1/2-inch- (38-mm-) high sign; where two lines of text are required, use signs minimum 2 inches (50 mm) high.

AA. Metal-Backed Butyrate Signs:

1. Attach signs that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.

- 2. Unless otherwise indicated, provide a single line of text with 1/2-inch- (13-mm-) high letters on minimum 1-1/2-inch- (38-mm-) high sign; where two lines of text are required, use signs minimum 2 inches (50 mm) high.
- BB. Laminated Acrylic or Melamine Plastic Signs:
 - 1. Attach signs and plastic labels that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.
 - 2. Unless otherwise indicated, provide a single line of text with 1/2-inch- (13-mm-) high letters on minimum 1-1/2-inch- (38-mm-) high sign; where two lines of text are required, use signs minimum 2 inches (50 mm) high.
- CC. Cable Ties: General purpose, for attaching tags, except as listed below:
 - 1. Outdoors: UV-stabilized nylon.
 - 2. In Spaces Handling Environmental Air: Plenum rated.

3.2 IDENTIFICATION SCHEDULE

- A. Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment. Install access doors or panels to provide view of identifying devices.
- B. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, pull points, and locations of high visibility. Identify by system and circuit designation.
- C. Accessible Raceways and Metal-Clad Cables, 600 V or Less, for Service, Feeder, and Branch Circuits, More Than 30 and 120V to Ground: Identify with self-adhesive raceway labels.
 - 1. Locate identification at changes in direction, at penetrations of walls and floors, at 50-foot (15-m) maximum intervals in straight runs, and at 25-foot (7.6-m) maximum intervals in congested areas.
- D. Accessible Fittings for Raceways and Cables within Buildings: Identify the covers of each junction and pull box of the following systems with self-adhesive labels containing the wiring system legend and system voltage. System legends shall be as follows:
 - 1. "EMERGENCY POWER."
 - 2. "POWER."
 - 3. "UPS."
- E. Power-Circuit Conductor Identification, 600 V or Less: For conductors in vaults, pull and junction boxes, manholes, and handholes, use vinyl wraparound labels to identify the phase.
 - 1. Locate identification at changes in direction, at penetrations of walls and floors, at 50-foot (15-m) maximum intervals in straight runs, and at 25-foot (7.6-m) maximum intervals in congested areas.

- F. Control-Circuit Conductor Identification: For conductors and cables in pull and junction boxes, manholes, and handholes, use self-adhesive wraparound labels with the conductor or cable designation, origin, and destination.
- G. Control-Circuit Conductor Termination Identification: For identification at terminations, provide heat-shrink preprinted tubes with the conductor designation.
- H. Conductors to Be Extended in the Future: Attach write-on tags to conductors and list source.
- I. Auxiliary Electrical Systems Conductor Identification: Self-adhesive vinyl tape that is uniform and consistent with system used by manufacturer for factory-installed connections.
 - 1. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, and pull points. Identify by system and circuit designation.
- J. Locations of Underground Lines: Underground-line warning tape for power, lighting, communication, and control wiring and optical-fiber cable.
- K. Workspace Indication: Apply floor marking tape or tape and stencil to finished surfaces. Show working clearances in the direction of access to live parts. Workspace shall comply with NFPA 70 and 29 CFR 1926.403 unless otherwise indicated. Do not install at flush-mounted panelboards and similar equipment in finished spaces.
- L. Instructional Signs: Self-adhesive labels, including the color code for grounded and ungrounded conductors.
- M. Warning Labels for Indoor Cabinets, Boxes, and Enclosures for Power and Lighting: Self-adhesive equipment labels.
 - 1. Apply to exterior of door, cover, or other access.
 - 2. For equipment with multiple power or control sources, apply to door or cover of equipment, including, but not limited to, the following:
 - a. Power-transfer switches.
 - b. Controls with external control power connections.
- N. Arc Flash Warning Labeling: Self-adhesive labels.
- O. Operating Instruction Signs: Self-adhesive labels
- P. Emergency Operating Instruction Signs: Self-adhesive labels white legend on a red background with minimum 3/8-inch- (10-mm-) high letters for emergency instructions at equipment used for power transfer.
- Q. Equipment Identification Labels:
 - 1. Indoor Equipment: Self-adhesive label
 - 2. Outdoor Equipment: Laminated acrylic or melamine sign

END OF SECTION 260553

SECTION 260573.13 - SHORT-CIRCUIT STUDIES

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes a computer-based, fault-current study to determine the minimum interrupting capacity of circuit protective devices.

1.2 ACTION SUBMITTALS

A. Product Data:

- 1. For computer software program to be used for studies.
- 2. Submit the following after the approval of system protective devices submittals. Submittals shall be in digital form.
 - a. Short-circuit study input data, including completed computer program input data sheets.
 - b. Short-circuit study and equipment evaluation report; signed, dated, and sealed by a qualified professional engineer.
 - 1) Submit study report for action prior to receiving final approval of distribution equipment submittals. If formal completion of studies will cause delay in equipment manufacturing, obtain approval from Architect for preliminary submittal of sufficient study data to ensure that selection of devices and associated characteristics is satisfactory.
 - 2) Revised one-line diagram, reflecting field investigation results and results of short-circuit study.

1.3 INFORMATIONAL SUBMITTALS

A. Qualification Data:

- 1. For Power Systems Analysis Software Developer.
- 2. For Power System Analysis Specialist.
- 3. For Field Adjusting Agency.
- B. Product Certificates: For short-circuit study software, certifying compliance with IEEE 399.

1.4 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.5 QUALITY ASSURANCE

- A. Study shall be performed using commercially developed and distributed software designed specifically for power system analysis.
- B. Software algorithms shall comply with requirements of standards and guides specified in this Section.
- C. Manual calculations are unacceptable.
 - 1. Power System Analysis Software Qualifications: Computer program shall be designed to perform short-circuit studies or have a function, component, or add-on module designed to perform short-circuit studies.
 - 2. Computer program shall be developed under the charge of a licensed professional engineer who holds IEEE Computer Society's Certified Software Development Professional certification.
- D. Power Systems Analysis Specialist Qualifications: Professional engineer licensed in the state where Project is located. All elements of the study shall be performed under the direct supervision and control of this professional engineer.
- E. Short-Circuit Study Certification: Short-Circuit Study Report shall be signed and sealed by Power Systems Analysis Specialist.
- F. Field Adjusting Agency Qualifications:
 - 1. Employer of a NETA ETT-Certified Technician Level III or NICET Electrical Power Testing Level III certification responsible for all field adjusting of the Work.
 - 2. A member company of NETA.
 - 3. Acceptable to authorities having jurisdiction.

PART 2 - PRODUCTS

2.1 POWER SYSTEM ANALYSIS SOFTWARE DEVELOPERS

- A. Comply with IEEE 399 and IEEE 551.
 - 1. Analytical features of power systems analysis software program shall have capability to calculate "mandatory" features as listed in IEEE 399.
- B. Computer software program shall be capable of plotting and diagramming time-current-characteristic curves as part of its output.

2.2 SHORT-CIRCUIT STUDY REPORT CONTENTS

- A. Executive summary of study findings.
- B. Study descriptions, purpose, basis, and scope. Include case descriptions, definition of terms, and guide for interpretation of results.

- C. One-line diagram of modeled power system, showing the following:
 - 1. Protective device designations and ampere ratings.
 - 2. Conductor types, sizes, and lengths.
 - 3. Transformer kilovolt ampere (kVA) and voltage ratings.
 - 4. Motor and generator designations and kVA ratings.
 - 5. Switchgear, switchboard, motor-control center, and panelboard designations and ratings.
 - 6. Derating factors and environmental conditions.
 - 7. Any revisions to electrical equipment required by the study.
- D. Comments and recommendations for system improvements or revisions in a written document, separate from one-line diagram.

E. Protective Device Evaluation:

- 1. Evaluate equipment and protective devices and compare to available short-circuit currents. Verify that equipment withstand ratings exceed available short-circuit current at equipment installation locations.
- 2. Tabulations of circuit breaker, fuse, and other protective device ratings versus calculated short-circuit duties.
- 3. For 600-V overcurrent protective devices, ensure that interrupting ratings are equal to or higher than calculated 1/2-cycle symmetrical fault current.
- 4. For devices and equipment rated for asymmetrical fault current, apply multiplication factors listed in standards to 1/2-cycle symmetrical fault current.

F. Short-Circuit Study Input Data:

- 1. One-line diagram of system being studied.
- 2. Power sources available.
- 3. Manufacturer, model, and interrupting rating of protective devices.
- 4. Conductors.
- 5. Transformer data.

G. Short-Circuit Study Output Reports:

- 1. Low-Voltage Fault Report: Three-phase and unbalanced fault calculations, showing the following for each overcurrent device location:
 - a. Voltage.
 - b. Calculated fault-current magnitude and angle.
 - c. Fault-point X/R ratio.
 - d. Equivalent impedance.
- 2. Momentary Duty Report: Three-phase and unbalanced fault calculations, showing the following for each overcurrent device location:
 - a. Voltage.
 - b. Calculated symmetrical fault-current magnitude and angle.
 - c. Fault-point X/R ratio.
 - d. Calculated asymmetrical fault currents:

- 1) Based on fault-point X/R ratio.
- 2) Based on calculated symmetrical value multiplied by 1.6.
- 3) Based on calculated symmetrical value multiplied by 2.7.
- 3. Interrupting Duty Report: Three-phase and unbalanced fault calculations, showing the following for each overcurrent device location:
 - a. Voltage.
 - b. Calculated symmetrical fault-current magnitude and angle.
 - c. Fault-point X/R ratio.
 - d. No AC Decrement (NACD) ratio.
 - e. Equivalent impedance.
 - f. Multiplying factors for 2-, 3-, 5-, and 8-cycle circuit breakers rated on a symmetrical basis.
 - g. Multiplying factors for 2-, 3-, 5-, and 8-cycle circuit breakers rated on a total basis.

PART 3 - EXECUTION

3.1 POWER SYSTEM DATA

- A. Obtain all data necessary for conduct of the study.
- B. Gather and tabulate the required input data to support the short-circuit study. Comply with requirements in Section 017839 "Project Record Documents" for recording circuit protective device characteristics. Record data on a Record Document copy of one-line diagram. Comply with recommendations in IEEE 551 as to the amount of detail that is required to be acquired in the field. Field data gathering shall be under direct supervision and control of the engineer in charge of performing the study, and shall be by the engineer or its representative who holds NETA ETT-Certified Technician Level III or NICET Electrical Power Testing Level III certification.

3.2 SHORT-CIRCUIT STUDY

- A. Perform study following the general study procedures contained in IEEE 399.
- B. Calculate short-circuit currents according to IEEE 551.
- C. Base study on device characteristics supplied by device manufacturer.
- D. Extent of electrical power system to be studied is indicated on Drawings.
- E. Begin short-circuit current analysis at the service, extending down to system overcurrent protective devices as follows:
 - 1. To normal system low-voltage load buses where fault current is 10 kA or less.
 - 2. Exclude equipment rated 240 V ac or less when supplied by a single transformer rated less than 125 kVA.

- F. Study electrical distribution system from normal and alternate power sources throughout electrical distribution system for Project. Study all cases of system-switching configurations and alternate operations that could result in maximum fault conditions.
- G. Include the ac fault-current decay from induction motors, synchronous motors, and asynchronous generators and apply to low- and medium-voltage, three-phase ac systems. Also account for the fault-current dc decrement to address asymmetrical requirements of interrupting equipment.
- H. Calculate short-circuit momentary and interrupting duties for a three-phase bolted fault and a single line-to-ground fault at each equipment indicated on one-line diagram.
 - 1. For grounded systems, provide a bolted line-to-ground fault-current study for areas as defined for the three-phase bolted fault short-circuit study.
- I. Include in the report identification of any protective device applied outside its capacity.

END OF SECTION 260573.13

SECTION 260573.16 - COORDINATION STUDIES

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes computer-based, overcurrent protective device coordination studies to determine overcurrent protective devices and to determine overcurrent protective device settings for selective tripping.

1.2 ACTION SUBMITTALS

A. Product Data:

- 1. For computer software program to be used for studies.
- 2. Submit the following after the approval of system protective devices submittals. Submittals may be in digital form.
 - a. Coordination-study input data, including completed computer program input data sheets.
 - b. Study and equipment evaluation reports.
- 3. Overcurrent protective device coordination study report; signed, dated, and sealed by a qualified professional engineer.
 - a. Submit study report for action prior to receiving final approval of distribution equipment submittals. If formal completion of studies will cause delay in equipment manufacturing, obtain approval from Architect for preliminary submittal of sufficient study data to ensure that selection of devices and associated characteristics is satisfactory.

1.3 INFORMATIONAL SUBMITTALS

A. Qualification Data:

- 1. For Power System Analysis Software Developer.
- 2. For Power Systems Analysis Specialist.
- 3. For Field Adjusting Agency.
- B. Product Certificates: For overcurrent protective device coordination study software, certifying compliance with IEEE 399.

1.4 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.5 QUALITY ASSURANCE

- A. Studies shall be performed using commercially developed and distributed software designed specifically for power system analysis.
- B. Software algorithms shall comply with requirements of standards and guides specified in this Section.
- C. Manual calculations are unacceptable.
- D. Power System Analysis Software Qualifications:
 - 1. Computer program shall be designed to perform coordination studies or have a function, component, or add-on module designed to perform coordination studies.
 - 2. Computer program shall be developed under the charge of a licensed professional engineer who holds IEEE Computer Society's Certified Software Development Professional certification.
- E. Power Systems Analysis Specialist Qualifications: Professional engineer licensed in the state where Project is located. All elements of the study shall be performed under the direct supervision and control of this professional engineer.
- F. Field Adjusting Agency Qualifications:
 - 1. Employer of a NETA ETT-Certified Technician Level III responsible for all field adjusting of the Work.
 - 2. A member company of NETA.
 - 3. Acceptable to authorities having jurisdiction.

PART 2 - PRODUCTS

2.1 POWER SYSTEM ANALYSIS SOFTWARE DEVELOPERS

- A. Comply with IEEE 242 and IEEE 399.
- B. Analytical features of device coordination study computer software program shall have the capability to calculate "mandatory" features as listed in IEEE 399.
- C. Computer software program shall be capable of plotting and diagramming time-current-characteristic curves as part of its output. Computer software program shall report device settings and ratings of all overcurrent protective devices and shall demonstrate selective coordination by computer-generated, time-current coordination plots.

2.2 COORDINATION STUDY REPORT CONTENTS

- A. Executive summary of study findings.
- B. Study descriptions, purpose, basis, and scope. Include case descriptions, definition of terms, and guide for interpretation of results.

- C. One-line diagram of modeled power system, showing the following:
 - 1. Protective device designations and ampere ratings.
 - 2. Conductor types, sizes, and lengths.
 - 3. Transformer kilovolt ampere (kVA) and voltage ratings.
 - 4. Motor and generator designations and kVA ratings.
 - 5. Switchgear, switchboard, motor-control center, and panelboard designations.
 - 6. Any revisions to electrical equipment required by the study.
 - 7. Study Input Data: As described in "Power System Data" Article.
 - a. Short-Circuit Study Output: As specified in "Short-Circuit Study Output Reports" Paragraph in "Short-Circuit Study Report Contents" Article in Section 260573.13 "Short-Circuit Studies."

D. Protective Device Coordination Study:

- 1. Report recommended settings of protective devices, ready to be applied in the field. Use manufacturer's data sheets for recording the recommended setting of overcurrent protective devices when available.
 - a. Phase and Ground Relays:
 - 1) Device tag.
 - 2) Relay current transformer ratio and tap, time dial, and instantaneous pickup value.
 - 3) Recommendations on improved relaying systems, if applicable.
 - b. Circuit Breakers:
 - 1) Adjustable pickups and time delays (long time, short time, and ground).
 - 2) Adjustable time-current characteristic.
 - 3) Adjustable instantaneous pickup.
 - 4) Recommendations on improved trip systems, if applicable.
 - c. Fuses: Show current rating, voltage, and class.
- E. Time-Current Coordination Curves: Determine settings of overcurrent protective devices to achieve selective coordination. Graphically illustrate that adequate time separation exists between devices installed in series, including power utility company's upstream devices. Prepare separate sets of curves for the switching schemes and for emergency periods where the power source is local generation. Show the following information:
 - 1. Device tag and title, one-line diagram with legend identifying the portion of the system covered.
 - 2. Terminate device characteristic curves at a point reflecting maximum symmetrical or asymmetrical fault current to which the device is exposed.
 - 3. Identify the device associated with each curve by manufacturer type, function, and, if applicable, tap, time delay, and instantaneous settings recommended.
 - 4. Plot the following listed characteristic curves, as applicable:
 - a. Power utility's overcurrent protective device.

- b. Low-voltage fuses including manufacturer's minimum melt, total clearing, tolerance, and damage bands.
- c. Low-voltage equipment circuit-breaker trip devices, including manufacturer's tolerance bands.
- d. Transformer full-load current, magnetizing inrush current, and ANSI through-fault protection curves.
- e. Ground-fault protective devices.
- f. The largest feeder circuit breaker in each motor-control center and panelboard.
- 5. Maintain selectivity for tripping currents caused by overloads.
- 6. Provide adequate time margins between device characteristics such that selective operation is achieved.
- 7. Comments and recommendations for system improvements.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine Project overcurrent protective device submittals for compliance with electrical distribution system coordination requirements and other conditions affecting performance of the Work. Devices to be coordinated are indicated on Drawings.
 - 1. Proceed with coordination study only after relevant equipment submittals have been assembled. Overcurrent protective devices that have not been submitted and approved prior to coordination study may not be used in study.

3.2 POWER SYSTEM DATA

- A. Obtain all data necessary for conduct of the overcurrent protective device study.
 - 1. Verify completeness of data supplied in one-line diagram on Drawings. Call any discrepancies to Architect's attention.
 - 2. For equipment included as Work of this Project, use characteristics submitted under provisions of action submittals and information submittals for this Project.
- B. Gather and tabulate all required input data to support the coordination study. List below is a guide. Comply with recommendations in IEEE 551 for the amount of detail required to be acquired in the field. Field data gathering shall be under direct supervision and control of the engineer in charge of performing the study, and shall be by the engineer or its representative who holds NETA ETT-Certified Technician Level III or NICET Electrical Power Testing Level III certification.

3.3 COORDINATION STUDY

A. Comply with IEEE 242 for calculating short-circuit currents and determining coordination time intervals.

- B. Comply with IEEE 399 for general study procedures.
- C. Base study on device characteristics supplied by device manufacturer.
- D. Extent of electrical power system to be studied is indicated on Drawings.
- E. Begin analysis at the service, extending down to system overcurrent protective devices as follows:
 - 1. To normal system low-voltage load buses where fault current is 10 kA or less.
 - 2. Exclude equipment rated 240 V ac or less when supplied by a single transformer rated less than 125 kVA.
- F. Study electrical distribution system from normal and alternate power sources throughout electrical distribution system for Project. Study all cases of system-switching configurations and alternate operations that could result in maximum fault conditions.
- G. Transformer Primary Overcurrent Protective Devices:
 - 1. Device shall not operate in response to the following:
 - a. Inrush current when first energized.
 - b. Self-cooled, full-load current or forced-air-cooled, full-load current, whichever is specified for that transformer.
 - c. Permissible transformer overloads according to IEEE C57.96 if required by unusual loading or emergency conditions.
 - 2. Device settings shall protect transformers according to IEEE C57.12.00, for fault currents.

H. Motor Protection:

- 1. Select protection for low-voltage motors according to IEEE 242 and NFPA 70.
- 2. Select protection for motors served at voltages more than 600 V according to IEEE 620.
- I. Conductor Protection: Protect cables against damage from fault currents according to ICEA P-32-382, ICEA P-45-482, and protection recommendations in IEEE 242. Demonstrate that equipment withstands the maximum short-circuit current for a time equivalent to the tripping time of the primary relay protection or total clearing time of the fuse. To determine temperatures that damage insulation, use curves from cable manufacturers or from listed standards indicating conductor size and short-circuit current.
- J. Generator Protection: Select protection according to manufacturer's written instructions and to IEEE 242.
- K. Include the ac fault-current decay from induction motors and apply to low- and medium-voltage, three-phase ac systems. Also account for fault-current dc decrement, to address asymmetrical requirements of interrupting equipment.
- L. Calculate short-circuit momentary and interrupting duties for a three-phase bolted fault and a single line-to-ground fault at each equipment indicated on one-line diagram.

1. For grounded systems, provide a bolted line-to-ground fault-current study for areas as defined for the three-phase bolted fault short-circuit study.

M. Protective Device Evaluation:

- 1. Evaluate equipment and protective devices and compare to short-circuit ratings.
- 2. Adequacy of switchgear, motor-control centers, and panelboard bus bars to withstand short-circuit stresses.
- 3. Include in the report identification of any protective device applied outside its capacity.

3.4 LOAD-FLOW AND VOLTAGE-DROP STUDY

- A. Perform a load-flow and voltage-drop study to determine the steady-state loading profile of the system. Analyze power system performance two times as follows:
 - 1. Determine load flow and voltage drop based on full-load currents obtained in "Power System Data" Article.
 - 2. Determine load flow and voltage drop based on 80 percent of the design capacity of load buses
 - 3. Prepare load-flow and voltage-drop analysis and report to show power system components that are overloaded, or might become overloaded; show bus voltages that are less than as prescribed by NFPA 70.

3.5 MOTOR-STARTING STUDY

A. Prepare the motor-starting study report, noting light flicker for limits proposed by IEEE 141, and, and voltage sags so as not to affect operation of other utilization equipment on system supplying the motor.

3.6 FIELD ADJUSTING

- A. Adjust relay and protective device settings according to recommended settings provided by the coordination study. Field adjustments shall be completed by the engineering service division of equipment manufacturer under the "Startup and Acceptance Testing" contract portion.
- B. Make minor modifications to equipment as required to accomplish compliance with short-circuit and protective device coordination studies.
- C. Testing and adjusting shall be by a full-time employee of the Field Adjusting Agency, who holds NETA ETT-Certified Technician Level III or NICET Electrical Power Testing Level III certification.
 - 1. Perform each visual and mechanical inspection and electrical test stated in NETA ATS. Certify compliance with test parameters. Perform NETA tests and inspections for all adjustable overcurrent protective devices.

3.7 DEMONSTRATION

- A. Engage Power Systems Analysis Specialist to train Owner's maintenance personnel in the following:
 - 1. Acquaint personnel in fundamentals of operating the power system in normal and emergency modes.
 - 2. Hand-out and explain the coordination study objectives, study descriptions, purpose, basis, and scope. Include case descriptions, definition of terms, and guide for interpreting time-current coordination curves.
 - 3. For Owner's maintenance staff certified as NETA ETT-Certified Technicians Level III or NICET Electrical Power Testing Level III Technicians, teach how to adjust, operate, and maintain overcurrent protective device settings.

END OF SECTION 260573.16

SECTION 260573.19 - ARC-FLASH HAZARD ANALYSIS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes a computer-based, arc-flash study to determine the arc-flash hazard distance and the incident energy to which personnel could be exposed during work on or near electrical equipment.

1.2 ACTION SUBMITTALS

- A. Product Data: For computer software program to be used for studies.
- B. Study Submittals: Submit the following submittals after the approval of system protective devices submittals. Submittals shall be in digital form:
 - 1. Arc-flash study input data, including completed computer program input data sheets.
 - 2. Arc-flash study report; signed, dated, and sealed by Power Systems Analysis Specialist.
 - 3. Submit study report for action prior to receiving final approval of distribution equipment submittals. If formal completion of studies will cause delay in equipment manufacturing, obtain approval from Architect for preliminary submittal of sufficient study data to ensure that selection of devices and associated characteristics is satisfactory.

1.3 INFORMATIONAL SUBMITTALS

- A. Qualification Data:
 - 1. For Power Systems Analysis Software Developer.
 - 2. For Power System Analysis Specialist.
 - 3. For Field Adjusting Agency.
- B. Product Certificates: For arc-flash hazard analysis software, certifying compliance with IEEE 1584 and NFPA 70E.

1.4 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.5 QUALITY ASSURANCE

A. Study shall be performed using commercially developed and distributed software designed specifically for power system analysis.

- B. Software algorithms shall comply with requirements of standards and guides specified in this Section.
- C. Manual calculations are unacceptable.
- D. Power System Analysis Software Qualifications: An entity that owns and markets computer software used for studies, having performed successful studies of similar magnitude on electrical distribution systems using similar devices.
 - 1. Computer program shall be designed to perform arc-flash analysis or have a function, component, or add-on module designed to perform arc-flash analysis.
 - 2. Computer program shall be developed under the charge of a licensed professional engineer who holds IEEE Computer Society's Certified Software Development Professional certification.
- E. Power Systems Analysis Specialist Qualifications: Professional engineer in charge of performing the arc-flash study, analyzing the arc flash, and documenting recommendations, licensed in the state where Project is located. All elements of the study shall be performed under the direct supervision and control of this professional engineer.
- F. Arc-Flash Study Certification: Arc-Flash Study Report shall be signed and sealed by Power Systems Analysis Specialist.
- G. Field Adjusting Agency Qualifications:
 - 1. Employer of a NETA ETT-Certified Technician Level III or NICET Electrical Power Testing Level III certification responsible for all field adjusting of the Work.
 - 2. A member company of NETA.
 - 3. Acceptable to authorities having jurisdiction.

PART 2 - PRODUCTS

2.1 COMPUTER SOFTWARE DEVELOPERS

- A. Comply with IEEE 1584 and NFPA 70E.
- B. Analytical features of device coordination study computer software program shall have the capability to calculate "mandatory" features as listed in IEEE 399.

2.2 ARC-FLASH STUDY REPORT CONTENT

- A. Executive summary of study findings.
- B. Study descriptions, purpose, basis, and scope. Include case descriptions, definition of terms, and guide for interpretation of results.
- C. One-line diagram, showing the following:
 - 1. Protective device designations and ampere ratings.

- 2. Conductor types, sizes, and lengths.
- 3. Transformer kilovolt ampere (kVA) and voltage ratings, including derating factors and environmental conditions.
- 4. Motor and generator designations and kVA ratings.
- 5. Switchgear, switchboard, motor-control center, panelboard designations, and ratings.
- D. Study Input Data: As described in "Power System Data" Article.
- E. Short-Circuit Study Output Data: As specified in "Short-Circuit Study Output Reports" Paragraph in "Short-Circuit Study Report Contents" Article in Section 260573.13 "Short-Circuit Studies."
- F. Protective Device Coordination Study Report Contents: As specified in "Coordination Study Report Contents" Article in Section 260573.16 "Coordination Studies."
- G. Arc-Flash Study Output Reports:
 - 1. Interrupting Duty Report: Three-phase and unbalanced fault calculations, showing the following for each equipment location included in the report:
 - a. Voltage.
 - b. Calculated symmetrical fault-current magnitude and angle.
 - c. Fault-point X/R ratio.
 - d. No AC Decrement (NACD) ratio.
 - e. Equivalent impedance.
 - f. Multiplying factors for 2-, 3-, 5-, and 8-cycle circuit breakers rated on a symmetrical basis.
 - g. Multiplying factors for 2-, 3-, 5-, and 8-cycle circuit breakers rated on a total basis.
- H. Incident Energy and Flash Protection Boundary Calculations:
 - 1. Arcing fault magnitude.
 - 2. Protective device clearing time.
 - 3. Duration of arc.
 - 4. Arc-flash boundary.
 - 5. Restricted approach boundary.
 - 6. Limited approach boundary.
 - 7. Working distance.
 - 8. Incident energy.
 - 9. Hazard risk category.
 - 10. Recommendations for arc-flash energy reduction.
- I. Fault study input data, case descriptions, and fault-current calculations including a definition of terms and guide for interpretation of computer printout.

2.3 ARC-FLASH WARNING LABELS

A. Comply with requirements in Section 260553 "Identification for Electrical Systems" for self-adhesive equipment labels. Produce a 3.5-by-5-inch (76-by-127-mm) self-adhesive equipment label for each work location included in the analysis.

- B. Label shall have an orange header with the wording, "WARNING, ARC-FLASH HAZARD," and shall include the following information taken directly from the arc-flash hazard analysis:
 - 1. Location designation.
 - 2. Nominal voltage.
 - 3. Protection boundaries.
 - a. Arc-flash boundary.
 - b. Restricted approach boundary.
 - c. Limited approach boundary.
 - 4. Arc flash PPE category.
 - 5. Required minimum arc rating of PPE in Cal/cm squared.
 - 6. Available incident energy.
 - 7. Working distance.
 - 8. Engineering report number, revision number, and issue date.
- C. Labels shall be machine printed, with no field-applied markings.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine Project overcurrent protective device submittals. Proceed with arc-flash study only after relevant equipment submittals have been assembled. Overcurrent protective devices that have not been submitted and approved prior to arc-flash study may not be used in study.

3.2 ARC-FLASH HAZARD ANALYSIS

- A. Comply with NFPA 70E and its Annex D for hazard analysis study.
- B. Preparatory Studies: Perform the Short-Circuit and Protective Device Coordination studies prior to starting the Arc-Flash Hazard Analysis or obtain results from another source.
 - Short-Circuit Study Output: As specified in "Short-Circuit Study Output Reports" Paragraph in "Short-Circuit Study Report Contents" Article in Section 260573.13 "Short-Circuit Studies."
 - 2. Coordination Study Report Contents: As specified in "Coordination Study Report Contents" Article in Section 260573.16 "Coordination Studies."
- C. Calculate maximum and minimum contributions of fault-current size.
 - 1. Maximum calculation shall assume a maximum contribution from the utility and shall assume motors to be operating under full-load conditions.
 - 2. Calculate arc-flash energy at 85 percent of maximum short-circuit current according to IEEE 1584 recommendations.
 - 3. Calculate arc-flash energy at 38 percent of maximum short-circuit current according to NFPA 70E recommendations.

- 4. Calculate arc-flash energy with the utility contribution at a minimum and assume no motor contribution.
- D. Calculate the arc-flash protection boundary and incident energy at locations in electrical distribution system where personnel could perform work on energized parts.
- E. Include low-voltage equipment locations, except equipment rated 240 V ac or less fed from transformers less than 125 kVA.
- F. Calculate the limited, restricted, and prohibited approach boundaries for each location.
- G. Incident energy calculations shall consider the accumulation of energy over time when performing arc-flash calculations on buses with multiple sources. Iterative calculations shall take into account the changing current contributions, as the sources are interrupted or decremented with time. Fault contribution from motors and generators shall be decremented as follows:
 - 1. Fault contribution from induction motors shall not be considered beyond three to five cycles.
- H. Arc-flash energy shall generally be reported for the maximum of line or load side of a circuit breaker. However, arc-flash computation shall be performed and reported for both line and load side of a circuit breaker as follows:
 - 1. When the circuit breaker is in a separate enclosure.
 - 2. When the line terminals of the circuit breaker are separate from the work location.
- I. Base arc-flash calculations on actual overcurrent protective device clearing time. Cap maximum clearing time at two seconds based on IEEE 1584, Section B.1.2.

3.3 POWER SYSTEM DATA

- A. Obtain all data necessary for conduct of the arc-flash hazard analysis.
 - 1. Verify completeness of data supplied on one-line diagram on Drawings and under "Preparatory Studies" Paragraph in "Arc-Flash Hazard Analysis" Article. Call discrepancies to Architect's attention.
 - 2. For new equipment, use characteristics from approved submittals under provisions of action submittals and information submittals for this Project.

3.4 LABELING

- A. Apply one arc-flash label on the front cover of each section of the equipment for each equipment included in the study. Base arc-flash label data on highest values calculated at each location.
- B. Each piece of equipment listed below shall have an arc-flash label applied to it:
 - 1. Motor-control center.

- 2. Low-voltage switchboard.
- 3. Switchgear.
- 4. Medium-voltage switch.
- 5. Medium voltage transformers
- 6. Low voltage transformers. Exclude transformers with high voltage side 240 V or less and less than 125 kVA.
- 7. Panelboard and safety switch over 250 V.
- 8. Applicable panelboard and safety switch under 250 V.
- 9. Control panel.
- C. Note on record Drawings the location of equipment where the personnel could be exposed to arc-flash hazard during their work.
 - 1. Indicate arc-flash energy.
 - 2. Indicate protection level required.

3.5 APPLICATION OF WARNING LABELS

A. Install arc-flash warning labels under the direct supervision and control of Power System Analysis Specialist.

3.6 DEMONSTRATION

A. Engage Power Systems Analysis Specialist to train Owner's maintenance personnel in potential arc-flash hazards associated with working on energized equipment and the significance of arc-flash warning labels.

END OF SECTION 260573.19

SECTION 260923 - LIGHTING CONTROL DEVICES

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Time switches.
- 2. Photoelectric switches.
- 3. Standalone daylight-harvesting switching and dimming controls.
- 4. Indoor occupancy and vacancy sensors.
- 5. Switchbox-mounted occupancy and vacancy sensors
- 6. Digital timer light switches.
- 7. High-bay occupancy and vacancy sensors.
- 8. Outdoor motion sensors.
- 9. Lighting contactors.

B. Related Requirements:

1. Section 262726 "Wiring Devices" for wall-box dimmers, non-networkable wall-switch occupancy sensors, and manual light switches.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings:
 - 1. Show installation details for the following:
 - a. Occupancy sensors.
 - b. Vacancy sensors.
 - 2. Interconnection diagrams showing field-installed wiring.
 - 3. Include diagrams for power, signal, and control wiring.

1.3 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Reflected ceiling plan(s) and elevations, drawn to scale and coordinated with each other, using input from installers of the items involved.
- B. Field quality-control reports.
- C. Sample warranty.

1.4 CLOSEOUT SUBMITTALS

- A. Operation and maintenance data.
- B. Software and firmware operational documentation.

1.5 WARRANTY

- A. Manufacturer's Warranty: Manufacturer and Installer agree to repair or replace lighting control devices that fail(s) in materials or workmanship within specified warranty period.
 - 1. Warranty Period: Two year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 TIME SWITCHES

- A. Electronic Time Switches: Solid state, programmable, with alphanumeric display; complying with UL 917.
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. Contact Configuration: DPST.
 - 3. Contact Rating: 30-A inductive or resistive, 240-V ac.
 - 4. Circuitry: Allow connection of a photoelectric relay as substitute for on-off function of a program on selected channels.
 - 5. Astronomic Time: Selected channels.
 - 6. Automatic daylight savings time changeover.
 - 7. Battery Backup: Not less than seven days reserve, to maintain schedules and time clock.
- B. Electromechanical-Dial Time Switches: Comply with UL 917.
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. Contact Configuration: DPST.
 - 3. Contact Rating: 30-A inductive or resistive, 240-V ac.
 - 4. Circuitry: Allows cnnection of a photoelectric relay as a substitute for the on-off function of a program.
 - 5. Astronomic time dial.
 - 6. Eight-Day Program: Uniquely programmable for each weekday and holidays.
 - 7. Skip-a-day mode.
 - 8. Wound-spring reserve carryover mechanism to keep time during power failures, minimum of 16 hours.

2.2 OUTDOOR PHOTOELECTRIC SWITCHES

- A. Description: Solid state, with DPST dry contacts rated for 1800 VA inductive, to operate connected relay, contactor coils, or microprocessor input; complying with UL 773A, and compatible with ballasts and LED lamps.
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. Light-Level Monitoring Range: 1.5 to 10 fc (16.14 to 108 lux), with an adjustment for turn-on and turn-off levels within that range, and a directional lens in front of the photocell to prevent fixed light sources from causing turn-off.
 - 3. Time Delay: Fifteen-second minimum, to prevent false operation.
 - 4. Surge Protection: Metal-oxide varistor.
 - 5. Mounting: Twist lock complies with NEMA C136.10, with base-and-stem mounting or stem-and-swivel mounting accessories as required to direct sensor to the north sky exposure.
 - 6. Failure Mode: Luminaire stays ON.
- B. Description: Solid state; one set of NO dry contacts rated for 24 V ac at 1 A, to operate connected load, complying with UL 773, and compatible with luminaire, power pack, and lighting control panelboard.
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. Light-Level Monitoring Range: 1.5 to 10 fc (16.14 to 108 lux), with an adjustment for turn-on and turn-off levels within that range.
 - 3. Time Delay: Thirty-second minimum, to prevent false operation.
 - 4. Mounting: 1/2-inch (13-mm) threaded male conduit.
 - 5. Failure Mode: Luminaire stays ON.
 - 6. Power Pack: Dry contacts rated for 20-A ballast or LED load at 120- and 277-V ac, for 13-A tungsten at 120-V ac, and for 1 hp at 120-V ac. Sensor has 24-V dc, 150-mA, Class 2 power source, as defined by NFPA 70.
 - a. LED status lights to indicate load status.
 - b. Plenum rated.
 - 7. Power Pack: Digital controller capable of accepting three RJ45 inputs with two outputs rated for 20-A incandescent or LED load at 120- and 277-V ac, for 16-A ballast or LED at 120- and 277-V ac, and for 1 hp at 120-V ac. Sensor has 24-V dc, Class 2 power source, as defined by NFPA 70.
 - a. With integral current monitoring
 - b. Compatible with digital addressable lighting interface.
 - c. Plenum rated.

2.3 INDOOR OCCUPANCY AND VACANCY SENSORS

- A. General Requirements for Sensors:
 - 1. Wall and Ceiling-mounted, solid-state indoor occupancy and vacancy sensors.

- 2. Dual technology.
- 3. Integrated or Separate power pack.
- 4. Hardwired connection to switch and BAS and lighting control system.
- 5. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- 6. Operation:
 - a. Occupancy Sensor: Unless otherwise indicated, turn lights on when coverage area is occupied, and turn them off when unoccupied; with a time delay for turning lights off, adjustable over a minimum range of 1 to 15 minutes.
 - b. Vacancy Sensor: Unless otherwise indicated, lights are manually turned on and sensor turns lights off when the room is unoccupied; with a time delay for turning lights off, adjustable over a minimum range of 1 to 15 minutes.
 - c. Combination Sensor: Unless otherwise indicated, sensor shall be programmed to turn lights on when coverage area is occupied and turn them off when unoccupied, or to turn off lights that have been manually turned on; with a time delay for turning lights off, adjustable over a minimum range of 1 to 15 minutes.
- 7. Sensor Output: Contacts rated to operate the connected relay, complying with UL 773A.
- 8. Power: Line voltage.
- 9. Power Pack: Dry contacts rated for 20-A ballast or LED load at 120- and 277-V ac, for 13-A tungsten at 120-V ac, and for 1 hp at 120-V ac. Sensor has 24-V dc, 150-mA, Class 2 power source, as defined by NFPA 70.
- 10. Mounting:
 - a. Sensor: Suitable for mounting in any position on a standard outlet box.
 - b. Relay: Externally mounted through a 1/2-inch (13-mm) knockout in a standard electrical enclosure.
 - c. Time-Delay and Sensitivity Adjustments: Recessed and concealed behind hinged door.
- 11. Indicator: Digital display, to show when motion is detected during testing and normal operation of sensor.
- 12. Bypass Switch: Override the "on" function in case of sensor failure.
- 13. Automatic Light-Level Sensor: Adjustable from 2 to 200 fc (21.5 to 2152 lux); turn lights off when selected lighting level is present.
- B. PIR Type: Wall or Ceiling mounted; detect occupants in coverage area by their heat and movement.
 - 1. Detector Sensitivity: Detect occurrences of 6-inch- (150-mm-) minimum movement of any portion of a human body that presents a target of not less than 36 sq. in. (232 sq. cm).
 - 2. Detection Coverage (Room, Ceiling Mounted): Detect occupancy anywhere in a circular area of 1000 sq. ft. (93 sq. m) when mounted on a 96-inch- (2440-mm-) high ceiling.
 - 3. Detection Coverage (Corridor, Ceiling Mounted): Detect occupancy within 90 feet (27.4 m) when mounted on a 10-foot- (3-m-) high ceiling.
 - 4. Detection Coverage (Room, Wall Mounted): Detect occupancy anywhere within a 180-degree pattern centered on the sensor over an area of 1000 square feet (110 square meters) above finished floor.

- C. Ultrasonic Type: Wall or Ceiling mounted; detect occupants in coverage area through pattern changes of reflected ultrasonic energy.
 - 1. Detector Sensitivity: Detect a person of average size and weight moving not less than 12 inches (305 mm) in either a horizontal or a vertical manner at an approximate speed of 12 inches/s (305 mm/s).
 - 2. Detection Coverage (Small Room): Detect occupancy anywhere within a circular area of 600 sq. ft. (56 sq. m) when mounted on a 96-inch- (2440-mm-) high ceiling.
 - 3. Detection Coverage (Standard Room): Detect occupancy anywhere within a circular area of 1000 sq. ft. (93 sq. m) when mounted on a 96-inch- (2440-mm-) high ceiling.
 - 4. Detection Coverage (Large Room): Detect occupancy anywhere within a circular area of 2000 sq. ft. (186 sq. m) when mounted on a 96-inch- (2440-mm-) high ceiling.
 - 5. Detection Coverage (Corridor): Detect occupancy anywhere within 90 feet (27.4 m) when mounted on a 10-foot- (3-m-) high ceiling in a corridor not wider than 14 feet (4.3 m).
 - 6. Detection Coverage (Room, Wall Mounted): Detect occupancy anywhere within a 180-degree pattern centered on the sensor over an area of 1000 square feet (110 square meters) when mounted 84 inches (2100 mm) above finished floor.
- D. Dual-Technology Type: Wall or Ceiling mounted; detect occupants in coverage area using PIR and ultrasonic detection methods. The particular technology or combination of technologies that control on-off functions is selectable in the field by operating controls on unit.
 - 1. Sensitivity Adjustment: Separate for each sensing technology.
 - 2. Detector Sensitivity: Detect occurrences of 6-inch- (150-mm-) minimum movement of any portion of a human body that presents a target of not less than 36 sq. in. (232 sq. cm), and detect a person of average size and weight moving not less than 12 inches (305 mm) in either a horizontal or a vertical manner at an approximate speed of 12 inches/s (305 mm/s).
 - 3. Detection Coverage (Standard Room): Detect occupancy anywhere within a circular area of 1000 sq. ft. (93 sq. m) when mounted on a 96-inch- (2440-mm-) high ceiling.
 - 4. Detection Coverage (Room, Wall Mounted): Detect occupancy anywhere within a 180-degree pattern centered on the sensor over an area of 1000 square feet (110 square meters)when mounted48 inches (1200 mm) above finished floor.

2.4 SWITCHBOX-MOUNTED OCCUPANCY SENSORS

- A. General Requirements for Sensors: Automatic-wall-switch occupancy sensor with manual onoff switch, suitable for mounting in a single gang switchbox, with provisions for connection to BAS using hardwired connection.
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. Occupancy Sensor Operation: Unless otherwise indicated, turn lights on when coverage area is occupied, and turn lights off when unoccupied; with a time delay for turning lights off, adjustable over a minimum range of 1 to 15 minutes.
 - 3. Operating Ambient Conditions: Dry interior conditions, 32 to 120 deg F (0 to 49 deg C).
 - 4. Switch Rating: Not less than 800-VA ballast or LED load at 120 V, 1200-VA ballast or LED load at 277 V, and 800-W incandescent.

B. Wall-Switch Sensor Tag WS1:

- 1. Standard Range: 180-degree field of view, field adjustable from 180 to 40 degrees; with a minimum coverage area of 900 sq. ft. (84 sq. m).
- 2. Sensing Technology: Dual technology PIR and ultrasonic.
- 3. Switch Type: SP, field-selectable automatic "on," or manual "on," automatic "off."
- 4. Capable of controlling load in three-way application.
- 5. Voltage: Dual voltage 120 and 277 V
- 6. Ambient-Light Override: Concealed, field-adjustable, light-level sensor from 10 to 150 fc (108 to 1600 lux). The switch prevents the lights from turning on when the light level is higher than the set point of the sensor.
- 7. Concealed, field-adjustable, "off" time-delay selector at up to 30 minutes.
- 8. Concealed, "off" time-delay selector at 30 seconds and 5, 10, and 20 minutes.
- 9. Adaptive Technology: Self-adjusting circuitry detects and memorizes usage patterns of the space and helps eliminate false "off" switching.
- 10. Color: White.
- 11. Faceplate: Color matched to switch.

C. Wall-Switch Sensor Tag WS2:

- 1. Standard Range: 210-degree field of view, with a minimum coverage area of 900 sq. ft. (84 sq. m).
- 2. Sensing Technology: PIR.
- 3. Switch Type: SP, field-selectable automatic "on," or manual "on," automatic "off."
- 4. Capable of controlling load in three-way application.
- 5. Voltage: Dual voltage, 120 and 277 V.
- 6. Ambient-Light Override: Concealed, field-adjustable, light-level sensor from 10 to 150 fc (108 to 1600 lux). The switch prevents the lights from turning on when the light level is higher than the set point of the sensor.
- 7. Concealed, field-adjustable, "off" time-delay selector at up to 30 minutes.
- 8. Concealed, "off" time-delay selector at 30 seconds and 5, 10, and 20 minutes.
- 9. Adaptive Technology: Self-adjusting circuitry detects and memorizes usage patterns of the space and helps eliminate false "off" switching.
- 10. Color: White.
- 11. Faceplate: Color matched to switch.

2.5 DIGITAL TIMER LIGHT SWITCH

- A. Description: Combination digital timer and conventional switch lighting control unit. Switchbox-mounted, backlit LCD display, with selectable time interval in 20 minute increments.
 - 1. Rated 960 W at 120-V ac for tungsten lighting, 10 A at 120-V ac or 10 amps at 277-V ac for ballast or LED, and 1/4 horsepower at 120-V ac.
 - 2. Integral relay for connection to BAS.
 - 3. Voltage: Dual voltage 120 and 277 V.
 - 4. Color: White.
 - 5. Faceplate: Color matched to switch.

2.6 OUTDOOR MOTION SENSORS

- A. Description: Solid-state outdoor motion sensors.
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. Dual-technology (PIR and ultrasonic) type, weatherproof. Detect occurrences of 6-inch-(150-mm-) minimum movement of any portion of a human body that presents a target of not less than 36 sq. in. (232 sq. cm). Comply with UL 773A.
 - 3. Switch Rating:
 - a. Luminaire-Mounted Sensor: 1000-W incandescent, 500-VA fluorescent/LED
 - b. Separately Mounted Sensor: Dry contacts rated for 20-A ballast load at 120- and 277-V ac, for 13-A tungsten at 120-V ac, and for 1 hp at 120-V ac. Sensor has 24-V dc, 150-mA, Class 2 power source, as defined by NFPA 70.
 - 4. Switch Type: SP, field-selectable automatic "on," or manual "on," automatic "off." With bypass switch to override the "on" function in case of sensor failure.
 - 5. Voltage: Match the circuit voltage type.
 - 6. Detector Coverage:
 - a. Standard Range: 210-degree field of view, with a minimum coverage area of 900 sq. ft. (84 sq. m).
 - b. Long Range: 180-degree field of view and 110-foot (34-m) detection range.
 - 7. Ambient-Light Override: Concealed, field-adjustable, light-level sensor from 10 to 150 fc (108 to 1600 lux). The switch prevents the lights from turning on when the light level is higher than the set point of the sensor.
 - 8. Concealed, field-adjustable, "off" time-delay selector at up to 30 minutes.
 - 9. Concealed, "off" time-delay selector at 30 seconds and 5, 10, and 20 minutes.
 - 10. Adaptive Technology: Self-adjusting circuitry detects and memorizes usage patterns of the space and help eliminate false "off" switching.
 - 11. Operating Ambient Conditions: Suitable for operation in ambient temperatures ranging from minus 40 to plus 130 deg F (minus 40 to plus 54 deg C), rated as "raintight" according to UL 773A.

2.7 LIGHTING CONTACTORS

- A. Description: Electrically operated and mechanically held, combination-type lighting contactors with fusible switch, complying with NEMA ICS 2 and UL 508.
 - 1. Current Rating for Switching: Listing or rating consistent with type of load served, including tungsten filament, inductive, and high-inrush ballast (ballast with 15 percent or less THD of normal load current).
 - 2. Fault Current Withstand Rating: Equal to or exceeding the available fault current at the point of installation.
 - 3. Enclosure: Comply with NEMA 250.
 - 4. Provide with control and pilot devices as indicated on Drawings matching the NEMA type specified for the enclosure.

2.8 CONDUCTORS AND CABLES

- A. Power Wiring to Supply Side of Remote-Control Power Sources: Not smaller than No. 12 AWG. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
- B. Classes 2 and 3 Control Cable: Multiconductor cable with stranded-copper conductors not smaller than No. 18 AWG. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
- C. Class 1 Control Cable: Multiconductor cable with stranded-copper conductors not smaller than No. 14AWG. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with NECA 1.
- B. Examine lighting control devices before installation. Reject lighting control devices that are wet, moisture damaged, or mold damaged.
- C. Coordinate layout and installation of ceiling-mounted devices with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, smoke detectors, fire-suppression systems, and partition assemblies.
- D. Install and aim sensors in locations to achieve not less than 90-percent coverage of areas indicated. Do not exceed coverage limits specified in manufacturer's written instructions.
- E. Mount electrically held lighting contactors with elastomeric isolator pads to eliminate structure-borne vibration unless contactors are installed in an enclosure with factory-installed vibration isolators.

3.2 WIRING INSTALLATION

- A. Wiring Method: Comply with Section 260519 "Low-Voltage Electrical Power Conductors and Cables." Minimum conduit size is 1/2 inch (13 mm).
- B. Wiring within Enclosures: Separate power-limited and nonpower-limited conductors according to conductor manufacturer's written instructions.
- C. Size conductors according to lighting control device manufacturer's written instructions unless otherwise indicated.
- D. Splices, Taps, and Terminations: Make connections only on numbered terminal strips in junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures.

3.3 IDENTIFICATION

- A. Identify components and power and control wiring according to Section 260553 "Identification for Electrical Systems."
- B. Label time switches and contactors with a unique designation.

3.4 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
 - 1. Operational Test: After installing time switches and sensors, and after electrical circuitry has been energized, start units to confirm proper unit operation.
 - 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- B. Lighting control devices will be considered defective if they do not pass tests and inspections.
- C. Prepare test and inspection reports.

3.5 ADJUSTING

- A. Occupancy Adjustments: When requested within 12 months from date of Substantial Completion, provide on-site assistance in adjusting lighting control devices to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.
 - 1. For occupancy and motion sensors, verify operation at outer limits of detector range. Set time delay to suit Owner's operations.
 - 2. For daylighting controls, adjust set points and deadband controls to suit Owner's operations.
 - 3. Align high-bay occupancy sensors using manufacturer's laser aiming tool.

3.6 SOFTWARE SERVICE AGREEMENT

- A. Technical Support: Beginning at Substantial Completion, service agreement shall include software support for two years.
- B. Upgrade Service: At Substantial Completion, update software to latest version. Install and program software upgrades that become available within two years from date of Substantial Completion. Upgrading software shall include operating system and new or revised licenses for using software.
 - 1. Upgrade Notice: At least 30 days to allow Owner to schedule and access the system and to upgrade computer equipment if necessary.

3.7 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain lighting control devices.

END OF SECTION 260923

SECTION 260943.23 - RELAY-BASED LIGHTING CONTROLS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes lighting control panels using mechanically held relays for switching.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: For each relay panel and related equipment.
 - 1. Include dimensioned plans, elevations, sections, and details. Show tabulations of installed devices, equipment features, and ratings.
 - 2. Detail enclosure types and details for types other than NEMA 250, Type 1.
 - 3. Detail wiring partition configuration, current, and voltage ratings.
 - 4. Short-circuit current rating of relays.
 - 5. Address Drawing: Reflected ceiling plan and floor plans, showing connected luminaires, address for each luminaire, and luminaire groups. Base plans on construction plans, using the same legend, symbols, and schedules.
 - 6. Point List and Data Bus Load: Summary list of all control devices, sensors, ballasts, and other loads. Include percentage of rated connected load and device addresses.
 - 7. Wire Termination Diagrams and Schedules: Coordinate nomenclature and presentation with Drawings and block diagram. Differentiate between manufacturer-installed and field-installed wiring.

1.3 INFORMATIONAL SUBMITTALS

- A. Field quality-control reports.
- B. Software licenses and upgrades required by and installed for operation and programming of digital and analog devices.
- C. Sample warranty.

1.4 CLOSEOUT SUBMITTALS

- A. Operation and maintenance data.
- B. Software and Firmware Operational Documentation:
 - 1. Software operating and upgrade manuals.
 - 2. Program Software Backup: Username and password for manufacturer's support website.
 - 3. Device address list.

- 4. Printout of software application and graphic screens.
- 5. Testing and adjusting of panic and emergency power features.

1.5 WARRANTY

- A. Special Warranty: Manufacturer agrees to repair or replace components of standalone multipreset modular dimming controls that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: Cost to repair or replace any parts for two years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

- A. Sequence of Operations: Input signal from field-mounted manual switches, or digital signal sources, shall open or close one or more lighting control relays in the lighting control panels. Any combination of inputs shall be programmable to any number of control relays.
- B. Surge Protective Device: Factory installed as an integral part of control components or field-mounted surge suppressors complying with UL 1449, SPD Type 2.
- C. Electrical Components, Devices, and Accessories: Listed and labeled by a qualified testing agency, and marked for intended location and application.
- D. Comply with 47 CFR 15, Subparts A and B, for Class A digital devices.
- E. Comply with UL 916.

2.2 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: Lighting control panels shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 - 1. The term "withstand" means "the unit will remain in place without separation of any parts when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."
 - 2. Component Importance Factor: 1.5.

2.3 LIGHTING CONTROL RELAY PANELS

- A. Description: Standalone lighting control panel using mechanically latched relays to control lighting and appliances.
- B. Lighting Control Panel:

- 1. A single enclosure with incoming lighting branch circuits, control circuits, switching relays, and on-board timing and control unit.
- 2. A vertical barrier separating branch circuits from control wiring.
- C. Control Unit: Contain the power supply and electronic control for operating and monitoring individual relays.

1. Timing Unit:

- a. 365-day calendar, astronomical clock, and automatic adjustments for daylight savings and leap year.
- b. Clock configurable for 12-hour (A.M./P.M.) or 24-hour format.
- c. Four independent schedules, each having 24 time periods.
- d. Schedule periods settable to the minute.
- e. Day-of-week, day-of-month, day-of-year with one-time or repeating capability.
- f. 10 special date periods.

2. Sequencing Control with Override:

- a. Automatic sequenced on and off switching of selected relays at times set at the timing unit, allowing timed overrides from external switches.
- b. Sequencing control shall operate relays one at a time, completing the operation of all connected relays in not more than 10 seconds.
- c. Override control shall allow any relay connected to it to be switched on or off by a field-deployed manual switch or by an automatic switch, such as an occupancy sensor.
- d. Override control "blink warning" shall warn occupants approximately five minutes before actuating the off sequence.
- 3. Nonvolatile memory shall retain all setup configurations. After a power failure, the controller shall automatically reboot and return to normal system operation, including accurate time of day and date.
- D. Relays: Electrically operated, mechanically held single-pole switch, rated at 20 A at 277 V. Short-circuit current rating shall be not less than 5 kA. Control shall be three-wire, 24-V ac.
- E. Relays: Electrically operated, mechanically held single-pole switch, rated at 20 A at 120-V tungsten, 30 A at 277-V ballast, 1.5 hp at 120 V, and 3 hp at 277 V. Short-circuit current rating shall be not less than 14 kA. Control shall be three-wire, 24-V ac.
- F. Power Supply: NFPA 70, Class 2, sized for connected equipment, plus 20 percent spare capacity. Powered from a dedicated branch circuit of the panelboard that supplies power to the line side of the relays, sized to provide control power for the local panel-mounted relays, bus system, low-voltage inputs, field-installed occupancy sensors, and photo sensors.

G. Operator Interface:

- 1. Integral alphanumeric keypad and digital display, and intuitive drop-down menus to assist in programming.
- 2. Log and display relay on-time.
- 3. Connect relays to one or more time and sequencing schemes.

2.4 MANUAL SWITCHES AND PLATES

- A. Push-Button Switches: Modular, momentary contact, three wire, for operating one or more relays and to override automatic controls.
 - 1. Match color and style specified in Section 262726 "Wiring Devices."
 - 2. Integral green LED pilot light to indicate when circuit is on.
 - 3. Internal white LED locator light to illuminate when circuit is off.
- B. Wall Plates: Single and multigang plates as specified in Section 262726 "Wiring Devices."
- C. Legend: Engraved or permanently silk-screened on wall plate where indicated. Use designations indicated on Drawings.

2.5 FIELD-MOUNTED SIGNAL SOURCES

- A. Daylight Harvesting Switching Controls: Comply with Section 260923 "Lighting Control Devices." Control power may be taken from the lighting control panel, and signal shall be compatible with the relays.
- B. Indoor Occupancy Sensors and Extreme-Temperature Occupancy Sensors: Comply with Section 260923 "Lighting Control Devices." Control power may be taken from the lighting control panel, and signal shall be compatible with the relays.

2.6 CONDUCTORS AND CABLES

- A. Power Wiring to Supply Side of Class 2 Power Source: Not smaller than No. 12 AWG. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
- B. Classes 2 and 3 Control Cables: Multiconductor cable with copper conductors not smaller than No. 18 AWG. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
- C. Class 1 Control Cables: Multiconductor cable with copper conductors not smaller than No. 14AWG. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
- D. Twisted-Pair Data Cable: Category 6. Comply with requirements for twisted pair cabling in Section 260523 "Control-Voltage Electrical Power Cables."
- E. Twisted-Pair Data Cable: Category 6. Comply with requirements in Section 271513 "Communications Copper Horizontal Cabling."

PART 3 - EXECUTION

3.1 INSTALLATION

A. Comply with NECA 1.

- B. Wiring Method: Install cables in raceways and cable trays except within consoles, cabinets, desks, and counters. Conceal raceway and cables except in unfinished spaces.
 - 1. Install plenum cable in environmental airspaces, including plenum ceilings.
 - 2. Comply with requirements for cable trays specified in Section 260536 "Cable Trays for Electrical Systems."
 - 3. Comply with requirements for raceways and boxes specified in Section 260533 "Raceways and Boxes for Electrical Systems."
- C. Wiring Method: Conceal conductors and cables in accessible ceilings, walls, and floors where possible.
- D. Wiring within Enclosures: Bundle, lace, and train conductors to terminal points with no excess and without exceeding manufacturer's limitations on bending radii. Install lacing bars and distribution spools.
- E. Install panels and accessories according to NECA 407.
- F. Comply with mounting and anchoring requirements specified in Section 260548.16 "Seismic Controls for Electrical Systems."
- G. Mount top of trim 90 inches (2286 mm) above finished floor unless otherwise indicated.
- H. Mount panel cabinet plumb and rigid without distortion of box.
- I. Engage a factory-authorized service representative to perform startup service.
- J. Occupancy Adjustments: When requested within 12 months from date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.

3.2 IDENTIFICATION

- A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
- B. Create a directory to indicate loads served by each relay; incorporate Owner's final room designations. Obtain approval before installing. Use a PC or typewriter to create directory; handwritten directories are unacceptable.
- C. Lighting Control Panel Nameplates: Label each panel with a nameplate complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.3 FIELD QUALITY CONTROL

A. Perform the following tests and inspections with the assistance of a factory-authorized service representative:

B. Acceptance Testing Preparation:

1. Perform each visual and mechanical inspection and electrical test for low-voltage air circuit breakers described below and low-voltage surge arrestors. Certify compliance with manufacturer's test parameters.

a. Circuit-Breaker Tests:

- 1) Compare nameplate with Drawings and Specifications.
- 2) Inspect physical and mechanical conditions.
- 3) Inspect anchorage and alignment.
- 4) Verify that the units are clean.
- 5) Operate the circuit breaker to ensure smooth operation.
- 6) Inspect bolted electrical connections for high resistance using one or more of the following methods:
 - a) A low-resistance ohmmeter.
 - b) Verify tightness of bolted electrical connections by calibrated torque wrench.
 - c) Thermographic survey.
- 7) Inspect operating mechanism, contacts, and arc chutes in unsealed units.
- 8) Perform adjustments for final protective device settings according to the overcurrent protective device coordination study. Comply with requirements in Section 260573.16 "Coordination Studies."
- 9) Perform insulation resistance tests for one minute on each pole, phase-to-phase, and phase-to-ground with the circuit breaker closed and across each pole using manufacturer's published data.
- 10) Perform a contact/pole-resistance test.
- 11) Perform insulation-resistance tests on control wiring with respect to ground. Applied potential shall be 500-V dc for 300-V rated cable and 1000-V dc for 600-V rated cable. Test duration shall be for one minute. Follow manufacturer's written instructions for solid-state units.
- 12) Determine long-time pickup and delay by primary current injection.
- 13) Determine short-time pickup and delay by primary current injection.
- 14) Determine ground-fault pickup and time delay by primary current injection.
- 15) Determine instantaneous pickup by primary current injection.
- 16) Test functions of the trip unit by means of secondary injection.
- 17) Perform minimum pickup voltage tests on shunt trip and close coils according to manufacturer's published data.
- 18) Verify correct operation of auxiliary features such as trip and pickup indicators, zone interlocking, electrical close and trip operation, trip-free, anti-pump function, and trip unit battery condition. Reset trip logs and indicators.
- 19) Verify operation of charging mechanism.

b. Surge Arrestor Tests:

- 1) Compare nameplate with the Contract Documents.
- 2) Inspect physical and mechanical conditions.
- 3) Inspect anchorage, alignment, grounding, and clearances.

- 4) Verify that the units are clean.
- 5) Inspect bolted electrical connections for high resistance using one or more of the following methods:
 - a) Low-resistance ohmmeter.
 - b) Verify tightness of bolted electrical connections by calibrated torque wrench.
- 6) Verify that the ground lead on each device is individually attached to a ground bus or ground electrode.
- Perform an insulation-resistance test on each arrestor, phase terminal-to-ground using voltage according to manufacturer written instructions.
- 8) Comply with requirements in Section 260526 "Grounding and Bonding for Electrical Systems" for grounding tests.
- 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
- C. Lighting control panel will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports, including a certified report that identifies lighting control panels and describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations made after remedial action.

3.4 SOFTWARE SERVICE AGREEMENT

- A. Technical Support: Beginning at Substantial Completion, service agreement shall include software support for two years.
- B. Upgrade Service: At Substantial Completion, update software to latest version. Install and program software upgrades that become available within two years from date of Substantial Completion. Upgrading software shall include operating system and new or revised licenses for using software.
 - 1. Upgrade Notice: At least 30 days to allow Owner to schedule and access the system and to upgrade computer equipment if necessary.

3.5 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain the control unit and operator interface.

END OF SECTION 260943.23

SECTION 262213 - LOW-VOLTAGE DISTRIBUTION TRANSFORMERS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes distribution, dry-type transformers with a nominal primary and secondary rating of 600 V and less, with capacities up to 1500 kVA.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings:
 - 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 2. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment.
 - 3. Include diagrams for power, signal, and control wiring.

1.3 INFORMATIONAL SUBMITTALS

- A. Seismic Qualification Data: Certificates, for transformers, accessories, and components, from manufacturer.
- B. Source quality-control reports.
- C. Field quality-control reports.

1.4 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.5 QUALITY ASSURANCE

- A. Testing Agency Qualifications: Accredited by NETA.
 - 1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

2.2 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: Transformers shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 - 1. The term "withstand" means "the transformer will remain in place without separation of any parts when subjected to the seismic forces specified and the transformer will be fully operational after the seismic event."

2.3 GENERAL TRANSFORMER REQUIREMENTS

- A. Description: Factory-assembled and -tested, air-cooled units for 60-Hz service.
- B. Comply with NFPA 70.
 - 1. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
- C. Transformers Rated 15 kVA and Larger:
 - 1. Comply with 10 CFR 431 (DOE 2016) efficiency levels.
 - 2. Marked as compliant with DOE 2016 efficiency levels by an NRTL.
- D. Encapsulation: Transformers smaller than 30 kVA shall have core and coils completely resin encapsulated.
- E. Cores: Electrical grade, non-aging silicon steel with high permeability and low hysteresis losses.
- F. Coils: Continuous windings without splices except for taps.
 - 1. Coil Material: Copper
 - 2. Internal Coil Connections: Brazed or pressure type.
 - 3. Terminal Connections: Bolted.
- G. Shipping Restraints: Paint or otherwise color-code bolts, wedges, blocks, and other restraints that are to be removed after installation and before energizing. Use fluorescent colors that are easily identifiable inside the transformer enclosure.

2.4 DISTRIBUTION TRANSFORMERS

- A. Comply with NFPA 70and list and label as complying with UL 1561.
- B. Provide transformers that are constructed to withstand seismic forces specified in Section 260548.16 "Seismic Controls for Electrical Systems."

- C. Cores: One leg per phase.
- D. Enclosure: Ventilated.
 - 1. NEMA 250: Core and coil shall be encapsulated within resin compound using a vacuum-pressure impregnation process to seal out moisture and air.
 - 2. KVA Ratings: Based on convection cooling only and not relying on auxiliary fans.
 - 3. Wiring Compartment: Sized for conduit entry and wiring installation.
- E. Taps for Transformers 3 kVA and Smaller: One 5 percent tap above normal full capacity.
- F. Taps for Transformers 7.5 to 24 kVA: Two 5 percent taps below rated voltage.
- G. Taps for Transformers 25 kVA and Larger: Two 2.5 percent taps above and four 2.5 percent taps below normal full capacity.
- H. Insulation Class, Smaller Than 30 kVA: 180 deg C, UL-component-recognized insulation system with a maximum of 115 deg C rise above 40 deg C ambient temperature.
- I. Insulation Class, 30 kVA and Larger: 220 deg C, UL-component-recognized insulation system with a maximum of 115 deg C rise above 40 deg C ambient temperature.
- J. Grounding: Provide ground-bar kit or a ground bar installed on the inside of the transformer enclosure.
- K. Wall Brackets: Manufacturer's standard brackets

2.5 IDENTIFICATION

- A. Nameplates: Engraved, laminated-acrylic or melamine plastic signs for each distribution transformer, mounted with corrosion-resistant screws. Nameplates and label products are specified in Section 260553 "Identification for Electrical Systems."
- B. Nameplates: Self-adhesive label for each distribution transformer. Self-adhesive labels are specified in Section 260553 "Identification for Electrical Systems."

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine conditions for compliance with enclosure- and ambient-temperature requirements for each transformer.
- B. Verify that field measurements are as needed to maintain working clearances required by NFPA 70 and manufacturer's written instructions.
- C. Examine walls, floors, roofs, and concrete bases for suitable mounting conditions where transformers will be installed.

- D. Verify that ground connections are in place and requirements in Section 260526 "Grounding and Bonding for Electrical Systems" have been met. Maximum ground resistance shall be 5 ohms at location of transformer.
- E. Environment: Enclosures shall be rated for the environment in which they are located. Covers for NEMA 250, Type 4X enclosures shall not cause accessibility problems.

3.2 INSTALLATION

- A. Install wall-mounted transformers level and plumb with wall brackets fabricated by transformer manufacturer.
 - 1. Coordinate installation of wall-mounted and structure-hanging supports with actual transformer provided.
- B. Install transformers level and plumb on a concrete base with vibration-dampening supports. Locate transformers away from corners and not parallel to adjacent wall surface.
- C. Construct concrete bases according to Section 033000 "Cast-in-Place Concrete" or Section 033053 "Miscellaneous Cast-in-Place Concrete" and anchor floor-mounted transformers according to manufacturer's written instructions, seismic codes applicable to Project, and requirements in Section 260529 "Hangers and Supports for Electrical Systems."
 - 1. Coordinate size and location of concrete bases with actual transformer provided. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified with concrete.
- D. Secure transformer to concrete base according to manufacturer's written instructions.
- E. Secure covers to enclosure and tighten all bolts to manufacturer-recommended torques to reduce noise generation.
- F. Remove shipping bolts, blocking, and wedges.

3.3 CONNECTIONS

- A. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."
- B. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
- C. Tighten electrical connectors and terminals according to manufacturer's published torquetightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A-486B.
- D. Provide flexible connections at all conduit and conductor terminations and supports to eliminate sound and vibration transmission to the building structure.

3.4 FIELD QUALITY CONTROL

- A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.
- B. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- C. Perform tests and inspections.
- D. Small (Up to 167-kVA Single-Phase or 500-kVA Three-Phase) Dry-Type Transformer Field Tests:
 - 1. Visual and Mechanical Inspection.
 - a. Inspect physical and mechanical condition.
 - b. Inspect anchorage, alignment, and grounding.
 - c. Verify that resilient mounts are free and that any shipping brackets have been removed.
 - d. Verify the unit is clean.
 - e. Perform specific inspections and mechanical tests recommended by manufacturer.
 - f. Verify that as-left tap connections are as specified.
 - g. Verify the presence of surge arresters and that their ratings are as specified.

2. Electrical Tests:

- a. Measure resistance at each winding, tap, and bolted connection.
- b. Perform insulation-resistance tests winding-to-winding and each winding-to-ground. Apply voltage according to manufacturer's published data. In the absence of manufacturer's published data, comply with NETA ATS, Table 100.5. Calculate polarization index: the value of the index shall not be less than 1.0.
- c. Perform turns-ratio tests at all tap positions. Test results shall not deviate by more than one-half percent from either the adjacent coils or the calculated ratio. If test fails, replace the transformer.
- d. Verify correct secondary voltage, phase-to-phase and phase-to-neutral, after energization and prior to loading.
- E. Remove and replace units that do not pass tests or inspections and retest as specified above.
- F. Test Labeling: On completion of satisfactory testing of each unit, attach a dated and signed "Satisfactory Test" label to tested component.

3.5 CLEANING

A. Vacuum dirt and debris; do not use compressed air to assist in cleaning.

END OF SECTION 262213

SECTION 262413 - SWITCHBOARDS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Service and distribution switchboards rated 600 V and less.
- 2. Surge protection devices.
- 3. Disconnecting and overcurrent protective devices.
- 4. Instrumentation.
- 5. Control power.
- 6. Accessory components and features.
- 7. Identification.

1.2 ACTION SUBMITTALS

- A. Product Data: For each switchboard, overcurrent protective device, surge protection device, ground-fault protector, accessory, and component.
- B. Shop Drawings: For each switchboard and related equipment.
 - 1. Include dimensioned plans, elevations, sections, and details, including required clearances and service space around equipment. Show tabulations of installed devices, equipment features, and ratings.
 - 2. Detail enclosure types for types other than NEMA 250, Type 1.
 - 3. Detail bus configuration, current, and voltage ratings.
 - 4. Detail short-circuit current rating of switchboards and overcurrent protective devices.
 - 5. Detail utility company's metering provisions with indication of approval by utility company.
 - 6. Include evidence of NRTL listing for series rating of installed devices.
 - 7. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
 - 8. Include time-current coordination curves for each type and rating of overcurrent protective device included in switchboards. Submit on translucent log-log graft paper; include selectable ranges for each type of overcurrent protective device.
 - 9. Include schematic and wiring diagrams for power, signal, and control wiring.

C. Delegated Design Submittal:

- 1. For arc-flash hazard analysis.
- 2. For arc-flash labels.

1.3 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For Installer
- B. Seismic Qualification Data: Certificates, for switchboards, overcurrent protective devices, accessories, and components, from manufacturer.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- 1.4 Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.6 QUALITY ASSURANCE

- A. Installer Qualifications: An employer of workers qualified as defined in NEMA PB 2.1 and trained in electrical safety as required by NFPA 70E.
- B. Testing Agency Qualifications: Member company of NETA or an NRTL.

1.7 FIELD CONDITIONS

- A. Installation Pathway: Remove and replace access fencing, doors, lift-out panels, and structures to provide pathway for moving switchboards into place.
- B. Environmental Limitations:
 - 1. Do not deliver or install switchboards until spaces are enclosed and weathertight, wet work in spaces is complete and dry, work above switchboards is complete, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.
 - 2. Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 - a. Ambient Temperature: Not exceeding 104 deg F (40 deg C).
 - b. Altitude: Not exceeding 6600 feet (2000 m).

1.8 WARRANTY

- A. Manufacturer's Warranty: Manufacturer agrees to repair or replace switchboard enclosures, buswork, overcurrent protective devices, accessories, and factory installed interconnection wiring that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: Three> years from date of Substantial Completion.
- B. Manufacturer's Warranty: Manufacturer's agrees to repair or replace surge protection devices that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: Switchboards shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation. Shake-table testing shall comply with ICC-ES AC156.
 - 2. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

2.2 SWITCHBOARDS

- A. Source Limitations: Obtain switchboards, overcurrent protective devices, components, and accessories from single source from single manufacturer.
- B. Product Selection for Restricted Space: Drawings indicate maximum dimensions for switchboards including clearances between switchboards and adjacent surfaces and other items. Comply with indicated maximum dimensions.
- C. Comply with NEMA PB 2.
- D. Comply with NFPA 70.
- E. Comply with UL 891.
- F. Front-Connected, Front-Accessible Switchboards:
 - 1. Main Devices: Panel mounted.
 - 2. Branch Devices: Panel mounted.
 - 3. Sections front and rear aligned.
- G. Nominal System Voltage: 480Y/277 V or 208Y/120 V as shown on drawings.

- H. Seismic Requirements: Fabricate and test switchboards according to IEEE 344 to withstand seismic forces defined in Section 260548.16 "Seismic Controls for Electrical Systems."
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation. Shake-table testing shall comply with ICC-ES AC156.
 - a. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."
 - b. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."
- I. Indoor Enclosures: Steel, NEMA 250.
- J. Outdoor Enclosures: Type 3R.
 - 1. Finish: Factory-applied finish in manufacturer's standard color; undersurfaces treated with corrosion-resistant undercoating.
 - 2. Enclosure: Downward, rearward sloping roof; bolt-on rear covers for each section, with provisions for padlocking.
 - 3. Doors: Personnel door at each end of aisle, minimum width of 30 inches (762 mm); opening outwards; with panic hardware and provisions for padlocking. At least one door shall be sized to permit the largest single switchboard section to pass through without disassembling doors, hinges, or switchboard section.
 - 4. Accessories: LED luminaires, ceiling mounted; wired to a three-way light switch at each end of aisle; ground-fault circuit interrupter (GFCI) duplex receptacle; emergency battery pack luminaire installed on wall of aisle midway between personnel doors.
 - 5. Walk-in Aisle Heating and Ventilating:
 - a. Factory-installed electric unit heater(s), wall or ceiling mounted, with integral thermostat and disconnect and with capacities to maintain switchboard interior temperature of 40 deg F (5 deg C) with outside design temperature of 0 deg F (minus 18 deg C).
 - b. Factory-installed exhaust fan with capacities to maintain switchboard interior temperature of 100 deg F (38 deg C) with outside design temperature of 90 deg F (32 deg C).
 - c. Ventilating openings complete with replaceable fiberglass air filters.
 - d. Thermostat: Single stage; wired to control heat and exhaust fan.
- K. Space Heaters: Factory-installed electric space heaters of sufficient wattage in each vertical section to maintain enclosure temperature above expected dew point.
 - 1. Space-Heater Control: Thermostats to maintain temperature of each section above expected dew point.
 - 2. Space-Heater Power Source: Transformer, factory installed in switchboard.
- L. Service Entrance Rating: Switchboards intended for use as service entrance equipment shall contain from one to six service disconnecting means with overcurrent protection, a neutral bus with disconnecting link, a grounding electrode conductor terminal, and a main bonding jumper.

- M. Utility Metering Compartment: Barrier compartment and section complying with utility company's requirements; hinged sealable door; buses provisioned for mounting utility company's current transformers and potential transformers or potential taps as required by utility company. If separate vertical section is required for utility metering, match and align with basic switchboard. Provide service entrance label and necessary applicable service entrance features.
- N. Bus Transition and Incoming Pull Sections: Matched and aligned with basic switchboard.
- O. Removable, Hinged Rear Doors and Compartment Covers: Secured by captive thumb screws, for access to rear interior of switchboard.
- P. Hinged Front Panels: Allow access to circuit breaker, metering, accessory, and blank compartments.
- Q. Pull Box on Top of Switchboard:
 - 1. Adequate ventilation to maintain temperature in pull box within same limits as switchboard.
 - 2. Set back from front to clear circuit-breaker removal mechanism.
 - 3. Removable covers shall form top, front, and sides. Top covers at rear shall be easily removable for drilling and cutting.
 - 4. Bottom shall be insulating, fire-resistive material with separate holes for cable drops into switchboard.
 - 5. Cable supports shall be arranged to facilitate cabling and adequate to support cables indicated, including those for future installation.
- R. Buses and Connections: Three phase, four wire unless otherwise indicated.
 - 1. Provide phase bus arrangement A, B, C from front to back, top to bottom, and left to right when viewed from the front of the switchboard.
 - 2. Phase- and Neutral-Bus Material: Tin-plated, high-strength, electrical-grade aluminum alloy with tin-plated aluminum circuit-breaker line connections.
 - 3. Tin-plated aluminum feeder circuit-breaker line connections.
 - 4. Load Terminals: Insulated, rigidly braced, runback bus extensions, of same material as through buses, equipped with mechanical connectors for outgoing circuit conductors. Provide load terminals for future circuit-breaker positions at full-ampere rating of circuit-breaker position.
 - 5. Ground Bus: Minimum-size required by UL 891, hard-drawn copper of 98 percent conductivity, equipped with compression connectors for feeder and branch-circuit ground conductors.
 - 6. Main-Phase Buses and Equipment-Ground Buses: Uniform capacity for entire length of switchboard's main and distribution sections. Provide for future extensions from both ends.
 - 7. Disconnect Links:
 - a. Isolate neutral bus from incoming neutral conductors.
 - b. Bond neutral bus to equipment-ground bus for switchboards utilized as service equipment or separately derived systems.

- 8. Neutral Buses: 100 percent of the ampacity of phase buses unless otherwise indicated, equipped with compression connectors for outgoing circuit neutral cables. Brace bus extensions for busway feeder neutral bus.
- S. Future Devices: Equip compartments with mounting brackets, supports, bus connections, and appurtenances at full rating of circuit-breaker compartment.

2.3 SURGE PROTECTION DEVICES

- A. SPDs: Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 1449, Type 1.
- B. Features and Accessories:
 - 1. Integral disconnect switch.
 - 2. Internal thermal protection that disconnects the SPD before damaging internal suppressor components.
 - 3. Indicator light display for protection status.
 - 4. Form-C contacts rated at 5 A and 250-V ac, one normally open and one normally closed, for remote monitoring of protection status
 - 5. Surge counter.
- C. Peak Surge Current Rating: The minimum single-pulse surge current withstand rating per phase shall not be less than 200 kA. The peak surge current rating shall be the arithmetic sum of the ratings of the individual MOVs in a given mode.
- D. Protection modes and UL 1449 VPR for grounded wye circuits with 480Y/277 V or 208Y/120 V three-phase, four-wire circuits shall not exceed the following:
 - 1. Line to Neutral: 1200 V for 480Y/277 V or 700 V for 208Y/120 V.
 - 2. Line to Ground: 1200 V for 480Y/277 V or 1200 V for 208Y/120 V.
 - 3. Line to Line: 2000 V for 480Y/277 V or 1000 V for 208Y/120 V.
- E. Protection modes and UL 1449 VPR for 240/120 V, single-phase, three-wire circuits shall not exceed the following:
 - 1. Line to Neutral: 700 V.
 - 2. Line to Ground: 700 V.
 - 3. Line to Line: 1000 V.
- F. SCCR: Equal or exceed 200 kA.
- G. Nominal Rating: 20 kA.

2.4 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES

A. Molded-Case Circuit Breaker (MCCB): Comply with UL 489, with interrupting capacity to meet available fault currents.

- 1. Thermal-Magnetic Circuit Breakers: Inverse time-current element for low-level overloads and instantaneous magnetic trip element for short circuits. Adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.
- 2. Adjustable Instantaneous-Trip Circuit Breakers: Magnetic trip element with front-mounted, field-adjustable trip setting.
- 3. Electronic trip circuit breakers with rms sensing; field-replaceable rating plug or field-replicable electronic trip; and the following field-adjustable settings:
 - a. Instantaneous trip.
 - b. Long- and short-time pickup levels.
 - c. Long and short time adjustments.
 - d. Ground-fault pickup level, time delay, and I squared t response.
- 4. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller; let-through ratings less than NEMA FU 1, RK-5.
- 5. Integrally Fused Circuit Breakers: Thermal-magnetic trip element with integral limiterstyle fuse listed for use with circuit breaker; trip activation on fuse opening or on opening of fuse compartment door.
- 6. GFCI Circuit Breakers: Single- and double-pole configurations with Class A ground-fault protection (6-mA trip).
- 7. Ground-Fault Equipment Protection (GFEP) Circuit Breakers: Class B ground-fault protection (30-mA trip).
- 8. MCCB Features and Accessories:
 - a. Standard frame sizes, trip ratings, and number of poles.
 - b. Lugs: Compression style, suitable for number, size, trip ratings, and conductor material.
 - c. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and high-intensity discharge (HID) lighting circuits.
 - d. Ground-Fault Protection: Integrally mounted relay and trip unit with adjustable pickup and time-delay settings, push-to-test feature, and ground-fault indicator.
 - e. Zone-Selective Interlocking: Integral with electronic trip unit; for interlocking ground-fault protection function.
 - f. Communication Capability: Integral communication module with functions and features compatible with power monitoring and control system specified in Section 260913 "Electrical Power Monitoring and Control."
 - g. Shunt Trip: 120-V trip coil energized from separate circuit, set to trip at 55 percent of rated voltage.
 - h. Undervoltage Trip: Set to operate at 35 to 75 percent of rated voltage without intentional time delay.
 - i. Auxiliary Contacts: Two SPDT switches with "a" and "b" contacts; "a" contacts mimic circuit-breaker contacts, "b" contacts operate in reverse of circuit-breaker contacts.
 - j. Key Interlock Kit: Externally mounted to prohibit circuit-breaker operation; key shall be removable only when circuit breaker is in off position.
- B. Insulated-Case Circuit Breaker (ICCB): 100 percent rated, sealed, insulated-case power circuit breaker with interrupting capacity rating to meet available fault current.
 - 1. Fixed circuit-breaker mounting.

- 2. Two-step, stored-energy closing.
- 3. Standard-function, microprocessor-based trip units with interchangeable rating plug, trip indicators, and the following field-adjustable settings:
 - a. Instantaneous trip.
 - b. Time adjustments for long- and short-time pickup.
 - c. Ground-fault pickup level, time delay, and I squared t response.
- 4. Zone-Selective Interlocking: Integral with electronic trip unit; for interlocking ground-fault protection function.
- 5. Remote trip indication and control.
- 6. Communication Capability: Web enabled integral Ethernet communication module and embedded Web server with factory-configured Web pages (HTML file format). Provide functions and features compatible with power monitoring and control system specified in Section 260913 "Electrical Power Monitoring and Control."
- 7. Key Interlock Kit: Externally mounted to prohibit circuit-breaker operation; key shall be removable only when circuit breaker is in off position.
- 8. Control Voltage: 120-V ac.
- C. Bolted-Pressure Contact Switch: Operating mechanism uses rotary-mechanical-bolting action to produce and maintain high clamping pressure on the switch blade after it engages the stationary contacts.
 - 1. Main-Contact Interrupting Capability: Minimum of 12 times the switch current rating.
 - 2. Operating Mechanism: Manual handle operation to close switch; stores energy in mechanism for opening and closing.
 - a. Electrical Trip: Operation of lever or push-button trip switch, or trip signal from ground-fault relay or remote-control device, causes switch to open.
 - b. Mechanical Trip: Operation of mechanical lever, push button, or other device causes switch to open.
 - 3. Auxiliary Switches: Factory installed, SPDT, with leads connected to terminal block, and including one set more than quantity required for functional performance indicated.
 - 4. Service-Rated Switches: Labeled for use as service equipment.
 - 5. Ground-Fault Relay: Comply with UL 1053; self-powered type with mechanical ground-fault indicator, test function, tripping relay with internal memory, and three-phase current transformer/sensor.
 - a. Configuration: Integrally mounted relay and trip unit with adjustable pickup and time-delay settings, push-to-test feature, and ground-fault indicator.
 - 6. Open-Fuse Trip Device: Arranged to trip switch open if a phase fuse opens.
- D. High-Pressure, Butt-Type Contact Switch: Operating mechanism uses butt-type contacts and a spring-charged mechanism to produce and maintain high-pressure contact when switch is closed.
 - 1. Main-Contact Interrupting Capability: Minimum of 12 times the switch current rating.
 - 2. Operating Mechanism: Manual handle operation to close switch; stores energy in mechanism for opening and closing.

- a. Electrical Trip: Operation of lever or push-button trip switch, or trip signal from ground-fault relay or remote-control device, causes switch to open.
- b. Mechanical Trip: Operation of mechanical lever, push button, or other device causes switch to open.
- 3. Auxiliary Switches: Factory installed, SPDT, with leads connected to terminal block, and including one set more than quantity required for functional performance indicated.
- 4. Service-Rated Switches: Labeled for use as service equipment.
- 5. Ground-Fault Relay: Comply with UL 1053; self-powered type with mechanical ground-fault indicator, test function, tripping relay with internal memory, and three-phase current transformer/sensor.
 - a. Configuration: Integrally mounte relay and trip unit with adjustable pickup and time-delay settings, push-to-test feature, and ground-fault indicator.
- 6. Open-Fuse Trip Device: Arranged to trip switch open if a phase fuse opens.
- E. Fused Switch: NEMA KS 1, Type HD; clips to accommodate specified fuses; lockable handle.
- F. Fuses are specified in Section 262813 "Fuses."

2.5 INSTRUMENTATION

- A. Instrument Transformers: NEMA EI 21.1, and the following:
 - 1. Potential Transformers: NEMA EI 21.1; 120 V, 60 Hz, single secondary; disconnecting type with integral fuse mountings. Burden and accuracy shall be consistent with connected metering and relay devices.
 - 2. Current Transformers: NEMA EI 21.1; 5 A, 60 Hz, secondary; wound type; single secondary winding and secondary shorting device. Burden and accuracy shall be consistent with connected metering and relay devices.
 - 3. Control-Power Transformers: Dry type, mounted in separate compartments for units larger than 3 kVA.
 - 4. Current Transformers for Neutral and Ground-Fault Current Sensing: Connect secondary wiring to ground overcurrent relays, via shorting terminals, to provide selective tripping of main and tie circuit breaker. Coordinate with feeder circuit-breaker, ground-fault protection.
- B. Multifunction Digital-Metering Monitor: Microprocessor-based unit suitable for three- or four-wire systems and with the following features:
 - 1. Switch-selectable digital display of the following values with maximum accuracy tolerances as indicated:
 - a. Phase Currents, Each Phase: Plus or minus 0.5 percent.
 - b. Phase-to-Phase Voltages, Three Phase: Plus or minus 0.5 percent.
 - c. Phase-to-Neutral Voltages, Three Phase: Plus or minus 0.5 percent.
 - d. Megawatts: Plus or minus 1 percent.
 - e. Megavars: Plus or minus 1 percent.
 - f. Power Factor: Plus or minus 1 percent.

- g. Frequency: Plus or minus 0.1 percent.
- h. Accumulated Energy, Megawatt Hours: Plus or minus 1 percent; accumulated values unaffected by power outages up to 72 hours.
- i. Megawatt Demand: Plus or minus 1 percent; demand interval programmable from five to 60 minutes.
- j. Contact devices to operate remote impulse-totalizing demand meter.
- 2. Mounting: Display and control unit flush or semiflush mounted in instrument compartment door.

C. Watt-Hour Meters and Wattmeters:

- 1. Comply with ANSI C12.1.
- 2. Three-phase induction type with two stators, each with current and potential coil, rated 5 A, 120 V, 60 Hz.
- 3. Suitable for connection to three- and four-wire circuits.
- 4. Potential indicating lamps.
- 5. Adjustments for light and full load, phase balance, and power factor.
- 6. Four-dial clock register.
- 7. Ratchets to prevent reverse rotation.
- 8. Removable meter with drawout test plug.
- 9. Semiflush mounted case with matching cover.
- 10. Appropriate multiplier tag.

D. Impulse-Totalizing Demand Meter:

- 1. Comply with ANSI C12.1.
- 2. Suitable for use with switchboard watt-hour meter, including two-circuit totalizing relay.
- 3. Cyclometer.
- 4. Four-dial, totalizing kilowatt-hour register.
- 5. Positive chart drive mechanism.
- 6. Capillary pen holding a minimum of one month's ink supply.
- 7. Roll chart with minimum 31-day capacity; appropriate multiplier tag.
- 8. Capable of indicating and recording five -minute integrated demand of totalized system.

2.6 CONTROL POWER

- A. Control Circuits: 120-V ac, supplied through secondary disconnecting devices from control-power transformer.
- B. Electrically Interlocked Main and Tie Circuit Breakers: Two control-power transformers in separate compartments, with interlocking relays, connected to the primary side of each control-power transformer at the line side of the associated main circuit breaker. 120-V secondaries connected through automatic transfer relays to ensure a fail-safe automatic transfer scheme.
- C. Control-Power Fuses: Primary and secondary fuses for current-limiting and overload protection of transformer and fuses for protection of control circuits.

D. Control Wiring: Factory installed, with bundling, lacing, and protection included. Provide flexible conductors for No. 8 AWG and smaller, for conductors across hinges, and for conductors for interconnections between shipping units.

2.7 ACCESSORY COMPONENTS AND FEATURES

- A. Portable Test Set: For testing functions of solid-state trip devices without removing from switchboard. Include relay and meter test plugs suitable for testing switchboard meters and switchboard class relays.
- B. Spare-Fuse Cabinet: Suitably identified, wall-mounted, lockable, compartmented steel box or cabinet. Arrange for wall mounting.
- C. Mounting Accessories: For anchors, mounting channels, bolts, washers, and other mounting accessories, comply with requirements in Section 260548.16 "Seismic Controls for Electrical Systems" or manufacturer's instructions.

2.8 IDENTIFICATION

A. Service Equipment Label: NRTL labeled for use as service equipment for switchboards with one or more service disconnecting and overcurrent protective devices.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Receive, inspect, handle, and store switchboards according to NEMA PB 2.1.
- B. Install switchboards and accessories according to NEMA PB 2.1.
- C. Equipment Mounting: Install switchboards on concrete base, 4-inch (100-mm) nominal thickness. Comply with requirements for concrete base specified in Section 033000 "Cast-in-Place Concrete." Or Section 033053 "Miscellaneous Cast-in-Place Concrete."
 - 1. Install conduits entering underneath the switchboard, entering under the vertical section where the conductors will terminate. Install with couplings flush with the concrete base. Extend 2 inches (50-mm) above concrete base after switchboard is anchored in place.
 - 2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch (450-mm) centers around the full perimeter of concrete base.
 - 3. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
 - 4. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 5. Install anchor bolts to elevations required for proper attachment to switchboards.
 - 6. Anchor switchboard to building structure at the top of the switchboard if required or recommended by the manufacturer.

- D. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, straps and brackets, and temporary blocking of moving parts from switchboard units and components.
- E. Comply with mounting and anchoring requirements specified in Section 260548.16 "Seismic Controls for Electrical Systems."
- F. Operating Instructions: Frame and mount the printed basic operating instructions for switchboards, including control and key interlocking sequences and emergency procedures. Fabricate frame of finished wood or metal and cover instructions with clear acrylic plastic. Mount on front of switchboards.
- G. Install filler plates in unused spaces of panel-mounted sections.
- H. Install overcurrent protective devices, surge protection devices, and instrumentation.
 - 1. Set field-adjustable switches and circuit-breaker trip ranges.
- I. Install spare-fuse cabinet.
- J. Comply with NECA 1.
- K. Comply with requirements for terminating feeder bus specified in Section 262500 "Enclosed Bus Assemblies." Drawings indicate general arrangement of bus, fittings, and specialties.
- L. Comply with requirements for terminating cable trays specified in Section 260536 "Cable Trays for Electrical Systems." Drawings indicate general arrangement of cable trays, fittings, and specialties.

3.2 IDENTIFICATION

- A. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
- B. Switchboard Nameplates: Label each switchboard compartment with a nameplate complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
- C. Device Nameplates: Label each disconnecting and overcurrent protective device and each meter and control device mounted in compartment doors with a nameplate complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.3 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections
 - 1. Acceptance Testing:

- a. Test insulation resistance for each switchboard bus, component, connecting supply, feeder, and control circuit. Open control and metering circuits within the switchboard, and remove neutral connection to surge protection and other electronic devices prior to insulation test. Reconnect after test.
- b. Test continuity of each circuit.
- 2. Test ground-fault protection of equipment for service equipment per NFPA 70.
- 3. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
- 4. Correct malfunctioning units on-site where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
- 5. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.
- B. Switchboard will be considered defective if it does not pass tests and inspections.
- C. Prepare test and inspection reports, including a certified report that identifies switchboards included and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.4 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain switchboards, overcurrent protective devices, instrumentation, and accessories.

END OF SECTION 262413

SECTION 262416 - PANELBOARDS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Distribution panelboards.
- 2. Lighting and appliance branch-circuit panelboards.

1.2 DEFINITIONS

- A. MCCB: Molded-case circuit breaker.
- B. SPD: Surge protective device.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of panelboard.
- B. Shop Drawings: For each panelboard and related equipment.
 - 1. Include dimensioned plans, elevations, sections, and details.
 - 2. Detail enclosure types including mounting and anchorage, environmental protection, knockouts, corner treatments, covers and doors, gaskets, hinges, and locks.
 - 3. Detail bus configuration, current, and voltage ratings.
 - 4. Short-circuit current rating of panelboards and overcurrent protective devices.
 - 5. Include evidence of NRTL listing for series rating of installed devices.
 - 6. Include evidence of NRTL listing for SPD as installed in panelboard.
 - 7. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
 - 8. Include wiring diagrams for power, signal, and control wiring.
 - 9. Key interlock scheme drawing and sequence of operations.
 - 10. Include time-current coordination curves for each type and rating of overcurrent protective device included in panelboards.

1.4 INFORMATIONAL SUBMITTALS

A. Panelboard schedules for installation in panelboards.

1.5 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.6 FIELD CONDITIONS

- A. Service Conditions: NEMA PB 1, usual service conditions, as follows:
 - 1. Ambient temperatures within limits specified.
 - 2. Altitude not exceeding 6600 feet (2000 m).

1.7 WARRANTY

- A. Manufacturer's Warranty: Manufacturer agrees to repair or replace panelboards that fail in materials or workmanship within specified warranty period.
 - 1. Panelboard Warranty Period: 18 months from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PANELBOARDS COMMON REQUIREMENTS

- A. Fabricate and test panelboards according to IEEE 344 to withstand seismic forces defined in Section 260548.16 "Seismic Controls for Electrical Systems."
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. Comply with NEMA PB 1.
- D. Comply with NFPA 70.
- E. Enclosures: Flush and Surface-mounted, dead-front cabinets.
 - 1. Rated for environmental conditions at installed location.
 - a. Indoor Dry and Clean Locations: NEMA 250, Type 1.
 - b. Outdoor Locations: NEMA 250, Type 3R.
 - c. Wash-Down Areas: NEMA 250, Type 4X, stainless steel.
 - d. Other Wet or Damp Indoor Locations: NEMA 250, Type 4.
 - e. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, Type 12.
 - 2. Height: 84 inches (2.13 m) maximum.
 - 3. Front: Secured to box with concealed trim clamps. For surface-mounted fronts, match box dimensions; for flush-mounted fronts, overlap box. Trims shall cover all live parts and shall have no exposed hardware.
 - 4. Hinged Front Cover: Entire front trim hinged to box and with standard door within hinged trim cover. Trims shall cover all live parts and shall have no exposed hardware.
- F. Incoming Mains Location: Convertible between top and bottom.
- G. Phase, Neutral, and Ground Buses: Hard-drawn copper, 98 percent conductivity.

- H. Conductor Connectors: Suitable for use with conductor material and sizes.
 - 1. Material: Hard-drawn copper, 98 percent conductivity.
 - 2. Main and Neutral Lugs: Mechanical type, with a lug on the neutral bar for each pole in the panelboard.
 - 3. Ground Lugs and Bus-Configured Terminators: Mechanical type, with a lug on the bar for each pole in the panelboard.
 - 4. Feed-Through Lugs: Mechanical type, suitable for use with conductor material. Locate at opposite end of bus from incoming lugs or main device.
 - 5. Subfeed (Double) Lugs: Mechanical type suitable for use with conductor material. Locate at same end of bus as incoming lugs or main device.
- I. NRTL Label: Panelboards shall be labeled by an NRTL acceptable to authority having jurisdiction for use as service equipment with one or more main service disconnecting and overcurrent protective devices. Panelboards shall have meter enclosures, wiring, connections, and other provisions for utility metering. Coordinate with utility company for exact requirements.
- J. Future Devices: Panelboards shall have mounting brackets, bus connections, filler plates, and necessary appurtenances required for future installation of devices.
- K. Panelboard Short-Circuit Current Rating: Rated for series-connected system with integral or remote upstream overcurrent protective devices and labeled by an NRTL. Include label or manual with size and type of allowable upstream and branch devices listed and labeled by an NRTL for series-connected short-circuit rating.
- L. Panelboard Short-Circuit Current Rating: Fully rated to interrupt symmetrical short-circuit current available at terminals. Assembly listed by an NRTL for 100 percent interrupting capacity.

2.2 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: Panelboards shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 - 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."
- B. Surge Suppression: Factory installed as an integral part of indicated panelboards, complying with UL 1449 SPD Type 1.

2.3 POWER PANELBOARDS

- A. Panelboards: NEMA PB 1, distribution type.
- B. Doors: Secured with vault-type latch with tumbler lock; keyed alike.
 - 1. For doors more than 36 inches (914 mm) high, provide two latches, keyed alike.

- C. Mains: As shown on drawings.
- D. Retain one of three "branch overcurrent" paragraphs below. Allowing only bolt-on circuit breakers will exclude Square D (Schneider Electric), which uses plug-in types with a positive-locking feature, as an approved manufacturer. Note that plug-in types with a positive-locking feature are available from other manufacturers with some restrictions on size. At the time of this update, Square D did not offer bolt-in breakers for Power Panelboards.
- E. Branch Overcurrent Protective Devices for Circuit-Breaker Frame Sizes 125 A and Smaller: Plug-in circuit breakers where individual positive-locking device requires mechanical release for removal.
- F. Branch Overcurrent Protective Devices for Circuit-Breaker Frame Sizes Larger Than 125 A: Bolt-on circuit breakers.
- G. Branch Overcurrent Protective Devices: Fused switches.
- H. Contactors in Main Bus: NEMA ICS 2, Class A, mechanically held, general-purpose controller, with same short-circuit interrupting rating as panelboard.
 - 1. External Control-Power Source: 120-V branch circuit.

2.4 LIGHTING AND APPLIANCE BRANCH-CIRCUIT PANELBOARDS

- A. Panelboards: NEMA PB 1, lighting and appliance branch-circuit type.
- B. Mains: As shown on drawings.
- C. Branch Overcurrent Protective Devices: Plug-in circuit breakers, replaceable without disturbing adjacent units.
- D. Contactors in Main Bus: NEMA ICS 2, Class A, mechanically held, general-purpose controller, with same short-circuit interrupting rating as panelboard.
 - 1. External Control-Power Source: 120-V branch circuit.
- E. Doors: Concealed hinges; secured with flush latch with tumbler lock; keyed alike.
- F. Column-Type Panelboards: Single row of overcurrent devices with narrow gutter extension and overhead junction box equipped with ground and neutral terminal buses.

2.5 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES

- A. MCCB: Comply with UL 489, with interrupting capacity to meet available fault currents.
 - 1. Thermal-Magnetic Circuit Breakers:
 - a. Inverse time-current element for low-level overloads.
 - b. Instantaneous magnetic trip element for short circuits.
 - c. Adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.

- 2. Adjustable Instantaneous-Trip Circuit Breakers: Magnetic trip element with front-mounted, field-adjustable trip setting.
- 3. Electronic Trip Circuit Breakers:
 - a. RMS sensing.
 - b. Field-replaceable rating plug or electronic trip.
 - c. Digital display of settings, trip targets, and indicated metering displays.
 - d. Multi-button keypad to access programmable functions and monitored data.
 - e. Ten-event, trip-history log. Each trip event shall be recorded with type, phase, and magnitude of fault that caused the trip.
 - f. Integral test jack for connection to portable test set or laptop computer.
 - g. Field-Adjustable Settings:
 - 1) Instantaneous trip.
 - 2) Long- and short-time pickup levels.
 - 3) Long and short time adjustments.
 - 4) Ground-fault pickup level, time delay, and I squared T response.
- 4. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller; let-through ratings less than NEMA FU 1, RK-5.
- 5. GFCI Circuit Breakers: Single- and double-pole configurations with Class A ground-fault protection (6-mA trip).
- 6. GFEP Circuit Breakers: Class B ground-fault protection (30-mA trip).
- 7. Arc-Fault Circuit Interrupter Circuit Breakers: Comply with UL 1699; 120/240-V, single-pole configuration.
- 8. Subfeed Circuit Breakers: Vertically mounted.
- 9. MCCB Features and Accessories:
 - a. Standard frame sizes, trip ratings, and number of poles.
 - b. Breaker handle indicates tripped status.
 - c. UL listed for reverse connection without restrictive line or load ratings.
 - d. Lugs: Mechanical style, suitable for number, size, trip ratings, and conductor materials.
 - e. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and HID lighting circuits.
 - f. Ground-Fault Protection: Integrally mounted relay and trip unit with adjustable pickup and time-delay settings, push-to-test feature, and ground-fault indicator.
 - g. Communication Capability: Circuit-breaker-mounted communication module with functions and features compatible with power monitoring and control system specified in Section 260913 "Electrical Power Monitoring and Control."
 - h. Shunt Trip: 120-V trip coil energized from separate circuit, set to trip at 55 percent of rated voltage.
 - i. Handle Padlocking Device: Fixed attachment, for locking circuit-breaker handle in on or off position.
 - j. Handle Clamp: Loose attachment, for holding circuit-breaker handle in on position.
- B. Fused Switch: NEMA KS 1, Type HD; clips to accommodate specified fuses; lockable handle.

1. Fuses and Spare-Fuse Cabinet: Comply with requirements specified in Section 262813 "Fuses."

2.6 IDENTIFICATION

- A. Panelboard Label: Manufacturer's name and trademark, voltage, amperage, number of phases, and number of poles shall be located on the interior of the panelboard door.
- B. Breaker Labels: Faceplate shall list current rating, UL and IEC certification standards, and AIC rating.
- C. Circuit Directory: Directory card inside panelboard door, mounted in transparent card holder.

2.7 ACCESSORY COMPONENTS AND FEATURES

A. Portable Test Set: For testing functions of solid-state trip devices without removing from panelboard. Include relay and meter test plugs suitable for testing panelboard meters and switchboard class relays.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with NECA 1.
- B. Install panelboards and accessories according to NEMA PB 1.1.
- C. Comply with mounting and anchoring requirements specified in Section 260548.16 "Seismic Controls for Electrical Systems."
- D. Mount top of trim 90 inches (2286 mm) above finished floor unless otherwise indicated.
- E. Mount panelboard cabinet plumb and rigid without distortion of box.
- F. Mount recessed panelboards with fronts uniformly flush with wall finish and mating with back box
- G. Install overcurrent protective devices and controllers not already factory installed.
 - 1. Set field-adjustable, circuit-breaker trip ranges.
- H. Make grounding connections and bond neutral for services and separately derived systems to ground. Make connections to grounding electrodes, separate grounds for isolated ground bars, and connections to separate ground bars.
- I. Install filler plates in unused spaces.

- J. Stub four 1-inch (27-EMT) empty conduits from panelboard into accessible ceiling space or space designated to be ceiling space in the future. Stub four 1-inch (27-EMT) empty conduits into raised floor space or below slab not on grade.
- K. Arrange conductors in gutters into groups and bundle and wrap with wire ties.

3.2 IDENTIFICATION

- A. Identify field-installed conductors, interconnecting wiring, and components; install warning signs complying with requirements in Section 260553 "Identification for Electrical Systems."
- B. Create a directory to indicate installed circuit loads; incorporate Owner's final room designations. Obtain approval before installing. Handwritten directories are not acceptable. Install directory inside panelboard door.
- C. Panelboard Nameplates: Label each panelboard with a nameplate complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
- D. Device Nameplates: Label each branch circuit device in power panelboards with a nameplate complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
- E. Install warning signs complying with requirements in Section 260553 "Identification for Electrical Systems" identifying source of remote circuit.

3.3 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Acceptance Testing Preparation:
 - 1. Test insulation resistance for each panelboard bus, component, connecting supply, feeder, and control circuit.
 - 2. Test continuity of each circuit.

C. Tests and Inspections:

- 1. Perform each visual and mechanical inspection and electrical test for low-voltage air circuit breakers stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
- 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
- D. Panelboards will be considered defective if they do not pass tests and inspections.
- E. Prepare test and inspection reports, including a certified report that identifies panelboards included and that describes scanning results, with comparisons of the two scans. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

1180510 TOBIE GRANT RECREATION CENTER 03/22/19

CONSTRUCTION DOCUMENTS 100% SUBMITTAL

END OF SECTION 262416

SECTION 262726 - WIRING DEVICES

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Standard-grade receptacles, 125 V, 20A.
- 2. USB receptacles.
- 3. GFCI receptacles, 125 V, 20 A.
- 4. Toggle switches, 120/277 V, 20A.
- 5. Decorator-style devices, 20A.
- 6. Occupancy sensors.
- 7. Digital timer light switches.
- 8. Residential devices.
- 9. Wall-box dimmers.
- 10. Wall plates.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: List of legends and description of materials and process used for premarking wall plates.
- C. Samples: One for each type of device and wall plate specified, in each color specified.

1.3 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

PART 2 - PRODUCTS

2.1 GENERAL WIRING-DEVICE REQUIREMENTS

- A. Wiring Devices, Components, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
- B. Comply with NFPA 70.
- C. RoHS compliant.
- D. Comply with NEMA WD 1.

E. Device Color:

- 1. Wiring Devices Connected to Normal Power System: As selected by Architect unless otherwise indicated or required by NFPA 70 or device listing.
- 2. Wiring Devices Connected to Essential Electrical System: Red.
- 3. SPD Devices: Blue.
- 4. Isolated-Ground Receptacles: Orange.
- F. Wall Plate Color: For plastic covers, match device color.
- G. Source Limitations: Obtain each type of wiring device and associated wall plate from single source from single manufacturer.

2.2 STANDARD-GRADE RECEPTACLES, 125 V, 20 A

- A. Duplex Receptacles, 125 V, 20 A
 - 1. Description: Two pole, three wire, and self-grounding.
 - 2. Configuration: NEMA WD 6, Configuration 5-20R.
 - 3. Standards: Comply with UL 498 and FS W-C-596.
- B. Tamper-Resistant Duplex Receptacles, 125 V, 20 A <
 - 1. Description: Two pole, three wire, and self-grounding. Integral shutters that operate only when a plug is inserted in the receptacle.
 - 2. Configuration: NEMA WD 6, Configuration 5-20R.
 - 3. Standards: Comply with UL 498 and FS W-C-596.
 - 4. Marking: Listed and labeled as complying with NFPA 70, "Tamper-Resistant Receptacles" Article.
- C. Weather-Resistant Duplex Receptacle, 125 V, 20 A
 - 1. Description: Two pole, three wire, and self-grounding. Integral shutters that operate only when a plug is inserted in the receptacle. Square face.
 - 2. Configuration: NEMA WD 6, Configuration 5-20R.
 - 3. Standards: Comply with UL 498.
 - 4. Marking: Listed and labeled as complying with NFPA 70, "Receptacles in Damp or Wet Locations" Article.
- D. Tamper- and Weather-Resistant Duplex Receptacles, 125 V, 20 A
 - 1. Description: Two pole, three wire, and self-grounding. Integral shutters that operate only when a plug is inserted in the receptacle. Square face.
 - 2. Configuration: NEMA WD 6, Configuration 5-20R.
 - 3. Standards: Comply with UL 498.
 - 4. Marking: Listed and labeled as complying with NFPA 70, "Tamper-Resistant Receptacles" and "Receptacles in Damp or Wet Locations" articles.

2.3 STANDARD-GRADE RECEPTACLES, 125 V, 15 A

- A. Duplex Receptacles, 125 V, 15 A
 - 1. Description: Two pole, three wire, and self-grounding.
 - 2. Configuration: NEMA WD 6, Configuration 5-15R.

- 3. Standards: Comply with UL 498 and FS W-C-596.
- B. Tamper-Resistant Duplex Receptacles, 125 V, 15 A
 - 1. Description: Two pole, three wire, and self-grounding. Integral shutters that operate only when a plug is inserted in the receptacle.
 - 2. Configuration: NEMA WD 6, Configuration 5-15R.
 - 3. Standards: Comply with UL 498 and FS W-C-596.
 - 4. Marking: Listed and labeled as complying with NFPA 70, "Tamper-Resistant Receptacles" Article.
- C. Weather-Resistant Duplex Receptacle, 125 V, 15 A
 - 1. Description: Two pole, three wire, and self-grounding. Integral shutters that operate only when a plug is inserted in the receptacle. Square face.
 - 2. Configuration: NEMA WD 6, Configuration 5-15R.
 - 3. Standards: Comply with UL 498.
 - 4. Marking: Listed and labeled as complying with NFPA 70, "Receptacles in Damp or Wet Locations" Article.
- D. Tamper- and Weather-Resistant Duplex Receptacles, 125 V, 15
 - 1. Description: Two pole, three wire, and self-grounding. Integral shutters that operate only when a plug is inserted in the receptacle. Square face.
 - 2. Configuration: NEMA WD 6, Configuration 5-15R.
 - 3. Standards: Comply with UL 498.
 - 4. Marking: Listed and labeled as complying with NFPA 70, "Tamper-Resistant Receptacles" and "Receptacles in Damp or Wet Locations" articles.

2.4 USB RECEPTACLES

- A. USB Charging Receptacles
 - 1. Description: Single-piece, rivetless, nickel-plated, all-brass grounding system. Nickel-plated, brass mounting strap.
 - 2. USB Receptacles: Dual and quad, USB Type A, 5 V dc, and 2.1 A per receptacle (minimum).
 - 3. Standards: Comply with UL 1310 and USB 3.0 devices.
- B. Tamper-Resistant Duplex and USB Charging Receptacles
 - 1. Description: Single-piece, rivetless, nickel-plated, all-brass grounding system. Nickel-plated, brass mounting strap. Integral shutters that operate only when a plug is inserted in the line voltage receptacle.
 - 2. Line Voltage Receptacles: Two pole, three wire, and self-grounding; NEMA WD 6, Configuration 5-20R.
 - 3. USB Receptacles: Dual USB Type A, 5 V dc, and 2.1 A per receptacle (minimum).
 - 4. Standards: Comply with UL 498, UL 1310, USB 3.0 devices, and FS W-C-596.
 - 5. Marking: Listed and labeled as complying with NFPA 70, "Tamper-Resistant Receptacles" Article.

2.5 GFCI RECEPTACLES, 125 V, 20 A

A. Duplex GFCI Receptacles, 125 V, 20 A

- 1. Description: Integral GFCI with "Test" and "Reset" buttons and LED indicator light. Two pole, three wire, and self-grounding.
- 2. Configuration: NEMA WD 6, Configuration 5-20R.
- 3. Type: Feed through.
- 4. Standards: Comply with UL 498, UL 943 Class A, and FS W-C-596.
- B. Tamper-Resistant Duplex GFCI Receptacles, 125 V, 20 A

1.

- 2. Description: Integral GFCI with "Test" and "Reset" buttons and LED indicator light. Two pole, three wire, and self-grounding. Integral shutters that operate only when a plug is inserted in the receptacle.
- 3. Configuration: NEMA WD 6, Configuration 5-20R.
- 4. Type: Feed through.
- 5. Standards: Comply with UL 498, UL 943 Class A, and FS W-C-596.
- 6. Marking: Listed and labeled as complying with NFPA 70, "Tamper-Resistant Receptacles" Article.
- C. Tamper- and Weather-Resistant, GFCI Duplex Receptacles, 125 V, 20 A
 - 1. Description: Integral GFCI with "Test" and "Reset" buttons and LED indicator light. Two pole, three wire, and self-grounding. Integral shutters that operate only when a plug is inserted in the receptacle. Square face.
 - 2. Configuration: NEMA WD 6, Configuration 5-15R.
 - 3. Type: Feed through.
 - 4. Standards: Comply with UL 498 and UL 943 Class A.
 - 5. Marking: Listed and labeled as complying with NFPA 70, "Tamper-Resistant Receptacles" and "Receptacles in Damp or Wet Locations" articles.

2.6 TOGGLE SWITCHES, 120/277 V, 15 A

- A. Single-Pole Switches, 120/277 V, 15 A
 - 1. Standards: Comply with UL 20 and FS W-S-896.
- B. Two-Pole Switches, 120/277 V, 15 A
 - 1. Comply with UL 20 and FS W-S-896.
 - 2. Description: Contact surfaces treated with a coating that kills 99.9 percent of certain common bacteria within two hours when regularly and properly cleaned.
 - 3. Standards: Comply with UL 20 and FS W-S-896.
- C. Three-Way Switches, 120/277 V, 15 A
 - 1. Comply with UL 20 and FS W-S-896.
- D. Four-Way Switches, 120/277 V, 15 A
 - 1. Standards: Comply with UL 20 and FS W-S-896.
- E. Pilot-Light, Single-Pole Switches: 120/277 V, 15 A
 - 1. Description: Illuminated when switch is off.
 - 2. Standards: Comply with UL 20 and FS W-S-896.
- F. Lighted Single-Pole Switches, 120/277 V, 15 A

- 1. Description: Handle illuminated when switch is off.
- 2. Standards: Comply with NEMA WD 1, UL 20, and FS W-S-896.

2.7 TOGGLE SWITCHES, 120/277 V, 20 A

- A. Single-Pole Switches, 120/277 V, 20 A
 - 1. Standards: Comply with UL 20 and FS W-S-896.
- B. Two-Pole Switches, 120/277 V, 20 A
 - 1. Comply with UL 20 and FS W-S-896.
- C. Three-Way Switches, 120/277 V, 20 A
 - 1. Comply with UL 20 and FS W-S-896.
- D. Four-Way Switches, 120/277 V, 20 A
 - 1. Standards: Comply with UL 20 and FS W-S-896.
- E. Lighted Single-Pole Switches, 120/277 V, 20 A
 - 1. Description: Handle illuminated when switch is off.
 - 2. Standards: Comply with NEMA WD 1, UL 20, and FS W-S-896.

2.8 DECORATOR-STYLE DEVICES, 15 A

- A. Decorator Duplex Receptacles, 125 V, 15 A
 - 1. Description: Two pole, three wire, and self-grounding. Square face.
 - 2. Configuration: NEMA WD 6, Configuration 5-15R.
 - 3. Standards: Comply with UL 498.
- B. Decorator, Tamper-Resistant, Duplex Receptacles, 125 V, 15 A,
 - 1. Description: Two pole, three wire, and self-grounding. Integral shutters that operate only when a plug is inserted in the receptacle. Square face.
 - 2. Configuration: NEMA WD 6, Configuration 5-15R.
 - 3. Standards: Comply with UL 498.
 - 4. Marking: Listed and labeled as complying with NFPA 70, "Tamper-Resistant Receptacles" Article.
- C. Decorator, Tamper- and Weather-Resistant, Duplex Receptacles, 125 V, 15 A
 - 1. Description: Two pole, three wire, and self-grounding. Integral shutters that operate only when a plug is inserted in the receptacle. Square face.
 - 2. Configuration: NEMA WD 6, Configuration 5-15R.
 - 3. Standards: Comply with UL 498.
 - 4. Marking: Listed and labeled as complying with NFPA 70, "Tamper-Resistant Receptacles" and "Receptacles in Damp or Wet Locations" articles.
- D. Decorator Single-Pole Switches, 120/277 V, 15 A
 - 1. Comply with UL 20.
- E. Decorator Single-Pole Lighted Switches, 120/277 V, 15 A
 - 1. Description: Square face illuminated when circuit is switched off.

2. Standards: Comply with UL 20.

2.9 DECORATOR-STYLE DEVICES, 20 A

- A. Decorator Duplex Receptacles, 125 V, 20 A
 - 1. Description: Two pole, three wire, and self-grounding. Square face.
 - 2. Configuration: NEMA WD 6, Configuration 5-20R.
 - 3. Standards: Comply with UL 498.
- B. Decorator Tamper-Resistant Duplex Receptacles, 125 V, 20 A
 - 1. Description: Two pole, three wire, and self-grounding. Integral shutters that operate only when a plug is inserted in the receptacle. Square face.
 - 2. Configuration: NEMA WD 6, Configuration 5-20R.
 - 3. Standards: Comply with UL 498.
 - 4. Marking: Listed and labeled as complying with NFPA 70, "Tamper-Resistant Receptacles" Article.
- C. Decorator, Tamper- and Weather-Resistant, Duplex Receptacles, 125 V, 20 A
 - 1. Description: Two pole, three wire, and self-grounding. Integral shutters that operate only when a plug is inserted in the receptacle. Square face.
 - 2. Configuration: NEMA WD 6, Configuration 5-20R.
 - 3. Standards: Comply with UL 498.
 - 4. Marking: Listed and labeled as complying with NFPA 70, "Tamper-Resistant Receptacles" and "Receptacles in Damp or Wet Locations" articles.
- D. Decorator Single-Pole Switches, 120/277 V, 20 A
 - 1. Comply with UL 20.
- E. Decorator Single-Pole Lighted Switches, 120/277 V, 20 A
 - 1. Description: Square face illuminated when circuit is switched off.
 - 2. Standards: Comply with UL 20.

2.10 OCCUPANCY SENSORS

- A. Wall Switch Sensor Light Switch, Dual Technology
 - 1. Description: Switchbox-mounted, combination lighting-control sensor and conventional switch lighting-control unit using dual (ultrasonic and passive infrared) technology.
 - 2. Standards: Comply with UL 20.
 - 3. Rated 960 W at 120 V ac for tungsten lighting, 10 A at 120 V ac or 10 A at 277 V ac for fluorescent or LED lighting, and 1/4 hp at 120 V ac.
 - 4. Adjustable time delay of five minutes.
 - 5. Able to be locked to Automatic-On mode.
 - 6. Automatic Light-Level Sensor: Adjustable from 2 to 200 fc (21.5 to 2152 lux).
 - 7. Connections: Provisions for connection to BAS.
 - 8. Connections: RJ-45 communications outlet.
 - 9. Connections: Integral wireless networking.
- B. Wall Sensor Light Switch, Passive Infrared

- 1. Description: Switchbox-mounted, combination, lighting-control sensor and conventional switch lighting-control unit using passive infrared technology.
- 2. Standards: Comply with UL 20.
- 3. Connections: Provisions for connection to BAS.
- 4. Connections: Hard wired.
- 5. Connections: Wireless.
- 6. Rated 960 W at 120 V ac for tungsten lighting, 10 A at 120 V ac or 10 A at 277 V ac for fluorescent or LED lighting, and 1/4 hp at 120 V ac.
- 7. Integral relay for connection to BAS.
- 8. Adjustable time delay of five minutes.
- 9. Able to be locked to Automatic mode.
- 10. Automatic Light-Level Sensor: Adjustable from 2 to 200 fc (21.5 to 2152 lux).

C. Wall Sensor Light Switch, Ultrasonic

- 1. Description: Switchbox-mounted, combination, lighting-control sensor and conventional switch lighting-control unit using ultrasonic technology.
- 2. Standards: Comply with UL 20.
- 3. Connections: Provisions for connection to BAS.
- 4. Connections: RJ-45 communications outlet.
- 5. Connections: Integral wireless networking.
- 6. Rated 960 W at 120 V ac for tungsten lighting, 10 A at 120 V ac or 10 A at 277 V ac for fluorescent or LED lighting, and 1/4 hp at 120 V ac.
- 7. Integral relay for connection to BAS.
- 8. Adjustable time delay of five minutes.
- 9. Able to be locked to Automatic mode.
- 10. Automatic Light-Level Sensor: Adjustable from 2 to 200 fc (21.5 to 2152 lux).

2.11 TIMER LIGHT SWITCH

A. Digital Timer Light Switch

- 1. Description: Switchbox-mounted, combination digital timer and conventional switch lighting-control unit, with backlit digital display, with selectable time interval in 10-minute increments.
- 2. Standards: Comply with UL 20.
- 3. Rated 960 W at 120 V ac for tungsten lighting, 10 A at 120 V ac or 10 A at 277 V ac for fluorescent or LED lighting, and 1/4 hp at 120 V ac.
- 4. Integral relay for connection to BAS.

2.12 RESIDENTIAL DEVICES

- A. Residential-Grade, Tamper-Resistant, GFCI Receptacles, 125 V, 15 A
 - 1. Configuration: NEMA WD 6, Configuration 5-15R.
 - 2. Feed-through connectors.
 - 3. Standards: Comply with UL 943 and UL 1699.
- B. Residential-Grade, Tamper-Resistant, AFCI Receptacles, 125 V, 15 A

1. Configuration: NEMA WD 6, Configuration 5-15R.

- 2. Feed-through connectors.
- 3. Standards: Comply with UL 943 and UL 1699.

C. Residential-Grade, Tamper-Resistant Receptacles, 125 V, 15 A

- 1. Configuration: NEMA WD 6, Configuration 5-15R.
- 2. Feed-through connectors.
- 3. Standards: Comply with UL 498.

D. Weather- and Tamper-Resistant Receptacles, 125 V, 15 A

- 1. Configuration: NEMA WD 6, Configuration 5-15R.
- 2. Feed-through connectors.
- 3. Standards: Comply with UL 498.
- 4. Marked as "Weather Resistant."

E. Fan-Speed Controls

- 1. Description: Modular, 120 or 277-V ac, full-wave, solid-state units with integral, quiet on-off switches and audible frequency and EMI/RFI filters.
- 2. Standards: Comply with UL 1917.
- 3. Continuously adjustable slider, 5A.
- 4. Three-speed adjustable slider, 1.5 A.

F. Telephone Outlet

- 1. Description: Single RJ-11 jack for terminating, balanced twisted pair cable complying with Section 260523 "Control-Voltage Electrical Power Cables."
- 2. Description: Single RJ-11 jack for terminating, balanced twisted pair cable complying with Section 271513 "Communications Copper Horizontal Cabling."
- 3. Standards: Comply with UL 1863.

G. Combination Telephone and Coaxial Outlet

1.

- 2. Description: Single RJ-11 jack for terminating, twisted pair cable complying with Section 260523 "Control-Voltage Electrical Power Cables" and a single BNC connector for terminating coaxial cable.
- 3. Description: Single RJ-11 jack for terminating, twisted pair cable complying with Section 271513 "Communications Copper Horizontal Cabling" and a single BNC connector for terminating coaxial cable complying with Section 271533 "Communications Coaxial Horizontal Cabling."
- 4. Standards: Comply with UL 1863.

2.13 DIMMERS

A. Wall-Box Dimmers:

- 1. Description: Modular, full-wave, solid-state dimmer switch with integral, quiet on-off switches, with audible frequency and EMI/RFI suppression filters.
- 2. Control: Continuously adjustable slider; with single-pole or three-way switching.
- 3. Standards: Comply with UL 1472.
- 4. Incandescent Lamp Dimmers: 120 V; control shall follow square-law dimming curve. On-off switch positions shall bypass dimmer module.

- a. 600 W; dimmers shall require no derating when ganged with other devices...
- 5. Fluorescent Lamp Dimmer Switches: Modular; compatible with dimmer ballasts; trim potentiometer to adjust low-end dimming; dimmer-ballast combination capable of consistent dimming with low end not greater than 20 percent of full brightness.
- 6. LED Lamp Dimmer Switches: Modular; compatible with LED lamps; trim potentiometer to adjust low-end dimming; capable of consistent dimming with low end not greater than 20 percent of full brightness.

2.14 WALL PLATES

- A. Single Source: Obtain wall plates from same manufacturer of wiring devices.
- B. Single and combination types shall match corresponding wiring devices.
 - 1. Plate-Securing Screws: Metal with head color to match plate finish.
 - 2. Material for Finished Spaces: Steel with white baked enamel, suitable for field painting
 - 3. Material for Unfinished Spaces: Galvanized steel
 - 4. Material for Damp Locations: Thermoplastic with spring-loaded lift cover, and listed and labeled for use in wet and damp locations.
- C. Wet-Location, Weatherproof Cover Plates: NEMA 250, complying with Type 3R, weather-resistant, die-cast aluminum with lockable cover.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with NECA 1, including mounting heights listed in that standard, unless otherwise indicated.
- B. Coordination with Other Trades:
 - 1. Keep outlet boxes free of plaster, drywall joint compound, mortar, cement, concrete, dust, paint, and other material that may contaminate the raceway system, conductors, and cables.
 - 2. Install device boxes in brick or block walls so that the cover plate does not cross a joint unless the joint is troweled flush with the face of the wall.
 - 3. Install wiring devices after all wall preparation, including painting, is complete.

C. Device Installation:

- 1. Connect devices to branch circuits using pigtails that are not less than 6 inches (152 mm) in length.
- 2. When mounting into metal boxes, remove the fiber or plastic washers used to hold device-mounting screws in yokes, allowing metal-to-metal contact.

D. Receptacle Orientation:

- 1. Install ground pin of vertically mounted receptacles down, and on horizontally mounted receptacles to the left.
- 2. Install hospital-grade receptacles in patient-care areas with the ground pin or neutral blade at the top.
- E. Device Plates: Do not use oversized or extra-deep plates. Repair wall finishes and remount outlet boxes when standard device plates do not fit flush or do not cover rough wall opening.

F. Dimmers:

- 1. Install dimmers within terms of their listing.
- 2. Verify that dimmers used for fan-speed control are listed for that application.
- 3. Install unshared neutral conductors on line and load side of dimmers according to manufacturers' device, listing conditions in the written instructions.
- G. Arrangement of Devices: Unless otherwise indicated, mount flush, with long dimension vertical and with grounding terminal of receptacles on top. Group adjacent switches under single, multigang wall plates.
- H. Adjust locations of floor service outlets and service poles to suit arrangement of partitions and furnishings.

3.2 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections
 - 1. In healthcare facilities, prepare reports that comply with NFPA 99.
 - 2. Test Instruments: Use instruments that comply with UL 1436.
 - 3. Test Instrument for Receptacles: Digital wiring analyzer with digital readout or illuminated digital-display indicators of measurement.
- B. Tests for Receptacles:
 - 1. Line Voltage: Acceptable range is 105 to 132 V.
 - 2. Percent Voltage Drop under 15-A Load: A value of 6 percent or higher is unacceptable.
 - 3. Ground Impedance: Values of up to 2 ohms are acceptable.
 - 4. GFCI Trip: Test for tripping values specified in UL 1436 and UL 943.
 - 5. Using the test plug, verify that the device and its outlet box are securely mounted.
- C. Test straight-blade convenience outlets in patient-care areas the retention force of the grounding blade according to NFPA 99. Retention force shall be not less than 4 oz. (115 g).
- D. Wiring device will be considered defective if it does not pass tests and inspections.
- E. Prepare test and inspection reports.

END OF SECTION 262726

SECTION 262813 - FUSES

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Cartridge fuses rated 600 V ac and less for use in the following:
 - a. Control circuits.
 - b. Motor-control centers.
 - c. Panelboards.
 - d. Switchboards.
 - e. Enclosed controllers.
 - f. Enclosed switches.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.3 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

PART 2 - PRODUCTS

2.1 CARTRIDGE FUSES

- A. Characteristics: NEMA FU 1, current-limiting, nonrenewable cartridge fuses with voltage ratings consistent with circuit voltages.
 - 1. Type RK-1: 600-V, zero- to 600-A rating, 200 kAIC, time delay.
 - 2. Type RK-5: 600-V, zero- to 600-A rating, 200 kAIC, time delay.
 - 3. Type CC: 600-V, zero- to 30-A rating, 200 kAIC, fast acting, time delay.
 - 4. Type CD: 600-V, 31- to 60-A rating, 200 kAIC, fast acting, time delay.
 - 5. Type J: 600-V, zero- to 600-A rating, 200 kAIC, time delay.
 - 6. Type L: 600-V, 601- to 6000-A rating, 200 kAIC, time delay.
 - 7. Type T: 600-V, zero- to 800-A rating, 200 kAIC, very fast acting, time delay.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. Comply with NEMA FU 1 for cartridge fuses.

FUSES 262813 - 1

- D. Comply with NFPA 70.
- E. Coordinate fuse ratings with utilization equipment nameplate limitations of maximum fuse size and with system short-circuit current levels.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install fuses in fusible devices. Arrange fuses so rating information is readable without removing fuse.
- B. Install spare-fuse cabinet(s) in location shown on the Drawings or as indicated in the field by Owner.

3.2 IDENTIFICATION

A. Install labels complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems" and indicating fuse replacement information inside of door of each fused switch and adjacent to each fuse block, socket, and holder.

END OF SECTION 262813

FUSES 262813 - 2

SECTION 262816 - ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Fusible switches.
- 2. Nonfusible switches.
- 3. Receptacle switches.
- 4. Shunt trip switches.
- 5. Molded-case circuit breakers (MCCBs).
- 6. Molded-case switches.
- 7. Enclosures.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of enclosed switch, circuit breaker, accessory, and component indicated. Include nameplate ratings, dimensioned elevations, sections, weights, and manufacturers' technical data on features, performance, electrical characteristics, ratings, accessories, and finishes.
 - 1. Include time-current coordination curves (average melt) for each type and rating of overcurrent protective device; include selectable ranges for each type of overcurrent protective device. Provide in PDF and electronic format.
- B. Shop Drawings: For enclosed switches and circuit breakers.
 - 1. Include plans, elevations, sections, details, and attachments to other work.
 - 2. Include wiring diagrams for power, signal, and control wiring.

1.3 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For qualified testing agency.
- B. Seismic Qualification Certificates: For enclosed switches and circuit breakers, accessories, and components, from manufacturer.
- C. Field quality-control reports.

1.4 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.5 QUALITY ASSURANCE

- A. Testing Agency Qualifications: Accredited by NETA.
 - 1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.

1.6 WARRANTY

- A. Manufacturer's Warranty: Manufacturer and Installer agree to repair or replace components that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: On year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: Enclosed switches and circuit breakers shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 - 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

2.2 GENERAL REQUIREMENTS

- A. Source Limitations: Obtain enclosed switches and circuit breakers, overcurrent protective devices, components, and accessories, within same product category, from single manufacturer.
- B. Product Selection for Restricted Space: Drawings indicate maximum dimensions for enclosed switches and circuit breakers, including clearances between enclosures, and adjacent surfaces and other items. Comply with indicated maximum dimensions.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by an NRTL, and marked for intended location and application.
- D. Comply with NFPA 70.

2.3 FUSIBLE SWITCHES

- A. Type HD, Heavy Duty:
 - 1. Single throw.
 - 2. Three pole.
 - 3. 600-V ac.
 - 4. 1200 A and smaller.

- 5. UL 98 and NEMA KS 1, horsepower rated, with clips or bolt pads to accommodate specified fuses.
- 6. Lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

B. Accessories:

- 1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
- 2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
- 3. Isolated Ground Kit: Internally mounted; insulated, labeled for copper and aluminum neutral conductors.
- 4. Class R Fuse Kit: Provides rejection of other fuse types when Class R fuses are specified.
- 5. Service-Rated Switches: Labeled for use as service equipment.

2.4 NONFUSIBLE SWITCHES

- A. Type GD, General Duty, Three Pole, Single Throw, 240-V ac, 600 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept two padlocks, and interlocked with cover in closed position.
- B. Type HD, Heavy Duty, Three Pole, Single Throw, 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.
- C. Type HD, Heavy Duty, Six Pole, Single Throw, 600-V ac, 200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.
- D. Type HD, Heavy Duty, Three Pole, Double Throw, 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

E. Accessories:

- 1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
- 2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
- 3. Isolated Ground Kit: Internally mounted; insulated, labeled for copper and aluminum neutral conductors.
- 4. Class R Fuse Kit: Provides rejection of other fuse types when Class R fuses are specified.
- 5. Service-Rated Switches: Labeled for use as service equipment.

2.5 RECEPTACLE SWITCHES

A. Type HD, Heavy-Duty, Three Pole, Single-Throw Fusible Switch: 600V ac, 100A; UL 98 and NEMA KS 1; horsepower rated, with clips or bolt pads to accommodate specified fuses;

lockable handle with capability to accept three padlocks; interlocked with cover in closed position.

- B. Type HD, Heavy-Duty, Three Pole, Single-Throw Nonfusible Switch: 600-V ac, 100A; UL 98 and NEMA KS 1; horsepower rated, lockable handle with capability to accept three padlocks; interlocked with cover in closed position.
- C. Interlocking Linkage: Provided between the receptacle and switch mechanism to prevent inserting or removing plug while switch is in the on position, inserting any plug other than specified, and turning switch on if an incorrect plug is inserted or correct plug has not been fully inserted into the receptacle.

Accessories:

- 1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
- 2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
- 3. Isolated Ground Kit: Internally mounted; insulated, labeled for copper and aluminum neutral conductors.
- 4. Class R Fuse Kit: Provides rejection of other fuse types when Class R fuses are specified.
- 5. Auxiliary Contact Kit: One NO/NC (Form "C") auxiliary contact(s), arranged to activate before switch blades open. Contact rating 120-V ac.
- 6. Hookstick Handle: Allows use of a hook stick to operate the handle.
- 7. Lugs: Mechanical type, suitable for number, size, and conductor material.
- 8. Service-Rated Switches: Labeled for use as service equipment.

2.6 SHUNT TRIP SWITCHES

- A. General Requirements: Comply with ASME A17.1, UL 50, and UL 98, with Class J fuse block and 200-kA interrupting and short-circuit current rating.
- B. Type HD, Heavy-Duty, Three Pole, Single-Throw Fusible Switch: 600-V ac, 100A; UL 98 and NEMA KS 1; integral shunt trip mechanism; horsepower rated, with clips or bolt pads to accommodate specified fuses; lockable handle with capability to accept three padlocks; interlocked with cover in closed position.
- C. Type HD, Heavy-Duty, Three Pole, Single-Throw Nonfusible Switch: 600-V ac, 100A; UL 98 and NEMA KS 1; integral shunt trip mechanism; horsepower rated, lockable handle with capability to accept three padlocks; interlocked with cover in closed position.
- D. Control Circuit: 120-V ac; obtained from integral control power transformer, with primary and secondary fuses, with a control power transformer of enough capacity to operate shunt trip, pilot, indicating and control devices.

E. Accessories:

- 1. Oiltight key switch for key-to-test function.
- 2. Oiltight red ON pilot light.
- 3. Isolated neutral lug; 100 percent rating.

- 4. Mechanically interlocked auxiliary contacts that change state when switch is opened and closed.
- 5. Three-pole, double-throw, fire-safety and alarm relay; 120-V ac coil voltage.
- 6. Three-pole, double-throw, fire-alarm voltage monitoring relay complying with NFPA 72.
- 7. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
- 8. Isolated Ground Kit: Internally mounted; insulated, labeled for copper and aluminum neutral conductors.
- 9. Class R Fuse Kit: Provides rejection of other fuse types when Class R fuses are specified.
- 10. Service-Rated Switches: Labeled for use as service equipment.

2.7 MOLDED-CASE CIRCUIT BREAKERS

- A. Circuit breakers shall be constructed using glass-reinforced insulating material. Current carrying components shall be completely isolated from the handle and the accessory mounting area.
- B. Circuit breakers shall have a toggle operating mechanism with common tripping of all poles, which provides quick-make, quick-break contact action. The circuit-breaker handle shall be over center, be trip free, and reside in a tripped position between on and off to provide local trip indication. Circuit-breaker escutcheon shall be clearly marked on and off in addition to providing international I/O markings. Equip circuit breaker with a push-to-trip button, located on the face of the circuit breaker to mechanically operate the circuit-breaker tripping mechanism for maintenance and testing purposes.
- C. The maximum ampere rating and UL, IEC, or other certification standards with applicable voltage systems and corresponding interrupting ratings shall be clearly marked on face of circuit breaker. Circuit breakers shall be 100 percent rated combinations for series connected interrupting ratings shall be listed by UL as recognized component combinations. Any series rated combination used shall be marked on the end-use equipment along with the statement "Caution Series Rated System. Identical Replacement Component Required."
- D. MCCBs shall be equipped with a device for locking in the isolated position.
- E. Lugs shall be suitable for 140 deg F (60 deg C) rated wire on 125-A circuit breakers and below.
- F. Standards: Comply with UL 489 with interrupting capacity to comply with available fault currents.
- G. Thermal-Magnetic Circuit Breakers: Inverse time-current thermal element for low-level overloads and instantaneous magnetic trip element for short circuits. Adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.
- H. Adjustable, Instantaneous-Trip Circuit Breakers: Magnetic trip element with front-mounted, field-adjustable trip setting.
- I. Electronic Trip Circuit Breakers: Field-replaceable rating plug, rms sensing, with the following field-adjustable settings:
 - 1. Long- and short-time pickup levels.
 - 2. Long- and short-time time adjustments.

- 3. Ground-fault pickup level, time delay, and I-squared t response.
- J. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller, and let-through ratings less than NEMA FU 1, RK-5.

K. Features and Accessories:

- 1. Standard frame sizes, trip ratings, and number of poles.
- 2. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and high-intensity discharge lighting circuits.
- 3. Shunt Trip: Trip coil energized from separate circuit, with coil-clearing contact.
- 4. Auxiliary Contacts: One SPDT switch with "a" and "b" contacts; "a" contacts mimic circuit-breaker contacts, "b" contacts operate in reverse of circuit-breaker contacts.
- 5. Alarm Switch: One NO contact that operates only when circuit breaker has tripped.

2.8 ENCLOSURES

- A. Enclosed Switches and Circuit Breakers: UL 489, NEMA KS 1, NEMA 250, and UL 50, to comply with environmental conditions at installed location.
- B. Conduit Entry: NEMA 250 Types 4, 4X, and 12 enclosures shall contain no knockouts. NEMA 250 Types 7 and 9 enclosures shall be provided with threaded conduit openings in both endwalls.
- C. Operating Mechanism: The circuit-breaker operating handle shall be externally operable with the operating mechanism being an integral part of the box, not the cover. The cover interlock mechanism shall have an externally operated override. The override shall not permanently disable the interlock mechanism, which shall return to the locked position once the override is released. The tool used to override the cover interlock mechanism shall not be required to enter the enclosure in order to override the interlock.
- D. Enclosures designated as NEMA 250 Type 4, 4X stainless steel, 12, or 12K shall have a dual cover interlock mechanism to prevent unintentional opening of the enclosure cover when the circuit breaker is ON and to prevent turning the circuit breaker ON when the enclosure cover is open.
- E. NEMA 250 Type 7/9 enclosures shall be furnished with a breather and drain kit to allow their use in outdoor and wet location applications.

PART 3 - EXECUTION

3.1 ENCLOSURE ENVIRONMENTAL RATING APPLICATIONS

- A. Enclosed Switches and Circuit Breakers: Provide enclosures at installed locations with the following environmental ratings.
 - 1. Indoor, Dry and Clean Locations: NEMA 250, Type 1

- 2. Outdoor Locations: NEMA 25 0, Type 3R.
- 3. Wash-Down Areas: NEMA 250, Type 4X, stainless steel.
- 4. Other Wet or Damp, Indoor Locations: NEMA 250, Type 4.
- 5. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, Type 12.
- 6. Hazardous Areas Indicated on Drawings: NEMA 250.

3.2 INSTALLATION

- A. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:
 - 1. Notify Owner no fewer than days in advance of interruption of electric service.
 - 2. Indicate method of providing temporary electric service.
 - 3. Do not proceed with interruption of electric service without Owner's written permission.
 - 4. Comply with NFPA 70E.
- B. Coordinate layout and installation of switches, circuit breakers, and components with equipment served and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.
- C. Install individual wall-mounted switches and circuit breakers with tops at uniform height unless otherwise indicated.
- D. Comply with mounting and anchoring requirements specified in Section 260548.16 "Seismic Controls for Electrical Systems."
- E. Temporary Lifting Provisions: Remove temporary lifting of eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.
- F. Install fuses in fusible devices.
- G. Comply with NFPA 70 and NECA 1.
- H. Set field-adjustable circuit-breaker trip ranges as specified in Section 260573.16 "Coordination Studies."

3.3 IDENTIFICATION

- A. Comply with requirements in Section 260553 "Identification for Electrical Systems."
 - 1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
 - 2. Label each enclosure with engraved metal or laminated-plastic nameplate.

3.4 FIELD QUALITY CONTROL

- A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.
- B. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- C. Perform tests and inspections.
- D. Tests and Inspections for Switches:
 - 1. Visual and Mechanical Inspection:
 - a. Inspect physical and mechanical condition.
 - b. Inspect anchorage, alignment, grounding, and clearances.
 - c. Verify that the unit is clean.
 - d. Verify blade alignment, blade penetration, travel stops, and mechanical operation.
 - e. Verify that fuse sizes and types match the Specifications and Drawings.
 - f. Verify that each fuse has adequate mechanical support and contact integrity.
 - g. Inspect bolted electrical connections for high resistance using one of the two following methods:
 - 1) Use a low-resistance ohmmeter.
 - a) Compare bolted connection resistance values to values of similar connections. Investigate values that deviate from those of similar bolted connections by more than 50 percent of the lowest value.
 - 2) Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method in accordance with manufacturer's published data or NETA ATS Table 100.12.
 - a) Bolt-torque levels shall be in accordance with manufacturer's published data. In the absence of manufacturer's published data, use NETA ATS Table 100.12.
 - h. Verify that operation and sequencing of interlocking systems is as described in the Specifications and shown on the Drawings.
 - i. Verify correct phase barrier installation.
 - j. Verify lubrication of moving current-carrying parts and moving and sliding surfaces.

2. Electrical Tests:

- a. Perform resistance measurements through bolted connections with a low-resistance ohmmeter. Compare bolted connection resistance values to values of similar connections. Investigate values that deviate from adjacent poles or similar switches by more than 50 percent of the lowest value.
- b. Measure contact resistance across each switchblade fuseholder. Drop values shall not exceed the high level of the manufacturer's published data. If manufacturer's published data are not available, investigate values that deviate from adjacent poles or similar switches by more than 50 percent of the lowest value.

- c. Perform insulation-resistance tests for one minute on each pole, phase-to-phase and phase-to-ground with switch closed, and across each open pole. Apply voltage in accordance with manufacturer's published data. In the absence of manufacturer's published data, use Table 100.1 from the NETA ATS. Investigate values of insulation resistance less than those published in Table 100.1 or as recommended in manufacturer's published data.
- d. Measure fuse resistance. Investigate fuse-resistance values that deviate from each other by more than 15 percent.
- e. Perform ground fault test according to NETA ATS 7.14 "Ground Fault Protection Systems, Low-Voltage."

E. Tests and Inspections for Molded Case Circuit Breakers:

- 1. Visual and Mechanical Inspection:
 - a. Verify that equipment nameplate data are as described in the Specifications and shown on the Drawings.
 - b. Inspect physical and mechanical condition.
 - c. Inspect anchorage, alignment, grounding, and clearances.
 - d. Verify that the unit is clean.
 - e. Operate the circuit breaker to ensure smooth operation.
 - f. Inspect bolted electrical connections for high resistance using one of the two following methods:
 - 1) Use a low-resistance ohmmeter.
 - a) Compare bolted connection resistance values to values of similar connections. Investigate values that deviate from those of similar bolted connections by more than 50 percent of the lowest value.
 - 2) Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method in accordance with manufacturer's published data or NETA ATS Table 100.12.
 - a) Bolt-torque levels shall be in accordance with manufacturer's published data. In the absence of manufacturer's published data, use NETA ATS Table 100.12.
 - g. Inspect operating mechanism, contacts, and chutes in unsealed units.
 - h. Perform adjustments for final protective device settings in accordance with the coordination study.

2. Electrical Tests:

- a. Perform resistance measurements through bolted connections with a low-resistance ohmmeter. Compare bolted connection resistance values to values of similar connections. Investigate values that deviate from adjacent poles or similar switches by more than 50 percent of the lowest value.
- b. Perform insulation-resistance tests for one minute on each pole, phase-to-phase and phase-to-ground with circuit breaker closed, and across each open pole. Apply voltage in accordance with manufacturer's published data. In the absence of

- manufacturer's published data, use Table 100.1 from the NETA ATS. Investigate values of insulation resistance less than those published in Table 100.1 or as recommended in manufacturer's published data.
- c. Perform a contact/pole resistance test. Drop values shall not exceed the high level of the manufacturer's published data. If manufacturer's published data are not available, investigate values that deviate from adjacent poles or similar switches by more than 50 percent of the lowest value.
- d. Perform insulation resistance tests on all control wiring with respect to ground. Applied potential shall be 500-V dc for 300-V rated cable and 1000-V dc for 600-V rated cable. Test duration shall be one minute. For units with solid state components, follow manufacturer's recommendation. Insulation resistance values shall be no less than two megohms.
- e. Determine the following by primary current injection:
 - 1) Long-time pickup and delay. Pickup values shall be as specified. Trip characteristics shall not exceed manufacturer's published time-current characteristic tolerance band, including adjustment factors.
 - 2) Short-time pickup and delay. Short-time pickup values shall be as specified. Trip characteristics shall not exceed manufacturer's published time-current characteristic tolerance band, including adjustment factors.
 - 3) Ground-fault pickup and time delay. Ground-fault pickup values shall be as specified. Trip characteristics shall not exceed manufacturer's published time-current characteristic tolerance band, including adjustment factors.
 - 4) Instantaneous pickup. Instantaneous pickup values shall be as specified and within manufacturer's published tolerances.
- f. Test functionality of the trip unit by means of primary current injection. Pickup values and trip characteristics shall be as specified and within manufacturer's published tolerances.
- g. Perform minimum pickup voltage tests on shunt trip and close coils in accordance with manufacturer's published data. Minimum pickup voltage of the shunt trip and close coils shall be as indicated by manufacturer.
- h. Verify correct operation of auxiliary features such as trip and pickup indicators; zone interlocking; electrical close and trip operation; trip-free, anti-pump function; and trip unit battery condition. Reset all trip logs and indicators. Investigate units that do not function as designed.
- i. Verify operation of charging mechanism. Investigate units that do not function as designed.
- 3. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
- 4. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.
- F. Enclosed switches and circuit breakers will be considered defective if they do not pass tests and inspections.
- G. Prepare test and inspection reports.
 - 1. Test procedures used.

- 2. Include identification of each enclosed switch and circuit breaker tested and describe test results.
- 3. List deficiencies detected, remedial action taken, and observations after remedial action.

END OF SECTION 262816

SECTION 262913.03 - MANUAL AND MAGNETIC MOTOR CONTROLLERS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Manual motor controllers.
- 2. Enclosed full-voltage magnetic motor controllers.
- 3. Enclosed reduced-voltage magnetic motor controllers.
- 4. Multispeed magnetic motor controllers.
- 5. Enclosures.
- 6. Accessories.
- 7. Identification.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: For each type of magnetic controller.
 - 1. Include plans, elevations, sections, and mounting details.
 - 2. Indicate dimensions, weights, required clearances, and location and size of each field connection.
 - 3. Wire Termination Diagrams and Schedules: Include diagrams for signal, and control wiring. Identify terminals and wiring designations and color-codes to facilitate installation, operation, and maintenance. Indicate recommended types, wire sizes, and circuiting arrangements for field-installed wiring, and show circuit protection features. Differentiate between manufacturer-installed and field-installed wiring.
 - 4. Include features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.

1.3 INFORMATIONAL SUBMITTALS

- A. Seismic Qualification Data: Certificates, for magnetic controllers, from manufacturer.
- B. Field quality-control reports.

1.4 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.5 QUALITY ASSURANCE

- A. Testing Agency Qualifications: Accredited by NETA.
 - 1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
- B. UL Compliance: Fabricate and label magnetic motor controllers to comply with UL 508 and UL 60947-4-1.
- C. NEMA Compliance: Fabricate motor controllers to comply with ICS 2.
- D. Seismic Performance: Magnetic controllers shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 - 1. The term "withstand" means "the controller will remain in place without separation of any parts when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."
 - 2. Component Importance Factor: 1.5

2.2 MANUAL MOTOR CONTROLLERS

- A. Motor-Starting Switches (MSS): "Quick-make, quick-break" toggle or push-button action; marked to show whether unit is off or on.
 - 1. Standard: Comply with NEMA ICS 2, general purpose, Class A.
 - 2. Red pilot light.
 - 3. Additional Nameplates: FORWARD and REVERSE for reversing switches, HIGH and LOW for two-speed switches.
- B. Fractional Horsepower Manual Controllers (FHPMC): "Quick-make, quick-break" toggle or push-button action; marked to show whether unit is off, on, or tripped.
 - 1. Overload Relays: Inverse-time-current characteristics; NEMA ICS 2, Class 10 tripping characteristics; heaters matched to nameplate full-load current of actual protected motor; external reset push button; bimetallic type.
 - 2. Overload Relays: NEMA ICS 2, bimetallic class as schedule on Drawings.
 - 3. Pilot Light: Red.

2.3 ENCLOSED FULL-VOLTAGE MAGNETIC MOTOR CONTROLLERS

A. Description: Across-the-line start, electrically held, for nominal system voltage of 600-V ac and less.

- B. Standard: Comply with NEMA ICS 2, general purpose, Class A.
- C. Contactor Coils: Pressure-encapsulated type.
 - 1. Operating Voltage: Manufacturer's standard, unless indicated.

D. Control Power:

- 1. For on-board control power, obtain from line circuit or from integral CPT. The CPT shall have capacity to operate integral devices and remotely located pilot, indicating, and control devices.
 - a. Spare CPT Capacity as Indicated on Drawings: 100 VA.

E. Overload Relays:

- 1. Thermal Overload Relays:
 - a. Inverse-time-current characteristic.
 - b. Class 10 tripping characteristic.
 - c. Heaters in each phase shall be matched to nameplate full-load current of actual protected motor and with appropriate adjustment for duty cycle.
 - d. Ambient compensated.
 - e. Automatic resetting.
- 2. Solid-State Overload Relay:
 - a. Switch or dial selectable for motor-running overload protection.
 - b. Sensors in each phase.
 - c. Class 10/20 selectable tripping characteristic selected to protect motor against voltage and current unbalance and single phasing.
 - d. Class II ground-fault protection shall comply with UL 1053 to interrupt low-level ground faults. The ground-fault detection system shall include circuitry that will prevent the motor controller from tripping when the fault current exceeds the interrupting capacity of the controller. Equip with start and run delays to prevent nuisance trip on starting, and a trip indicator.

2.4 ENCLOSED REDUCED-VOLTAGE MAGNETIC MOTOR CONTROLLERS

- A. Description: Electrically held; closed-transition; adjustable time delay on transition, 600-V ac or less.
- B. Standard: Comply with NEMA ICS 2, general purpose, Class A.
- C. Configuration:
 - 1. Wye-Delta Controller: Four contactors, with a three-phase starting resistor/reactor bank.
 - 2. Part-Winding Controller: Separate START and RUN contactors, field-selectable for 1/2-or 2/3-winding start mode, with either six- or nine-lead motors; with separate overload relays for starting and running sequences.

- 3. Autotransformer Reduced-Voltage Controller: Medium-duty service, with integral overtemperature protection; taps for starting at 50, 65, and 80 percent of line voltage; two START and one RUN contactors.
- D. Contactor Coils: Pressure-encapsulated type
 - 1. Operating Voltage: Manufacturer's standard, unless indicated.
- E. Control Power: 120-V ac; obtained from integral CPT, with primary and secondary fuses, with CPT of sufficient capacity to operate integral devices and remotely located pilot, indicating, and control devices.
 - 1. Spare CPT Capacity: 100 VA.
- F. Overload Relays:
 - 1. Thermal Overload Relays: Melting alloy type.
 - a. Inverse-time-current characteristic.
 - b. Class 10 tripping characteristic.
 - c. Heaters in each phase matched to nameplate full-load current of actual protected motor and with appropriate adjustment for duty cycle.
 - d. Ambient compensated.
 - e. Automatic resetting.
 - 2. Solid-State Overload Relay:
 - a. Switch or dial selectable for motor-running overload protection.
 - b. Sensors in each phase.
 - c. Class 10/20 selectable tripping characteristic selected to protect motor against voltage and current unbalance and single phasing.
 - d. Class II Ground-Fault Protection: Comply with UL 1053 to interrupt low-level ground faults. The ground-fault detection system shall include circuitry that will prevent the motor controller from tripping when the fault current exceeds the interrupting capacity of the controller. Equip with start and run delays to prevent nuisance trip on starting, and a trip indicator.

2.5 MULTISPEED MAGNETIC CONTROLLERS

- A. Description: Two speed, full voltage, across the line, electrically held.
- B. Standard: Comply with NEMA ICS 2, general purpose, Class A.
 - 1. Contactor Coils: Pressure-encapsulated type.
 - a. Operating Voltage: Manufacturer's standard, unless indicated.
 - 2. Power Contacts: Totally enclosed, double break, silver-cadmium oxide; assembled to allow inspection and replacement without disturbing line or load wiring.

- 3. Control Power: 120-V ac; obtained from integral CPT, with primary and secondary fuses, with CPT of sufficient capacity to operate integral devices and remotely located pilot, indicating, and control devices.
 - a. Spare CPT Capacity: 100 VA.
- 4. Compelling relays shall ensure that motor will start only at low speed.
- 5. Accelerating timer relays shall ensure properly timed acceleration through speeds lower than that selected.
- 6. Decelerating timer relays shall ensure automatically timed deceleration through each speed.
- 7. Antiplugging timer relays shall ensure a time delay when transferring from FORWARD to REVERSE and back.

C. Overload Relays:

- 1. Thermal Overload Relays: Melting alloy type.
 - a. Inverse-time-current characteristic.
 - b. Class 10 tripping characteristic.
 - c. Heaters in each phase matched to nameplate full-load current of actual protected motor and with appropriate adjustment for duty cycle.
 - d. Ambient compensated.
 - e. Automatic resetting.

2. Solid-State Overload Relay:

- a. Switch or dial selectable for motor-running overload protection.
- b. Sensors in each phase.
- c. Class 10/20 selectable tripping characteristic selected to protect motor against voltage and current unbalance and single phasing.
- d. Class II ground-fault protection shall comply with UL 1053 to interrupt low-level ground faults. The ground-fault detection system shall include circuitry that will prevent the motor controller from tripping when the fault current exceeds the interrupting capacity of the controller. Equip with start and run delays to prevent nuisance trip on starting, and a trip indicator.
 - 1) Instantaneous rms current each phase, and 3-phase average.
 - 2) Voltage: L-L for each phase, L-L 3-phase average, L-N each phase and L-N 3-phase average rms.
 - 3) Active Energy (kWh): 3-phase total.
 - 4) Power Factor: Each phase and 3-phase total.

2.6 ENCLOSURES

- A. Comply with NEMA 250, type designations as indicated on Drawings, complying with environmental conditions at installed location.
- B. The construction of the enclosures shall comply with NEMA ICS 6.

2.7 ACCESSORIES

- A. General Requirements for Control Circuit and Pilot Devices: NEMA ICS 5; factory installed in controller enclosure cover unless otherwise indicated.
 - 1. Push Buttons, Pilot Lights, and Selector Switches: Standard-duty, except as needed to match enclosure type. Heavy-duty or oil-tight where indicated in the controller schedule.
 - a. Push Buttons: As indicated in the controller schedule.
 - b. Pilot Lights: As indicated in the controller schedule.
 - 2. Elapsed Time Meters: Heavy duty with digital readout in hours
 - 3. Meters: Panel type, 2-1/2-inch (64-mm) minimum size with 90- or 120-degree scale and plus or minus two percent accuracy. Where indicated, provide selector switches with an off position.
- B. Motor protection relays shall be with solid-state sensing circuit and isolated output contacts for hardwired connections.
 - 1. Phase-failure.
 - 2. Phase-reversal, with bicolor LED to indicate normal and fault conditions. Automatic reset when phase reversal is corrected.
 - 3. Under/overvoltage, operate when the circuit voltage reaches a preset value, and drop out when the operating voltage drops to a level below the preset value. Include adjustable time-delay setting.

2.8 IDENTIFICATION

- A. Controller Nameplates: Baked enamel signs, as described in Section 260553 "Identification for Electrical Systems," for each compartment, mounted with corrosion-resistant screws.
- B. Arc-Flash Warning Labels:
 - 1. Comply with requirements in Section 260573.19 "Arc-Flash Hazard Analysis." Produce a 3.5-by-5-inch (89-by-127-mm) self-adhesive equipment label for each work location included in the analysis.
 - 2. Comply with requirements in Section 260553 "Identification for Electrical Systems." Produce a 3.5-by-5-inch (89-by-127-mm) self-adhesive equipment label for each work location included in the analysis. Labels shall be machine printed, with no field-applied markings.
 - a. The label shall have an orange header with the wording, "WARNING, ARC-FLASH HAZARD," and shall include the following information taken directly from the arc-flash hazard analysis:
 - 1) Location designation.
 - 2) Nominal voltage.
 - 3) Flash protection boundary.
 - 4) Hazard risk category.
 - 5) Incident energy.

- 6) Working distance.
- 7) Engineering report number, revision number, and issue date.
- b. Labels shall be machine printed, with no field-applied markings.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with NECA 1.
- B. Wall-Mounted Controllers: Install magnetic controllers on walls with tops at uniform height indicated, and by bolting units to wall or mounting on lightweight structural-steel channels bolted to wall. For controllers not at walls, provide freestanding racks complying with Section 260529 "Hangers and Supports for Electrical Systems" unless otherwise indicated.
- C. Floor-Mounted Controllers: Install controllers on cast-in-place concrete equipment base(s). Comply with requirements for equipment bases and foundations specified in Section 033000 "Cast-in-Place Concrete." Or Section 033053 "Miscellaneous Cast-in-Place Concrete."
- D. Comply with requirements for seismic control devices specified in Section 260548.16 "Seismic Controls for Electrical Systems."
- E. Maintain minimum clearances and workspace at equipment according to manufacturer's written instructions and NFPA 70.
- F. Wiring within Enclosures: Bundle, lace, and train conductors to terminal points with no excess and without exceeding manufacturer's limitations on bending radii. Install lacing bars and distribution spools.
- G. Setting of Overload Relays: Select and set overloads on the basis of full-load current rating as shown on motor nameplate. Adjust setting value for special motors as required by NFPA 70 for motors that are high-torque, high-efficiency, and so on.

3.2 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.3 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections:
 - 1. Comply with the provisions of NFPA 70B, "Testing and Test Methods" Chapter.
 - 2. Visual and Mechanical Inspection

- a. Compare equipment nameplate data with drawings and specifications.
- b. Inspect physical and mechanical condition.
- c. Inspect anchorage, alignment, and grounding.
- d. Verify the unit is clean.
- e. Inspect contactors:
 - 1) Verify mechanical operation.
 - 2) Verify contact gap, wipe, alignment, and pressure are according to manufacturer's published data.

f. Motor-Running Protection:

- 1) Verify overload element rating is correct for its application.
- 2) If motor-running protection is provided by fuses, verify correct fuse rating.
- g. Inspect bolted electrical connections for high resistance using one of the two following methods:
 - 1) Use a low-resistance ohmmeter. Compare bolted connection resistance values with values of similar connections. Investigate values that deviate from those of similar bolted connections by more than 50 percent of the lowest value.
 - 2) Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method according to manufacturer's published data or NETA ATS Table 100.12. Bolt-torque levels shall be according to manufacturer's published data. In the absence of manufacturer's published data, use NETA ATS Table 100.12.
- h. Verify appropriate lubrication on moving current-carrying parts and on moving and sliding surfaces.

3. Electrical Tests

- a. For the contactor and circuit breaker, perform insulation-resistance tests for one minute on each pole, phase-to-phase and phase-to-ground with switch closed, and across each open pole. Insulation-resistance values shall be according to manufacturer's published data or NETA ATS Table 100.1. In the absence of manufacturer's published data, use Table 100.5. Values of insulation resistance less than those of this table or manufacturer's recommendations shall be investigated and corrected.
- b. Measure fuse resistance. Investigate fuse-resistance values that deviate from each other by more than 15 percent.
- c. Test motor protection devices according to manufacturer's published data.
- d. Test circuit breakers as follows:
 - 1) Operate the circuit breaker to ensure smooth operation.
 - 2) For adjustable circuit breakers, adjust protective device settings according to the coordination study. Comply with coordination study recommendations.
- e. Perform operational tests by initiating control devices.

- C. Motor controller will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.

3.4 SYSTEM FUNCTION TESTS

- A. System function tests shall prove the correct interaction of sensing, processing, and action devices. Perform system function tests after field quality control tests have been completed and all components have passed specified tests.
 - 1. Develop test parameters and perform tests for the purpose of evaluating performance of integral components and their functioning as a complete unit within design requirements and manufacturer's published data.
 - 2. Verify the correct operation of interlock safety devices for fail-safe functions in addition to design function.
 - 3. Verify the correct operation of sensing devices, alarms, and indicating devices.
- B. Motor controller will be considered defective if it does not pass the system function tests and inspections.
- C. Prepare test and inspection reports.

3.5 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain switchgear.

END OF SECTION 262913.03

SECTION 262913.06 - SOFT-START MOTOR CONTROLLERS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes soft-start motor controllers that are designed for reduced-voltage start and full-voltage run duty.
 - 1. Enclosed soft-start controllers.
 - 2. Combination soft-start controllers.
 - 3. Enclosures.
 - 4. Accessories.
 - 5. Identification.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: For each type of controller.
 - 1. Include plans, elevations, sections, and mounting details.
 - 2. Indicate dimensions, weights, required clearances, and location and size of each field connection.
 - 3. Wire Termination Diagrams and Schedules: Include diagrams for signal and control wiring. Identify terminals and wiring designations and color-codes to facilitate installation, operation, and maintenance. Indicate recommended types, wire sizes, and circuiting arrangements for field-installed wiring, and show circuit protection features. Differentiate between manufacturer-installed and field-installed wiring.
 - 4. Include features, characteristics, ratings, and factory settings of individual OCPD and auxiliary components.

1.3 INFORMATIONAL SUBMITTALS

- A. Seismic Qualification Data: Certificates, for soft-start controllers, from manufacturer.
- B. Source quality-control reports.
- C. Field quality-control reports.

1.4 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.5 QUALITY ASSURANCE

- A. Testing Agency Qualifications: Accredited by NETA.
 - 1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.

PART 2 - PRODUCTS

2.1 MOTOR CONTROLLER PERFORMANCE REQUIREMENTS

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
- B. UL Compliance: Fabricate and label enclosed controllers to comply with UL 508.
- C. NEMA Compliance: Fabricate motor controllers to comply with NEMA ICS 2.
- D. Seismic Performance: Soft-start controllers shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 - 1. The term "withstand" means "the unit will remain in place without separation of any parts when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."
 - 2. Component Importance Factor: 1.5.

2.2 ENCLOSED SOFT-START MOTOR CONTROLLERS

- A. Description: Controllers designed for reduced-voltage start, full-voltage run, and optional soft stop. The controller shall be an integrated unit with power SCRs, heat sink, microprocessor logic board, door-mounted digital display and user interface module, run-bypass contactor, and overload relay(s); suitable for use with NEMA MG 1, Design B, polyphase, medium induction motors.
 - 1. Run-Bypass Contactor: Magnetic contactor in parallel with the SCR of the soft-start controller, bypassing the SCR when full voltage is achieved.
- B. Standard: Comply with NEMA ICS 2, general purpose, Class A.
- C. Configuration: Standard duty.
 - 1. At least two SCRs per phase to control the starting and stopping of the motor.
 - 2. Microprocessor control shall continuously monitor current and proper operation of the SCRs.
 - 3. Bypass Contactor: Operates automatically when full voltage is applied to motor, and bypasses the SCRs. Soft-start controller protective features and deceleration controls shall remain active when this contactor is in the bypass mode.

- 4. Power Electronics Disconnect Contactor. Where indicated, installed ahead of the power electronics equipment, and shall open automatically when the motor is stopped, or a controller fault is detected, or when an SCR shorts.
- 5. Logic Board: Identical for all ampere ratings and voltage classes, with environmental protective coating.
- 6. Surge Protection: Comply with NEMA ICS 2 requirements for surge suppression.

D. Control Power:

- 1. For on-board control power, obtain from line circuit or from integral CPT. The CPT shall have capacity to operate integral devices and remotely located pilot, indicating, and control devices.
- 2. Spare CPT Capacity: As indicated on Drawings, available in increments of 100 VA, from 100 to 500 VA.

E. Controller Diagnostics and Protection:

- 1. Microprocessor-based thermal-protection system for monitoring SCR and motor thermal characteristics, and providing controller overtemperature and motor-overload alarm and trip; settings selectable via the keypad.
- 2. Protection from line-side reverse phasing; line-side and motor-side phase loss; motor jam, stall, and under-load conditions; and line frequency over or under normal.
- 3. Input isolation contactor that opens when the controller diagnostics detect a faulted soft-start component or when the motor is stopped.
- F. Cover mounted-controller status panel with LED lights or alphanumeric display to show the following:
 - 1. Starter Status: "Ready," "starting," "stopping," or "run."
 - 2. Motor current in amperes.
 - 3. Faults:
 - a. Motor overcurrent trip.
 - b. Motor thermal overload.
 - c. Starter thermal fault.
 - d. Low line voltage.
 - e. Loss of a phase.
 - f. Phases reversed.
 - g. Maximum stating time exceeded.
 - h. Serial communications error.

G. Interface Panel: Mounted on controller door

- 1. Guarded adjustable set points, not readily accessible.
 - a. Motor FLA, adjustable from 40 to 110 percent of the controller's rating.
 - b. Current limitation on starting, adjustable from 200 to 500 percent of FLA, typically set at 300 percent.
 - c. NEMA ICS 2 overload class. Selections shall include the following tripping classes: Class 5, Class 10, Class 15, Class 20, and Class 30.

- 2. Adjustable set points, readily accessible.
 - a. Linear acceleration, adjustable from 1 to 60 s.
 - b. Maximum start time, adjustable from 1 to 250 s.
 - c. Selector switch; select coast to stop or soft stop.
 - d. Linear deceleration, adjustable from 1 to 60 s.
- H. Remote Output Features. All outputs shall be prewired to terminal blocks.
 - 1. Analog output for field-selectable assignment of motor operating characteristics; 4- to 20-mA dc.
 - 2. Form C status contacts that change state when controller is running.
 - 3. Form C alarm contacts that change state when a fault condition occurs.

2.3 COMBINATION SOFT-START MOTOR CONTROLLERS

- A. Description: Factory-assembled, combination, reduced-voltage soft-start controller with a disconnecting means, SCPD and OCPD, in a single enclosure. The reduced-voltage soft-start controller shall consist of an integrated unit with power SCRs, heat sink, microprocessor logic board, door-mounted digital display and user interface module, run-bypass contactor, and overload relay(s); suitable for use with NEMA MG 1, Design B, polyphase, medium induction motors.
 - 1. Run-Bypass Contactor: Magnetic contactor in parallel with the SCR of the soft-start controller, bypassing the SCR when full voltage is achieved.
- B. Standard: Comply with NEMA ICS 2, general purpose, Class A.
- C. Configuration: Standard duty.
 - 1. At least two SCRs per phase to control the starting and stopping of the motor.
 - 2. Microprocessor control shall continuously monitor current and proper operation of the SCRs.
 - 3. Bypass Contactor: Operates automatically when full voltage is applied to motor, and bypasses the SCRs. Soft-start controller protective features and deceleration controls shall remain active when this contactor is in the bypass mode.
 - 4. Power Electronics Disconnect Contactor. Where indicated, installed ahead of the power electronics equipment, and shall open automatically when the motor is stopped, or a controller fault is detected, or when an SCR shorts.
 - 5. Logic Board: Identical for all ampere ratings and voltage classes, with environmental protective coating.
 - 6. Surge Protection: Comply with NEMA ICS 2 requirements for surge suppression.

D. Control Power:

- 1. For on-board control power, obtain from line circuit or from integral CPT. The CPT shall have capacity to operate integral devices and remotely located pilot, indicating, and control devices.
- 2. Spare CPT Capacity: As indicated on Drawings, available in increments of 100 VA, from 100 to 500 VA.

E. Controller Diagnostics and Protection:

- 1. Microprocessor-based thermal-protection system for monitoring SCR and motor thermal characteristics, and providing controller overtemperature and motor-overload alarm and trip; settings selectable via the keypad.
- 2. Protection from line-side reverse phasing; line-side and motor-side phase loss; motor jam, stall, and under-load conditions; and line frequency over or under normal.
- 3. Input isolation contactor that opens when the controller diagnostics detect a faulted soft-start component or when the motor is stopped.
- F. Cover mounted-controller status panel with LED lights or alphanumeric display to show the following:
 - 1. Starter Status: "Ready," "starting," "stopping," or "run."
 - 2. Motor current in amperes.
 - 3. Faults:
 - a. Motor overcurrent trip.
 - b. Motor thermal overload.
 - c. Starter thermal fault.
 - d. Low line voltage.
 - e. Loss of a phase.
 - f. Phases reversed.
 - g. Maximum stating time exceeded.
 - h. Serial communications error.
- G. Interface Panel: Mounted on controller door
 - 1. Guarded adjustable set points, not readily accessible.
 - a. Motor FLA, adjustable from 40 to 110 percent of the controller's rating.
 - b. Current limitation on starting, adjustable from 200 to 500 percent of FLA, typically set at 300 percent.
 - c. NEMA ICS 2 overload class. Selections shall include the following tripping classes: Class 5, Class 10, Class 15, Class 20, and Class 30.
 - 2. Adjustable set points, readily accessible.
 - a. Linear acceleration, adjustable from 1 to 60 s
 - b. Maximum start time, adjustable from 1 to 250 s
 - c. Linear deceleration, adjustable from 1 to 60 s
- H. Remote Output Features: All outputs shall be prewired to terminal blocks.
 - 1. Analog output for field-selectable assignment of motor operating characteristics; 4- to 20-mA dc.
 - 2. Form C status contacts that change state when controller is running.
 - 3. Form C alarm contacts that change state when a fault condition occurs.
- I. Fusible Disconnecting Means:

- 1. NEMA KS 1, heavy-duty, horsepower-rated, fusible switch with clips or bolt pads to accommodate Class J fuses.
- 2. Lockable Handle: Accepts three padlocks and interlocks with cover in closed position.
- 3. Auxiliary Contacts: NO or NC, arranged to activate before switch blades open.

J. MCP Disconnecting Means:

- 1. UL 489 and NEMA AB 3 (with interrupting capacity to comply with available fault currents) instantaneous-only circuit breaker with front-mounted, field-adjustable, short-circuit trip coordinated with motor locked-rotor amperes.
- 2. Lockable Handle: Accepts three padlocks and interlocks with cover in closed position.
- 3. Auxiliary contacts "a" and "b" arranged to activate with MCP handle.
- 4. NC alarm contact that operates only when MCP has tripped.
- 5. Current-limiting module to increase controller SCCR (withstand) to 100 kA.

K. MCCB Disconnecting Means:

- 1. UL 489 and NEMA AB 3, with interrupting capacity to comply with available fault currents; thermal-magnetic MCCB, with inverse time-current element for low-level overloads and instantaneous magnetic trip element for short circuits.
- 2. Front-mounted, adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.
- 3. Lockable Handle: Accepts three padlocks and interlocks with cover in closed position.
- 4. Auxiliary contacts "a" and "b" arranged to activate with MCCB handle.
- 5. NC alarm contact that operates only when MCCB has tripped.

L. Molded-Case Switch Disconnecting Means:

- 1. UL 489 and NEMA AB 3, with in-line fuse block for Class J or Class L power fuses (depending on ampere rating), providing an interrupting capacity to comply with available fault currents; MCCB with fixed, high-set instantaneous trip only.
- 2. Lockable Handle: Accepts three padlocks and interlocks with cover in closed position.
- 3. Auxiliary contacts "a" and "b" arranged to activate with molded-case switch handle.
- 4. NC alarm contact that operates only when molded-case switch has tripped.

2.4 ENCLOSURES

- A. Comply with NEMA 250, Type designations as indicated on Drawings, to comply with environmental conditions at installed location.
- B. Construction of the enclosures shall comply with NEMA ICS 6.

2.5 ACCESSORIES

- A. General Requirements for Control Circuit and Pilot Devices: NEMA ICS 5; factory installed in controller enclosure cover unless otherwise indicated.
 - 1. Push Buttons, Pilot Lights, and Selector Switches: Standard duty, except as needed to match enclosure type. Heavy-duty or oiltight where indicated in the controller schedule.

- a. Push Buttons: As indicated in the controller schedule.
- b. Pilot Lights: As indicated in the controller schedule.
- 2. Elapsed Time Meters: Heavy duty with digital readout in hours.
- 3. Meters: Panel type, 2-1/2-inch (64-mm) minimum size with 90- or 120-degree scale and plus or minus 2 percent accuracy. Where indicated, provide selector switches with an off position.
- B. <Insert accessories>.

2.6 IDENTIFICATION

- A. Controller Nameplates: Baked-enamel signs, as described in Section 260553 "Identification for Electrical Systems," for each compartment, mounted with corrosion-resistant screws.
- B. Arc-Flash Warning Labels;
 - 1. Comply with requirements in Section 260573.19 "Arc-Flash Hazard Analysis." Produce a 3-1/2-by-5-inch (89-by-127-mm) self-adhesive label for each work location included in the analysis.
 - 2. Comply with requirements in Section 260553 "Identification for Electrical Systems." Produce a 3-1/2-by-5-inch (89-by-127-mm) self-adhesive equipment label for each work location included in the analysis. Labels shall be machine printed, with no field-applied markings.
 - a. The label shall have an orange header with the wording, "WARNING, ARC-FLASH HAZARD," and shall include the following information taken directly from the arc-flash hazard analysis:
 - 1) Location designation.
 - 2) Nominal voltage.
 - 3) Flash protection boundary.
 - 4) Hazard risk category.
 - 5) Incident energy.
 - 6) Working distance.
 - 7) Engineering report number, revision number, and issue date.
 - b. Labels shall be machine printed, with no field-applied markings.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with NECA 1.
- B. Wall-Mounted Controllers: Install controllers on walls with tops at uniform height indicated, and by bolting units to wall or mounting on slotted support systems complying with Section 260529 "Hangers and Supports for Electrical Systems," and bolted to wall.

- C. Freestanding Controllers: Provide slotted support systems complying with Section 260529 "Hangers and Supports for Electrical Systems."
- D. Floor-Mounted Controllers: Install controllers on cast-in-place concrete equipment base(s). Comply with requirements for equipment bases and foundations specified in Section 033000 "Cast-in-Place Concrete." Or Section 033053 "Miscellaneous Cast-in-Place Concrete."
- E. Comply with requirements for seismic control devices specified in Section 260548.16 "Seismic Controls for Electrical Systems."
- F. Maintain minimum clearances and workspace at equipment according to manufacturer's written instructions and NFPA 70.
- G. Control Wiring: Separate control wiring from power wiring. Where unavoidable, use twisted pair cabling or shielded cables for control wiring.
- H. Wiring within Enclosures: Bundle, lace, and train conductors to terminal points with no excess and without exceeding manufacturer's limitations on bending radii. Install lacing bars and distribution spools.
- I. Setting of Overload Relays: Select and set overloads on the basis of FLA rating as shown on motor nameplate. Adjust setting value for special motors as required by NFPA 70 for high-torque, high-efficiency, and so on motors.

3.2 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.3 FIELD QUALITY CONTROL

- A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.
- B. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- C. Perform tests and inspections.
- D. Tests and Inspections:
 - 1. Comply with provisions of NFPA 70B, Chapter "Testing and Test Methods."
 - 2. Visual and Mechanical Inspection:
 - a. Compare equipment nameplate data with Drawings and the Specifications.
 - b. Inspect physical and mechanical condition.
 - c. Inspect anchorage, alignment, and grounding.
 - d. Verify that the unit is clean.
 - e. Ensure that vent path openings are free from debris and that heat-transfer surfaces are clean.

- f. Verify correct connections of circuit boards, wiring, disconnects, and ribbon cables.
- g. Inspect Contactors:
 - 1) Verify mechanical operation.
 - 2) Verify that contact gap, wipe, alignment, and pressure are according to manufacturer's published data.

h. Motor-Running Protection:

- 1) Verify that motor FLA is at, or under, the controller current rating.
- 2) Verify that overload element setting is correct for its application.
- 3) Apply minimum- and maximum-speed set points. Verify that set points are within limitations of the load coupled to the motor.
- 4) If motor-running protection is provided by fuses, verify correct fuse rating.
- i. Inspect bolted electrical connections for high resistance using one of the following two methods:
 - 1) Use a low-resistance ohmmeter. Compare bolted-connection-resistance values to values of similar connections. Investigate values that deviate from those of similar bolted connections by more than 50 percent of the lowest value.
 - 2) Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method according to manufacturer's published data or NETA ATS, Table 100.12. Bolt-torque levels shall be according to manufacturer's published data. In the absence of manufacturer's published data, use NETA ATS, Table 100.12.
- j. Verify appropriate lubrication on moving current-carrying parts and on moving and sliding surfaces.

3. Electrical Tests:

- a. For the contactor and circuit breaker, perform insulation-resistance tests for one minute on each pole, phase-to-phase and phase-to-ground with switch closed, and across each open pole. Insulation-resistance values shall be according to manufacturer's published data or NETA ATS, Table 100.1. In the absence of manufacturer's published data, use Table 100.5. Values of insulation resistance less than this table or manufacturer's written instructions shall be investigated and corrected.
- b. Measure fuse resistance. Investigate fuse-resistance values that deviate from each other by more than 15 percent.
- c. Test motor protection devices according to manufacturer's published data.
- d. Test circuit breakers as follows:
 - 1) Operate the circuit breaker to ensure smooth operation.
 - 2) For adjustable circuit breakers, adjust protective device settings according to the coordination study. Comply with coordination study recommendations.

- e. Test the electronic motor overload relay elements by injecting primary current through the overload circuit and monitoring trip time of the overload element.
- f. Test the following parameters according to NETA relay calibration procedures, or as recommended by manufacturer:
 - 1) ANSI No. 49R, Overtemperature Protection:
 - a) Determine time delay at 300 percent of setting.
 - b) Determine a second point on the operating curve.
 - c) Determine pickup.
 - 2) ANSI No. 47, Input Phase Loss and Reversed Phases Protection:
 - a) Determine positive sequence voltage to close the NO contact.
 - b) Determine positive sequence voltage to open the NC contact (undervoltage trip).
 - c) Verify negative sequence trip.
 - d) Determine time delay to close the NO contact with sudden application of 120 percent of pickup.
 - e) Determine time delay to close the NC contact on removal of voltage when previously set to rated system voltage.
 - 3) ANSI No. 81, Overfrequency Protection:
 - a) Verify frequency set points.
 - b) Determine time delay.
 - c) Determine undervoltage cutoff.
 - 4) Fault Alarm Outputs: Verify that each relay contact performs its intended function in the control scheme including breaker trip tests, close inhibit tests, lockout tests, and alarm functions.
- g. Perform operational tests by initiating control devices.
- E. Motor controllers will be considered defective if they do not pass tests and inspections.
- F. Prepare test and inspection reports.

3.4 SYSTEM FUNCTION TESTS

- A. System function tests shall prove the correct interaction of sensing, processing, and action devices. Perform system function tests after field quality-control tests have been completed and all components have passed specified tests.
 - 1. Develop test parameters and perform tests for the purpose of evaluating performance of integral components and their functioning as a complete unit within design requirements and manufacturer's published data.
 - 2. Verify the correct operation of interlock safety devices for fail-safe functions in addition to design function.
 - 3. Verify the correct operation of sensing devices, alarms, and indicating devices.

- B. Motor controllers will be considered defective if they do not pass the system function tests and inspections.
- C. Prepare test and inspection reports.

3.5 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain motor controllers.

END OF SECTION 262913.06

SECTION 262923 - VARIABLE-FREQUENCY MOTOR CONTROLLERS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes separately enclosed, preassembled, combination VFCs, rated 600 V and less, for speed control of three-phase, squirrel-cage induction motors.
- B. Related Requirements:
 - 1. Section 262419 "Motor-Control Centers" for VFCs installed in motor-control centers.

1.2 DEFINITIONS

- A. CE: Conformite Europeene (European Compliance).
- B. CPT: Control power transformer.
- C. DDC: Direct digital control.
- D. EMI: Electromagnetic interference.
- E. OCPD: Overcurrent protective device.
- F. PID: Control action, proportional plus integral plus derivative.
- G. RFI: Radio-frequency interference.
- H. VFC: Variable-frequency motor controller.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type and rating of VFC indicated.
- B. Shop Drawings: For each VFC indicated.
 - 1. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 2. Include diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For testing agency.

- B. Seismic Qualification Data: Certificates, for each VFC, accessories, and components, from manufacturer.
 - 1. Certificate of compliance.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based, and their installation requirements.
- C. Product certificates.
- D. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications: Member company of NETA or an NRTL.

1.7 WARRANTY

- A. Special Warranty: Manufacturer agrees to repair or replace VFCs that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

2.2 SYSTEM DESCRIPTION

- A. General Requirements for VFCs:
 - 1. VFCs and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. Comply with NEMA ICS 7, NEMA ICS 61800-2, and UL 508A.
- B. Application: Constant torque and variable torque.
- C. VFC Description: Variable-frequency motor controller, consisting of power converter that employs pulse-width-modulated inverter, factory built and tested in an enclosure, with integral disconnecting means and overcurrent and overload protection; listed and labeled by an NRTL as

a complete unit; arranged to provide self-protection, protection, and variable-speed control of one or more three-phase induction motors by adjusting output voltage and frequency.

- 1. Units suitable for operation of NEMA MG 1 motors.
- 2. Listed and labeled for integrated short-circuit current (withstand) rating by an NRTL acceptable to authorities having jurisdiction.
- D. Design and Rating: Match load type, such as fans, blowers, and pumps; and type of connection used between motor and load such as direct or through a power-transmission connection.
- E. Output Rating: Three phase; 10 to 60 Hz, with voltage proportional to frequency throughout voltage range; maximum voltage equals input voltage.
- F. Unit Operating Requirements:
 - 1. Input AC Voltage Tolerance: Plus 10 and minus 10 percent of VFC input voltage rating.
 - 2. Input AC Voltage Unbalance: Not exceeding 3percent.
 - 3. Input Frequency Tolerance: Plus or minus 3 percent of VFC frequency rating.
 - 4. Minimum Efficiency: 96 percent at 60 Hz, full load.
 - 5. Minimum Displacement Primary-Side Power Factor: 96 percent under any load or speed condition.
 - 6. Minimum Short-Circuit Current (Withstand) Rating: 22 kA.
 - 7. Ambient Temperature Rating: Not less than 32 deg F (0 deg C) and not exceeding 104 deg F (40 deg C).
 - 8. Humidity Rating: Less than 95 percent (noncondensing).
 - 9. Altitude Rating: Not exceeding 3300 feet (1000 m).
 - 10. Vibration Withstand: Comply with NEMA ICS 61800-2.
 - 11. Overload Capability: 1.1 times the base load current for 60 seconds; minimum of 1.8 times the base load current for three seconds.
 - 12. Starting Torque: Minimum 100 percent of rated torque from 3 to 60 Hz.
 - 13. Speed Regulation: Plus or minus 5 percent.
 - 14. Output Carrier Frequency: Selectable; 0.5 to 15 kHz.
 - 15. Stop Modes: Programmable; includes fast, free-wheel, and dc injection braking.
- G. Inverter Logic: Microprocessor based, 16 bit, isolated from all power circuits.
- H. Isolated Control Interface: Allows VFCs to follow remote-control signal over a minimum 40:1 speed range.
 - 1. Signal: Electrical.
- I. Internal Adjustability Capabilities:
 - 1. Minimum Speed: 5 to 25 percent of maximum rpm.
 - 2. Maximum Speed: 80 to 100 percent of maximum rpm.
 - 3. Acceleration: 0.1 to 999.9seconds.
 - 4. Deceleration: 0.1 to 999.9 seconds.
 - 5. Current Limit: 30 to minimum of 150 percent of maximum rating.
- J. Self-Protection and Reliability Features:

- 1. Surge Suppression: Factory installed as an integral part of the VFC, complying with UL 1449 SPD, Type 1 or Type 2.
- 2. Surge Suppression: Field-mounted surge suppressors complying with Section 264313 "Surge Protection for Low-Voltage Electrical Power Circuits," UL 1449 SPD, Type 2.
- 3. Loss of Input Signal Protection: Selectable response strategy, including speed default to a percent of the most recent speed, a preset speed, or stop; with alarm.
- 4. Under- and overvoltage trips.
- 5. Inverter overcurrent trips.
- 6. VFC and Motor-Overload/Overtemperature Protection: Microprocessor-based thermal protection system for monitoring VFCs and motor thermal characteristics, and for providing VFC overtemperature and motor-overload alarm and trip; settings selectable via the keypad.
- 7. Critical frequency rejection, with three selectable, adjustable deadbands.
- 8. Instantaneous line-to-line and line-to-ground overcurrent trips.
- 9. Loss-of-phase protection.
- 10. Reverse-phase protection.
- 11. Short-circuit protection.
- 12. Motor-overtemperature fault.
- K. Automatic Reset/Restart: Attempt three restarts after drive fault or on return of power after an interruption and before shutting down for manual reset or fault correction; adjustable delay time between restart attempts.
- L. Power-Interruption Protection: To prevent motor from re-energizing after a power interruption until motor has stopped, unless "Bidirectional Autospeed Search" feature is available and engaged.
- M. Bidirectional Autospeed Search: Capable of starting VFC into rotating loads spinning in either direction and returning motor to set speed in proper direction, without causing damage to drive, motor, or load.
- N. Torque Boost: Automatically varies starting and continuous torque to at least 1.5 times the minimum torque to ensure high-starting torque and increased torque at slow speeds.
- O. Motor Temperature Compensation at Slow Speeds: Adjustable current fall-back based on output frequency for temperature protection of self-cooled, fan-ventilated motors at slow speeds.
- P. Integral Input Disconnecting Means and OCPD: UL 489, instantaneous-trip circuit breaker with pad-lockable, door-mounted handle mechanism.
 - 1. Disconnect Rating: Not less than 115 percent of VFC input current rating.
 - 2. Disconnect Rating: Not less than 115 percent of NFPA 70 motor full-load current rating or VFC input current rating, whichever is larger.
 - 3. Auxiliary Contacts: NO or NC, arranged to activate before switch blades open.
 - 4. Auxiliary contacts "a" and "b" arranged to activate with circuit-breaker handle.
 - 5. NC alarm contact that operates only when circuit breaker has tripped.

2.3 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: VFCs shall withstand the effects of earthquake motions determined according to ASCE/SEI 7. The designated VFCs shall be tested and certified by an NRTL as meeting the ICC-ES AC 156 test procedure requirements.
 - 1. The term "withstand" means "the unit will remain in place without separation of any parts when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

2.4 CONTROLS AND INDICATION

- A. Status Lights: Door-mounted LED indicators displaying the following conditions:
 - 1. Power on.
 - 2. Run.
 - 3. Overvoltage.
 - 4. Line fault.
 - 5. Overcurrent.
 - 6. External fault.
- B. Panel-Mounted Operator Station: Manufacturer's standard front-accessible, sealed keypad and plain-English-language digital display; allows complete programming, program copying, operating, monitoring, and diagnostic capability.
 - 1. Keypad: In addition to required programming and control keys, include keys for HAND, OFF, and AUTO modes.
 - 2. Security Access: Provide electronic security access to controls through identification and password with at least one level of access: View only; view and operate; and view, operate, and service.
 - a. Control Authority: Supports at least four conditions: Off, local manual control at VFC, local automatic control at VFC, and automatic control through a remote source.
- C. Historical Logging Information and Displays:
 - 1. Real-time clock with current time and date.
 - 2. Running log of total power versus time.
 - 3. Total run time.
 - 4. Fault log, maintaining last four faults with time and date stamp for each.
- D. Indicating Devices: Digital display and additional readout devices as required, mounted flush in VFC door and connected to display VFC parameters including, but not limited to:
 - 1. Output frequency (Hz).
 - 2. Motor speed (rpm).
 - 3. Motor status (running, stop, fault).
 - 4. Motor current (amperes).

- 5. Motor torque (percent).
- 6. Fault or alarming status (code).
- 7. PID feedback signal (percent).
- 8. DC-link voltage (V dc).
- 9. Set point frequency (Hz).
- 10. Motor output voltage (V ac).
- E. Control Signal Interfaces:
 - 1. Electric Input Signal Interface:
 - a. A minimum of two programmable analog inputs: 4- to 20-mA dc
 - b. A minimum of six multifunction programmable digital inputs.
 - 2. Remote Signal Inputs: Capability to accept any of the following speed-setting input signals from the DDC system for HVAC or other control systems:
 - a. 0- to 10-V dc.
 - b. 4- to 20-mA dc.
 - c. Potentiometer using up/down digital inputs.
 - d. Fixed frequencies using digital inputs.
 - 3. Output Signal Interface: A minimum of one programmable analog output signal(s) (4- to 20-mA dc, which can be configured for any of the following:
 - a. Output frequency (Hz).
 - b. Output current (load).
 - c. DC-link voltage (V dc).
 - d. Motor torque (percent).
 - e. Motor speed (rpm).
- F. PID Control Interface: Provides closed-loop set point, differential feedback control in response to dual feedback signals. Allows for closed-loop control of fans and pumps for pressure, flow, or temperature regulation.
 - 1. Number of Loops: One.

2.5 BYPASS SYSTEMS

- A. Bypass Operation: Manually transfers motor between power converter output and bypass circuit. Unit is capable of stable operation (starting, stopping, and running) with motor completely disconnected from power converter.
- B. Bypass Mode: Manual operation only; requires local operator selection at VFC. Transfer between power converter and bypass contactor, and retransfer shall only be allowed with the motor at zero speed.
- C. Bypass Controller: Two-contactor-style bypass allows motor operation via the power converter or the bypass controller

- 1. Bypass Contactor: Load-break, NEMA-rated contactor.
- 2. Output Isolating Contactor: Non-load-break, NEMA-rated contactor.
- 3. Isolating Switch: Non-load-break switch arranged to isolate power converter and permit safe troubleshooting and testing of the power converter, both energized and de-energized, while motor is operating in bypass mode; pad-lockable, door-mounted handle mechanism.
- D. Bypass Contactor Configuration: Full-voltage (across-the-line) or Reduced-voltage (autotransformer)type.
 - 1. NORMAL/BYPASS selector switch.
 - 2. HAND/OFF/AUTO selector switch.
 - 3. NORMAL/TEST Selector Switch: Allows testing and adjusting of VFC while the motor is running in the bypass mode.
 - 4. Contactor Coils: Pressure-encapsulated type.
 - a. Operating Voltage: Depending on contactor NEMA size and line-voltage rating, manufacturer's standard matching control power or line voltage.
 - b. Power Contacts: Totally enclosed, double break, and silver-cadmium oxide; assembled to allow inspection and replacement without disturbing line or load wiring.
 - 5. Control Circuits: 120-V ac; obtained from integral CPT, with primary and secondary fuses, with CPT of sufficient capacity to operate all integral devices and remotely located pilot, indicating, and control devices.
 - a. CPT Spare Capacity: 100 VA.
 - 6. Overload Relays: NEMA ICS 2.

2.6 OPTIONAL FEATURES

- A. Damper control circuit with end-of-travel feedback capability.
- B. Firefighter's Override (Smoke Purge) Input: On a remote contact closure from the firefighter's control station, this password-protected input:
 - 1. Overrides all other local and external inputs (analog/digital, serial communication, and all keypad commands).
 - 2. Forces VFC to operate motor, without any other run or speed command, at a field-adjustable, preset speed.
 - 3. Forces VFC to transfer to bypass mode and operate motor at full speed.
 - 4. Causes display of override mode on the VFC display.
 - 5. Reset VFC to normal operation on removal of override signal automatically.
- C. Communication Port: RS-232 port, USB 2.0 port, or equivalent connection capable of connecting a printer.

2.7 ENCLOSURES

- A. VFC Enclosures: NEMA 250, to comply with environmental conditions at installed location.
 - 1. Dry and Clean Indoor Locations: Type 1.
 - 2. Outdoor Locations: Type 3R.
 - 3. Wash-Down Areas: Type 4X, stainless steel.
 - 4. Other Wet or Damp Indoor Locations: Type 4.
 - 5. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: Type 12.
- B. Plenum Rating: UL 1995; NRTL certification label on enclosure, clearly identifying VFC as "Plenum Rated."

2.8 ACCESSORIES

- A. General Requirements for Control-Circuit and Pilot Devices: NEMA ICS 5; factory installed in VFC enclosure cover unless otherwise indicated.
 - 1. Push Buttons: Covered.
 - 2. Pilot Lights: Push to test.
 - 3. Selector Switches: Rotary type.
- B. Reversible NC/NO bypass contactor auxiliary contact(s).
- C. Control Relays: Auxiliary and adjustable solid-state time-delay relays.
- D. Phase-Failure, Phase-Reversal, and Undervoltage and Overvoltage Relays: Solid-state sensing circuit with isolated output contacts for hard-wired connections. Provide adjustable undervoltage, overvoltage, and time-delay settings.
 - 1. Current Transformers: Continuous current rating, basic impulse insulating level (BIL) rating, burden, and accuracy class suitable for connected circuitry. Comply with IEEE C57.13.
- E. Supplemental Digital Meters:
 - 1. Elapsed-time meter.
 - 2. Kilowatt meter.
 - 3. Kilowatt-hour meter.
- F. Breather and drain assemblies, to maintain interior pressure and release condensation in NEMA 250, enclosures installed outdoors or in unconditioned interior spaces subject to humidity and temperature swings.
- G. Space heaters, with NC auxiliary contacts, to mitigate condensation in NEMA 250, enclosures installed outdoors or in unconditioned interior spaces subject to humidity and temperature swings.

H. Cooling Fan and Exhaust System: For NEMA 250; UL 508 component recognized: Supply fan, with stainless-steel intake and exhaust grills and filters; 120-V ac; obtained from integral CPT.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Wall-Mounting Controllers: Install with tops at uniform height and with disconnect operating handles not higher than 79 inches (2000 mm) above finished floor, unless otherwise indicated, and by bolting units to wall or mounting on lightweight structural-steel channels bolted to wall. For controllers not on walls, provide freestanding racks complying with Section 260529 "Hangers and Supports for Electrical Systems."
- B. Roof-Mounting Controllers: Install VFC on roofs with tops at uniform height and with disconnect operating handles not higher than 79 inches (2000 mm) above finished roof surface unless otherwise indicated, and by bolting units to curbs or mounting on freestanding, lightweight, structural-steel channels bolted to curbs. Seal roof penetrations after raceways are installed.
 - 1. Curbs and roof penetrations are specified in Section 077200 "Roof Accessories."
 - 2. Structural-steel channels are specified in Section 260529 "Hangers and Supports for Electrical Systems."
- C. Seismic Bracing: Comply with requirements specified in Section 260548.16 "Seismic Controls for Electrical Systems."
- D. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.
- E. Install fuses in each fusible-switch VFC.
- F. Install fuses in control circuits if not factory installed. Comply with requirements in Section 262813 "Fuses."
- G. Install heaters in thermal-overload relays. Select heaters based on actual nameplate full-load amperes after motors are installed.
- H. Install, connect, and fuse thermal-protector monitoring relays furnished with motor-driven equipment.
- I. Comply with NECA 1.

3.2 CONTROL WIRING INSTALLATION

- A. Install wiring between VFCs and remote devices. Comply with requirements in Section 260523 "Control-Voltage Electrical Power Cables."
- B. Bundle, train, and support wiring in enclosures.

3.3 IDENTIFICATION

- A. Identify VFCs, components, and control wiring. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
 - 1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
 - 2. Label each VFC with engraved nameplate.
 - 3. Label each enclosure-mounted control and pilot device.

3.4 FIELD QUALITY CONTROL

- A. Perform tests and inspections
- B. Acceptance Testing Preparation:
 - 1. Test insulation resistance for each VFC element, bus, component, connecting supply, feeder, and control circuit.
 - 2. Test continuity of each circuit.

C. Tests and Inspections:

- 1. Inspect VFC, wiring, components, connections, and equipment installation. Test and adjust controllers, components, and equipment.
- 2. Test insulation resistance for each VFC element, component, connecting motor supply, feeder, and control circuits.
- 3. Test continuity of each circuit.
- 4. Verify that voltages at VFC locations are within 10 percent of motor nameplate rated voltages. If outside this range for any motor, notify Owner before starting the motor(s).
- 5. Test each motor for proper phase rotation.
- 6. Perform tests according to the Inspection and Test Procedures for Adjustable Speed Drives stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
- 7. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
- 8. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.
- D. VFCs will be considered defective if they do not pass tests and inspections.
- E. Prepare test and inspection reports, including a certified report that identifies the VFC and describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations made after remedial action.

3.5 ADJUSTING

A. Program microprocessors for required operational sequences, status indications, alarms, event recording, and display features. Clear events memory after final acceptance testing and prior to Substantial Completion.

- B. Set field-adjustable switches, auxiliary relays, time-delay relays, timers, and overload-relay pickup and trip ranges.
- C. Adjust the trip settings of instantaneous-only circuit breakers and thermal-magnetic circuit breakers with adjustable, instantaneous trip elements. Initially adjust to 6 times the motor nameplate full-load amperes and attempt to start motors several times, allowing for motor cooldown between starts. If tripping occurs on motor inrush, adjust settings in increments until motors start without tripping. Do not exceed 8 times the motor full-load amperes (or 11 times for NEMA Premium Efficient motors if required). Where these maximum settings do not allow starting of a motor, notify Owner before increasing settings.
- D. Set the taps on reduced-voltage autotransformer controllers.
- E. Set field-adjustable circuit-breaker trip ranges as specified in Section 260573.16 "Coordination Studies."
- F. Set field-adjustable pressure switches.

3.6 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, reprogram, and maintain VFCs.

END OF SECTION 262923

SECTION 264113 - LIGHTNING PROTECTION FOR STRUCTURES

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes lightning protection system for the following:
 - 1. Ordinary structures.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings:
 - 1. Include layouts of the lightning protection system, with details of the components to be used in the installation.
 - 2. Include raceway locations needed for the installation of conductors.
 - 3. Details of air terminals, ground rods, ground rings, conductor supports, splices, and terminations, including concealment requirements.
 - 4. Calculations required by NFPA 780 for bonding of metal bodies.

1.3 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Lightning protection system Shop Drawings, drawn to scale, coordinated with each other, using input from installers of the items involved:
- B. Qualification Data: For Installer.
- C. Product certificates.
- D. Field quality-control reports.

1.4 CLOSEOUT SUBMITTALS

- A. Maintenance data.
- B. Completion Certificate:
 - 1. UL Master Label Certificate or LPI Master Certificate.

1.5 QUALITY ASSURANCE

A. Installer Qualifications: UL-listed installer, category OWAY or LPI Master Installer.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. NFPA Lightning Protection Standard: Comply with NFPA 780 requirements for Class I or Class II buildings.
- B. UL Lightning Protection Standard: Comply with UL 96A requirements for Class I or Class II buildings.
- C. Lightning Protection Components, Devices, and Accessories: Listed and labeled by a qualified testing agency as complying with UL 96, and marked for intended location and application.

2.2 MATERIALS

- A. Air Terminals:
 - 1. Copper or Aluminum unless otherwise indicated.
- B. Class 1 Main Conductors:
 - 1. Stranded Copper: 57,400 circular mils in diameter.
 - 2. Aluminum: 98,600 circular mils in diameter.
- C. Class II Main Conductors:
 - 1. Stranded Copper: 115,000 circular mils in diameter.
 - 2. Aluminum: 192,000 circular mils in diameter.
- D. Secondary Conductors:
 - 1. Stranded Copper: 26,240 circular mils in diameter.
 - 2. Aluminum: 41,400 circular mils in diameter.
- E. Ground Loop Conductor: Stranded copper or Tinned copper.
- F. Ground Rods:
 - 1. Material: Copper-clad steel.
 - 2. Diameter: 3/4 inch (19 mm).
 - 3. Rods shall be not less than 120 inches (3050 mm) long.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install lightning protection components and systems according to UL 96A or NFPA 780.
- B. Install conductors with direct paths from air terminals to ground connections. Avoid bends less than 90 degrees and 8 inches (203 mm) in radius and narrow loops.
- C. Conceal conductors within normal view from exterior locations at grade within 200 feet (60 m) of building. Comply with requirements for concealed installations in UL 96A or concealed systems in NFPA 780.
- D. Ground Ring Electrode: The conductor shall be not less than the main-size lightning conductor.

3.2 CONNECTIONS

- A. Aboveground concealed connections, and connections in earth or concrete, shall be done by exothermic welds or by high-compression fittings listed for the purpose.
- B. Aboveground exposed connections shall be done using the following types of connectors, listed and labeled for the purpose: high compression.
- C. Bonding Straps and Jumpers: Install in locations accessible for inspection and maintenance, except where routed through short lengths of conduit.
 - 1. Bonding to Structure: Bond straps directly to basic structure, taking care not to penetrate any adjacent parts.
 - 2. Bonding to Equipment Mounted on Vibration Isolation Hangers and Supports: Install bonding so vibration is not transmitted to rigidly mounted equipment.

3.3 FIELD QUALITY CONTROL

- A. Special Inspections: Engage a qualified special inspector to perform the following special inspections:
 - 1. Perform inspections as required to obtain a UL Master Label for system.
 - 2. Perform inspections to obtain an LPI certification.
- B. Prepare test and inspection reports and certificates.

END OF SECTION 264113

SECTION 264313 - SURGE PROTECTION FOR LOW-VOLTAGE ELECTRICAL POWER CIRCUITS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes field-mounted SPDs for low-voltage (120 to 600 V) power distribution and control equipment.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
 - 2. Copy of UL Category Code VZCA certification, as a minimum, listing the tested values for VPRs, Inominal ratings, MCOVs, type designations, OCPD requirements, model numbers, system voltages, and modes of protection.

1.3 INFORMATIONAL SUBMITTALS

- A. Field quality-control reports.
- B. Sample Warranty: For manufacturer's special warranty.

1.4 CLOSEOUT SUBMITTALS

A. Maintenance data.

1.5 WARRANTY

- A. Manufacturer's Warranty: Manufacturer agrees to replace or replace SPDs that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 GENERAL SPD REQUIREMENTS

A. SPD with Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

- B. Comply with NFPA 70.
- C. Comply with UL 1449.
- D. MCOV of the SPD shall be the nominal system voltage.

2.2 SERVICE ENTRANCE AND TRANSFER SWITCH SUPPRESSOR

- A. SPDs: Comply with UL 1449, Type 1.
 - 1. SPDs with the following features and accessories:
 - a. Integral disconnect switch.
 - b. Internal thermal protection that disconnects the SPD before damaging internal suppressor components.
 - c. Indicator light display for protection status.
- B. Peak Surge Current Rating: The minimum single-pulse surge current withstand rating per phase shall not be less than 200 kA. The peak surge current rating shall be the arithmetic sum of the ratings of the individual MOVs in a given mode.
- C. Protection modes and UL 1449 VPR for grounded wye circuits with 480Y/277 V and 208Y/120 V, three-phase, four-wire circuits shall not exceed the following:
 - 1. Line to Neutral: 1200 V for 480Y/277 V and 700 V for 208Y/120 V.
 - 2. Line to Ground: 1200 V for 480Y/277 V and 1200 V for 208Y/120 V.
 - 3. Line to Line: 2000 V for 480Y/277 V and 1000 V for 208Y/120 V.
- D. Protection modes and UL 1449 VPR for 240/120 V, single-phase, three-wire circuits shall not exceed the following:
 - 1. Line to Neutral: 700 V.
 - 2. Line to Ground: 700 V.
 - 3. Line to Line: 1000 V.
- E. SCCR: Equal or exceed 200 kA.
- F. Inominal Rating: 20 kA.

2.3 PANEL SUPPRESSORS

- A. SPDs: Comply with UL 1449, Type 1.
 - 1. Include LED indicator lights for power and protection status.
 - 2. Internal thermal protection that disconnects the SPD before damaging internal suppressor components.
- B. Peak Surge Current Rating: The minimum single-pulse surge current withstand rating per phase shall not be less than 100 kA. The peak surge current rating shall be the arithmetic sum of the ratings of the individual MOVs in a given mode.

- C. Protection modes and UL 1449 VPR for grounded wye circuits with 480Y/277 V and 208Y/120 V, three-phase, four-wire circuits shall not exceed the following:
 - 1. Line to Neutral: 1200 V for 480Y/277 V and 700 V for 208Y/120 V.
 - 2. Line to Ground: 1200 V for 480Y/277 V and 700 V for 208Y/120 V.
 - 3. Neutral to Ground: 1200 V for 480Y/277 V and 700 V for 208Y/120 V.
 - 4. Line to Line: 2000 V for 480Y/277 Vand 1200 V for 208Y/120 V
- D. Protection modes and UL 1449 VPR for 240/120-V, single-phase, three-wire circuits shall not exceed the following:
 - 1. Line to Neutral: 700 V.
 - 2. Line to Ground: 700 V.
 - 3. Neutral to Ground: 700 V.
 - 4. Line to Line: 1200 V.
- E. SCCR: Equal or exceed 100 kA.
- F. Inominal Rating: 20 kA.

2.4 ENCLOSURES

- A. Indoor Enclosures: NEMA 250, Type 1.
- B. Outdoor Enclosures: NEMA 250, Type 4X.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with NECA 1.
- B. Install an OCPD or disconnect as required to comply with the UL listing of the SPD.
- C. Install SPDs with conductors between suppressor and points of attachment as short and straight as possible, and adjust circuit-breaker positions to achieve shortest and straightest leads. Do not splice and extend SPD leads unless specifically permitted by manufacturer. Do not exceed manufacturer's recommended lead length. Do not bond neutral and ground.
- D. Use crimped connectors and splices only. Wire nuts are unacceptable.
- E. Complete startup checks according to manufacturer's written instructions. Energize SPDs after power system has been energized, stabilized, and tested.

3.2 FIELD QUALITY CONTROL

A. Perform the following tests and inspections with the assistance of a factory-authorized service representative.

- 1. Compare equipment nameplate data for compliance with Drawings and Specifications.
- 2. Inspect anchorage, alignment, grounding, and clearances.
- 3. Verify that electrical wiring installation complies with manufacturer's written installation requirements.
- B. An SPD will be considered defective if it does not pass tests and inspections.
- C. Prepare test and inspection reports.

3.3 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to operate and maintain SPDs.

END OF SECTION 264313

SECTION 265119 - LED INTERIOR LIGHTING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes the following types of LED luminaires:
 - 1. Cylinder.
 - 2. Downlight.
 - 3. Highbay, linear.
 - 4. Highbay, nonlinear.
 - 5. Linear industrial.
 - 6. Lowbay.
 - 7. Parking garage.
 - 8. Recessed, linear.
 - 9. Strip light.
 - 10. Surface mount, linear.
 - 11. Surface mount, nonlinear.
 - 12. Suspended, linear.
 - 13. Suspended, nonlinear.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Manufacturers' Certified Data: Photometric data certified by manufacturer's laboratory with a current accreditation under the National Voluntary Laboratory Accreditation Program for Energy Efficient Lighting Products.
 - 2. Testing Agency Certified Data: For indicated luminaires, photometric data certified by a qualified independent testing agency. Photometric data for remaining luminaires shall be certified by manufacturer.
- B. Shop Drawings: For nonstandard or custom luminaires.
 - 1. Include plans, elevations, sections, and mounting and attachment details.
 - 2. Include details of luminaire assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 3. Include diagrams for power, signal, and control wiring.
- C. Samples: For each luminaire and for each color and texture with standard factory-applied finish.

1.3 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Reflected ceiling plan(s) and other details, drawn to scale and coordinated with each other, using input from installers of the items involved.
- B. Seismic Qualification Data: For luminaires, accessories, and components, from manufacturer.
- C. Product Certificates: For each type of luminaire.
- D. Product test reports.
- E. Sample warranty.

1.4 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.5 QUALITY ASSURANCE

- A. Luminaire Photometric Data Testing Laboratory Qualifications: Luminaire manufacturer's laboratory that is accredited under the NVLAP for Energy Efficient Lighting Products.
- B. Luminaire Photometric Data Testing Laboratory Qualifications: Provided by an independent agency, with the experience and capability to conduct the testing indicated, that is an NRTL as defined by OSHA in 29 CFR 1910.7, accredited under the NVLAP for Energy Efficient Lighting Products, and complying with the applicable IES testing standards.
- C. Provide luminaires from a single manufacturer for each luminaire type.
- D. Each luminaire type shall be binned within a three-step MacAdam Ellipse to ensure color consistency among luminaires.

1.6 WARRANTY

- A. Warranty: Manufacturer and Installer agree to repair or replace components of luminaires that fail in materials or workmanship within specified warranty period.
- B. Warranty Period: Five year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: Luminaires shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
- B. Seismic Performance: Luminaires and lamps shall be labeled vibration and shock resistant.

- CONSTRUCTION DOCUMENTS 100% SUBMITTAL
- 1. The term "withstand" means "the luminaire will remain in place without separation of any parts when subjected to the seismic forces specified and the luminaire will be fully operational during and after the seismic event."
- C. Ambient Temperature: 41 to 104 deg F (5 to 40 deg C).
 - 1. Relative Humidity: Zero to 95 percent.
- D. Altitude: Sea level to 1000 feet (300 m).

2.2 LUMINAIRE REQUIREMENTS

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Factory-Applied Labels: Comply with UL 1598. Include recommended lamps. Locate labels where they will be readily visible to service personnel, but not seen from normal viewing angles when lamps are in place.
 - 1. Label shall include the following lamp characteristics:
 - a. "USE ONLY" and include specific lamp type.
 - b. Lamp diameter, shape, size, wattage, and coating.
 - c. CCT and CRI.
- C. Recessed luminaires shall comply with NEMA LE 4.
- D. NRTL Compliance: Luminaires for hazardous locations shall be listed and labeled for indicated class and division of hazard by an NRTL.
- E. FM Global Compliance: Luminaires for hazardous locations shall be listed and labeled for indicated class and division of hazard by FM Global.
- F. California Title 24 compliant.

2.3 CYLINDER

- A. Lamp:
 - 1. Minimum allowable efficacy of 80 lm/W.
 - 2. CRI of minimum 80.
 - 3. Rated lamp life of 35,000 hours to L70.
 - 4. Dimmable from 100 percent to 0 percent of maximum light output.
 - 5. Internal driver.
 - 6. User-Replaceable Lamps:
 - a. Bulb shape complying with ANSI C78.79.
 - b. Lamp base complying with ANSI C81.61 or IEC 60061-1.
 - 7. Lens Thickness: At least 0.125-inch (3.175-mm) minimum unless otherwise indicated.

B. Housings:

- 1. Extruded-aluminum housing and heat sink.
- C. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Components are designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.
- D. Diffusers and Globes:
 - 1. Acrylic Diffusers: One hundred percent virgin acrylic plastic, with high resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
 - 2. Glass: Annealed crystal glass unless otherwise indicated.
 - 3. Lens Thickness: At least 0.125-inch (3.175-mm) minimum unless otherwise indicated.
- E. With integral mounting provisions.
- F. Standards:
 - 1. ENERGY STAR certified.
 - 2. RoHS compliant.
 - 3. UL Listing: Listed for damp location.

2.4 DOWNLIGHT

- A. Lamp
 - 1. Minimum allowable efficacy of 80 lm/W.
 - 2. CRI of minimum 80.
 - 3. Rated lamp life of 35,000 hours to L70.
 - 4. Dimmable from 100 percent to 0 percent of maximum light output.
 - 5. Internal driver.
 - 6. User-Replaceable Lamps:
 - a. Bulb shape complying with ANSI C78.79.
 - b. Lamp base complying with ANSI C81.61 or IEC 60061-1.
 - 7. Lens Thickness: At least 0.125-inch (3.175-mm) minimum unless otherwise indicated.
- B. Housings:
 - 1. Extruded-aluminum housing and heat sink.
 - 2. Universal mounting bracket.
 - 3. Integral junction box with conduit fittings.
- C. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.
- D. Diffusers and Globes:

- 1. Acrylic Diffusers: One hundred percent virgin acrylic plastic, with high resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
- 2. Glass: Annealed crystal glass unless otherwise indicated.
- 3. Lens Thickness: At least 0.125-inch (3.175-mm) minimum unless otherwise indicated.

E. Standards:

- 1. ENERGY STAR certified.
- 2. RoHS compliant.
- 3. UL Listing: Listed for damp location.
- 4. Recessed luminaires shall comply with NEMA LE 4.

2.5 LINEAR INDUSTRIAL

A. Lamp:

- 1. Minimum allowable efficacy of 80 lm/W.
- 2. CRI of minimum 80.
- 3. Rated lamp life of 35,000 hours to L70.
- 4. Dimmable from 100 percent to 0 percent of maximum light output.
- 5. Internal driver.
- 6. User-Replaceable Lamps:
 - a. Bulb shape complying with ANSI C78.79.
 - b. Lamp base complying with ANSI C81.61 or IEC 60061-1.
- 7. Lens Thickness: At least 0.125-inch (3.175-mm) minimum unless otherwise indicated.

B. Housings:

- 1. Extruded-aluminum housing and heat sink.
- C. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Components are designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.

D. Diffusers and Globes:

- 1. Acrylic Diffusers: One hundred percent virgin acrylic plastic, with high resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
- 2. Glass: Annealed crystal glass unless otherwise indicated.
- 3. Lens Thickness: At least 0.125-inch (3.175-mm) minimum unless otherwise indicated.
- E. With integral mounting provisions.

F. Standards:

- 1. ENERGY STAR certified.
- 2. RoHS compliant.

2.6 LOWBAY

A. Lamp:

- 1. Minimum allowable efficacy of 80 lm/W.
- 2. CRI of minimum 80.
- 3. Rated lamp life of 35,000 hours to L70.
- 4. Dimmable from 100 percent to 0 percent of maximum light output.
- 5. Internal driver.
- 6. User-Replaceable Lamps:
 - a. Bulb shape complying with ANSI C78.79.
 - b. Lamp base complying with ANSI C81.61 or IEC 60061-1.
- 7. Lens Thickness: At least 0.125-inch (3.175-mm) minimum unless otherwise indicated.

B. Housings:

- 1. Extruded-aluminum housing and heat sink.
- C. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Components are designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.

D. Diffusers and Globes:

- 1. Acrylic Diffusers: One hundred percent virgin acrylic plastic, with high resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
- 2. Glass: Annealed crystal glass unless otherwise indicated.
- 3. Lens Thickness: At least 0.125-inch (3.175-mm) minimum unless otherwise indicated.

E. Standards:

- 1. ENERGY STAR certified.
- 2. RoHS compliant.
- 3. UL Listing: Listed for damp location.

2.7 RECESSED, LINEAR

A. Lamp:

- 1. Minimum allowable efficacy of 85 lm/W.
- 2. CRI of 80.
- 3. Rated lamp life of 35,000 hours to L70.
- 4. Dimmable from 100 percent to 0 percent of maximum light output.
- 5. Internal driver.
- 6. User-Replaceable Lamps:
 - a. Bulb shape complying with ANSI C78.79.
 - b. Lamp base complying with ANSI C81.61 or IEC 60061-1.
- 7. Lens Thickness: At least 0.125-inch (3.175-mm) minimum unless otherwise indicated.

B. Housings:

- 1. Extruded-aluminum housing and heat sink.
- 2. With integral mounting provisions.
- C. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Components are designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.

D. Diffusers and Globes:

- 1. Acrylic Diffusers: One hundred percent virgin acrylic plastic, with high resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
- 2. Glass: Annealed crystal glass unless otherwise indicated.
- 3. Lens Thickness: At least 0.125-inch (3.175-mm) minimum unless otherwise indicated.

E. Standards:

- 1. ENERGY STAR certified.
- 2. RoHS compliant.
- 3. UL Listing: Listed for damp location.
- 4. NEMA LE 4.

2.8 STRIP LIGHT

A. Lamp:

- 1. Minimum allowable efficacy of 80 lm/W.
- 2. CRI of minimum 80.
- 3. Rated lamp life of 35,000 hours to L70.
- 4. Dimmable from 100 percent to 0 percent of maximum light output.
- 5. Internal driver.
- 6. User-Replaceable Lamps:
 - a. Bulb shape complying with ANSI C78.79.
 - b. Lamp base complying with ANSI C81.61 or IEC 60061-1.
- 7. Lens Thickness: At least 0.125-inch (3.175-mm) minimum unless otherwise indicated.

B. Housings:

- 1. With integral mounting provisions.
- C. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping of luminaire without use of tools. Components are designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.

D. Diffusers and Globes:

- 1. Acrylic Diffusers: One hundred percent virgin acrylic plastic, with high resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
- 2. Glass: Annealed crystal glass unless otherwise indicated.

3. Lens Thickness: At least 0.125-inch (3.175-mm) minimum unless otherwise indicated.

E. Standards:

- 1. ENERGY STAR certified.
- 2. RoHS compliant.
- 3. UL Listing: Listed for damp location.

2.9 SURFACE MOUNT, LINEAR

A. Lamp:

- 1. Minimum allowable efficacy of 80 lm/W.
- 2. CRI of minimum 80.
- 3. Rated lamp life of 35,000 hours to L70.
- 4. Dimmable from 100 percent to 0 percent of maximum light output.
- 5. Internal driver.
- 6. User-Replaceable Lamps:
 - a. Bulb shape complying with ANSI C78.79.
 - b. Lamp base complying with ANSI C81.61 or IEC 60061-1.
- 7. Lens Thickness: At least 0.125-inch (3.175-mm) minimum unless otherwise indicated.

B. Housings:

- 1. Extruded-aluminum housing and heat sink.
- 2. With integral mounting provisions.
- C. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Components are designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.

D. Diffusers and Globes:

- 1. Acrylic Diffusers: One hundred percent virgin acrylic plastic, with high resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
- 2. Glass: Annealed crystal glass unless otherwise indicated.
- 3. Lens Thickness: At least 0.125-inch (3.175-mm) minimum unless otherwise indicated.

E. Standards:

- 1. ENERGY STAR certified.
- 2. RoHS compliant.
- 3. UL Listing: Listed for damp location.

2.10 SURFACE MOUNT, NONLINEAR

A. Lamp:

1. Minimum allowable efficacy of 80 lm/W.

- 2. CRI of minimum 80.
- 3. Rated lamp life of 35,000 hours to L70.
- 4. Dimmable from 100 percent to 0 percent of maximum light output.
- 5. Internal driver.
- 6. User-Replaceable Lamps:
 - a. Bulb shape complying with ANSI C78.79.
 - b. Lamp base complying with ANSI C81.61 or IEC 60061-1.
- 7. Lens Thickness: At least 0.125-inch (3.175-mm) minimum unless otherwise indicated.

B. Housings:

- 1. With integral mounting provisions.
- C. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Components are designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.
- D. Diffusers and Globes:
 - 1. Acrylic Diffusers: One hundred percent virgin acrylic plastic, with high resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
 - 2. Glass: Annealed crystal glass unless otherwise indicated.
 - 3. Lens Thickness: At least 0.125-inch (3.175-mm) minimum unless otherwise indicated.

E. Standards:

- 1. ENERGY STAR certified.
- 2. RoHS compliant.
- 3. UL Listing: Listed for damp location.

2.11 SUSPENDED, LINEAR

A. Lamp:

- 1. Minimum allowable efficacy of 85 lm/W.
- 2. CRI of minimum 80. Rated lamp life of 35,000 hours to L70.
- 3. Dimmable from 100 percent to 0 percent of maximum light output.
- 4. Internal driver.
- 5. User-Replaceable Lamps:
 - a. Bulb shape complying with ANSI C78.79.
 - b. Lamp base complying with ANSI C81.61or IEC 60061-1.
- 6. Lens Thickness: At least 0.125-inch (3.175-mm) minimum unless otherwise indicated.
- B. Housings:
 - 1. With integral mounting provisions.
- C. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Components are

designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.

D. Diffusers and Globes:

- 1. Acrylic Diffusers: One hundred percent virgin acrylic plastic, with high resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
- 2. Glass: Annealed crystal glass unless otherwise indicated.
- 3. Lens Thickness: At least 0.125-inch (3.175-mm) minimum unless otherwise indicated.

E. Standards:

- 1. ENERGY STAR certified.
- 2. RoHS compliant.
- 3. UL Listing: Listed for damp location.

2.12 SUSPENDED, NONLINEAR

A. Lamp:

- 1. Minimum allowable efficacy of 85 lm/W.
- 2. CRI of minimum 80.
- 3. Rated lamp life of 35,000 hours to L70.
- 4. Dimmable from 100 percent to 0 percent of maximum light output.
- 5. Internal driver.
- 6. User-Replaceable Lamps:
 - a. Bulb shape complying with ANSI C78.79.
 - b. Lamp base complying with ANSI C81.61 or IEC 60061-1.
- 7. Lens Thickness: At least 0.125-inch (3.175-mm) minimum unless otherwise indicated.

B. Housings:

- 1. Universal mounting bracket.
- 2. Integral junction box with conduit fittings.
- C. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Components are designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.

D. Diffusers and Globes:

- 1. Acrylic Diffusers: One hundred percent virgin acrylic plastic, with high resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
- 2. Glass: Annealed crystal glass unless otherwise indicated.
- 3. Lens Thickness: At least 0.125-inch (3.175-mm) minimum unless otherwise indicated.

E. Standards:

- 1. ENERGY STAR certified.
- 2. RoHS compliant.
- 3. UL Listing: Listed for damp location.

2.13 MATERIALS

A. Metal Parts:

- 1. Free of burrs and sharp corners and edges.
- 2. Sheet metal components shall be steel unless otherwise indicated.
- 3. Form and support to prevent warping and sagging.

B. Steel:

- 1. ASTM A36/A36M for carbon structural steel.
- 2. ASTM A568/A568M for sheet steel.

C. Stainless Steel:

- 1. 1. Manufacturer's standard grade.
- 2. 2. Manufacturer's standard type, ASTM A240/240M.
- D. Galvanized Steel: ASTM A653/A653M.
- E. Aluminum: ASTM B209.

2.14 METAL FINISHES

A. Variations in finishes are unacceptable in the same piece. Variations in finishes of adjoining components are acceptable if they are within the range of approved Samples and if they can be and are assembled or installed to minimize contrast.

2.15 LUMINAIRE SUPPORT

- A. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for channel and angle iron supports and nonmetallic channel and angle supports.
- B. Single-Stem Hangers: 1/2-inch (13-mm) steel tubing with swivel ball fittings and ceiling canopy. Finish same as luminaire.
- C. Wires: ASTM A641/A641M, Class 3, soft temper, zinc-coated steel, 12 gage (2.68 mm).
- D. Rod Hangers: 3/16-inch (5-mm) minimum diameter, cadmium-plated, threaded steel rod.
- E. Hook Hangers: Integrated assembly matched to luminaire, line voltage, and equipment with threaded attachment, cord, and locking-type plug.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Comply with NECA 1.

- B. Install luminaires level, plumb, and square with ceilings and walls unless otherwise indicated.
- C. Install lamps in each luminaire.

D. Supports:

- 1. Sized and rated for luminaire weight.
- 2. Able to maintain luminaire position after cleaning and relamping.
- 3. Provide support for luminaire without causing deflection of ceiling or wall.
- 4. Luminaire-mounting devices shall be capable of supporting a horizontal force of 100 percent of luminaire weight and a vertical force of 400 percent of luminaire weight.
- E. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables" for wiring connections.

3.2 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.3 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Operational Test: After installing luminaires, switches, and accessories, and after electrical circuitry has been energized, test units to confirm proper operation.
 - 2. Test for Emergency Lighting: Interrupt power supply to demonstrate proper operation. Verify transfer from normal power to battery power and retransfer to normal.
- B. Luminaire will be considered defective if it does not pass operation tests and inspections.
- C. Prepare test and inspection reports.

3.4 STARTUP SERVICE

- A. Comply with requirements for startup specified in Section 260943.16 "Addressable-Luminaire Lighting Controls."
- B. Comply with requirements for startup specified in Section 260943.23 "Relay-Based Lighting Controls."

END OF SECTION 265119

SECTION 265213 - EMERGENCY AND EXIT LIGHTING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Emergency lighting units.
- 2. Exit signs.
- 3. Luminaire supports.

1.2 DEFINITIONS

- A. CCT: Correlated color temperature.
- B. CRI: Color Rendering Index.
- C. Emergency Lighting Unit: A lighting unit with integral or remote emergency battery powered supply and the means for controlling and charging the battery and unit operation.
- D. Fixture: See "Luminaire" Paragraph.
- E. Lumen: Measured output of lamp and luminaire, or both.
- F. Luminaire: Complete lighting unit, including lamp, reflector, and housing.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of emergency lighting unit, exit sign, and emergency lighting support, arranged by designation.
- B. Shop Drawings: For nonstandard or custom luminaires.
 - 1. Include plans, elevations, sections, and mounting and attachment details.
 - 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 3. Include diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Reflected ceiling plan(s) and other details, drawn to scale, coordinated with each other, using input from installers of the items involved:
- B. Product Certificates: For each type of luminaire.

- C. Seismic Qualification Data: Certificates, for luminaires, accessories, and components, from manufacturer.
- D. Sample Warranty.

1.5 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.6 WARRANTY

- A. Warranty: Manufacturer and Installer agree to repair or replace components of luminaires that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: Two year(s) from date of Substantial Completion.
- B. Special Warranty for Emergency Lighting Batteries: Manufacturer's standard form in which manufacturer of battery-powered emergency lighting unit agrees to repair or replace components of rechargeable batteries that fail in materials or workmanship within specified warranty period.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: Luminaires shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 - 1. The term "withstand" means "the luminaire will remain in place without separation of any parts when subjected to the seismic forces specified and the luminaire will be fully operational during and after the seismic event."

2.2 GENERAL REQUIREMENTS FOR EMERGENCY LIGHTING

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. NRTL Compliance: Fabricate and label emergency lighting units, exit signs, and batteries to comply with UL 924.
- C. Comply with NFPA 70 and NFPA 101.
- D. Comply with NEMA LE 4 for recessed luminaires.
- E. Comply with UL 1598 for recessed luminaires.

- F. Internal Type Emergency Power Unit: Self-contained, modular, battery-inverter unit, factory mounted within luminaire body and compatible with ballast.
 - 1. Emergency Connection: Operate one lamp(s) continuously at an output of 1100 lumens each upon loss of normal power. Connect unswitched circuit to battery-inverter unit and switched circuit to fixture ballast.
 - 2. Operation: Relay automatically turns lamp on when power-supply circuit voltage drops to 80 percent of nominal voltage or below. Lamp automatically disconnects from battery when voltage approaches deep-discharge level. When normal voltage is restored, relay disconnects lamps from battery, and battery is automatically recharged and floated on charger.
 - 3. Environmental Limitations: Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 - a. Ambient Temperature: Less than 0 deg F (minus 18 deg C) or exceeding 104 deg F (40 deg C), with an average value exceeding 95 deg F (35 deg C) over a 24-hour period.
 - b. Ambient Storage Temperature: Not less than minus 4 deg F (minus 20 deg C) and not exceeding 140 deg F (60 deg C).
 - c. Humidity: More than 95 percent (condensing).
 - d. Altitude: Exceeding 3300 feet (1000 m).
 - 4. Test Push-Button and Indicator Light: Visible and accessible without opening fixture or entering ceiling space.
 - a. Push Button: Push-to-test type, in unit housing, simulates loss of normal power and demonstrates unit operability.
 - b. Indicator Light: LED indicates normal power on. Normal glow indicates trickle charge; bright glow indicates charging at end of discharge cycle.
 - 5. Battery: Sealed, maintenance-free, nickel-cadmium type.
 - 6. Charger: Fully automatic, solid-state, constant-current type with sealed power transfer relay.
 - 7. Integral Self-Test: Factory-installed electronic device automatically initiates coderequired test of unit emergency operation at required intervals. Test failure is annunciated by an integral audible alarm and a flashing red LED.
- G. External Type: Self-contained, modular, battery-inverter unit, suitable for powering one or more lamps, remote mounted from luminaire.
 - 1. Emergency Connection: Operate one LED lamp continuously. Connect unswitched circuit to battery-inverter unit and switched circuit to luminaire.
 - 2. Operation: Relay automatically turns lamp on when power-supply circuit voltage drops to 80 percent of nominal voltage or below. Lamp automatically disconnects from battery when voltage approaches deep-discharge level. When normal voltage is restored, relay disconnects lamps from battery, and battery is automatically recharged and floated on charger.
 - 3. Nightlight Connection: Operate lamp in a remote fixture continuously.
 - 4. Battery: Sealed, maintenance-free, nickel-cadmium type.
 - 5. Charger: Fully automatic, solid-state, constant-current type.

- 6. Housing: NEMA 250, Type 1 enclosure listed for installation inside, on top of, or remote from luminaire. Remote assembly shall be located no less than half the distance recommended by the manufacturer, whichever is less.
- 7. Test Push Button: Push-to-test type, in unit housing, simulates loss of normal power and demonstrates unit operability.
- 8. LED Indicator Light: Indicates normal power on. Normal glow indicates trickle charge; bright glow indicates charging at end of discharge cycle.
- 9. Integral Self-Test: Factory-installed electronic device automatically initiates coderequired test of unit emergency operation at required intervals. Test failure is annunciated by an integral audible alarm and a flashing red LED.

2.3 EMERGENCY LIGHTING

- A. General Requirements for Emergency Lighting Units: Self-contained units.
- B. Emergency Luminaires:
 - 1. Emergency Luminaires: As indicated on Drawings, with the following additional features:
 - a. Rated for installation in damp locations, and for sealed and gasketed fixtures in wet locations.
 - b. UL 94 5VA flame rating.
- C. Emergency Lighting Unit:
 - 1. Emergency Lighting Unit: As indicated on Drawings.
 - 2. UV stable thermoplastic housing, rated for damp locations.
 - 3. Two LED lamp heads.

2.4 EXIT SIGNS

- A. Internally Lighted Signs:
 - 1. Lamps for AC Operation: Fluorescent, two for each fixture; 20,000 hours of rated lamp life.
 - 2. Lamps for AC Operation: LEDs; 50,000 hours minimum rated lamp life.
 - 3. Self-Powered Exit Signs (Battery Type): Internal emergency power unit.
- B. Self-Luminous Signs:
 - 1. Powered by tritium gas, with universal bracket for flush-ceiling, wall, or end mounting. Signs shall be guaranteed by manufacturer to maintain the minimum brightness requirements in UL 924 for 10 years.
 - 2. Use strontium oxide aluminate compound to store ambient light and release the stored energy when the light is removed. Include universal bracket for flush-ceiling, wall, or end mounting.

2.5 MATERIALS

A. Metal Parts:

- 1. Free of burrs and sharp corners and edges.
- 2. Sheet metal components shall be steel unless otherwise indicated.
- 3. Form and support to prevent warping and sagging.

B. Doors, Frames, and Other Internal Access:

- 1. Smooth operating, free of light leakage under operating conditions.
- 2. Designed to permit relamping without use of tools.
- 3. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.

C. Diffusers and Globes:

- 1. Glass: Annealed crystal glass unless otherwise indicated.
- 2. Acrylic: 100 percent virgin acrylic plastic, with high resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
- 3. Lens Thickness: At least 0.125 inch (3.175 mm) minimum unless otherwise indicated.

D. Housings:

1. Extruded aluminum housing and heat sink.

2.6 METAL FINISHES

A. Appearance of Finished Work: Noticeable variations in same piece are not acceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

2.7 LUMINAIRE SUPPORT COMPONENTS

A. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for channel and angle iron supports and nonmetallic channel and angle supports.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with NECA 1.
- B. Install luminaires level, plumb, and square with ceilings and walls unless otherwise indicated.
- C. Install lamps in each luminaire.

D. Supports:

- 1. Sized and rated for luminaire and emergency power unit weight.
- 2. Able to maintain luminaire position when testing emergency power unit.
- 3. Provide support for luminaire and emergency power unit without causing deflection of ceiling or wall.

- 4. Luminaire-mounting devices shall be capable of supporting a horizontal force of 100 percent of luminaire and emergency power unit weight and vertical force of 400 percent of fixture weight.
- E. Wall-Mounted Luminaire Support:
 - 1. Do not attach fixtures directly to gypsum board.
- F. Suspended Luminaire Support:
 - 1. Pendants and Rods: Where longer than 48 inches (1200 mm), brace to limit swinging.
 - 2. Stem-Mounted, Single-Unit Fixtures: Suspend with twin-stem hangers. Support with approved outlet box and accessories that hold stem and provide damping of fixture oscillations. Support outlet box vertically to building structure using approved devices.
 - 3. Continuous Rows of Luminaires: Use tubing or stem for wiring at one point and wire support for suspension for each unit length of fixture chassis, including one at each end.
 - 4. Do not use ceiling grid as support for pendant luminaires. Connect support wires or rods to building structure.
- G. Ceiling Grid Mounted Luminaires:
 - 1. Secure to any required outlet box.
 - 2. Secure emergency power unit using approved fasteners in a minimum of four locations, spaced near corners of emergency power unit.
- H. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
- 3.2 FIELD QUALITY CONTROL
 - A. Perform the following tests and inspections:
 - 1. Test for Emergency Lighting: Interrupt power supply to demonstrate proper operation. Verify transfer from normal power to battery power and retransfer to normal.
 - B. Luminaire will be considered defective if it does not pass operation tests and inspections.
 - C. Prepare test and inspection reports.

END OF SECTION 265213

SECTION 265613 - LIGHTING POLES AND STANDARDS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Poles and accessories for support of luminaires.
- 2. Luminaire-lowering devices.

1.2 DEFINITIONS

- A. EPA: Equivalent projected area.
- B. Luminaire: Complete luminaire.
- C. Pole: Luminaire-supporting structure, including tower used for large-area illumination.
- D. Standard: See "Pole."

1.3 ACTION SUBMITTALS

- A. Product Data: For each pole, accessory, and luminaire-supporting and -lowering device.
- B. Shop Drawings:
 - 1. Include plans, elevations, sections, and mounting and attachment details.
 - 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 3. Detail fabrication and assembly of poles and pole accessories.
 - 4. Foundation construction details, including material descriptions, dimensions, anchor bolts, support devices, and calculations, signed and sealed by a professional engineer licensed in the state of installation.
 - 5. Anchor bolt templates keyed to specific poles and certified by manufacturer.
 - 6. Method and procedure of pole installation. Include manufacturer's written installations.

1.4 INFORMATIONAL SUBMITTALS

- A. Pole and Support Component Certificates: Signed by manufacturers of poles, certifying that products are designed for indicated load requirements according to AASHTO LTS-6-M and that load imposed by luminaire and attachments has been included in design. The certification shall be based on design calculations signed and sealed by a professional engineer.
- B. Seismic Qualification Certificates: For accessories, and components, from manufacturer.

- C. Material test reports.
- D. Field quality-control reports.
- E. Sample warranty.
- F. Soil test reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and maintenance data for pole-lowering devices and pole-mounted accessories.

1.6 WARRANTY

- A. Special Warranty: Manufacturer agrees to repair or replace components of pole(s) and luminaire-lowering device(s) that fail in materials or workmanship; that corrode; or that fade, stain, perforate, erode, or chalk due to effects of weather or solar radiation within a specified warranty period. Manufacturer may exclude lightning damage, hail damage, vandalism, abuse, or unauthorized repairs from special warranty period.
 - 1. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design pole foundation and pole power system.
- B. Seismic Performance: Foundation and pole shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 - 1. The term "withstand" means "the system will remain in place without separation of any parts when subjected to the seismic forces specified and the system will be fully operational after the seismic event."
 - 2. Component Importance Factor: 1.0.
- C. Structural Characteristics: Comply with AASHTO LTS-6-M.
- D. Dead Load: Weight of luminaire and its horizontal and vertical supports, lowering devices, and supporting structure, applied according to AASHTO LTS-6-M.
- E. Live Load: Single load of 500 lbf (2200 N) distributed according to AASHTO LTS-6-M.
- F. Ice Load: Load of 3 lbf/sq. ft. (145 Pa), applied according to AASHTO LTS-6-M for applicable areas on the Ice Load Map.

- G. Wind Load: Pressure of wind on pole and luminaire, calculated and applied according to AASHTO LTS-6-M.
 - 1. Basic wind speed for calculating wind load for poles exceeding 50 feet (15 m) in height is 100 mph (45 m/s).
 - a. Wind Importance Factor: 1.0.
 - b. Minimum Design Life: 50 years.
 - c. Velocity Conversion Factor: 1.0.
 - 2. Basic wind speed for calculating wind load for poles 50 feet (15 m) high or less is 100 mph (45 m/s).
 - a. Wind Importance Factor: 1.0.
 - b. Minimum Design Life: 25 years.
 - c. Velocity Conversion Factor: 1.0.
- H. Strength Analysis: For each pole, multiply the actual EPA of luminaires and brackets by a factor of 1.1 to obtain the EPA to be used in pole selection strength analysis.
- I. Luminaire Attachment Provisions: Comply with luminaire manufacturers' mounting requirements. Use stainless-steel fasteners and mounting bolts unless otherwise indicated.

2.2 STEEL POLES

- A. Source Limitations: Obtain poles from single manufacturer or producer.
- B. Source Limitations: For poles, obtain each color, grade, finish, type, and variety of pole from single source with resources to provide products of consistent quality in appearance and physical properties.
- C. Poles: Comply with ASTM A500/A500M, Grade B carbon steel with a minimum yield of 46,000 psig (317 MPa); one-piece construction up to 40 feet (12 m) in height with access handhole in pole wall.
 - 1. Mounting Provisions: Butt flange for bolted mounting on foundation or breakaway support.
- D. Poles: Comply with ASTM A240/A240M, stainless steel with a minimum yield of 55,000 psig (379 MPa); one-piece construction up to 40 feet (12 m) in height with access handhole in pole wall.
 - 1. Mounting Provisions: Butt flange for bolted mounting on foundation or breakaway support.
- E. Steel Mast Arms: Continuously welded to pole attachment plate. Material and finish same as plate.

- F. Brackets for Luminaires: Detachable, cantilever, without underbrace.
 - 1. Adaptor fitting welded to pole, allowing the bracket to be bolted to the pole-mounted adapter, then bolted together with stainless-steel bolts.
 - 2. Cross Section: Tapered oval, with straight tubular end section to accommodate luminaire. Match pole material and finish.
- G. Pole-Top Tenons: Fabricated to support luminaire or luminaires and brackets indicated, and securely fastened to pole top.
- H. Fasteners: Stainless steel, size and type as determined by manufacturer. Corrosion-resistant items compatible with support components.
 - 1. Materials: Compatible with poles and standards as well as the substrates to which poles and standards are fastened and shall not cause galvanic action at contact points.
 - 2. Anchor Bolts, Leveling Nuts, Bolt Caps, and Washers: Hot-dip galvanized after fabrication unless otherwise indicated.
- I. Grounding and Bonding Lugs: Welded 1/2-inch (13-mm) threaded lug, complying with requirements in Section 260526 "Grounding and Bonding for Electrical Systems," listed for attaching grounding and bonding conductors of type and size indicated, and accessible through handhole.
- J. Handhole: Oval shaped, with minimum clear opening of 2-1/2 by 5 inches (65 by 130 mm), with cover secured by stainless-steel captive screws.
- K. Intermediate Handhole and Cable Support: Weatherproof, 3-by-5-inch (76-by-130-mm) handhole located at midpoint of pole, with cover for access to internal welded attachment lug for electric cable support grip.
- L. Cable Support Grip: Wire-mesh type with rotating attachment eye, sized for diameter of cable and rated for a minimum load equal to weight of supported load multiplied by a 5.0 safety factor.
- M. Prime-Coat Finish: Manufacturer's standard prime-coat finish ready for field painting.
- N. Galvanized Finish: After fabrication, hot-dip galvanize according to ASTM A123/A123M.
- O. Factory-Painted Finish: Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" recommendations for applying and designating finishes.
 - 1. Surface Preparation: Clean surfaces according to SSPC-SP 1 to remove dirt, oil, grease, and other contaminants that could impair paint bond. Grind welds and polish surfaces to a smooth, even finish. Remove mill scale and rust, if present, from uncoated steel, according to SSPC-SP 5/NACE No. 1 or SSPC-SP 8.
 - 2. Interior Surfaces of Pole: One coat of bituminous paint, or otherwise treat for equal corrosion protection.
 - 3. Exterior Surfaces: Manufacturer's standard finish consisting of one or more coats of primer and two finish coats of high gloss, high-build polyurethane enamel.
 - a. Color: As selected by Architect from manufacturer's full range.

- P. Powder-Coat Finish: Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" recommendations for applying and designating finishes.
 - 1. Surface Preparation: Clean surfaces according to SSPC-SP 1 to remove dirt, oil, grease, and other contaminants that could impair powder coat bond. Grind welds and polish surfaces to a smooth, even finish. Remove mill scale and rust, if present, from uncoated steel, according to SSPC-SP 5/NACE No. 1 or SSPC-SP 8.
 - 2. Powder Coat: Comply with AAMA 2604.
 - a. Electrostatic-applied powder coating; single application and cured to a minimum 2.5- to 3.5-mils dry film thickness. Coat interior and exterior of pole for equal corrosion protection.
 - b. Color: As selected by Architect from manufacturer's full range.

2.3 ALUMINUM POLES

- A. Poles: Seamed, extruded structural tube complying with ASTM B221, Alloy 6063-T6, with access handhole in pole wall.
- B. Poles: Seamed, extruded structural tube complying with ASTM B221, Alloy 6061-T6, with access handhole in in pole wall.
 - 1. Mounting Provisions: Butt flange for bolted mounting on foundation or breakaway support.
- C. Mast Arms: Continuously welded to pole attachment plate. Material and finish same as plate.
- D. Brackets for Luminaires: Detachable, cantilever, without underbrace.
 - 1. Adaptor fitting welded to pole, allowing the bracket to be bolted to the pole-mounted adapter, then bolted together with stainless-steel bolts.
 - 2. Cross Section: Tapered oval, with straight tubular end section to accommodate luminaire. Match pole material and finish.
- E. Pole-Top Tenons: Fabricated to support luminaire or luminaires and brackets indicated, and securely fastened to pole top.
- F. Grounding and Bonding Lugs: Bolted 1/2-inch (13-mm) threaded lug, complying with requirements in Section 260526 "Grounding and Bonding for Electrical Systems," listed for attaching grounding and bonding conductors of type and size listed in that Section, and accessible through handhole.
- G. Fasteners: Stainless steel, size and type as determined by manufacturer. Corrosion-resistant items compatible with support components.
 - 1. Materials: Compatible with poles and standards as well as to substrates to which poles and standards are fastened and shall not cause galvanic action at contact points.
 - 2. Anchor Bolts, Leveling Nuts, Bolt Caps, and Washers: Hot-dip galvanized after fabrication unless otherwise indicated.

- H. Handhole: Oval shaped, with minimum clear opening of 2-1/2 by 5 inches (65 by 130 mm), with cover secured by stainless-steel captive screws.
- I. Prime-Coat Finish: Manufacturer's standard prime-coat finish ready for field painting.
- J. Aluminum Finish: Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" recommendations for applying and designating finishes.
 - 1. Finish designations prefixed by AA comply with the system established by the Aluminum Association for designating aluminum finishes.
 - 2. Natural Satin Finish: Provide fine, directional, medium satin polish (AA-M32); buff complying with AA-M20 requirements; and seal aluminum surfaces with clear, hard-coat wax.
 - 3. Class I, Clear-Anodic Finish: AA-M32C22A41 (Mechanical Finish: Medium satin; Chemical Finish: Etched, medium matte; Anodic Coating: Architectural Class I clear coating of 0.018 mm or thicker), complying with AAMA 611.
 - 4. Class I, Color-Anodic Finish: AA-M32C22A42/A44 (Mechanical Finish: Medium; Chemical Finish: Etched, medium matte; Anodic Coating: Architectural Class I integrally colored or electrolytically deposited color coating 0.018 mm or thicker), complying with AAMA 611.
- K. Factory-Painted Finish: Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" recommendations for applying and designating finishes.
 - 1. Surface Preparation: Clean surfaces to comply with SSPC-SP 1 to remove dirt, oil, grease, and other contaminants that could impair paint bond. Grind welds and polish surfaces to a smooth, even finish. Remove mill scale and rust, if present, from uncoated steel, according to SSPC-SP 5/NACE No. 1 or SSPC-SP 8.
 - 2. Interior Surfaces of Pole: One coat of bituminous paint, or otherwise treat for equal corrosion protection.
 - 3. Exterior Surfaces: Manufacturer's standard finish consisting of one or more coats of primer and two finish coats of high-gloss, high-build polyurethane enamel.
 - a. Color: As selected by Architect from manufacturer's full range.
- L. Powder-Coat Finish: Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" recommendations for applying and designating finishes.
 - 1. Surface Preparation: Clean surfaces to comply with SSPC-SP 1 to remove dirt, oil, grease, and other contaminants that could impair powder coat bond. Grind welds and polish surfaces to a smooth, even finish. Remove mill scale and rust, if present, from uncoated steel, according to SSPC-SP 5/NACE No. 1 or SSPC-SP 8.
 - 2. Powder coat shall comply with AAMA 2604.
 - a. Electrostatic applied powder coating; single application with a minimum 2.5- to 3.5-mils dry film thickness; cured according to manufacturer's instructions. Coat interior and exterior of pole for equal corrosion protection.
 - b. Color: As selected by Architect from manufacturer's full range.

2.4 POLE ACCESSORIES

- A. Base Covers: Manufacturers' standard metal units, finished same as pole, and arranged to cover pole's mounting bolts and nuts.
- B. Transformer-Type Base: Same material and color as pole. Coordinate dimensions to suit pole's base flange and to accept ballast(s) and indicated accessories. Include removable flanged access cover secured with bolts or screws.

2.5 MOUNTING HARDWARE

- A. Anchor Bolts: Manufactured to ASTM F1554, Grade 55, with a minimum yield strength of 55,000 psi (380,000 kPa).
 - 1. Galvanizing: Hot dip galvanized according to ASTM A153, Class C
 - 2. Bent rods.
 - 3. Threading: Uniform National Coarse, Class 2A.
- B. Nuts: ASTM A563, Grade A, Heavy-Hex
 - 1. Galvanizing: Hot dip galvanized according to ASTM A153, Class C
 - 2. Two nuts provided per anchor bolt, shipped with nuts pre-assembled to the anchor bolts.
- C. Washers: ASTM F436, Type 1.
 - 1. Galvanizing: Hot dip galvanized according to ASTM A153, Class C.
 - 2. One washers provided per anchor bolt.

2.6 GENERAL FINISH REQUIREMENTS

- A. Protect mechanical finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.
- B. Appearance of Finished Work: Noticeable variations in same piece are unacceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

PART 3 - EXECUTION

3.1 POLE FOUNDATION

A. Concrete Pole Foundations: Cast in place, with anchor bolts to match pole-base flange. Structural steel complying with ASTM A36/A36M and hot-dip galvanized according to ASTM A123/A123M; and with top-plate and mounting bolts to match pole-base flange and strength required to support pole, luminaire, and accessories. Concrete, reinforcement, and formwork are specified in Section 033000 "Cast-in-Place Concrete."

- B. Pre-Cast Foundations: Factory fabricated, with structural steel complying with ASTM A36/A36M and hot-dip galvanized according to ASTM A123/A123M; and with topplate and mounting bolts to match pole-base flange and strength required to support pole, luminaire, and accessories. Concrete, reinforcement, and formwork are specified in Section 033000 "Cast-in-Place Concrete."
- C. Power-Installed Screw Foundations: Factory fabricated by pole manufacturer, with structural steel complying with ASTM A36/A36M and hot-dip galvanized according to ASTM A123/A123M; and with top-plate and mounting bolts to match pole-base flange and strength required to support pole, luminaire, and accessories.
 - 1. Baseplate: Stamped with manufacturer's name, date of production, and cable entry.
- D. Direct-Buried Foundations: Install to depth indicated on Drawings, but not less than one-sixth of pole height. Add backfill in 6-inch (150-mm) to 9-inch (230-mm) layers, tamping each layer before adding the next. To ensure a plumb installation, continuously check pole orientation with plumb bob while tamping.
- E. Direct-Buried Poles with Concrete Backfill: Set poles in augered holes to depth below finished grade indicated on Drawings, but not less than one-sixth of pole height. To ensure a plumb installation, continuously check pole orientation with plumb bob while tamping.
 - 1. Make holes 6 inches (150 mm) in diameter larger than pole diameter.
 - 2. Fill augered hole around pole with air-entrained concrete having a minimum compressive strength of 3000 psi (20 MPa) at 28 days and finish in a dome above finished grade.
 - 3. Use a short piece of 1/2-inch (13-mm) diameter pipe to make a drain hole through grout. Arrange to drain condensation from interior of pole.
 - 4. Cure concrete a minimum of 72 hours before performing work on pole.
- F. Anchor Bolts: Install plumb using manufacturer-supplied steel template, uniformly spaced.

3.2 POLE INSTALLATION

- A. Concrete Pole Foundations: Set anchor bolts according to anchor-bolt templates furnished by pole manufacturer. Concrete materials, installation, and finishing requirements are specified in Section 033000 "Cast-in-Place Concrete."
- B. Foundation-Mounted Poles: Mount pole with leveling nuts and tighten top nuts to torque level according to pole manufacturer's written instructions.
- C. Poles and Pole Foundations Set in Concrete-Paved Areas: Install poles with a minimum 6-inch-(150-mm-) wide, unpaved gap between the pole or pole foundation and the edge of the adjacent concrete slab. Fill unpaved ring with pea gravel. Insert material to a level 1 inch (25 mm) below top of concrete slab.
- D. Raise and set pole using web fabric slings (not chain or cable) at locations indicated by manufacturer.

3.3 CORROSION PREVENTION

- A. Aluminum: Do not use in contact with earth or concrete. When in direct contact with a dissimilar metal, protect aluminum using insulating fittings or treatment.
- B. Steel Conduits: Comply with requirements in Section 260533 "Raceways and Boxes for Electrical Systems." In concrete foundations, wrap conduit with 0.010-inch- (0.254-mm-) thick, pipe-wrapping plastic tape applied with a 50-percent overlap.

3.4 GROUNDING

- A. Ground Metal Poles and Support Structures: Comply with requirements in Section 260526 "Grounding and Bonding for Electrical Systems."
 - 1. Install grounding electrode for each pole unless otherwise indicated.
 - 2. Install grounding conductor pigtail in the base for connecting luminaire to grounding system.
- B. Ground Nonmetallic Poles and Support Structures: Comply with requirements in Section 260526 "Grounding and Bonding for Electrical Systems."
 - 1. Install grounding electrode for each pole.
 - 2. Install grounding conductor and conductor protector.
 - 3. Ground metallic components of pole accessories and foundation.

END OF SECTION 265613

SECTION 265619 - LED EXTERIOR LIGHTING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Exterior solid-state luminaires that are designed for and exclusively use LED lamp technology.
- 2. Luminaire supports.
- 3. Luminaire-mounted photoelectric relays.

B. Related Requirements:

- 1. Section 260923 "Lighting Control Devices" for automatic control of lighting, including time switches, photoelectric relays, occupancy sensors, and multipole lighting relays and contactors.
- 2. Section 260926 "Lighting Control Panelboards" for panelboard-based lighting control.
- 3. Section 260943.16 "Addressable-Luminaire Lighting Controls" and Section 260943.23 "Relay-Based Lighting Controls" for manual or programmable control systems with low-voltage control wiring or data communication circuits.
- 4. Section 265613 "Lighting Poles and Standards" for poles and standards used to support exterior lighting equipment.

1.2 DEFINITIONS

- A. CCT: Correlated color temperature.
- B. CRI: Color rendering index.
- C. Fixture: See "Luminaire."
- D. IP: International Protection or Ingress Protection Rating
- E. Lumen: Measured output of lamp and luminaire, or both.
- F. Luminaire: Complete lighting unit, including lamp, reflector, and housing.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of luminaire.
- B. Shop Drawings: For nonstandard or custom luminaires.
 - 1. Include plans, elevations, sections, and mounting and attachment details.

- 2. Include details of luminaire assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
- 3. Include diagrams for power, signal, and control wiring.
- C. Sustainable Design Submittals:
- D. Delegated-Design Submittal: For luminaire supports.
 - 1. Include design calculations for luminaire supports and seismic restraints.

1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Plans, drawn to scale and coordinated.
- B. Seismic Qualification Data: For luminaires, accessories, and components, from manufacturer.
- C. Product Certificates: For each type of the following:
 - 1. Luminaire.
 - 2. Photoelectric relay.
- D. Sample warranty.

1.5 CLOSEOUT SUBMITTALS

- A. Operation and maintenance data.
 - 1. Provide a list of all lamp types used on Project. Use ANSI and manufacturers' codes.
 - 2. Provide a list of all photoelectric relay types used on Project; use manufacturers' codes.

1.6 FIELD CONDITIONS

A. Mark locations of exterior luminaires for approval by Architect prior to the start of luminaire installation.

1.7 WARRANTY

- A. Warranty: Manufacturer and Installer agree to repair or replace components of luminaires that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: 2 year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: Luminaires shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
- B. Seismic Performance: Luminaires and lamps shall be labeled vibration and shock resistant.
 - 1. The term "withstand" means "the luminaire will remain in place without separation of any parts when subjected to the seismic forces specified and the luminaire will be fully operational during and after the seismic event."

2.2 LUMINAIRE REQUIREMENTS

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. NRTL Compliance: Luminaires shall be listed and labeled for indicated class and division of hazard by an NRTL.
- C. FM Global Compliance: Luminaires for hazardous locations shall be listed and labeled for indicated class and division of hazard by FM Global.
- D. UL Compliance: Comply with UL 1598 and listed for wet location.
- E. Lamp base complying with ANSI C81.61 or IEC 60061-1.
- F. CRI of 80. L70 lamp life of 35,000 hours.
- G. Lamps dimmable from 100 percent to 0 percent of maximum light output.
- H. In-line Fusing: On the primary for each luminaire
- I. Lamp Rating: Lamp marked for outdoor use and in enclosed locations.
- J. Source Limitations: Obtain luminaires from single source from a single manufacturer.
- K. Source Limitations: For luminaires, obtain each color, grade, finish, type, and variety of luminaire from single source with resources to provide products of consistent quality in appearance and physical properties.

2.3 MATERIALS

- A. Metal Parts: Free of burrs and sharp corners and edges.
- B. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during

relamping and when secured in operating position. Doors shall be removable for cleaning or replacing lenses.

C. Diffusers and Globes:

- 1. Acrylic Diffusers: 100 percent virgin acrylic plastic, with high resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
- 2. Glass: Annealed crystal glass unless otherwise indicated.
- 3. Lens Thickness: At least 0.125 inch (3.175 mm) minimum unless otherwise indicated.
- D. Lens and Refractor Gaskets: Use heat- and aging-resistant resilient gaskets to seal and cushion lenses and refractors in luminaire doors.
- E. Reflecting surfaces shall have minimum reflectance as follows unless otherwise indicated:
 - 1. White Surfaces: 85 percent.
 - 2. Specular Surfaces: 83 percent.
 - 3. Diffusing Specular Surfaces: 75 percent.

F. Housings:

- 1. Rigidly formed, weather- and light-tight enclosure that will not warp, sag, or deform in use.
- 2. Provide filter/breather for enclosed luminaires.

2.4 FINISHES

- A. Variations in Finishes: Noticeable variations in same piece are unacceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.
- B. Luminaire Finish: Manufacturer's standard paint applied to factory-assembled and -tested luminaire before shipping. Where indicated, match finish process and color of pole or support materials.
- C. Factory-Applied Finish for Aluminum Luminaires: Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.
 - 1. Finish designations prefixed by AA comply with the system established by the Aluminum Association for designating aluminum finishes.
 - 2. Natural Satin Finish: Provide fine, directional, medium satin polish (AA-M32); buff complying with AA-M20 requirements; and seal aluminum surfaces with clear, hard-coat wax.
 - 3. Class I, Clear-Anodic Finish: AA-M32C22A41 (Mechanical Finish: Medium satin; Chemical Finish: Etched, medium matte; Anodic Coating: Architectural Class I, clear coating 0.018 mm or thicker) complying with AAMA 611.
 - 4. Class I, Color-Anodic Finish: AA-M32C22A42/A44 (Mechanical Finish: Medium satin; Chemical Finish: Etched, medium matte; Anodic Coating: Architectural Class I,

integrally colored or electrolytically deposited color coating 0.018 mm or thicker), complying with AAMA 611.

- D. Factory-Applied Finish for Steel Luminaires: Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.
 - 1. Surface Preparation: Clean surfaces to comply with SSPC-SP 1, to remove dirt, oil, grease, and other contaminants that could impair paint bond. Grind welds and polish surfaces to a smooth, even finish. Remove mill scale and rust, if present, from uncoated steel, complying with SSPC-SP 5/NACE No. 1 or SSPC-SP 8.
 - 2. Exterior Surfaces: Manufacturer's standard finish consisting of one or more coats of primer and two finish coats of high-gloss, high-build polyurethane enamel.
 - a. Color: As selected from manufacturer's standard catalog of colors.
 - b. Color: Match Architect's sample of manufacturer's standard color.
 - c. Color: As selected by Architect from manufacturer's full range.

2.5 LUMINAIRE SUPPORT COMPONENTS

A. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for channel and angle iron supports and nonmetallic channel and angle supports.

PART 3 - EXECUTION

3.1 GENERAL INSTALLATION REQUIREMENTS

- A. Comply with NECA 1.
- B. Use fastening methods and materials selected to resist seismic forces defined for the application and approved by manufacturer.
- C. Install lamps in each luminaire.
- D. Fasten luminaire to structural support.
- E. Supports:
 - 1. Sized and rated for luminaire weight.
 - 2. Able to maintain luminaire position after cleaning and relamping.
 - 3. Support luminaires without causing deflection of finished surface.
 - 4. Luminaire-mounting devices shall be capable of supporting a horizontal force of 100 percent of luminaire weight and a vertical force of 400 percent of luminaire weight.
- F. Wall-Mounted Luminaire Support:
- G. Wiring Method: Install cables in raceways. Conceal raceways and cables.

- H. Install luminaires level, plumb, and square with finished grade unless otherwise indicated. Install luminaires at height and aiming angle as indicated on Drawings.
- I. Coordinate layout and installation of luminaires with other construction.
- J. Adjust luminaires that require field adjustment or aiming. Include adjustment of photoelectric device to prevent false operation of relay by artificial light sources, favoring a north orientation.
- K. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables" and Section 260533 "Raceways and Boxes for Electrical Systems" for wiring connections and wiring methods.

3.2 INSTALLATION OF INDIVIDUAL GROUND-MOUNTED LUMINAIRES

- A. Aim as indicated on Drawings.
- B. Install on concrete base with top 4 inches (100 mm) above finished grade or surface at luminaire location. Cast conduit into base, and finish by troweling and rubbing smooth. Concrete materials, installation, and finishing are specified in Section 033000 "Cast-in-Place Concrete."

3.3 CORROSION PREVENTION

- A. Aluminum: Do not use in contact with earth or concrete. When in direct contact with a dissimilar metal, protect aluminum by insulating fittings or treatment.
- B. Steel Conduits: Comply with Section 260533 "Raceways and Boxes for Electrical Systems." In concrete foundations, wrap conduit with 0.010-inch- (0.254-mm-) thick, pipe-wrapping plastic tape applied with a 50 percent overlap.

3.4 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.5 FIELD QUALITY CONTROL

- A. Inspect each installed luminaire for damage. Replace damaged luminaires and components.
- B. Perform the following tests and inspections.
 - 1. Operational Test: After installing luminaires, switches, and accessories, and after electrical circuitry has been energized, test units to confirm proper operation.
 - 2. Verify operation of photoelectric controls.

C. Illumination Tests:

1. Measure light intensities at night. Use photometers with calibration referenced to NIST standards. Comply with the following IES testing guide(s):

- a. IES LM-5.
- b. IES LM-50.
- c. IES LM-52.
- d. IES LM-64.
- e. IES LM-72.
- 2. Operational Test: After installing luminaires, switches, and accessories, and after electrical circuitry has been energized, test units to confirm proper operation.
- D. Luminaire will be considered defective if it does not pass tests and inspections.
- E. Prepare a written report of tests, inspections, observations, and verifications indicating and interpreting results. If adjustments are made to lighting system, retest to demonstrate compliance with standards.

3.6 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain luminaires and photocell relays.

END OF SECTION 265619

SECTION 270526 - GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Grounding conductors.
- 2. Grounding connectors.
- 3. Grounding busbars.
- 4. Grounding rods.
- 5. Grounding labeling.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.3 INFORMATIONAL SUBMITTALS

- A. As-Built Data: Plans showing as-built locations of grounding and bonding infrastructure, including the following:
 - 1. Ground rods.
 - 2. Ground and roof rings.
 - 3. BCT, TMGB, TGBs, and routing of their bonding conductors.
- B. Field quality-control reports.

1.4 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.5 QUALITY ASSURANCE

- A. Installer Qualifications: Cabling Installer must have personnel certified by BICSI on staff.
 - 1. Installation Supervision: Installation shall be under the direct supervision of ITS Technician, who shall be present at all times when Work of this Section is performed at Project site.
 - 2. Field Inspector: Currently registered by BICSI as a designer RCDD to perform the on-site inspection.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Comply with UL 467 for grounding and bonding materials and equipment.
- C. Comply with TIA-607-B.

2.2 CONDUCTORS

- A. Comply with UL 486A-486B.
- B. Insulated Conductors: Stranded copper wire, green or green with yellow stripe insulation, insulated for 600 V, and complying with UL 83.
 - 1. Ground wire for custom-length equipment ground jumpers shall be No. 6 AWG, 19-strand, UL-listed, Type THHN wire.
 - 2. Cable Tray Equipment Grounding Wire: No. 8AWG.

C. Bare Copper Conductors:

- 1. Solid Conductors: ASTM B3.
- 2. Stranded Conductors: ASTM B8.
- 3. Tinned Conductors: ASTM B33.
- 4. Bonding Cable: 28 kcmils (14.2 sq. mm), 14 strands of No. 17 AWG conductor, and 1/4 inch (6.3 mm) in diameter.
- 5. Bonding Conductor: No. 4 or No. 6 AWG, stranded conductor.
- 6. Bonding Jumper: Tinned-copper tape, braided conductors terminated with two-hole copper ferrules; 1-5/8 inches (41 mm) wide and 1/16 inch (1.6 mm) thick.

2.3 CONNECTORS

- A. Irreversible connectors listed for the purpose. Listed by an NRTL as complying with NFPA 70 for specific types, sizes, and combinations of conductors and other items connected. Comply with UL 486A-486B.
- B. Compression Wire Connectors: Crimp-and-compress connectors that bond to the conductor when the connector is compressed around the conductor. Comply with UL 467.
 - 1. Electroplated tinned copper, C and H shaped.
- C. Busbar Connectors: Cast silicon bronze, solderless compression or exothermic-type, mechanical connector; with a long barrel and two holes spaced on 5/8- or 1-inch (15.8- or 25.4-mm) centers for a two-bolt connection to the busbar.

D. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.

2.4 GROUNDING BUSBARS

- A. TMGB: Predrilled, wall-mounted, rectangular bars of hard-drawn solid copper, 1/4 by 4 inches (6.3 by 100 mm) in cross section, length as indicated on Drawings. The busbar shall be NRTL listed for use as TMGB and shall comply with TIA-607-B.
 - 1. Predrilling shall be with holes for use with lugs specified in this Section.
 - 2. Mounting Hardware: Stand-off brackets that provide a 4-inch (100-mm) clearance to access the rear of the busbar. Brackets and bolts shall be stainless steel.
 - 3. Stand-off insulators for mounting shall be Lexan or PVC. Comply with UL 891 for use in 600-V switchboards, impulse tested at 5000 V.
- B. TGB: Predrilled rectangular bars of hard-drawn solid copper, 1/4 by 2 inches (6.3 by 50 mm) in cross section, length as indicated on Drawings. The busbar shall be for wall mounting, shall be NRTL listed as complying with UL 467, and shall comply with TIA-607-B.
 - 1. Predrilling shall be with holes for use with lugs specified in this Section.
 - 2. Mounting Hardware: Stand-off brackets that provide at least a 2-inch (50-mm) clearance to access the rear of the busbar. Brackets and bolts shall be stainless steel.
 - 3. Stand-off insulators for mounting shall be Lexan or PVC. Comply with UL 891 for use in 600-V switchboards, impulse tested at 5000 V.
- C. Rack and Cabinet Grounding Busbars: Rectangular bars of hard-drawn solid copper, accepting conductors ranging from No. 14 to No. 2/0 AWG, NRTL listed as complying with UL 467, and complying with TIA-607-B. Predrilling shall be with holes for use with lugs specified in this Section.
 - 1. Cabinet-Mounted Busbar: Terminal block, with stainless-steel or copper-plated hardware for attachment to the cabinet.
 - 2. Rack-Mounted Horizontal Busbar: Designed for mounting in 19- or 23-inch (483- or 584-mm) equipment racks. Include a copper splice bar for transitioning to an adjoining rack, and stainless-steel or copper-plated hardware for attachment to the rack.
 - 3. Rack-Mounted Vertical Busbar: 72 or 36 inches (1827 or 914 mm) long, with stainless-steel or copper-plated hardware for attachment to the rack.

2.5 GROUND RODS

A. Ground Rods: Copper-clad, sectional type; 3/4 inch by 10 feet (19 mm by 3 m) in diameter.

2.6 IDENTIFICATION

A. Comply with requirements for identification products in Section 270553 "Identification for Communications Systems."

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine the ac grounding electrode system and equipment grounding for compliance with requirements for maximum ground-resistance level and other conditions affecting performance of grounding and bonding of the electrical system.
- B. Inspect the test results of the ac grounding system measured at the point of BCT connection.
- C. Prepare written report, endorsed by Installer, listing conditions detrimental to performance of the Work.
- D. Proceed with connection of the BCT only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Bonding shall include the ac utility power service entrance, the communications cable entrance, and the grounding electrode system. The bonding of these elements shall form a loop so that each element is connected to at least two others.
- B. Comply with NECA 1.
- C. Comply with TIA-607-B.

3.3 APPLICATION

- A. Conductors: Install solid conductor for No. 8 AWG and smaller and stranded conductors for No. 6 AWG and larger unless otherwise indicated.
 - 1. The bonding conductors between the TGB and structural steel of steel-frame buildings shall not be smaller than No. 6 AWG.
 - 2. The bonding conductors between the TMGB and structural steel of steel-frame buildings shall not be smaller than No. 6 AWG.
- B. Underground Grounding Conductors: Install bare tinned-copper conductor, No. 2 AWG minimum.
- C. Conductor Terminations and Connections:
 - 1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.
 - 2. Underground Connections: Welded connectors except at test wells and as otherwise indicated.
 - 3. Connections to Ground Rods at Test Wells: Bolted connectors.
 - 4. Connections to Structural Steel: Welded connectors.
- D. Conductor Support:

1. Secure grounding and bonding conductors at intervals of not less than 36 inches (900 mm).

E. Grounding and Bonding Conductors:

- 1. Install in the straightest and shortest route between the origination and termination point, and no longer than required. The bend radius shall not be smaller than eight times the diameter of the conductor. No one bend may exceed 90 degrees.
- 2. Install without splices.
- 3. Support at not more than 36-inch (900-mm) intervals.
- 4. Install grounding and bonding conductors in 3/4-inch (21-mm) PVC conduit until conduit enters a telecommunications room. The grounding and bonding conductor pathway through a plenum shall be in EMT. Conductors shall not be installed in EMT unless otherwise indicated.
 - a. If a grounding and bonding conductor is installed in ferrous metallic conduit, bond the conductor to the conduit using a grounding bushing that complies with requirements in Section 270528 "Pathways for Communications Systems," and bond both ends of the conduit to a TGB.

3.4 GROUNDING ELECTRODE SYSTEM

A. The BCT between the TMGB and the ac service equipment ground shall not be smaller than No. 1/0 AWG.

3.5 GROUNDING BUSBARS

- A. Indicate locations of grounding busbars on Drawings. Install busbars horizontally, on insulated spacers 2 inches (50 mm) minimum from wall, 12 inches (300 mm) above finished floor unless otherwise indicated.
- B. Where indicated on both sides of doorways, route bus up to top of door frame, across top of doorway, and down; connect to horizontal bus.

3.6 CONNECTIONS

- A. Bond metallic equipment in a telecommunications equipment room to the grounding busbar in that room, using equipment grounding conductors not smaller than No. 6 AWG.
- B. Stacking of conductors under a single bolt is not permitted when connecting to busbars.
- C. Assemble the wire connector to the conductor, complying with manufacturer's written instructions and as follows:
 - 1. Use crimping tool and the die specific to the connector.
 - 2. Pretwist the conductor.
 - 3. Apply an antioxidant compound to all bolted and compression connections.

- D. Primary Protector: Bond to the TMGB with insulated bonding conductor.
- E. Interconnections: Interconnect all TGBs with the TMGB with the telecommunications backbone conductor. If more than one TMGB is installed, interconnect TMGBs using the grounding equalizer conductor. The telecommunications backbone conductor and grounding equalizer conductor size shall not be less than 2 kcmils/linear foot (1 sq. mm/linear meter) of conductor length, up to a maximum size of No. 3/0 AWG unless otherwise indicated.
- F. Telecommunications Enclosures and Equipment Racks: Bond metallic components of enclosures to the telecommunications bonding and grounding system. Install top-mounted rack grounding busbar unless the enclosure and rack are manufactured with the busbar. Bond the equipment grounding busbar to the TGB No. 2 AWG bonding conductors.
- G. Structural Steel: Where the structural steel of a steel frame building is readily accessible within the room or space, bond each TGB and TMGB to the vertical steel of the building frame.
- H. Electrical Power Panelboards: Where an electrical panelboard for telecommunications equipment is located in the same room or space, bond each TGB to the ground bar of the panelboard.
- I. Shielded Cable: Bond the shield of shielded cable to the TGB in communications rooms and spaces. Comply with TIA-568-C.1 and TIA-568-C.2 when grounding shielded balanced twisted-pair cables.
- J. Rack- and Cabinet-Mounted Equipment: Bond powered equipment chassis to the cabinet or rack grounding bar. Power connection shall comply with NFPA 70; the equipment grounding conductor in the power cord of cord- and plug-connected equipment shall be considered as a supplement to bonding requirements in this Section.
- K. Access Floors: Bond all metal parts of access floors to the TGB.

3.7 IDENTIFICATION

- A. Labels shall be preprinted or computer-printed type.
 - 1. Label TMGB(s) with "fs-TMGB," where "fs" is the telecommunications space identifier for the space containing the TMGB.
 - 2. Label TGB(s) with "fs-TGB," where "fs" is the telecommunications space identifier for the space containing the TGB.
 - 3. Label the BCT and each telecommunications backbone conductor at its attachment point: "WARNING! TELECOMMUNICATIONS BONDING CONDUCTOR. DO NOT REMOVE OR DISCONNECT!"

3.8 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections:

- 1. Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer's written instructions.
- 2. Test the bonding connections of the system using an ac earth ground-resistance tester, taking two-point bonding measurements in each telecommunications equipment room containing a TMGB and a TGB and using the process recommended by BICSI TDMM. Conduct tests with the facility in operation.
 - a. Measure the resistance between the busbar and the nearest available grounding electrode. The maximum acceptable value of this bonding resistance is 100 milliohms.
- 3. Test for ground loop currents using a digital clamp-on ammeter, with a full-scale of not more than 10 A, displaying current in increments of 0.01 A at an accuracy of plus/minus 2.0 percent.
 - a. With the grounding infrastructure completed and the communications system electronics operating, measure the current in every conductor connected to the TMGB and in each TGB. Maximum acceptable ac current level is 1 A.
- C. Excessive Ground Resistance: If resistance to ground at the BCT exceeds 50hms, notify Architect promptly and include recommendations to reduce ground resistance.
- D. Grounding system will be considered defective if it does not pass tests and inspections.
- E. Prepare test and inspection reports.

END OF SECTION 270526

SECTION 270528 - PATHWAYS FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Metal conduits and fittings.
- 2. Nonmetallic conduits and fittings.
- 3. Optical-fiber-cable pathways and fittings.
- 4. Metal wireways and auxiliary gutters.
- 5. Nonmetallic wireways and auxiliary gutters.
- 6. Metallic surface pathways.
- 7. Nonmetallic surface pathways.
- 8. Hooks.
- 9. Boxes, enclosures, and cabinets.
- 10. Polymer-concrete handholes and boxes for exterior underground cabling.

1.2 ACTION SUBMITTALS

- A. Product data for each type of product.
- B. Sustainable Design Submittals:
- C. Shop Drawings: For custom enclosures and cabinets and custom underground handholes and boxes. Include plans, elevations, sections, and attachment details.

1.3 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Pathway routing plans, drawn to scale and coordinated with each other, using input from installers of items involved.
- B. Qualification Data: For professional engineer.
- C. Seismic Qualification Data: Provide seismic bracing for all pathway racks, enclosures, cabinets, equipment racks, and their mounting provisions, including those for internal components, from manufacturer.

PART 2 - PRODUCTS

2.1 METAL CONDUITS AND FITTINGS

A. Description: Metal raceway of circular cross section with manufacturer-fabricated fittings.

- B. General Requirements for Metal Conduits and Fittings:
 - 1. Listed and labeled as defined in NFPA 70, by a nationally recognized testing laboratory, and marked for intended location and application.
 - 2. Comply with TIA-569-D.
- C. GRC: Comply with ANSI C80.1 and UL 6.
- D. ARC: Comply with ANSI C80.5 and UL 6A.
- E. IMC: Comply with ANSI C80.6 and UL 1242.
- F. PVC-Coated Steel Conduit: PVC-coated GRC.
 - 1. Comply with NEMA RN 1.
 - 2. Coating Thickness: 0.040 inch (1 mm), minimum.
- G. EMT: Comply with ANSI C80.3 and UL 797.
- H. Fittings for Metal Conduit: Comply with NEMA FB 1 and UL 514B.
 - 1. Conduit Fittings for Hazardous (Classified) Locations: Comply with UL 1203 and NFPA 70.
 - 2. Fittings for EMT:
 - a. Material: Steel.
 - b. Type: compression.
 - 3. Expansion Fittings: PVC or steel to match conduit type, complying with UL-467, rated for environmental conditions where installed, and including flexible external bonding jumper.
 - 4. Coating for Fittings for PVC-Coated Conduit: Minimum thickness of 0.040 inch (1 mm), with overlapping sleeves protecting threaded joints.
- I. Joint Compound for IMC, GRC, or ARC: Approved, as defined in NFPA 70, by authorities having jurisdiction for use in conduit assemblies, and compounded for use to lubricate and protect threaded conduit joints from corrosion and to enhance their conductivity.

2.2 NONMETALLIC CONDUITS AND FITTINGS

- A. Description: Nonmetallic raceway of circular section with manufacturer-fabricated fittings.
- B. General Requirements for Nonmetallic Conduits and Fittings:
 - 1. Listed and labeled as defined in NFPA 70, by an NRTL, and marked for intended location and application.
 - 2. Comply with TIA-569-D.
- C. RNC: Type EPC-40-PVC, complying with NEMA TC 2 and UL 651 unless otherwise indicated.

- D. Rigid HDPE: Comply with UL 651A.
- E. Continuous HDPE: Comply with UL 651A.
- F. RTRC: Comply with UL 2515A and NEMA TC 14.
 - 1. Fittings: Comply with NEMA TC 3; match to conduit or tubing type and material.
- G. Solvents and Adhesives: As recommended by conduit manufacturer.

2.3 OPTICAL-FIBER-CABLE PATHWAYS AND FITTINGS

- A. Description: Comply with UL 2024; flexible-type pathway with a circular cross section, approved for plenum, riser, or general-use installation unless otherwise indicated.
 - 1. Listed and labeled as defined in NFPA 70, by an NRTL, and marked for intended location and application.
 - 2. Comply with TIA-569-D.

2.4 METAL WIREWAYS AND AUXILIARY GUTTERS

- A. Description: Sheet metal trough of rectangular cross section fabricated to required size and shape, without holes or knockouts, and with hinged or removable covers.
- B. General Requirements for Metal Wireways and Auxiliary Gutters:
 - 1. Comply with UL 870 and NEMA 250, Type 1 unless otherwise indicated, and sized according to NFPA 70.
 - 2. Metal wireways installed outdoors shall be listed and labeled as defined in NFPA 70, by an NRTL, and marked for intended location and application.
 - 3. Comply with TIA-569-D.
- C. Fittings and Accessories: Include covers, couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.

2.5 NONMETALLIC WIREWAYS AND AUXILIARY GUTTERS

- A. Description: Fiberglass polyester, extruded and fabricated to required size and shape, without holes or knockouts. Cover shall be gasketed with oil-resistant gasket material and fastened with captive screws treated for corrosion resistance. Connections shall be flanged and have stainless-steel screws and oil-resistant gaskets.
- B. Description: PVC, extruded and fabricated to required size and shape, and having snap-on cover, mechanically coupled connections, and plastic fasteners.
- C. General Requirements for Nonmetallic Wireways and Auxiliary Gutters:

- 1. Listed and labeled as defined in NFPA 70, by an NRTL, and marked for intended location and application.
- 2. Comply with TIA-569-D.
- D. Fittings and Accessories: Couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings shall match and mate with wireways as required for complete system.
- E. Solvents and Adhesives: As recommended by conduit manufacturer.

2.6 SURFACE METAL PATHWAYS

- A. Description: Galvanized steel with snap-on covers, complying with UL 5.
- B. Listed and labeled as defined in NFPA 70, by an NRTL, and marked for intended location and application.
- C. Comply with TIA-569-D.

2.7 SURFACE NONMETALLIC PATHWAYS:

- A. Description: Two- or three-piece construction, complying with UL 5A, and manufactured of rigid PVC.
- B. Finish: Texture and color selected by Architect from manufacturer's standard colors.
- C. Listed and labeled as defined in NFPA 70, by an NRTL, and marked for intended location and application.
- D. Comply with TIA-569-D.

2.8 HOOKS

- A. Description: Prefabricated sheet metal cable supports for telecommunications cable.
- B. Listed and labeled as defined in NFPA 70, by an NRTL, and marked for intended location and application.
- C. Comply with TIA-569-D.
- D. Galvanized steel.
- E. J shape.

2.9 BOXES, ENCLOSURES, AND CABINETS

A. Description: Enclosures for communications.

- B. General Requirements for Boxes, Enclosures, and Cabinets:
 - 1. Comply with TIA-569-D.
 - 2. Boxes, enclosures, and cabinets installed in wet locations shall be listed and labeled as defined in NFPA 70, by an NRTL, and marked for use in wet locations.
 - 3. Box extensions used to accommodate new building finishes shall be of same material as recessed box.
 - 4. Device Box Dimensions: 4 inches square by 2-1/8 inches deep (100 mm square by 60 mm deep.
 - 5. Gangable boxes are prohibited.
- C. Sheet Metal Outlet and Device Boxes: Comply with NEMA OS 1 and UL 514A.
- D. Cast-Metal Outlet and Device Boxes: Comply with NEMA FB 1, aluminum, Type FD, with gasketed cover.
- E. Metal Floor Boxes:
 - 1. Material: Cast metal or sheet metal.
 - 2. Type: Fully adjustable.
 - 3. Shape: Rectangular.
 - 4. Metal floor boxes shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- F. Nonmetallic Floor Boxes: Nonadjustable, round.
 - 1. Nonmetallic floor boxes shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- G. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.
- H. Cast-Metal Access, Pull, and Junction Boxes: Comply with NEMA FB 1 and UL 1773, cast aluminum with gasketed cover.
- I. Nonmetallic Outlet and Device Boxes: Comply with NEMA OS 2 and UL 514C.
- J. Hinged-Cover Enclosures: Comply with UL 50 and NEMA 250, Type 1, with continuous-hinge cover with flush latch unless otherwise indicated.
 - 1. Metal Enclosures: Steel, finished inside and out with manufacturer's standard enamel.
 - 2. Nonmetallic Enclosures:
 - a. Material: Plastic.
 - b. Finished inside with radio-frequency-resistant paint.
 - 3. Interior Panels: Steel; all sides finished with manufacturer's standard enamel.

K. Cabinets:

1. NEMA 250, Type 1 galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.

- 2. Hinged door in front cover with flush latch and concealed hinge.
- 3. Key latch to match panelboards.
- 4. Metal barriers to separate wiring of different systems and voltage.
- 5. Accessory feet where required for freestanding equipment.
- 6. Nonmetallic cabinets shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.10 POLYMER-CONCRETE HANDHOLES

- A. Description: Molded of sand and aggregate; bound together with polymer resin; and reinforced with steel, fiberglass, or a combination of the two.
- B. General Requirements for Polymer Concrete Handholes:
 - 1. Boxes and handholes for use in underground systems shall be listed and labeled as defined in NFPA 70, by an NRTL, and marked for intended location and application.
 - 2. Boxes installed in wet areas shall be listed and labeled as defined in NFPA 70, by an NRTL, and marked for intended location and application.
 - 3. Comply with TIA-569-D and SCTE 77.
- C. Configuration: Designed for flush burial with integral closed bottom unless otherwise indicated.
- D. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure and handhole location.
 - 1. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
 - 2. Cover Legend: Molded lettering, "COMMUNICATIONS".

PART 3 - EXECUTION

3.1 PATHWAY APPLICATION

- A. Minimum Pathway Size: 3/4-inch (21-mm) trade size for copper and aluminum cables, and 1 inch (25 mm) for optical-fiber cables.
- B. Pathway Fittings: Compatible with pathways and suitable for use and location.
- C. Do not install aluminum conduits, boxes, or fittings in contact with concrete or earth.
- D. Install surface pathways only where indicated on Drawings.
- E. Do not install nonmetallic conduit where ambient temperature exceeds 120 deg F (49 deg C).

3.2 INSTALLATION

A. Comply with the following standards for installation requirements except where requirements on Drawings or in this Section are stricter:

- 1. NECA 1.
- 2. NECA/BICSI 568.
- 3. TIA-569-D.
- 4. NECA 101
- 5. NECA 102.
- 6. NECA 105.
- 7. NECA 111.
- B. Comply with NFPA 70 limitations for types of pathways allowed in specific occupancies and number of floors.
- C. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping materials and installation for penetrations through fire-rated walls, ceilings, and assemblies.
- D. Comply with requirements in Section 270529 "Hangers and Supports for Communications Systems" for hangers and supports.
- E. Comply with requirements in Section 270544 "Sleeves and Sleeve Seals for Communications Pathways and Cabling" for sleeves and sleeve seals for communications.
- F. Keep pathways at least 6 inches (150 mm) away from parallel runs of flues and steam or hotwater pipes. Install horizontal pathway runs above water and steam piping.
- G. Complete pathway installation before starting conductor installation.
- H. Install no more than the equivalent of two 90-degree bends in any pathway run. Support within 12 inches (300 mm) of changes in direction. Utilize long radius ells for all optical-fiber cables.
- I. Conceal rigid conduit within finished walls, ceilings, and floors unless otherwise indicated. Install conduits parallel or perpendicular to building lines.
- J. Support conduit within 12 inches (300 mm) of enclosures to which attached.
- K. Pathways Embedded in Slabs:
 - 1. Run conduit larger than 1-inch (27-mm) trade size, parallel or at right angles to main reinforcement. Where at right angles to reinforcement, place conduit close to slab support. Secure pathways to reinforcement at maximum 10-foot (3-m) intervals.
 - 2. Arrange pathways to cross building expansion joints at right angles with expansion fittings. Comply with requirements for expansion joints specified in this article.
 - 3. Arrange pathways to keep a minimum of 1 inch (25 mm) of concrete cover in all directions.
 - 4. Do not embed threadless fittings in concrete unless specifically approved by Architect for each specific location.
 - 5. Change from nonmetallic conduit and fittings to GRC and fittings before rising above floor.
- L. Stub-ups to Above Recessed Ceilings:
 - 1. Use EMT, IMC, or RMC for pathways.

- 2. Use a conduit bushing or insulated fitting to terminate stub-ups not terminated in hubs or in an enclosure.
- M. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of pathway and fittings before making up joints. Follow compound manufacturer's written instructions.
- N. Coat field-cut threads on PVC-coated pathway with a corrosion-preventing conductive compound prior to assembly.
- O. Do not rely on locknuts to penetrate nonconductive coatings on enclosures. Remove coatings in the locknut area prior to assembling conduit to enclosure, to assure a continuous ground path.
- P. Cut conduit perpendicular to the length. For conduits of 2-inch (50-mm) trade size and larger, use roll cutter or a guide to ensure cut is straight and perpendicular to the length.
- Q. Install pull wires in empty pathways. Use polypropylene or monofilament plastic line with not less than 200-lb (90-kg) tensile strength. Leave at least 12 inches (300 mm) of slack at each end of pull wire. Secure pull wire, so it cannot fall into conduit. Cap pathways designated as spare alongside pathways in use.

R. Surface Pathways:

- 1. Install surface pathway for surface telecommunications outlet boxes only where indicated on Drawings.
- 2. Install surface pathway with a minimum 2-inch (50-mm) radius control at bend points.
- 3. Secure surface pathway with screws or other anchor-type devices at intervals not exceeding 48 inches (1200 mm) and with no less than two supports per straight pathway section. Support surface pathway according to manufacturer's written instructions. Tape and glue are not acceptable support methods.
- S. Pathways for Optical-Fiber and Communications Cable: Install pathways, metal and nonmetallic, rigid and flexible, as follows:
 - 1. 3/4-Inch (21-mm) Trade Size and Smaller: Install pathways in maximum lengths of 50 feet (15 m).
 - 2. 1-Inch (25-mm) Trade Size and Larger: Install pathways in maximum lengths of 75 feet (23 m).
 - 3. Install with a maximum of two 90-degree bends or equivalent for each length of pathway unless Drawings show stricter requirements. Separate lengths with pull or junction boxes or terminations at distribution frames or cabinets where necessary to comply with these requirements.
- T. Install pathway-sealing fittings at accessible locations according to NFPA 70 and fill them with listed sealing compound. For concealed pathways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install pathway-sealing fittings according to NFPA 70.
- U. Install devices to seal pathway interiors at accessible locations. Locate seals, so no fittings or boxes are between the seal and the following changes of environments. Seal the interior of all pathways at the following points:

- 1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
- 2. Where an underground service pathway enters a building or structure.
- 3. Where otherwise required by NFPA 70.
- V. Comply with manufacturer's written instructions for solvent welding PVC conduit and fittings.

W. Expansion-Joint Fittings:

- 1. Install in each run of aboveground RNC that is located where environmental temperature change may exceed 30 deg F (17 deg C), and that has straight-run length that exceeds 25 feet (7.6 m). Install in each run of aboveground RMC and EMT that is located where environmental temperature change may exceed 100 deg F (55 deg C), and that has straight-run length that exceeds 100 feet (30 m).
- 2. Install type and quantity of fittings that accommodate temperature change listed for each of the following locations:
 - a. Outdoor Locations Not Exposed to Direct Sunlight: 125 deg F (70 deg C) temperature change.
 - b. Outdoor Locations Exposed to Direct Sunlight: 155 deg F (86 deg C) temperature change.
 - c. Indoor Spaces Connected with Outdoors without Physical Separation: 125 deg F (70 deg C) temperature change.
 - d. Attics: 135 deg F (75 deg C) temperature change.
- 3. Install fitting(s) that provide expansion and contraction for at least 0.00041 inch per foot of length of straight run per deg F (0.06 mm per meter of length of straight run per deg C) of temperature change for PVC conduits. Install fitting(s) that provide expansion and contraction for at least 0.000078 inch per foot of length of straight run per deg F (0.0115 mm per meter of length of straight run per deg C) of temperature change for metal conduits.
- 4. Install expansion fittings at all locations where conduits cross building or structure expansion joints.
- 5. Install each expansion-joint fitting with position, mounting, and piston setting selected according to manufacturer's written instructions for conditions at specific location at time of installation. Install conduit supports to allow for expansion movement.

X. Hooks:

- 1. Size to allow a minimum of 25 percent future capacity without exceeding design capacity limits.
- 2. Shall be supported by dedicated support wires. Do not use ceiling grid support wire or support rods.
- 3. Hook spacing shall allow no more than 6 inches (150 mm) of slack. The lowest point of the cables shall be no less than 6 inches (150 mm) adjacent to ceilings, mechanical ductwork and fittings, luminaires, power conduits, power and telecommunications outlets, and other electrical and communications equipment.
- 4. Space hooks no more than 5 feet (1.5 m) o.c.
- 5. Provide a hook at each change in direction.

- Y. Mount boxes at heights indicated on Drawings. Install boxes with height measured to center of box unless otherwise indicated.
- Z. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block, and install box flush with surface of wall. Prepare block surface to provide a flat surface for a raintight connection between box and cover plate or supported equipment and box.
- AA. Horizontally separate boxes mounted on opposite sides of walls, so they are not in the same vertical channel.
- BB. Fasten junction and pull boxes to or support from building structure. Do not support boxes by conduits.
- CC. Set metal floor boxes level and flush with finished floor surface.
- DD. Set nonmetallic floor boxes level. Trim after installation to fit flush with finished floor surface.

3.3 INSTALLATION OF UNDERGROUND CONDUIT

A. Direct-Buried Conduit:

- 1. Excavate trench bottom to provide firm and uniform support for conduit. Install backfill.
- 2. After installing conduit, backfill and compact.
- 3. Install manufactured duct elbows for stub-ups at poles and equipment and at building entrances through floor unless otherwise indicated. Install manufactured rigid steel conduit elbows for stub-ups at poles and equipment and at building entrances through floor.
 - a. Couple steel conduits to ducts with adapters designed for this purpose, and encase coupling with 3 inches (75 mm) of concrete around conduit for a minimum of 12 inches (300 mm) on each side of the coupling.
 - b. For stub-ups at equipment mounted on outdoor concrete bases and where conduits penetrate building foundations, extend steel conduit horizontally a minimum of 60 inches (1500 mm) from edge of foundation or equipment base. Install insulated grounding bushings on terminations at equipment.
- 4. Underground Warning Tape: Comply with requirements in Section 270553 "Identification for Communications Systems."

3.4 INSTALLATION OF UNDERGROUND HANDHOLES AND BOXES

- A. Install handholes and boxes level and plumb and with orientation and depth coordinated with connecting conduits to minimize bends and deflections required for proper entrances.
- B. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from 1/2-inch (12.5-mm) sieve to No. 4 (4.75-mm) sieve and compacted to same density as adjacent undisturbed earth.

- C. Elevation: In paved areas, set so cover surface will be flush with finished grade. Set covers of other enclosures 1 inch (25 mm) above finished grade.
- D. Field cut openings for conduits according to enclosure manufacturer's written instructions. Cut wall of enclosure with a tool designed for material to be cut. Size holes for terminating fittings to be used, and seal around penetrations after fittings are installed.

3.5 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR COMMUNICATIONS PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 270544 "Sleeves and Sleeve Seals for Communications Pathways and Cabling."

3.6 FIRESTOPPING

A. Install firestopping at penetrations of fire-rated floor and wall assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

3.7 PROTECTION

- A. Protect coatings, finishes, and cabinets from damage or deterioration.
 - 1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
 - 2. Repair damage to PVC coatings or paint finishes with matching touchup coating recommended by manufacturer.

END OF SECTION 270528

SECTION 270529 - HANGERS AND SUPPORTS FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Steel slotted support systems for communication raceways.
- 2. Conduit and cable support devices.
- 3. Support for conductors in vertical conduit.
- 4. Structural steel for fabricated supports and restraints.
- 5. Mounting, anchoring, and attachment components, including powder-actuated fasteners, mechanical expansion anchors, concrete inserts, clamps, through bolts, toggle bolts, and hanger rods.
- 6. Fabricated metal equipment support assemblies.

B. Related Requirements:

1. Section 270548 "Seismic Controls for Communications Systems" for products and installation requirements necessary for compliance with seismic criteria.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: For fabrication and installation details for communications hangers and support systems.
 - 1. Trapeze hangers. Include product data for components.
 - 2. Steel slotted-channel systems.
 - 3. Aluminum slotted-channel systems.
 - 4. Nonmetallic slotted-channel systems.
 - 5. Equipment supports.
 - 6. Vibration Isolation Base Details: Detail fabrication, including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.
- C. Delegated-Design Submittal: For hangers and supports for communications systems.
 - 1. Include design calculations and details of trapeze hangers.
 - 2. Include design calculations for seismic restraints.

1.3 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plan(s) and other details, drawn to scale, shown and coordinated with each other, using input from installers of the items involved.

- B. Seismic Qualification Data: Certificates, for hangers and supports for communications equipment and systems, accessories, and components, from manufacturer.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- C. Welding certificates.

1.4 QUALITY ASSURANCE

- A. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M.
- B. Welding Qualifications: Qualify procedures and personnel according to the following:
 - 1. AWS D1.1/D1.1M.
 - 2. AWS D1.2/D1.2M.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design hanger and support system.
- B. Seismic Performance: Hangers and supports shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 - 1. The term "withstand" means "the supported equipment and systems will remain in place without separation of any parts when subjected to the seismic forces specified and the system will be fully operational after the seismic event."
 - 2. Component Importance Factor: 1.5.
- C. Surface-Burning Characteristics: Comply with ASTM E84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 - 1. Flame Rating: Class 1.
 - 2. Self-extinguishing according to ASTM D635.

2.2 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

- A. Steel Slotted Support Systems: Preformed steel channels and angles, with minimum 13/32-inch-(10-mm-) diameter holes at a maximum of 8 inches (200 mm) o.c. in at least one surface.
 - 1. Standard: Comply with MFMA-4 factory-fabricated components for field assembly.
 - 2. Material for Channel, Fittings, and Accessories: Stainless Steel, Type 304.

- 3. Channel Width: 1-5/8 inches (41 mm).
- 4. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-
- 5. Nonmetallic Coatings: Manufacturer's standard PVC, polyurethane, or polyester coating applied according to MFMA-4.
- 6. Painted Coatings: Manufacturer's standard painted coating applied according to MFMA-4.
- 7. Protect finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.
- 8. Channel Dimensions: Selected for applicable load criteria.
- B. Conduit and Cable Support Devices: Stainless-steel clamps, hangers, and associated fittings, designed for types and sizes of raceway or cable to be supported.
- C. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for nonarmored communications conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be made of malleable iron.
- D. Structural Steel for Fabricated Supports and Restraints: ASTM A36/A36M steel plates, shapes, and bars; black and galvanized.
- E. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:
 - 1. Powder-Actuated Fasteners: Threaded-steel stud for use in hardened portland cement concrete, steel, or wood, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 - 2. Mechanical-Expansion Anchors: Insert-wedge-type stainless steel for use in hardened portland cement concrete, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 - 3. Concrete Inserts: Steel or malleable-iron, slotted support system units are similar to MSS Type 18 units and comply with MFMA-4 or MSS SP-58.
 - 4. Clamps for Attachment to Steel Structural Elements: MSS SP-58 units are suitable for attached structural element.
 - 5. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM F3125/F3125M,Grade A325 (Grade A325M).
 - 6. Toggle Bolts: Stainless-steel springhead type.
 - 7. Hanger Rods: Threaded steel.

2.3 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES

- A. Description: Welded or bolted structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.
- B. Materials: Comply with requirements in Section 055000 "Metal Fabrications" for steel shapes and plates.

PART 3 - EXECUTION

3.1 APPLICATION

- A. Comply with the following standards for application and installation requirements of hangers and supports, except where requirements on Drawings or in this Section are stricter:
 - 1. NECA 1.
 - 2. NECA/BICSI 568.
 - 3. TIA-569-C.
 - 4. NECA 101.
 - 5. NECA 102.
 - 6. NECA 105.
 - 7. NECA 111.
- B. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping materials and installation for penetrations through fire-rated walls, ceilings, and assemblies.
- C. Comply with requirements for pathways specified in Section 270528 "Pathways for Communications Systems."
- D. Maximum Support Spacing and Minimum Hanger Rod Size for Raceway: Space supports for EMTs, IMCs, and RMCs as required by NFPA 70. Minimum rod size shall be 1/4 inch (6 mm) in diameter.
- E. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slotted or other support system, sized so capacity can be increased by at least 25 percent in future without exceeding specified design load limits.
 - 1. Secure raceways and cables to these supports with single-bolt conduit clamps
- F. Spring-steel clamps designed for supporting single conduits without bolts may be used for 1-1/2-inch (38-mm) and smaller raceways serving branch circuits and communication systems above suspended ceilings and for fastening raceways to trapeze supports.

3.2 SUPPORT INSTALLATION

- A. Raceway Support Methods: In addition to methods described in NECA 1, EMT, IMC and RMC may be supported by openings through structure members, according to NFPA 70.
- B. Strength of Support Assemblies: Where not indicated, select sizes of components, so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb (90 kg).
- C. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten communications items and their supports to building structural elements by the following methods unless otherwise indicated by code:

- 1. To Wood: Fasten with lag screws or through bolts.
- 2. To New Concrete: Bolt to concrete inserts.
- 3. To Masonry: Use approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
- 4. To Existing Concrete: Use expansion anchor fasteners.
- 5. Instead of expansion anchors, powder-actuated-driven threaded studs, provided with lock washers and nuts, may be used in existing standard-weight concrete 4 inches (100 mm) thick or greater. Do not use for anchorage to lightweight-aggregate concrete or for slabs less than 4 inches (100 mm) thick.
- 6. To Steel: Welded threaded studs complying with AWS D1.1/D1.1M, with lock washers and nuts.
- 7. To Light Steel: Sheet metal screws.
- 8. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate by means that comply with seismic-restraint strength and anchorage requirements.
- D. Drill holes for expansion anchors in concrete at locations and to depths that avoid the need for reinforcing bars.

3.3 INSTALLATION OF FABRICATED METAL SUPPORTS

- A. Comply with installation requirements in Section 055000 "Metal Fabrications" for site-fabricated metal supports.
- B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor communications materials and equipment.
- C. Field Welding: Comply with AWS D1.1/D1.1M.

3.4 PAINTING

- A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 - 1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils (0.05 mm).
- B. Touchup: Comply with requirements in Section 099113 "Exterior Painting" and Section 099123 "Interior Painting" for cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal.
- C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas, and apply galvanizing-repair paint to comply with ASTM A780.

END OF SECTION 270529

SECTION 270543 - UNDERGROUND PATHWAYS AND STRUCTURES FOR COMMUNICATION SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Metal conduit and fittings, including GRC and PVC-coated GRC.
- 2. Rigid nonmetallic duct.
- 3. Flexible nonmetallic duct.
- 4. Duct accessories, including rigid innerduct and fabric innerduct.
- 5. Precast concrete handholes.
- 6. Polymer concrete handholes and boxes with polymer concrete cover.
- 7. Fiberglass handholes and boxes with polymer concrete cover.
- 8. Fiberglass handholes and boxes.
- 9. High density plastic boxes.
- 10. Utility structure accessories.

1.2 DEFINITIONS

- A. Direct-Buried: Duct or a duct bank that is buried in the ground, without any additional casing materials, such as concrete.
- B. Duct: A single duct or multiple ducts. Duct may be either installed singly or as component of a duct bank.
- C. Duct Bank:
 - 1. Two or more ducts installed in parallel, with or without additional casing materials.
 - 2. Multiple duct banks.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings:
 - 1. Precast or Factory-Fabricated Underground Utility Structures:
 - a. Include plans, elevations, sections, details, attachments to other work, and accessories.
 - b. Include duct entry provisions, including location and duct size.
 - c. Include reinforcement details.
 - d. Include frame and cover design and manhole chimneys.
 - e. Include ladder and step details.

- f. Include grounding details.
- g. Include dimensioned locations of cable rack inserts, pulling-in and lifting irons, and sumps.
- h. Include joint details.
- 2. Factory-Fabricated Handholes and Boxes Other Than Precast Concrete:
 - a. Include dimensioned plans, sections, and elevations, and fabrication and installation details.
 - b. Include duct entry provisions, including location and duct size.
 - c. Include cover design.
 - d. Include grounding details.
 - e. Include dimensioned locations of cable rack inserts, and pulling-in and lifting irons.

1.4 INFORMATIONAL SUBMITTALS

- A. Duct and Duct-Bank Coordination Drawings: Show duct profiles and coordination with other utilities and underground structures.
 - 1. Drawings shall be signed and sealed by a qualified professional engineer.
- B. Product Certificates: For concrete and steel used in precast concrete manholes and handholes, as required by ASTM C858.
- C. Qualification Data: For professional engineer and testing agency responsible for testing nonconcrete handholes and boxes.
- D. Source quality-control reports.
- E. Field quality-control reports.

1.5 QUALITY ASSURANCE

A. Testing Agency Qualifications: Qualified according to ASTM E329 for testing indicated.

PART 2 - PRODUCTS

2.1 METAL CONDUITS AND FITTINGS

- A. GRC: Comply with ANSI C80.1 and UL 6.
- B. PVC-Coated Steel Conduit: PVC-coated GRC.
 - 1. Comply with NEMA RN 1.
 - 2. Coating Thickness: 0.040 inch (1 mm), minimum.
- C. General Requirements for Metal Conduits and Fittings:

- 1. Listed and labeled as defined in NFPA 70, by a nationally recognized testing laboratory, and marked for intended location and application.
- 2. Comply with TIA-569-C and TIA-758-C.

2.2 RIGID NONMETALLIC DUCT

- A. Underground Plastic Utilities Duct: **Type EPC-80-PVC and Type EPC-40-PVC** RNC, complying with NEMA TC 2 and UL 651, with matching fittings complying with NEMA TC 3 by same manufacturer as duct.
- B. General Requirements for Nonmetallic Ducts and Fittings:
 - 1. Listed and labeled as defined in NFPA 70, by a nationally recognized testing laboratory, and marked for intended location and application.
 - 2. Comply with TIA-569-C and TIA-758-C.
- C. Solvents and Adhesives: As recommended by duct manufacturer.

2.3 FLEXIBLE NONMETALLIC DUCT

- A. HDPE Duct: Type EPEC 40-HDPE complying with NEMA TC 7 and UL 651A.
- B. General Requirements for HDPE Duct
 - 1. Listed and labeled as defined in NFPA 70, by a nationally recognized testing laboratory, and marked for intended location and application.
 - 2. Comply with TIA-569-C and TIA-758-C.

2.4 DUCT ACCESSORIES

- A. Rigid Innderduct: Smooth or Corrugated HDPE duct, orange in color, designed for installation within a duct or pathway.
- B. Fabric Innerduct: Continuous, polyester, single or multi -pocket fabric innerduct, with internal pull tape and tracer wire.
- C. Duct Spacers: Factory-fabricated rigid PVC interlocking spacers, sized for type and size of duct with which used, and selected to provide minimum duct spacing indicated while supporting duct during concreting or backfilling.
- D. Underground-Line Warning Tape: Underground-line warning tape specified in Section 270553 "Identification for Communications Systems."

2.5 PRECAST CONCRETE HANDHOLES AND BOXES

A. Description: Monolithically poured, factory-fabricated, reinforced-concrete walls and bottom unless open-bottom enclosures are indicated. Frame and cover shall form top of enclosure and shall have load rating consistent with that of handhole or box.

- B. Comply with ASTM C858 for design and manufacturing processes.
- C. Frame and Cover: Weatherproof cast-iron frame, with cast-iron cover with recessed cover hook eyes and tamper-resistant, captive, cover-securing bolts.
- D. Frame and Cover: Weatherproof steel frame, with steel cover with recessed cover hook eyes and tamper-resistant, captive, cover-securing bolts.
- E. Frame and Cover: Weatherproof steel frame, with hinged steel access door assembly with tamper-resistant, captive, cover-securing bolts.
 - 1. Cover Hinges: Concealed, with hold-open ratchet assembly.
 - 2. Cover Handle: Recessed.
- F. Frame and Cover: Weatherproof aluminum frame, with hinged aluminum access door assembly with tamper-resistant, captive, cover-securing bolts.
 - 1. Cover Hinges: Concealed, with hold-open ratchet assembly.
 - 2. Cover Handle: Recessed.
- G. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
- H. Cover Legend: Molded lettering, "COMMUNICATIONS."
- I. Configuration: Units shall be designed for flush burial and have integral closed bottom unless otherwise indicated.
- J. Extensions and Slabs: Designed to mate with bottom of enclosure, and made of same material as enclosure.
 - 1. Extension shall provide increased depth of 12 inches (300 mm).
 - 2. Slab: Same dimensions as bottom of enclosure, and arranged to provide closure.
- K. Joint Sealant: Asphaltic-butyl material with adhesion, cohesion, flexibility, and durability properties necessary to withstand maximum hydrostatic pressures at the installation location with the ground-water level at grade.
- L. Knockout Panels: Precast openings in walls, arranged to match dimensions and elevations of approaching duct and duct banks, plus an additional 6 inches (150 mm) vertically and horizontally to accommodate alignment variations.
 - 1. Knockout panels shall be located no less than 6 inches (150 mm) from interior surfaces of walls, floors, or frames and covers of handholes, but close enough to corners to facilitate racking of cables on walls.
 - 2. Knockout panel opening shall have cast-in-place, welded-wire fabric reinforcement for field cutting and bending to tie in to concrete envelopes of duct banks.
 - 3. Knockout panel openings shall be framed with at least two additional No. 3 steel reinforcing bars in concrete around each opening.
 - 4. Knockout panels shall be 1-1/2 to 2 inches (38 to 50 mm) thick.

- M. Duct Entrances in Handhole Walls: Cast end-bell or duct-terminating fitting in wall for each entering duct.
 - 1. Type and size shall match fittings to duct or conduit to be terminated.
 - 2. Fittings shall align with elevations of approaching duct and be located near interior corners of handholes to facilitate racking of cable.
- N. Handholes 12 inches wide by 24 inches long (300 mm wide by 600 mm long) and larger shall have inserts for cable racks and pulling-in irons installed before concrete is poured.

2.6 POLYMER CONCRETE HANDHOLES AND BOXES WITH POLYMER CONCRETE COVER

- A. Description: Molded of sand and aggregate, bound together with a polymer resin, and reinforced with steel or fiberglass or a combination of the two.
- B. Standard: Comply with SCTE 77. Comply with tier requirements in "Underground Enclosure Application" Article.
- C. Color: Gray.
- D. Configuration: Units shall be designed for flush burial and have integral closed bottom unless otherwise indicated.
- E. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure.
- F. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
- G. Cover Legend: Molded lettering, "COMMUNICATIONS."
- H. Direct-Buried Wiring Entrance Provisions: Knockouts equipped with insulated bushings or endbell fittings, selected to suit box material, sized for wiring indicated, and arranged for secure, fixed installation in enclosure wall.
- I. Duct Entrance Provisions: Duct-terminating fittings shall mate with entering duct for secure, fixed installation in enclosure wall.
- J. Handholes 12 inches wide by 24 inches long (300 mm wide by 600 mm long) and larger shall have factory-installed inserts for cable racks and pulling-in irons.

2.7 FIBERGLASS HANDHOLES AND BOXES WITH POLYMER CONCRETE FRAME AND COVER

- A. Description: Sheet-molded, fiberglass-reinforced, polyester resin enclosure joined to polymer concrete top ring or frame.
- B. Standard: Comply with SCTE 77. Comply with tier requirements in "Underground Enclosure Application" Article.

- C. Color: Gray.
- D. Configuration: Units shall be designed for flush burial and have integral closed bottom unless otherwise indicated.
- E. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure.
- F. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
- G. Cover Legend: Molded lettering, "COMMUNICATIONS."
- H. Direct-Buried Wiring Entrance Provisions: Knockouts equipped with insulated bushings or endbell fittings, selected to suit box material, sized for wiring indicated, and arranged for secure, fixed installation in enclosure wall.
- I. Duct Entrance Provisions: Duct-terminating fittings shall mate with entering duct for secure, fixed installation in enclosure wall.
- J. Handholes 12 inches wide by 24 inches long (300 mm wide by 600 mm long) and larger shall have factory-installed inserts for cable racks and pulling-in irons.

2.8 FIBERGLASS HANDHOLES AND BOXES

- A. Description: Molded of fiberglass-reinforced polyester resin, with covers made of hot-dip galvanized-steel diamond plate.
- B. Standard: Comply with SCTE 77. Comply with tier requirements in "Underground Enclosure Application" Article.
- C. Color: Gray.
- D. Configuration: Units shall be designed for flush burial and have integral closed bottom unless otherwise indicated.
- E. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure.
- F. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
- G. Cover Legend: Molded lettering, "COMMUNICATIONS."
- H. Direct-Buried Wiring Entrance Provisions: Knockouts equipped with insulated bushings or endbell fittings, selected to suit box material, sized for wiring indicated, and arranged for secure, fixed installation in enclosure wall.
- I. Duct Entrance Provisions: Duct-terminating fittings shall mate with entering duct for secure, fixed installation in enclosure wall.
- J. Handholes 12 inches wide by 24 inches long (300 mm wide by 600 mm long) and larger shall have factory-installed inserts for cable racks and pulling-in irons.

2.9 HIGH-DENSITY PLASTIC BOXES

- A. Description: Injection molded of high-density polyethylene or copolymer-polypropylene. Cover shall be made of hot-dip galvanized-steel diamond plate.
- B. Standard: Comply with SCTE 77. Comply with tier requirements in "Underground Enclosure Application" Article.
- C. Color: Gray.
- D. Configuration: Units shall be designed for flush burial and have integral closed bottom unless otherwise indicated.
- E. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure.
- F. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
- G. Cover Legend: Molded lettering, "COMMUNICATIONS."
- H. Direct-Buried Wiring Entrance Provisions: Knockouts equipped with insulated bushings or endbell fittings, selected to suit box material, sized for wiring indicated, and arranged for secure, fixed installation in enclosure wall.
- I. Duct Entrance Provisions: Duct-terminating fittings shall mate with entering duct for secure, fixed installation in enclosure wall.
- J. Handholes 12 inches wide by 24 inches long (300 mm wide by 600 mm long) and larger shall have factory-installed inserts for cable racks and pulling-in irons.

2.10 PRECAST MANHOLES

- A. Description: One-piece units and units with interlocking mating sections, complete with accessories, hardware, and features.
- B. Standard: Comply with ASTM C858.
- C. Structural Design Loading: Comply with requirements in "Underground Enclosure Application" Article.
- D. Knockout Panels: Precast openings in walls, arranged to match dimensions and elevations of approaching duct and duct banks, plus an additional 6 inches (150 mm) vertically and horizontally to accommodate alignment variations.
 - 1. Splayed location.
 - 2. Knockout panels shall be located no less than 6 inches (150 mm) from interior surfaces of walls, floors, or roofs of manholes, but close enough to corners to facilitate racking of cables on walls.
 - 3. Knockout panel opening shall have cast-in-place, welded-wire fabric reinforcement for field cutting and bending to tie in to concrete envelopes of duct banks.

- 4. Knockout panel openings shall be framed with at least two additional No. 3 steel reinforcing bars in concrete around each opening.
- 5. Knockout panels shall be 1-1/2 to 2 inches (38 to 50 mm) thick.
- E. Duct Entrances in Manhole Walls: Cast end-bell or duct-terminating fitting in wall for each entering duct.
 - 1. Type and size shall match fittings to duct or conduit to be terminated.
 - 2. Fittings shall align with elevations of approaching duct and be located near interior corners of manholes to facilitate racking of cable.
- F. Ground Rod Sleeve: Provide a 3-inch (75-mm) PVC sleeve in manhole floors 2 inches (50 mm) from the wall adjacent to, but not underneath, the duct routed from the facility.
- G. Joint Sealant: Asphaltic-butyl material with adhesion, cohesion, flexibility, and durability properties necessary to withstand maximum hydrostatic pressures at the installation location with the ground-water level at grade.

2.11 UTILITY STRUCTURE ACCESSORIES

- A. Accessories for Utility Structures: Utility equipment and accessory items used for utility structure access and utility support, listed and labeled for intended use and application.
- B. Manhole Frames, Covers, and Chimney Components: Comply with structural design loading specified for manhole.
 - 1. Frame and Cover: Weatherproof, gray cast iron complying with ASTM A48/A48M, Class 30B, with milled cover-to-frame bearing surfaces; 26-inch (660-mm) diameter.
 - a. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
 - b. Special Covers: Recess in face of cover designed to accept finish material in paved areas.
 - 2. Cover Legend: Cast in. Selected to suit system.
 - 3. Manhole Chimney Components: Precast concrete rings, with dimensions matched to those of roof opening.
 - a. Mortar for Chimney Ring and Frame and Cover Joints: Comply with ASTM C270, Type M, except for quantities of less than 2.0 cu. ft. (60 L), where packaged mix complying with ASTM C387, Type M, may be used.
 - b. Seal joints watertight using preformed plastic or rubber conforming to ASTM C990. Install sealing material according to the sealant manufacturers' printed instructions.
- C. Manhole Sump Frame and Grate: ASTM A48/A48M, Class 30B, gray cast iron.
- D. Pulling Eyes in Concrete Walls: Eyebolt with reinforcing-bar fastening insert, 2-inch- (50-mm-) diameter eye, and 1-by-4-inch (25-by-100-mm) bolt.

- 1. Working Load Embedded in 6-Inch (150-mm), 4000-psi (27.6-MPa) Concrete: 13,000-lbf (58-kN) minimum tension.
- E. Pulling Eyes in Nonconcrete Walls: Eyebolt with reinforced fastening, 1-1/4-inch- (31-mm-) diameter eye, rated 2500-lbf (11-kN) minimum tension.
- F. Pulling-In and Lifting Irons in Concrete Floors: 7/8-inch- (22-mm-) diameter, hot-dip galvanized, bent steel rod; stress relieved after forming; and fastened to reinforcing rod. Exposed triangular opening.
 - 1. Ultimate Yield Strength: 40,000-lbf (180-kN) shear and 60,000-lbf (270-kN) tension.
- G. Bolting Inserts for Concrete Utility Structure Cable Racks and Other Attachments: Flared, threaded inserts of noncorrosive, chemical-resistant, nonconductive thermoplastic material; 1/2-inch (13-mm) ID by 2-3/4 inches (69 mm) deep, flared to a minimum of 1-1/4 inches (31 mm) at base.
 - 1. Tested Ultimate Pullout Strength: 12,000 lbf (53 kN) minimum.
- H. Ground Rod Sleeve: 3-inch (75-mm), PVC duct sleeve in manhole floors 2 inches (50 mm) from the wall adjacent to, but not underneath, the duct entering the structure.
- I. Expansion Anchors for Installation after Concrete Is Cast: Zinc-plated, carbon-steel-wedge type with stainless-steel expander clip, with 1/2-inch (13-mm) bolt, 5300-lbf (24-kN) rated pullout strength, and minimum 6800-lbf (30-kN) rated shear strength.
- J. Cable Rack Assembly: Nonmetallic. Components fabricated from nonconductive, fiberglass-reinforced polymer.
 - 1. Stanchions: Nominal 36 inches (900 mm) high by 4 inches (100 mm) wide, with minimum of nine holes for arm attachment.
 - 2. Arms: Arranged for secure, drop-in attachment in horizontal position at any location on cable stanchions, and capable of being locked in position. Arms shall be available in lengths ranging from 3 inches (75 mm) with 450-lb (204-kg) minimum capacity to 20 inches (500 mm) with 250-lb (114-kg) minimum capacity. Top of arm shall be nominally 4 inches (100 mm) wide, and arm shall have slots along full length for cable ties.
- K. Duct-Sealing Compound: Nonhardening, safe for contact with human skin, not deleterious to cable insulation, and workable at temperatures as low as 35 deg F (2 deg C). Capable of withstanding temperature of 300 deg F (150 deg C) without slump and adhering to clean surfaces of plastic duct, metallic duct, duct coatings, concrete, masonry, lead, cable sheaths, cable jackets, insulation materials, and common metals.
- L. Fixed Manhole Ladders: Arranged for attachment to roof or wall and floor of manhole. Ladder, mounting brackets, and braces shall be fabricated from hot-dip galvanized steel.
- M. Portable Manhole Ladders: UL-listed, heavy-duty fiberglass specifically designed for portable use for access to electrical manholes. Minimum length equal to distance from deepest manhole floor to grade plus 36 inches (900 mm). One required.
- N. Cover Hooks: Heavy duty, designed for lifts 60 lbf (270 N) and greater required.

2.12 SOURCE QUALITY CONTROL

- A. Test and inspect precast concrete utility structures according to ASTM C1037.
- B. Nonconcrete Handhole and Pull-Box Prototype Test: Test prototypes of manholes and boxes for compliance with SCTE 77. Strength tests shall be for specified tier ratings of products supplied.
 - 1. Tests of materials shall be performed by an independent testing agency.
 - 2. Strength tests of complete boxes and covers shall be by either an independent testing agency or manufacturer. A qualified registered professional engineer shall certify tests by manufacturer.
 - 3. Testing machine pressure gages shall have current calibration certification, complying with ISO 9000 and ISO 10012, and traceable to NIST standards.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Coordinate layout and installation of duct, duct bank, manholes, handholes, and boxes with final arrangement of other utilities, site grading, and surface features as determined in the field. Notify Architect if there is a conflict between areas of excavation and existing structures or archaeological sites to remain.
- B. Coordinate elevations of duct and duct-bank entrances into manholes, handholes, and boxes with final locations and profiles of duct and duct banks, as determined by coordination with other utilities, underground obstructions, and surface features. Revise locations and elevations as required to suit field conditions and to ensure that duct runs drain to manholes and handholes, and as approved by Architect.

3.2 UNDERGROUND DUCT APPLICATION

- A. Duct for Communications: Type EPC-40-PVC RNC, in concrete-encased duct bank unless otherwise indicated.
- B. Duct for Communications: Type EPC-40-PVC RNC, in direct-buried duct bank unless otherwise indicated.
- C. Duct for Communications: Type EPEC-40-HDPE duct in direct-bored duct bank unless otherwise indicated.
- D. Underground Duct Crossing Paved Paths, Walks and Driveways, Roadways and Railroads: Type EPC-40-PVC RNC, encased in reinforced concrete.
- E. Stub-Ups for Communications: Concrete-encased PVC-coated GRC.

3.3 UNDERGROUND ENCLOSURE APPLICATION

A. Handholes and Boxes for Communications:

- 1. Units in Roadways and Other Deliberate Traffic Paths: Precast concrete. AASHTO HB 17, H-20 structural load rating.
- 2. Units in Driveway, Parking Lot, and Off-Roadway Locations, Subject to Occasional, Nondeliberate Loading by Heavy Vehicles: Precast concrete, AASHTO HB 17, H-20 structural load rating.
- 3. Units in Sidewalk and Similar Applications with a Safety Factor for Nondeliberate Loading by Vehicles: Precast concrete, AASHTO HB 17, H-5 structural load rating.
- 4. Units Subject to Light-Duty Pedestrian Traffic Only: Fiberglass-reinforced polyester resin, structurally tested according to SCTE 77 with 3000-lbf (13 345-N) vertical loading.
- 5. Cover design load shall not exceed the design load of the handhole or box.

B. Manholes: Precast concrete.

- 1. Units Located in Roadways and Other Deliberate Traffic Paths by Heavy or Medium Vehicles: H-20 structural load rating according to AASHTO HB 17.
- 2. Units Not Located in Deliberate Traffic Paths by Heavy or Medium Vehicles: H-10 load rating according to AASHTO HB 17.

3.4 EARTHWORK

- A. Excavation and Backfill: Comply with Section 312000 "Earth Moving," but do not use heavy-duty, hydraulic-operated, compaction equipment.
- B. Restoration: Replace area immediately after backfilling is completed or after construction in immediate area is complete.
- C. Restore surface features at areas disturbed by excavation, and re-establish original grades unless otherwise indicated.
- D. Restore areas disturbed by trenching, storing of dirt, cable laying, and other work. Restore vegetation and include necessary topsoiling, fertilizing, liming, seeding, sodding, sprigging, and mulching. Comply with Section 329200 "Turf and Grasses" and Section 329300 "Plants."
- E. Cut and patch existing pavement in the path of underground duct, duct bank, and utility structures according to the "Cutting and Patching" Article in Section 017300 "Execution."

3.5 DUCT AND DUCT-BANK INSTALLATION

- A. Where indicated on Drawings, install duct, spacers, and accessories into the duct configuration shown. Duct installation requirements in this Section also apply to duct bank.
- B. Install duct and duct bank according to NEMA TCB 2 and TIA-758-C.
- C. Slope: Pitch duct and duct bank a minimum slope of 1:100 down toward manholes and handholes and away from buildings and equipment. Slope duct and duct bank from a high point in runs between two manholes, to drain in both directions.

- D. Curves and Bends: Use 5-degree angle couplings for small changes in direction. Use manufactured long sweep bends with a minimum radius of 48 inches (1200 mm), both horizontally and vertically, at other locations unless otherwise indicated.
 - 1. Duct and duct banks shall have maximum of two 90-degree bends, or the total of all bends shall be no more 180 degrees between pull points.
- E. Joints: Use solvent-cemented joints in duct and fittings, and make watertight according to manufacturer's written instructions. Stagger couplings, so those of adjacent ducts do not lie in same plane.
- F. Installation Adjacent to High-Temperature Steam Lines: Where duct or duct banks are installed parallel to underground steam lines, perform calculations showing the duct or duct bank will not be subject to environmental temperatures above 40 deg C. Where environmental temperatures are calculated to rise above 40 deg C, and anywhere the duct or duct bank crosses above an underground steam line, install insulation blankets listed for direct burial to isolate the duct bank from the steam line.
- G. End-Bell Entrances to Manholes and Concrete and Polymer Concrete Handholes: Use end bells, spaced approximately 6 inches (150 mm) o.c. for 4-inch (100-mm) duct, and vary proportionately for other duct sizes.
- H. Terminator Entrances to Manholes and Concrete and Polymer Concrete Handholes: Use manufactured, cast-in-place duct terminators, with entrances into structure spaced approximately 6 inches (150 mm) o.c. for 4-inch (100-mm) duct, and vary proportionately for other duct sizes.
- I. Building Wall Penetrations: Make a transition from underground duct to GRC at least 10 feet (3 m) outside the building wall, without reducing duct slope away from the building or forming a trap in the duct. Use fittings manufactured for RNC duct-to-GRC conduit transition. Install GRC penetrations of building walls as specified in Section 270544 "Sleeves and Sleeve Seals for Communications Pathways and Cabling."
- J. Sealing: Provide temporary closure at terminations of duct that has cables pulled. Seal spare ducts at terminations. Use sealing compound and plugs to withstand at least 15-psig (1.03-MPa) hydrostatic pressure.
- K. Innerduct: Install immediately after mandreling duct. Size and type as indicated on Drawings.
- L. Pulling Cord: Install 200-lbf- (1000-N-m) test nylon cord in empty duct and innerduct.
- M. Concrete-Encased Duct and Duct Bank:
 - 1. Excavate trench bottom to provide firm and uniform support for duct or duct bank. Prepare trench bottoms as specified in Section 312000 "Earth Moving" for pipes less than 6 inches (150 mm) in nominal diameter.
 - 2. Width: Excavate trench 12 inches (300 mm) wider than duct or duct bank on each side.
 - 3. Width: Excavate trench 3 inches (75 mm) wider than duct or duct bank on each side.
 - 4. Depth: Install top of duct and duct bank at least 24 inches (600 mm) below finished grade in areas not subject to deliberate traffic, and at least 30 inches (750 mm) below finished grade in deliberate traffic paths for vehicles unless otherwise indicated.

- 5. Support duct and duct bank on duct spacers coordinated with duct size, duct spacing, and outdoor temperature.
- 6. Minimum Space Between Duct: 3 inches (75 mm) between edge of duct and exterior envelope wall, 2 inches (50 mm) between ducts for like services, and 4 inches (100 mm) between power and communications ducts.
- 7. Spacer Installation: Place spacers close enough to prevent sagging and deforming of duct, with not less than four spacers per 20 feet (6 m) of duct. Place spacers within 24 inches (600 mm) of duct ends. Stagger spacers approximately 6 inches (150 mm) between tiers. Secure spacers to earth and duct to prevent floating during concreting. Tie entire assembly together using fabric straps; do not use tie wires or reinforcing steel that may form conductive or magnetic loops around duct or duct bank.
- 8. Elbows: Use manufactured duct elbows for stub-ups, at building entrances, and at changes of direction in duct run unless otherwise indicated. Extend concrete encasement throughout length of elbow.
- 9. Elbows: Use manufactured GRC elbows for stub-ups, at building entrances, and at changes of direction in duct run.
- 10. Reinforcement: Reinforce concrete-encased duct and duct bank where they cross disturbed earth and where indicated. Arrange reinforcing rods and ties without forming conductive or magnetic loops around ducts or duct groups.
- 11. Forms: Use trench walls to form side walls of duct and duct bank where soil is self-supporting and concrete envelope can be poured without soil inclusions; otherwise, use forms.
- 12. Concrete Cover: Install a minimum of 3 inches (75 mm) of concrete cover between edge of duct to exterior envelope wall, 2 inches (50 mm) between ducts, and 4 inches (100 mm) between power and communications duct.
- 13. Concreting Sequence: Pour each run of envelope between manholes or other terminations in one continuous operation.
- 14. Pouring Concrete: Comply with requirements in "Concrete Placement" Article in Section 033000 "Cast-in-Place Concrete." Place concrete carefully during pours to prevent voids under and between ducts and at exterior surface of envelope. Do not allow a heavy mass of concrete to fall directly onto duct. Allow concrete to flow to center of bank and rise up in middle, uniformly filling all open spaces. Do not use power-driven agitating equipment unless specifically designed for duct-bank application.

N. Direct-Buried Duct and Duct Banks:

- 1. Excavate trench bottom to provide firm and uniform support for duct and duct bank. Comply with requirements in Section 312000 "Earth Moving" for preparation of trench bottoms for duct less than 6 inches (150 mm) in nominal diameter.
- 2. Install duct with a minimum of 3 inches (75 mm) between duct for like services and 6 inches (150 mm) between power and signal duct.
- 3. Width: Excavate trench 12 inches (300 mm) wider than duct or duct bank on each side.
- 4. Width: Excavate trench 3 inches (75 mm) wider than duct or duct bank on each side.
- 5. Depth: Install top of duct or duct bank at least 36 inches (900 mm) below finished grade unless otherwise indicated.
- 6. Set elevation of bottom of duct or duct bank below frost line.
- 7. Support duct on duct spacers coordinated with duct size, duct spacing, and outdoor temperature.
- 8. Spacer Installation: Place spacers close enough to prevent sagging and deforming of duct, with not less than four spacers per 20 feet (6 m) of duct. Place spacers within 24 inches (600 mm) of duct ends. Stagger spacers approximately 6 inches (150 mm) between tiers.

- Secure spacers to earth and duct to prevent floating during concreting. Tie entire assembly together using fabric straps; do not use tie wires or reinforcing steel that may form conductive or magnetic loops around duct or duct bank.
- 9. Elbows: Install manufactured duct elbows for stub-ups, at building entrances through floor, and at changes of direction in duct unless otherwise indicated. Encase elbows for stub-ups throughout length of elbow. Extend encasement minimum of 36 inches (900 mm) beyond elbow joints.
- 10. After installing first tier of duct, backfill and compact. Start at tie-in point and work toward end of duct run, leaving duct at end of run free to move with expansion and contraction, as temperature changes during this process. Repeat procedure after placing each tier. After placing last tier, hand place backfill to 4 inches (100 mm) over duct and hand tamp. Firmly tamp backfill around duct to provide maximum supporting strength. Use hand tamper only. After placing controlled backfill over final tier, make final duct connections at end of run and complete backfilling with normal compaction. Comply with requirements in Section 312000 "Earth Moving" for installation of backfill materials.
- O. Underground-Line Warning Tape: Bury nonconducting underground-line warning tape specified in Section 270553 "Identification for Communication Systems" no less than 12 inches (300 mm) above all concrete-encased duct and duct bank and approximately 12 inches (300 mm) below grade. Align tape parallel to and within 3 inches (75 mm) of centerline of duct bank. Provide an additional warning tape for each 12-inch (300-mm) increment of duct-bank width over a nominal 18 inches (450 mm). Space additional tapes 12 inches (300 mm) apart, horizontally.

3.6 INSTALLATION OF CONCRETE MANHOLES, HANDHOLES, AND BOXES

- A. Precast Concrete Handhole and Manhole Installation:
 - 1. Comply with ASTM C891 unless otherwise indicated.
 - 2. Install units level and plumb and with orientation and depth coordinated with connecting duct, to minimize bends and deflections required for proper entrances.
 - 3. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from 1-inch (25-mm) sieve to No. 4 (4.75-mm) sieve and compacted to same density as adjacent undisturbed earth.

B. Elevations:

- 1. Manhole Roof: Install with rooftop at least 15 inches (380 mm) below finished grade.
- 2. Manhole Frame: In paved areas and trafficways, set frames flush with finished grade. Set other manhole frames 1 inch (25 mm) above finished grade.
- 3. Install handholes with bottom below frost line, below grade.
- 4. Handhole Covers: In paved areas and trafficways, set surface flush with finished grade. Set covers of other handholes 1 inch (25 mm) above finished grade.
- 5. Where indicated, cast handhole cover frame integrally with handhole structure.
- C. Drainage: Install drains in bottom of manholes where indicated. Coordinate with drainage provisions indicated.
- D. Manhole Access: Circular opening in manhole roof; sized to match cover size.

- 1. Manholes with Fixed Ladders: Offset access opening from manhole centerlines to align with ladder.
- 2. Install chimney, constructed of precast concrete collars and rings, to support cast-iron frame to connect cover with manhole roof opening. Provide moisture-tight masonry joints and waterproof grouting for frame to chimney.
- E. Waterproofing: Apply waterproofing to exterior surfaces of manholes and handholes after concrete has cured at least three days. After duct has been connected and grouted, and before backfilling, waterproof joints and connections, and touch up abrasions and scars. Waterproof exterior of manhole chimneys after mortar has cured at least three days.
- F. Dampproofing: Apply dampproofing to exterior surfaces of manholes and handholes after concrete has cured at least three days. Dampproofing materials and installation are specified in Section 071113 "Bituminous Dampproofing." After duct has been connected and grouted, and before backfilling, dampproof joints and connections, and touch up abrasions and scars. Dampproof exterior of manhole chimneys after mortar has cured at least three days.
- G. Hardware: Install removable hardware, including pulling eyes, cable stanchions, and cable arms, and insulators, as required for installation and support of cables and conductors and as indicated.
- H. Fixed Manhole Ladders: Arrange to provide for safe entry with maximum clearance from cables and other items in manholes.
- I. Field-Installed Bolting Anchors in Manholes and Concrete Handholes: Do not drill deeper than 3-7/8 inches (97 mm) for manholes and 2 inches (50 mm) for handholes, for field-installed anchor bolts installed. Use a minimum of two anchors for each cable stanchion.

3.7 INSTALLATION OF HANDHOLES AND BOXES OTHER THAN PRECAST CONCRETE

- A. Install handholes and boxes level and plumb and with orientation and depth coordinated with connecting duct, to minimize bends and deflections required for proper entrances. Use box extension if required to match depths of duct and duct bank, and seal joint between box and extension as recommended by manufacturer.
- B. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from 1/2-inch (12.5-mm) sieve to No. 4 (4.75-mm) sieve and compacted to same density as adjacent undisturbed earth.
- C. Elevation: In paved areas and trafficways, set cover flush with finished grade. Set covers of other handholes 1 inch (25 mm) above finished grade.
- D. Install handholes and boxes with bottom below frost line, below grade.
- E. Install removable hardware, including pulling eyes, cable stanchions, cable arms, and insulators, as required for installation and support of cables and conductors and as indicated. Select arm lengths to be long enough to provide spare space for future cables, but short enough to preserve adequate working clearances in enclosure.

- F. Field cut openings for duct according to enclosure manufacturer's written instructions. Cut wall of enclosure with a tool designed for material to be cut. Size holes for terminating fittings to be used, and seal around penetrations after fittings are installed.
- G. For enclosures installed in asphalt paving and subject to occasional, nondeliberate, heavy-vehicle loading, form and pour a concrete ring, encircling, and in contact with, enclosure, and with top surface screeded to top of box cover frame. Bottom of ring shall rest on compacted earth.
 - 1. Concrete: 3000 psi (20 kPa), 28-day strength, complying with Section 033000 "Cast-in-Place Concrete," with a troweled finish.
 - 2. Dimensions: 10 inches wide by 12 inches deep (250 mm wide by 300 mm deep).

3.8 GROUNDING

A. Ground underground duct, duct bank, and utility structures according to Section 270526 "Grounding and Bonding for Communications Systems."

3.9 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections and prepare test reports:
 - 1. Demonstrate capability and compliance with requirements on completion of installation of underground duct, duct bank, and utility structures.
 - 2. Pull solid aluminum or wood test mandrel through duct to prove joint integrity and adequate bend radii, and test for out-of-round duct. Provide a minimum 12-inch- (300-mm-) long mandrel equal to duct size minus 1/4 inch (6 mm). If obstructions are indicated, remove obstructions and retest.
 - 3. Test manhole and handhole grounding to ensure electrical continuity of grounding and bonding connections. Measure and report ground resistance as specified in Section 270526 "Grounding and Bonding for Communications Systems."
- B. Correct deficiencies and retest as specified above to demonstrate compliance.

3.10 CLEANING

- A. Pull leather-washer-type duct cleaner, with graduated washer sizes, through full length of duct until duct cleaner indicates that duct is clear of dirt and debris.
- B. Clean internal surfaces of manholes, including sump.
 - 1. Sweep floor, removing dirt and debris.
 - 2. Remove foreign material.

END OF SECTION 270543

SECTION 270544 - SLEEVES AND SLEEVE SEALS FOR COMMUNICATIONS PATHWAYS AND CABLING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Sleeves for pathway and cable penetration of non-fire-rated construction walls and floors.
- 2. Sleeve-seal systems.
- 3. Sleeve-seal fittings.
- 4. Grout.
- 5. Silicone sealants.

B. Related Requirements:

1. Section 078413 "Penetration Firestopping" for penetration firestopping installed in fireresistance-rated walls, horizontal assemblies, and smoke barriers, with and without penetrating items.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 SLEEVES

A. Wall Sleeves:

- 1. Steel Pipe Sleeves: ASTM A53/A53M, Type E, Grade B, Schedule 40, zinc coated, plain ends.
- 2. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.
- B. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies: Galvanized-steel sheet; 0.0239-inch (0.6-mm) minimum thickness; round tube closed with welded longitudinal joint, with tabs for screw-fastening the sleeve to the board.
- C. Sleeves for Rectangular Openings:
 - 1. Material: Galvanized-steel sheet.
 - 2. Minimum Metal Thickness:

- a. For sleeve cross-section rectangle perimeter less than 50 inches (1270 mm) and with no side larger than 16 inches (400 mm), thickness shall be 0.052 inch (1.3 mm).
- b. For sleeve cross-section rectangle perimeter 50 inches (1270 mm) or more and one or more sides larger than 16 inches (400 mm), thickness shall be 0.138 inch (3.5 mm).

2.2 SLEEVE-SEAL SYSTEMS

- A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and pathway or cable.
 - 1. Sealing Elements: EPDM rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 - 2. Pressure Plates: Stainless steel.
 - 3. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements.

2.3 SLEEVE-SEAL FITTINGS

A. Description: Manufactured plastic, sleeve-type, waterstop assembly made for embedding in concrete slab or wall. Unit shall have plastic or rubber waterstop collar with center opening to match piping OD.

2.4 GROUT

- A. Description: Nonshrink; recommended for interior and exterior sealing openings in non-fire-rated walls or floors.
- B. Standard: ASTM C1107/C1107M, Grade B, post-hardening and volume-adjusting, dry, hydraulic-cement grout.
- C. Design Mix: 5000-psi (34.5-MPa), 28-day compressive strength.
- D. Packaging: Premixed and factory packaged.

2.5 SILICONE SEALANTS

- A. Silicone Sealants: Single-component, silicone-based, neutral-curing elastomeric sealants of grade indicated below.
 - 1. Grade: Pourable (self-leveling) formulation for openings in floors and other horizontal surfaces that are not fire rated.
- B. Silicone Foams: Multicomponent, silicone-based liquid elastomers that, when mixed, expand and cure in place to produce a flexible, nonshrinking foam.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION FOR NON-FIRE-RATED ELECTRICAL PENETRATIONS

- A. Comply with NECA 1.
- B. Comply with NEMA VE 2 for cable tray and cable penetrations.
- C. Sleeves for Conduits Penetrating Above-Grade Non-Fire-Rated Concrete and Masonry-Unit Floors and Walls:
 - 1. Interior Penetrations of Non-Fire-Rated Walls and Floors:
 - a. Seal annular space between sleeve and pathway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Section 079200 "Joint Sealants."
 - b. Seal space outside of sleeves with mortar or grout. Pack sealing material solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect material while curing.
 - 2. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.
 - 3. Size pipe sleeves to provide 1/4-inch (6.4-mm) annular clear space between sleeve and pathway or cable unless sleeve seal is to be installed or unless seismic criteria require different clearance.
 - 4. Install sleeves for wall penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of walls. Cut sleeves to length for mounting flush with both surfaces of walls. Deburr after cutting.
 - 5. Install sleeves for floor penetrations. Extend sleeves installed in floors 2 inches (50 mm) above finished floor level. Install sleeves during erection of floors.
- D. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies:
 - 1. Use circular metal sleeves unless penetration arrangement requires rectangular sleeved opening.
 - 2. Seal space outside of sleeves with approved joint compound for gypsum board assemblies.
- E. Roof-Penetration Sleeves: Seal penetration of individual pathways and cables with flexible boot-type flashing units applied in coordination with roofing work.
- F. Aboveground, Exterior-Wall Penetrations: Seal penetrations using steel pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch (25-mm) annular clear space between pipe and sleeve for installing mechanical sleeve seals.
- G. Underground, Exterior-Wall and Floor Penetrations: Install cast-iron pipe sleeves. Size sleeves to allow for 1-inch (25-mm) annular clear space between pathway or cable and sleeve for installing sleeve-seal system.

3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

- A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at pathway entries into building.
- B. Install type and number of sealing elements recommended by manufacturer for pathway or cable material and size. Position pathway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pathway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.3 SLEEVE-SEAL-FITTING INSTALLATION

- A. Install sleeve-seal fittings in new walls and slabs as they are constructed.
- B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.
- C. Secure nailing flanges to concrete forms.
- D. Using grout, seal the space around outside of sleeve-seal fittings.

END OF SECTION 270544

SECTION 270548.16 - SEISMIC CONTROLS FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Restraint channel bracings.
- 2. Restraint cables.
- 3. Seismic-restraint accessories.
- 4. Mechanical anchor bolts.
- 5. Adhesive anchor bolts.

B. Related Requirements:

1. Section 270528.29 "Hangers and Supports for Communications Systems" for commonly used supports and installation requirements.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Illustrate and indicate style, material, strength, fastening provision, and finish for each type and size of seismic-restraint component used.
 - a. Tabulate types and sizes of seismic restraints, complete with report numbers and rated strength in tension and shear as evaluated by an agency acceptable to authorities having jurisdiction.
 - b. Annotate to indicate application of each product submitted and compliance with requirements.
- B. Delegated-Design Submittal: For each seismic-restraint device.
 - 1. Include design calculations and details for selecting seismic restraints complying with performance requirements, design criteria, and analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 - 2. Design Calculations: Calculate static and dynamic loading caused by equipment weight, operation, and seismic forces required to select seismic restraints and for designing vibration isolation bases.
 - a. Coordinate design calculations with wind load calculations required for equipment mounted outdoors. Comply with requirements in other Sections for equipment mounted outdoors.
 - 3. Seismic-Restraint Details:

- a. Design Analysis: To support selection and arrangement of seismic restraints. Include calculations of combined tensile and shear loads.
- b. Details: Indicate fabrication and arrangement. Detail attachments of restraints to the restrained items and to the structure. Show attachment locations, methods, and spacings. Identify components, list their strengths, and indicate directions and values of forces transmitted to the structure during seismic events. Indicate association with vibration isolation devices.
- c. Coordinate seismic-restraint and vibration isolation details with wind-restraint details required for equipment mounted outdoors. Comply with requirements in other Sections for equipment mounted outdoors.
- d. Preapproval and Evaluation Documentation: By an agency acceptable to authorities having jurisdiction, showing maximum ratings of restraint items and the basis for approval (tests or calculations).

1.3 INFORMATIONAL SUBMITTALS

- A. Welding certificates.
- B. Field quality-control reports.

1.4 QUALITY ASSURANCE

- A. Comply with seismic-restraint requirements in the IBC unless requirements in this Section are more stringent.
- B. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- C. Seismic-restraint devices shall have horizontal and vertical load testing and analysis. They shall bear anchorage preapproval from OSHPD in addition to preapproval, showing maximum seismic-restraint ratings, by ICC-ES or another agency acceptable to authorities having jurisdiction. Ratings based on independent testing are preferred to ratings based on calculations. If preapproved ratings are not available, submittals based on independent testing are preferred. Calculations (including combining shear and tensile loads) that support seismic-restraint designs must be signed and sealed by a qualified professional engineer.
- D. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Wind-Restraint Loading:
 - 1. Basic Wind Speed: 120
 - 2. Building Classification Category: III.

3. Minimum 10 lb/sq. ft. (48.8 kg/sq. m) multiplied by maximum area of component projected on vertical plane normal to wind direction and 45 degrees either side of normal.

B. Seismic-Restraint Loading:

- 1. Site Class as Defined in the IBC: C.
- 2. Assigned Seismic Use Group or Building Category as Defined in the IBC: III.
 - a. Component Importance Factor: 1.5.

2.2 RESTRAINT CHANNEL BRACINGS

A. Description: MFMA-4, shop- or field-fabricated bracing assembly made of slotted steel channels with accessories for attachment to braced component at one end and to building structure at the other end, with other matching components, and with corrosion-resistant coating; rated in tension, compression, and torsion forces.

2.3 RESTRAINT CABLES

A. Restraint Cables: ASTM A603 galvanized. End connections made of steel assemblies with thimbles, brackets, swivel, and bolts designed for restraining cable service; with a minimum of two clamping bolts for cable engagement.

2.4 SEISMIC-RESTRAINT ACCESSORIES

- A. Hanger-Rod Stiffener: Steel tube or steel slotted-support-system sleeve with internally bolted connections to hanger rod.
- B. Hinged and Swivel Brace Attachments: Multifunctional steel connectors for attaching hangers to rigid channel bracings and restraint cables.
- C. Bushings for Floor-Mounted Equipment Anchor Bolts: Neoprene bushings designed for rigid equipment mountings and matched to type and size of anchor bolts and studs.
- D. Bushing Assemblies for Wall-Mounted Equipment Anchorage: Assemblies of neoprene elements and steel sleeves designed for rigid equipment mountings and matched to type and size of attachment devices used.
- E. Resilient Isolation Washers and Bushings: One-piece, molded, oil- and water-resistant neoprene, with a flat washer face.

2.5 MECHANICAL ANCHOR BOLTS

A. Mechanical Anchor Bolts: Drilled-in and stud-wedge or female-wedge type in zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E488.

2.6 ADHESIVE ANCHOR BOLTS

A. Adhesive Anchor Bolts: Drilled-in and capsule anchor system containing PVC or urethane methacrylate-based resin and accelerator, or injected polymer or hybrid mortar adhesive. Provide anchor bolts and hardware with zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E488.

PART 3 - EXECUTION

3.1 APPLICATIONS

- A. Multiple Raceways or Cables: Secure raceways and cables to trapeze member with clamps approved for application by an agency acceptable to authorities having jurisdiction.
- B. Hanger-Rod Stiffeners: Install hanger-rod stiffeners where indicated or scheduled on Drawings to receive them and where required to prevent buckling of hanger rods caused by seismic forces.
- C. Strength of Support and Seismic-Restraint Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static and seismic loads within specified loading limits.

3.2 SEISMIC-RESTRAINT DEVICE INSTALLATION

- A. Equipment and Hanger Restraints:
 - 1. Install resilient, bolt-isolation washers on equipment anchor bolts where clearance between anchor and adjacent surface exceeds 0.125 inch (3.2 mm).
 - 2. Install seismic-restraint devices using methods approved by an agency acceptable to authorities having jurisdiction providing required submittals for component.
- B. Install cables so they do not bend across edges of adjacent equipment or building structure.
- C. Install bushing assemblies for mounting bolts for wall-mounted equipment, arranged to provide resilient media where equipment or equipment-mounting channels are attached to wall.
- D. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.

E. Drilled-in Anchors:

- 1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling. Notify the structural engineer if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
- 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.

- 3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
- 4. Adhesive Anchors: Clean holes to remove loose material and drilling dust prior to installation of adhesive. Place adhesive in holes proceeding from the bottom of the hole and progressing toward the surface in such a manner as to avoid introduction of air pockets in the adhesive.
- 5. Set anchors to manufacturer's recommended torque using a torque wrench.
- 6. Install zinc-coated steel anchors for interior and stainless-steel anchors for exterior applications.

3.3 ACCOMMODATION OF DIFFERENTIAL SEISMIC MOTION

A. Install flexible connections in runs of raceways, cables, wireways, cable trays, and busways where they cross seismic joints, where adjacent sections or branches are supported by different structural elements, and where connection is terminated to equipment that is anchored to a different structural element from the one supporting them as they approach equipment.

3.4 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Obtain Architect's approval before transmitting test loads to structure. Provide temporary load-spreading members.
 - 2. Test at least our of each type and size of installed anchors and fasteners selected by Architect.
 - 3. Test to 90 percent of rated proof load of device.
- B. Seismic controls will be considered defective if they do not pass tests and inspections.
- C. Prepare test and inspection reports.

3.5 ADJUSTING

A. Adjust restraints to permit free movement of equipment within normal mode of operation.

END OF SECTION 270548.16

SECTION 284621.11 - ADDRESSABLE FIRE-ALARM SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Fire-alarm control unit.
- 2. Manual fire-alarm boxes.
- 3. System smoke detectors.
- 4. Nonsystem smoke detectors.
- 5. Heat detectors.
- 6. Notification appliances.
- 7. Magnetic door holders.
- 8. Remote annunciator.
- 9. Addressable interface device.
- 10. Digital alarm communicator transmitter.

B. Related Requirements:

1. Section 271513 "Communications Copper Horizontal Cabling" for cables and conductors for fire-alarm systems.

1.2 ACTION SUBMITTALS

A. General Submittal Requirements:

- 1. Submittals shall be approved by authorities having jurisdiction prior to submitting them to Architect.
- 2. Shop Drawings shall be prepared by persons with the following qualifications:
 - a. Trained and certified by manufacturer in fire-alarm system design.
 - b. NICET-certified, fire-alarm technician; Level III minimum.
 - c. Licensed or certified by authorities having jurisdiction.
- B. Product Data: For each type of product, including furnished options and accessories.
- C. Shop Drawings: For fire-alarm system.
 - 1. Comply with recommendations and requirements in the "Documentation" section of the "Fundamentals" chapter in NFPA 72.
 - 2. Include plans, elevations, sections, details, and attachments to other work.
 - 3. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and locations. Indicate conductor sizes, indicate termination locations and requirements, and distinguish between factory and field wiring.

- 4. Detail assembly and support requirements.
- 5. Include voltage drop calculations for notification-appliance circuits.
- 6. Include battery-size calculations.
- 7. Include input/output matrix.
- 8. Include statement from manufacturer that all equipment and components have been tested as a system and meet all requirements in this Specification and in NFPA 72.
- 9. Include performance parameters and installation details for each detector.
- 10. Verify that each duct detector is listed for complete range of air velocity, temperature, and humidity possible when air-handling system is operating.
- 11. Include plans, sections, and elevations of heating, ventilating, and airconditioning ducts, drawn to scale; coordinate location of duct smoke detectors and access to them.
 - a. Show critical dimensions that relate to placement and support of sampling tubes, detector housing, and remote status and alarm indicators.
 - b. Show field wiring required for HVAC unit shutdown on alarm.
 - c. Locate detectors according to manufacturer's written recommendations.
- 12. Include floor plans to indicate final outlet locations showing address of each addressable device. Show size and route of cable and conduits and point-to-point wiring diagrams.
- D. Delegated-Design Submittal: For notification appliances and smoke and heat detectors, in addition to submittals listed above, indicate compliance with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 - 1. Drawings showing the location of each notification appliance and smoke and heat detector, ratings of each, and installation details as needed to comply with listing conditions of the device.
 - 2. Design Calculations: Calculate requirements for selecting the spacing and sensitivity of detection, complying with NFPA 72. Calculate spacing and intensities for strobe signals and sound-pressure levels for audible appliances.
 - 3. Indicate audible appliances required to produce square wave signal per NFPA 72.

1.3 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For Installer.
- B. Seismic Qualification Data: Certificates, for fire-alarm control unit, accessories, and components, from manufacturer.
- C. Field quality-control reports.
- D. Sample warranty.

1.4 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For fire-alarm systems and components to include in emergency, operation, and maintenance manuals.
 - 1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following and deliver copies to authorities having jurisdiction:
 - a. Comply with the "Records" section of the "Inspection, Testing and Maintenance" chapter in NFPA 72.
 - b. Provide "Fire Alarm and Emergency Communications System Record of Completion Documents" according to the "Completion Documents" Article in the "Documentation" section of the "Fundamentals" chapter in NFPA 72.
 - c. Complete wiring diagrams showing connections between all devices and equipment.
 - d. Riser diagram.
 - e. Record copy of site-specific software.
 - f. Provide "Inspection and Testing Form" according to the "Inspection, Testing and Maintenance" chapter in NFPA 72, and include the following:
 - 1) Equipment tested.
 - 2) Frequency of testing of installed components.
 - 3) Frequency of inspection of installed components.
 - 4) Requirements and recommendations related to results of maintenance.
 - 5) Manufacturer's user training manuals.
 - g. Manufacturer's required maintenance related to system warranty requirements.
 - h. Abbreviated operating instructions for mounting at fire-alarm control unit and each annunciator unit.
- B. Software and Firmware Operational Documentation:
 - 1. Software operating and upgrade manuals.
 - 2. Program Software Backup: On magnetic media or compact disk, complete with data files.
 - 3. Device address list.
 - 4. Printout of software application and graphic screens.

1.5 QUALITY ASSURANCE

- A. Installer Qualifications: Personnel shall be trained and certified by manufacturer for installation of units required for this Project.
- B. Installer Qualifications: Installation shall be by personnel certified by NICET as firealarm Level II technician.
- C. NFPA Certification: Obtain certification according to NFPA 72 by an NRTL (nationally recognized testing laboratory).

- D. NFPA Certification: Obtain certification according to NFPA 72 by a UL-listed alarm company.
- E. NFPA Certification: Obtain certification according to NFPA 72 in the form of a placard by an FM Global-approved alarm company.

1.6 WARRANTY

- A. Special Warranty: Manufacturer agrees to repair or replace fire-alarm system equipment and components that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Extent: All equipment and components not covered in the Maintenance Service Agreement.
 - 2. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

- A. Source Limitations for Fire-Alarm System and Components: Components shall be compatible with, and operate as an extension of, existing system. Provide system manufacturer's certification that all components provided have been tested as, and will operate as, a system.
- B. Noncoded, UL-certified addressable system, with multiplexed signal transmission and horn/strobe evacuation.
- C. Automatic sensitivity control of certain smoke detectors.
- D. All components provided shall be listed for use with the selected system.
- E. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.2 SYSTEMS OPERATIONAL DESCRIPTION

- A. Fire-alarm signal initiation shall be by one or more of the following devices and systems:
 - 1. Manual stations.
 - Heat detectors.
 - Smoke detectors.
 - 4. Duct smoke detectors.
 - 5. Carbon monoxide detectors.
 - 6. Automatic sprinkler system water flow.

- 7. Fire-extinguishing system operation.
- 8. Fire standpipe system.
- 9. Dry system pressure flow switch.
- B. Fire-alarm signal shall initiate the following actions:
 - 1. Continuously operate alarm notification appliances.
 - 2. Identify alarm and specific initiating device at fire-alarm control unit and remote annunciators.
 - 3. Transmit an alarm signal to the remote alarm receiving station.
 - 4. Unlock electric door locks in designated egress paths.
 - 5. Release fire and smoke doors held open by magnetic door holders.
 - 6. Switch heating, ventilating, and air-conditioning equipment controls to fire-alarm mode.
 - 7. Close smoke dampers in air ducts of designated air-conditioning duct systems.
 - 8. Activate preaction system.
 - 9. Recall elevators to primary or alternate recall floors.
 - 10. Activate elevator power shunt trip.
 - 11. Activate emergency lighting control.
 - 12. Activate emergency shutoffs for gas and fuel supplies.
 - 13. Record events in the system memory.
- C. Supervisory signal initiation shall be by one or more of the following devices and actions:
 - 1. Valve supervisory switch.
 - 2. High- or low-air-pressure switch of a dry-pipe or preaction sprinkler system.
 - 3. Elevator shunt-trip supervision.
 - 4. Loss of communication with any panel on the network.
- D. System trouble signal initiation shall be by one or more of the following devices and actions:
 - 1. Open circuits, shorts, and grounds in designated circuits.
 - 2. Opening, tampering with, or removing alarm-initiating and supervisory signal-initiating devices.
 - 3. Loss of communication with any addressable sensor, input module, relay, control module, or remote annunciator.
 - 4. Loss of primary power at fire-alarm control unit.
 - 5. Ground or a single break in internal circuits of fire-alarm control unit.
 - 6. Abnormal ac voltage at fire-alarm control unit.
 - 7. Break in standby battery circuitry.
 - 8. Failure of battery charging.
 - 9. Abnormal position of any switch at fire-alarm control unit or annunciator.
- E. System Supervisory Signal Actions:
 - 1. Initiate notification appliances.
 - 2. Identify specific device initiating the event at fire-alarm control unit and remote annunciators.

3. After a time delay of 200 seconds, transmit a trouble or supervisory signal to the remote alarm receiving station.

2.3 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: Fire-alarm control unit and raceways shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 - 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

2.4 FIRE-ALARM CONTROL UNIT

- A. General Requirements for Fire-Alarm Control Unit:
 - 1. Field-programmable, microprocessor-based, modular, power-limited design with electronic modules, complying with UL 864.
 - 2. Addressable Initiation Device Circuits: The FACP shall indicate which communication zones have been silenced and shall provide selective silencing of alarm notification appliance by building communication zone.
 - 3. Addressable Control Circuits for Operation of Notification Appliances and Mechanical Equipment: The FACP shall be listed for releasing service.
- B. Alphanumeric Display and System Controls: Arranged for interface between human operator at fire-alarm control unit and addressable system components including annunciation and supervision. Display alarm, supervisory, and component status messages and the programming and control menu.
 - 1. Annunciator and Display: Liquid-crystal type, 80 characters, minimum.
 - 2. Keypad: Arranged to permit entry and execution of programming, display, and control commands.
- C. Initiating-Device, Notification-Appliance, and Signaling-Line Circuits:
 - 1. Pathway Class Designations: NFPA 72, Class B.
 - 2. Pathway Survivability: Level 1.
- D. Notification-Appliance Circuit:
 - 1. Audible appliances shall sound in a three-pulse temporal pattern, as defined in NFPA 72.
 - 2. Where notification appliances provide signals to sleeping areas, the alarm signal shall be a 520-Hz square wave with an intensity 15 dB above the average ambient sound level or 5 dB above the maximum sound level, or at least 75 dBA, whichever is greater, measured at the pillow.
 - 3. Visual alarm appliances shall flash in synchronization where multiple appliances are in the same field of view, as defined in NFPA 72.

E. Elevator Recall:

- 1. Elevator recall shall be initiated only by one of the following alarm-initiating devices:
 - a. Elevator lobby detectors except the lobby detector on the designated floor.
 - b. Smoke detector in elevator machine room.
 - c. Smoke detectors in elevator hoistway.
- 2. Elevator controller shall be programmed to move the cars to the alternate recall floor if lobby detectors located on the designated recall floors are activated.
- 3. Water-flow alarm connected to sprinkler in an elevator shaft and elevator machine room shall shut down elevators associated with the location without time delay.
 - a. Water-flow switch associated with the sprinkler in the elevator pit may have a delay to allow elevators to move to the designated floor.
- F. Door Controls: Door hold-open devices that are controlled by smoke detectors at doors in smoke-barrier walls shall be connected to fire-alarm system.
- G. Remote Smoke-Detector Sensitivity Adjustment: Controls shall select specific addressable smoke detectors for adjustment, display their current status and sensitivity settings, and change those settings. Allow controls to be used to program repetitive, time-scheduled, and automated changes in sensitivity of specific detector groups. Record sensitivity adjustments and sensitivity-adjustment schedule changes in system memory.
- H. Transmission to Remote Alarm Receiving Station: Automatically transmit alarm, supervisory, and trouble signals to a remote alarm station.
- I. Primary Power: 24-V dc obtained from 120-V ac service and a power-supply module. Initiating devices, notification appliances, signaling lines, trouble signals, supervisory signals, supervisory and digital alarm communicator transmitters, and digital alarm radio transmitters shall be powered by 24-V dc source.
 - 1. Alarm current draw of entire fire-alarm system shall not exceed 80 percent of the power-supply module rating.
- J. Secondary Power: 24-V dc supply system with batteries, automatic battery charger, and automatic transfer switch.

2.5 MANUAL FIRE-ALARM BOXES

- A. General Requirements for Manual Fire-Alarm Boxes: Comply with UL 38.
 - 1. Single-action mechanism, pull-lever type; with integral addressable module arranged to communicate manual-station status (normal, alarm, or trouble) to fire-alarm control unit.
 - 2. Station Reset: Key- or wrench-operated switch.

2.6 SYSTEM SMOKE DETECTORS

A. General Requirements for System Smoke Detectors:

- 1. Comply with UL 268; operating at 24-V dc, nominal.
- 2. Detectors shall be four-wire type.
- 3. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.
- 4. Base Mounting: Detector and associated electronic components shall be mounted in a twist-lock module that connects to a fixed base. Provide terminals in the fixed base for connection to building wiring.
- 5. Self-Restoring: Detectors do not require resetting or readjustment after actuation to restore them to normal operation.
- 6. Integral Visual-Indicating Light: LED type, indicating detector has operated and power-on status.
- 7. Remote Control: Unless otherwise indicated, detectors shall be digital-addressable type, individually monitored at fire-alarm control unit for calibration, sensitivity, and alarm condition and individually adjustable for sensitivity by fire-alarm control unit.
 - a. Rate-of-rise temperature characteristic of combination smoke- and heatdetection units shall be selectable at fire-alarm control unit for 15 or 20 deg F (8 or 11 deg C) per minute.
 - b. Fixed-temperature sensing characteristic of combination smoke- and heat-detection units shall be independent of rate-of-rise sensing and shall be settable at fire-alarm control unit to operate at 135 or 155 deg F (57 or 68 deg C).
 - c. Multiple levels of detection sensitivity for each sensor.
 - d. Sensitivity levels based on time of day.

B. Photoelectric Smoke Detectors:

- 1. Detector address shall be accessible from fire-alarm control unit and shall be able to identify the detector's location within the system and its sensitivity setting.
- 2. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:
 - a. Primary status.
 - b. Device type.
 - c. Present average value.
 - d. Present sensitivity selected.
 - e. Sensor range (normal, dirty, etc.).

C. Ionization Smoke Detector:

- 1. Detector address shall be accessible from fire-alarm control unit and shall be able to identify the detector's location within the system and its sensitivity setting.
- 2. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:
 - a. Primary status.

- b. Device type.
- c. Present average value.
- d. Present sensitivity selected.
- e. Sensor range (normal, dirty, etc.).
- D. Duct Smoke Detectors: Photoelectric type complying with UL 268A.
 - 1. Detector address shall be accessible from fire-alarm control unit and shall be able to identify the detector's location within the system and its sensitivity setting.
 - 2. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:
 - a. Primary status.
 - b. Device type.
 - c. Present average value.
 - d. Present sensitivity selected.
 - e. Sensor range (normal, dirty, etc.).
 - 3. Weatherproof Duct Housing Enclosure: NEMA 250, Type 4X; NRTL listed for use with the supplied detector for smoke detection in HVAC system ducts.
 - 4. Each sensor shall have multiple levels of detection sensitivity.
 - 5. Sampling Tubes: Design and dimensions as recommended by manufacturer for specific duct size, air velocity, and installation conditions where applied.
 - 6. Relay Fan Shutdown: Fully programmable relay rated to interrupt fan motor-control circuit.

2.7 CARBON MONOXIDE DETECTORS

- A. General: Carbon monoxide detector listed for connection to fire-alarm system.
 - 1. Mounting: Adapter plate for outlet box mounting.
 - 2. Testable by introducing test carbon monoxide into the sensing cell.
 - 3. Detector shall provide alarm contacts and trouble contacts.
 - 4. Detector shall send trouble alarm when nearing end-of-life, power supply problems, or internal faults.
 - 5. Comply with UL 2075.
 - 6. Locate, mount, and wire according to manufacturer's written instructions.
 - 7. Provide means for addressable connection to fire-alarm system.
 - 8. Test button simulates an alarm condition.

2.8 NONSYSTEM SMOKE DETECTORS

- A. General Requirements for Nonsystem Smoke Detectors:
 - 1. Nonsystem smoke detectors shall be listed as compatible with the fire-alarm equipment installed or shall have a contact closure interface listed for the connected load.
 - 2. Nonsystem smoke detectors shall meet the monitoring for integrity requirements in NFPA 72.

- B. Single-Station Smoke Detectors:
 - 1. Auxiliary Relays: One Form A and one Form C, both rated at 0.5 A.
 - 2. Audible Notification Appliance: Piezoelectric sounder rated at 90 dBA at 10 feet (3 m) according to UL 464.
 - 3. Visible Notification Appliance: 177-cd strobe.
 - 4. Heat sensor, 135 deg F (57 deg C) combination rate-of-rise and fixed temperature.
 - 5. Test Switch: Push to test; simulates smoke at rated obscuration.
 - 6. Tandem Connection: Allow tandem connection of number of indicated detectors; alarm on one detector shall actuate notification on all connected detectors.
 - 7. Plug-in Arrangement: Detector and associated electronic components shall be mounted in a plug-in module that connects to a fixed base. Provide terminals in the fixed base for connection to building wiring.
 - 8. Self-Restoring: Detectors shall not require resetting or readjustment after actuation to restore them to normal operation.
 - 9. Integral Visual-Indicating Light: LED type, indicating detector has operated and power-on status.

C. Single-Station Duct Smoke Detectors:

- 1. Comply with UL 268A; operating at 120-V ac.
- 2. Sensor: LED or infrared light source with matching silicon-cell receiver.
 - a. Detector Sensitivity: Smoke obscuration between 2.5 and 3.5 percent/foot (0.008 and 0.011 percent/mm) when tested according to UL 268A.
- Base Mounting: Detector and associated electronic components shall be mounted in a twist-lock module that connects to a fixed base. The fixed base shall be designed for mounting directly to air duct. Provide terminals in the fixed base for connection to building wiring.
 - a. Weatherproof Duct Housing Enclosure: NEMA 250, Type 4X; listed for use with the supplied detector.
- 4. Sampling Tubes: Design and dimensions as recommended by manufacturer for specific duct size, air velocity, and installation conditions where applied.
- 5. Relay Fan Shutdown: Rated to interrupt fan motor-control circuit.

2.9 HEAT DETECTORS

- A. General Requirements for Heat Detectors: Comply with UL 521.
 - 1. Temperature sensors shall test for and communicate the sensitivity range of the device.
- B. Heat Detector, Combination Type: Actuated by either a fixed temperature or a rate of rise.
 - 1. Mounting: Adapter plate for outlet box mounting.

- 2. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.
- C. Heat Detector, Fixed-Temperature Type: Actuated by temperature that exceeds a fixed temperature.
 - 1. Mounting: Adapter plate for outlet box mounting.
 - 2. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.

2.10 NOTIFICATION APPLIANCES

- A. General Requirements for Notification Appliances: Connected to notification-appliance signal circuits, zoned as indicated, equipped for mounting as indicated, and with screw terminals for system connections.
 - 1. Combination Devices: Factory-integrated audible and visible devices in a single-mounting assembly, equipped for mounting as indicated, and with screw terminals for system connections.
- B. Chimes: Vibrating type.
- C. Horns: Electric-vibrating-polarized type, 24-V dc; with provision for housing the operating mechanism behind a grille. Comply with UL 464.
- D. Visible Notification Appliances: Xenon strobe lights complying with UL 1971, with clear or nominal white polycarbonate lens mounted on an aluminum faceplate. The word "FIRE" is engraved in minimum 1-inch- (25-mm-) high letters on the lens.
 - 1. Mounting: Wall mounted unless otherwise indicated.
 - 2. Flashing shall be in a temporal pattern, synchronized with other units.
 - 3. Strobe Leads: Factory connected to screw terminals.
 - 4. Mounting Faceplate: Factory finished, white.

2.11 MAGNETIC DOOR HOLDERS

- A. Description: Units are equipped for wall or floor mounting as indicated and are complete with matching doorplate.
 - 1. Electromagnets: Require no more than 3 W to develop 25-lbf (111-N) holding force.
 - 2. Wall-Mounted Units: Flush mounted unless otherwise indicated.
 - 3. Rating: 24-V ac or dc.
 - 4. Rating: 120-V ac.
- B. Material and Finish: Match door hardware.

2.12 REMOTE ANNUNCIATOR

- A. Description: Annunciator functions shall match those of fire-alarm control unit for alarm, supervisory, and trouble indications. Manual switching functions shall match those of fire-alarm control unit, including acknowledging, silencing, resetting, and testing.
 - 1. Mounting: Flush cabinet, NEMA 250, Type 1.
- B. Display Type and Functional Performance: Alphanumeric display and LED indicating lights shall match those of fire-alarm control unit. Provide controls to acknowledge, silence, reset, and test functions for alarm, supervisory, and trouble signals.

2.13 ADDRESSABLE INTERFACE DEVICE

A. General:

- 1. Include address-setting means on the module.
- 2. Store an internal identifying code for control panel use to identify the module type.
- 3. Listed for controlling HVAC fan motor controllers.
- B. Monitor Module: Microelectronic module providing a system address for alarm-initiating devices for wired applications with normally open contacts.
- C. Integral Relay: Capable of providing a direct signal to elevator controller to initiate elevator recall and to circuit-breaker shunt trip for power shutdown.
 - 1. Allow the control panel to switch the relay contacts on command.
 - 2. Have a minimum of two normally open and two normally closed contacts available for field wiring.

D. Control Module:

- 1. Operate notification devices.
- 2. Operate solenoids for use in sprinkler service.

2.14 DIGITAL ALARM COMMUNICATOR TRANSMITTER

- A. Digital alarm communicator transmitter shall be acceptable to the remote central station and shall comply with UL 632.
- B. Functional Performance: Unit shall receive an alarm, supervisory, or trouble signal from fire-alarm control unit and automatically capture one telephone line(s) and dial a preset number for a remote central station. When contact is made with central station(s), signals shall be transmitted. If service on either line is interrupted for longer than 45 seconds, transmitter shall initiate a local trouble signal and transmit the signal indicating loss of telephone line to the remote alarm receiving station over the remaining line. Transmitter shall automatically report telephone service restoration to

the central station. If service is lost on both telephone lines, transmitter shall initiate the local trouble signal.

- C. Local functions and display at the digital alarm communicator transmitter shall include the following:
 - 1. Verification that both telephone lines are available.
 - 2. Programming device.
 - 3. LED display.
 - 4. Manual test report function and manual transmission clear indication.
 - 5. Communications failure with the central station or fire-alarm control unit.
- D. Digital data transmission shall include the following:
 - 1. Address of the alarm-initiating device.
 - 2. Address of the supervisory signal.
 - Address of the trouble-initiating device.
 - 4. Loss of ac supply.
 - 5. Loss of power.
 - 6. Low battery.
 - 7. Abnormal test signal.
 - 8. Communication bus failure.
- E. Secondary Power: Integral rechargeable battery and automatic charger.
- F. Self-Test: Conducted automatically every 24 hours with report transmitted to central station.

PART 3 - EXECUTION

3.1 EQUIPMENT INSTALLATION

- A. Comply with NFPA 72, NFPA 101, and requirements of authorities having jurisdiction for installation and testing of fire-alarm equipment. Install all electrical wiring to comply with requirements in NFPA 70 including, but not limited to, Article 760, "Fire Alarm Systems."
- B. Connecting to Existing Equipment: Verify that existing fire-alarm system is operational before making changes or connections.
- C. Equipment Mounting: Install fire-alarm control unit on finished floor.
 - 1. Comply with requirements for seismic-restraint devices specified in Section 270548.16 "Seismic Controls for Communications Systems."
- D. Install wall-mounted equipment, with tops of cabinets not more than 78 inches (1980 mm) above the finished floor.

1. Comply with requirements for seismic-restraint devices specified in Section 270548.16 "Seismic Controls for Communications Systems."

E. Manual Fire-Alarm Boxes:

- 1. Install manual fire-alarm box in the normal path of egress within 60 inches (1520 mm) of the exit doorway.
- 2. Mount manual fire-alarm box on a background of a contrasting color.
- 3. The operable part of manual fire-alarm box shall be between 42 inches (1060 mm) and 48 inches (1220 mm) above floor level. All devices shall be mounted at the same height unless otherwise indicated.
- F. Smoke- or Heat-Detector Spacing: Comply with NFPA 72.
- G. Duct Smoke Detectors: Comply with NFPA 72 and NFPA 90A. Install sampling tubes so they extend the full width of duct. Tubes more than 36 inches (9100 mm) long shall be supported at both ends.
- H. Elevator Shafts: Coordinate temperature rating and location with sprinkler rating and location. Do not install smoke detectors in sprinklered elevator shafts.
- I. Single-Station Smoke Detectors: Where more than one smoke alarm is installed within a dwelling or suite, they shall be connected so that the operation of any smoke alarm causes the alarm in all smoke alarms to sound.
- J. Remote Status and Alarm Indicators: Install in a visible location near each smoke detector, sprinkler water-flow switch, and valve-tamper switch that is not readily visible from normal viewing position.
- K. Audible Alarm-Indicating Devices: Install not less than 6 inches (150 mm) below the ceiling. Install bells and horns on flush-mounted back boxes with the device-operating mechanism concealed behind a grille. Install all devices at the same height unless otherwise indicated.
- L. Visible Alarm-Indicating Devices: Install adjacent to each alarm bell or alarm horn and at least 6 inches (150 mm) below the ceiling. Install all devices at the same height unless otherwise indicated.
- M. Device Location-Indicating Lights: Locate in public space near the device they monitor.

3.2 PATHWAYS

- A. Pathways above recessed ceilings and in non-accessible locations may be routed exposed.
 - 1. Exposed pathways located less than 96 inches (2440 mm) above the floor shall be installed in EMT.
- B. Pathways shall be installed in EMT.

C. Exposed EMT shall be painted red enamel.

3.3 CONNECTIONS

- A. For fire-protection systems related to doors in fire-rated walls and partitions and to doors in smoke partitions, comply with requirements in Section 087100 "Door Hardware." Connect hardware and devices to fire-alarm system.
 - 1. Verify that hardware and devices are listed for use with installed fire-alarm system before making connections.
- B. Make addressable connections with a supervised interface device to the following devices and systems. Install the interface device less than 36 inches (910 mm) from the device controlled. Make an addressable confirmation connection when such feedback is available at the device or system being controlled.
 - 1. Smoke dampers in air ducts of designated HVAC duct systems.
 - 2. Magnetically held-open doors.
 - 3. Electronically locked doors and access gates.
 - 4. Alarm-initiating connection to elevator recall system and components.
 - 5. Alarm-initiating connection to activate emergency lighting control.
 - 6. Alarm-initiating connection to activate emergency shutoffs for gas and fuel supplies.
 - 7. Supervisory connections at valve supervisory switches.
 - 8. Supervisory connections at low-air-pressure switch of each dry-pipe sprinkler system.
 - 9. Supervisory connections at elevator shunt-trip breaker.
 - 10. Supervisory connections at fire-extinguisher locations.

3.4 IDENTIFICATION

- A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 270553 "Identification for Communications Systems."
- B. Install framed instructions in a location visible from fire-alarm control unit.

3.5 GROUNDING

- A. Ground fire-alarm control unit and associated circuits; comply with IEEE 1100. Install a ground wire from main service ground to fire-alarm control unit.
- B. Ground shielded cables at the control panel location only. Insulate shield at device location.

3.6 FIELD QUALITY CONTROL

- A. Field tests shall be witnessed by owner, authorities having jurisdiction, and commissioning agent
- B. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
 - 1. Visual Inspection: Conduct visual inspection prior to testing.
 - a. Inspection shall be based on completed record Drawings and system documentation that is required by NFPA 72 in its "Completion Documents, Preparation" table in the "Documentation" section of the "Fundamentals" chapter.
 - b. Comply with the "Visual Inspection Frequencies" table in the "Inspection" section of the "Inspection, Testing and Maintenance" chapter in NFPA 72; retain the "Initial/Reacceptance" column and list only the installed components.
 - 2. System Testing: Comply with the "Test Methods" table in the "Testing" section of the "Inspection, Testing and Maintenance" chapter in NFPA 72.
 - 3. Test audible appliances for the public operating mode according to manufacturer's written instructions. Perform the test using a portable sound-level meter complying with Type 2 requirements in ANSI S1.4.
 - 4. Test audible appliances for the private operating mode according to manufacturer's written instructions.
 - 5. Test visible appliances for the public operating mode according to manufacturer's written instructions.
 - 6. Factory-authorized service representative shall prepare the "Fire Alarm System Record of Completion" in the "Documentation" section of the "Fundamentals" chapter in NFPA 72 and the "Inspection and Testing Form" in the "Records" section of the "Inspection, Testing and Maintenance" chapter in NFPA 72.
- C. Reacceptance Testing: Perform reacceptance testing to verify the proper operation of added or replaced devices and appliances.
- D. Fire-alarm system will be considered defective if it does not pass tests and inspections.
- E. Prepare test and inspection reports.
- F. Maintenance Test and Inspection: Perform tests and inspections listed for weekly, monthly, quarterly, and semiannual periods. Use forms developed for initial tests and inspections.
- G. Annual Test and Inspection: One year after date of Substantial Completion, test firealarm system complying with visual and testing inspection requirements in NFPA 72. Use forms developed for initial tests and inspections.

3.7 SOFTWARE SERVICE AGREEMENT

- A. Comply with UL 864.
- B. Technical Support: Beginning at Substantial Completion, service agreement shall include software support for two years.
- C. Upgrade Service: At Substantial Completion, update software to latest version. Install and program software upgrades that become available within two years from date of Substantial Completion. Upgrading software shall include operating system and new or revised licenses for using software.
 - 1. Upgrade Notice: At least 30 days to allow Owner to schedule access to system and to upgrade computer equipment if necessary.

3.8 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain fire-alarm system.

END OF SECTION 284621.11

SECTION 284700 - MASS NOTIFICATION SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. MNS wiring, raceways, terminal cabinets, outlets, and mounting boxes.
- 2. Control equipment.
- 3. Notification appliances.
- 4. Accessories.

B. Related Requirements:

1. Section 284621.11 "Addressable Fire-Alarm Systems" for fire alarm system that interfaces with the equipment of this Section.

1.2 DEFINITIONS

- A. ATP: Acceptance Test Procedure.
- B. LOC: Local operating console.
- C. MNS: Mass notification system.
- D. NICET: National Institute for Certification in Engineering Technologies.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings:
 - 1. Prepare Shop Drawings by persons with the following qualifications:
 - a. Trained and certified by manufacturer in MNS design.
 - b. NICET-certified technician; Level III minimum.
 - c. Licensed or certified according to the requirements of the authorities having jurisdiction.
 - 2. Include plans, elevations, sections, and mounting details.
 - 3. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 4. Detail fabrication and assembly of the following:

- a. Speaker clusters on poles.
- b. Racks with amplifiers and terminations.
- c. Control panels.
- 5. Include diagrams for power, signal, and control wiring.
- C. Delegated-Design Submittal: For items listed below, indicate compliance with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 - 1. Speaker placement.
 - 2. Speaker dB output.
 - 3. Amplifier output.
 - 4. Remote power booster rating and locations.
 - 5. Battery sizing calculations.
 - 6. Voltage drop calculations.
 - 7. Seismic mounting and supports.

1.4 INFORMATIONAL SUBMITTALS

- A. Seismic Qualification Data: Certificates, for amplifiers, speakers, racks, accessories, and components, from manufacturer.
- B. Product test reports.
- C. Source quality-control reports.
- D. Field quality-control reports.
- E. Sample warranty.

1.5 CLOSEOUT SUBMITTALS

- A. Operation and maintenance data.
- B. Computer-generated instruction card mounted behind a Lexan plastic or glass cover in a stainless steel or aluminum frame. The card shall indicate those steps to be taken by an operator when a signal is received as well as the functional operation of the system under all conditions: normal, alarm, supervisory, and trouble.
- C. Software and Firmware Operational Documentation:
 - 1. Software operating and upgrade manuals.
 - 2. Program Software Backup: On on USB media and approved online or could solution. Device address list.
 - 3. Printout of software application and graphic screens.
- D. Proprietary equipment and software required to implement future changes to the MNS.

- E. System documentation to the owner, including but not limited to the following:
 - 1. System record Drawings and wiring details, including one set of full-size printed Drawings, and a CD ROM with copies of the record Drawings in PDF format and DXF format for use in AutoCAD drafting program, [2012 version] < Insert version>.
 - 2. Documentation of all component and wiring identification, including a copy of each equipment nameplate.
 - 3. System matrix showing interaction of all input signals with output commands.
 - 4. Documentation of system voltage, current, and resistance readings taken during the installation, testing, and ATP phases of the system installation.
 - 5. System program showing control devices and operations, and system functions of equipment and devices.

1.6 QUALITY ASSURANCE

- A. Installer Qualifications: An authorized representative who is trained and approved by manufacturer for installation of units required for this Project.
 - 1. Personnel certified by NICET as Audio Systems Level III Technician.
- B. Testing Agency Qualifications: An NRTL.
 - 1. Testing Agency's Field Supervisor: Currently certified by NICET at Level III to supervise on-site testing.

1.7 WARRANTY

- A. Manufacturer's Warranty: Manufacturer agrees to repair or replace components of the MNS that fail(s) in materials or workmanship within specified warranty period.
 - 1. Warranty Period: Two year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations: Obtain MNS from single source or producer.

2.2 PERFORMANCE REQUIREMENTS

- A. Comply with UL 2572.
- B. Mass Notification Messaging System:
 - 1. Software-operated, network-based communications system with wired and wireless access points for control interface. Designated operators shall be able to log in via a web browser and have complete access to their own portion of the MNS.

- 2. An autonomous voice notification control unit shall monitor and control the notification appliance network and provide consoles for local operation. Authorized personnel shall be able to use a console to initiate delivery of pre-recorded voice messages, provide live voice messages and instructions, and initiate visual strobe and optional textual message notification appliances. The autonomous voice notification control unit shall temporarily override audible fire alarm notification while delivering mass notification messages to ensure they are intelligible.
- 3. The MNS messaging system shall be capable of the following:
 - a. Communicating through the use of wired or wireless networks for one- or two-way communications and control between a building or area and emergency personnel.
 - b. Automatically distribute at least 100 simultaneous and unique messages to the appropriate notification appliances.
 - c. Allow multiple operators to send messages simultaneously.
 - d. Grant access for control to another control station if the location in control becomes inoperable and/or the authorized operator at that control station can no longer operate the control station.
 - e. Send voice messages and text messages with an indication of the source of the message that can only be sent from the message source.
 - f. Send alert messages to end users (recipients) via multiple delivery methods, including but not limited to the following:
 - 1) Audio-visual network alerts to computers via desktop pop-up.
 - 2) Text alerts to mobile phones and pagers.
 - 3) Text alerts to email clients.
 - 4) Text alerts to textual visible appliances.
 - 5) Alerts to visible appliances.
 - 6) Audio alerts to phones.
 - 7) Audio alerts to speakers.
 - 8) Audio alerts to existing wide-area or building voice and/or other MNS.
 - 9) Network alerts to any other IP-connected devices via standard XML and CAP protocols.
 - g. Suppress contact information for other end users with messages or in message headers.
- 4. Live announcements or prerecorded messages. Live messages shall take precedence over prerecorded messages.
- 5. Notification appliance network shall consist of speakers and visual notification devices located to provide intelligible instructions.
- 6. Interface with the fire alarm system to utilize the voice modules, visual alarms, and speakers of the fire alarm system.
- 7. Give priority to MNS announcements over other audible announcements of the system including fire alarm system in a normal or alarm state. When an announcement is activated during a fire alarm, fire alarm system functions shall continue in an alarm state, except for the output signals of the fire alarm audible and visual notification appliances.
- 8. Comply with speech intelligibility requirements of NFPA 72 as measured according to ANSI/ASA S3.2.
- 9. Capable of overriding local control of speaker volume levels for emergency communications. Local controls shall be permitted to adjust volume levels of non-

- emergency signals only, such as, but not limited to, background music and convenience paging.
- 10. Capable of providing separate messages to one individual building or to multiple buildings at any given time if the MNS serves more than one building.
- 11. Capable of monitoring emergency notifications from multiple data sources (National Weather Service, Emergency Managers Weather Information Network, Naval Meteorology and Oceanography, and others as determined locally) and automatically send out notifications to designated facilities and personnel based on pre-defined rules.
- 12. Capable of centrally tracking, in real-time, all alerting activities for each individual recipient, including sending, receiving, and responding to alerts, and of generating reports based on tracked information.
- 13. Capable of operating remote printer via a USB output. Provide matching printer listed and labeled as part of the MNS.
- C. Seismic Performance: MNS speakers, equipment mountings, poles, racks, pathways, conductors, and amplification and control components shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 - 1. The term "withstand" means "the system will remain in place without separation of any parts when subjected to the seismic forces specified and the system will be fully operational after the seismic event."
 - 2. Component Importance Factor is 1.5.
- D. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes.
 - 1. Temperature Change: 120 deg F (67 deg C), ambient; 180 deg F (100 deg C), material surfaces.
- E. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.3 MASTER CONTROL PANEL

A. Description:

- 1. Fully enclosed in a lockable steel cabinet with access for testing, and maintenance from the front of the enclosure.
- 2. Solid-state, modular components, internally mounted and arranged for easy access for power, supervision, control, and logic for the system.
- 3. 120 V ac, 60 Hz power supply.
- 4. An indicator for each message source shall indicate which sources are available and which are selected.
- 5. Indicators for broadcast media used to convey the selected message to selected audience shall indicate which sources are available and which are selected.
- 6. Capable of confirming the receipt of a message. If the message was not confirmed received, the system shall be capable of using other means of contact until receipt of confirmation or until a preset time period.
- 7. Capable of automatically sending another message after the receipt of a message or messages.

8. Operator Access Functions:

- a. Select prerecorded message for transmission.
- b. Select microphone for live broadcast.
- c. Initiate message broadcast.
- d. Terminate message broadcast.

9. Supervisory Access Functions:

- a. Reset time and date.
- b. Enable or disable event-initiated programs, printouts, and initiators.
- c. Enable or disable individual message sources and broadcast media.
- d. Supervisory level functions shall not require computer programming skills. MNS shall record changes to program functions, to be maintained in the control panel for a minimum of one year. The control panel shall maintain the ID of the supervisor making the change.

10. System operator level access functions:

- a. Clear supervisory trouble alarms.
- b. Revise programming.
- c. Revise prerecorded messages.
- d. Assign access rights to all levels.
- e. MNS shall record changes at system operator level in the control panel, to be maintained for a minimum of one year. The control panel shall maintain the ID of the system operator making the change.
- 11. Capable of at least 1000 users, with each user having its own log-in and password credentials and at least four contact methods.
- 12. Capable of storing users in one or multiple groups and able to create a minimum of 10 groups.
- 13. Each panel shall have supervisory functions for power failure, internal component failure, and operation.
- 14. MNS shall have a complete set of self-diagnostics for controller and appliance network, and local diagnostic information display, local diagnostic information, and system event log.
- 15. Printed records of changes, supervisory functions, message transmission, and operator actions shall be maintained for a minimum of one year.

2.4 NOTIFICATION COMPONENTS

A. Voice/Alarm Signaling Service:

- 1. One-way, multichannel voice notification system incorporating at least eight distinct sounds selectable by user for tone signaling and incorporating a voice module for delivery of prerecorded messages.
- 2. Redundant microphones, preamplifiers, amplifiers, and tone generators provided in separate main and remote cabinets.
- 3. Voice notification system shall support facility public address paging.

- 4. Audible appliances shall produce a code 3 temporal tone for three cycles followed by a voice message that is repeated until the control panel is reset or silenced.
- 5. Automatic messages shall be broadcast through speakers throughout the building or facility, but not in stairs or elevators.
- 6. When using microphones, live messages shall be broadcast throughout a selected floor or floors or all call, including stairs and elevators.
- 7. Live voice message shall override automatic or recorded audible output through use of a microphone input at the main control panel or the remote cabinet.
- 8. Number of alarm channels shall be indicated for automatic, simultaneous transmission of different announcements to different zones or for manual transmission of announcements by use of the central-control microphone.
 - a. Allow sending an evacuation signal to selected zones and, at the same time, allow voice paging to the other zones selectively or in any combination.
 - b. Programmable tone and message sequence selection.
 - c. Standard digitally recorded messages for "Evacuation" and "All Clear."
- B. Audible Notification System: Comply with the requirements of NFPA 72 and ISO 7240-16 for Emergency Voice/Alarm Communications System, except where more stringent requirements are specified. Voice intelligibility shall be evaluated according to IEC 60268-16.

1. Amplifiers:

- a. Comply with UL 1711.
- b. Audio output shall be selectable for line level. Minimum amplifier output shall be 100 W rms.
- c. Capable of operating all speakers at the same time.
- d. Loss of operating power, supervisory power, or any other malfunction that could render the voice module inoperative shall automatically cause the code 3 temporal tone to take over all functions assigned to the failed unit in the event an alarm is activated.

2. Audible Notification Devices:

- a. Handheld push-to-talk microphone shall be supervised and a key shall be required to enable remote microphone use.
- b. Microprocessor shall actively integrate circuitry, field wiring, and digital coding necessary for the immediate and accurate rebroadcasting of stored voice data into appropriate amplifier input.

C. Voice/Tone Notification Appliances:

- 1. Comply with UL 1480.
- 2. Indoor Speakers for Voice Notification:
 - a. Construction: High-efficiency, sealed back; for maximum output at minimum power across a frequency range of 150 Hz to 10,000 Hz.
 - b. Standard: UL 1480.
 - c. Speaker Locations: Comply with NFPA 72, "Notification Appliances" and "Emergency Communications Systems" chapters.
 - d. High-Range Units: Rated 2 to 15 W.

- e. Low-Range Units: Rated 1 to 2 W.
- f. Mounting: Flush.
- g. Matching Transformers: Tap range matched to acoustical environment of speaker location.

3. Outdoor Speakers for Voice Notification:

- a. High-powered, 1600-W speaker arrays with acoustic performance and intelligibility features complying with NFPA 72.
- b. Control panel providing signal processing, amplification, gain control, battery backup, and antenna surge protection.
- c. Pole designed for the speaker array with 100 mph (160 km/h) wind load.

D. Text Displays:

- 1. Programmable, digital text displays having a minimum of 4-inch (100-mm) high letters for hearing-impaired occupants displaying the content of the voice message being played.
- 2. Capable of sending static, flashing, or scrolling messages to textual visible appliances.
- 3. Mass notification control panel shall interface with and control the programmable display controller to activate the proper message.
- 4. Textual visible notification shall be primary notification when it is the only method used to convey emergency MNS information to the general public or to specific individuals.

E. Visual Notification Appliances:

- 1. Strobes used solely for MNS shall be nominal white complying with UL 1971 and with the word "ALERT" factory printed on the trim.
- 2. Strobes used in combination systems where the same strobe is used for both MNS and fire notification shall be clear or nominal white complying with UL 1971.
- 3. Strobes used for MNS shall be synchronized.

F. Web Interfaces:

- 1. Capable of utilizing dedicated or existing IP networks to send alert messages. System shall be able to communicate with multiple modalities to include but not limited to pop-up alerts on personal computers, text messages to cellular phones, email messaging to IP-capable computers or devices, and recorded voice messages to voice-over-IP (VoIP) telephones and PCs.
- 2. Capable of activating, through a single interface, non-IP alerting systems such as wide-area alerting systems, fire alarm systems, PA systems, handheld radio systems, radio broadcast systems, personal pager systems, nurse call systems, and traditional dial-up telephone alerting systems.
- 3. Capable of accessing user screens via multiple web browsers such as MS Explorer, Mozilla Firefox, or Apple Safari.
- 4. Capable of sending live video stream from an IP-based camera or security camera system to any PC or video display.

G. Primary Power:

1. 24-V dc obtained from 120-V ac service and a power-supply module.

- a. Power supplies shall be sized to furnish a minimum of 125% of the total connected load in a worst-case condition.
- 2. Devices Powered by 24-V dc:
 - a. Control panels.
 - b. Notification appliances.
 - c. Text displays.
 - d. Trouble signals.
 - e. Supervisory signals.
 - f. Supervisory and digital alarm communicator transmitters.
 - g. Digital alarm radio transmitters.
- H. Secondary Power: 24-V dc supply system with batteries, automatic battery charger, and automatic transfer switch.
 - 1. Batteries: Sealed lead calcium.
 - 2. Batteries: Sealed, valve-regulated, recombinant lead acid.
 - 3. Batteries: Sealed lead calcium, valve-regulated, recombinant lead acid.
 - 4. Battery size shall be a minimum of 125% of the calculated requirement.
- I. Overvoltage and Surge Protection:
 - 1. Signaling Line Circuit Surge Protection: Protected against surges induced on any signaling line circuit located outdoors, and complying with IEEE C62.41.1 and IEEE C62.41.2.
 - 2. Protect cables and conductors that serve as communications links with surge protection devices installed at each end that meet the following waveforms:
 - a. 10 by 1000 mic.sec. waveform with a peak of 1500 V and a peak current of 60 A.
 - b. 8 by 20 mic.sec. waveform with a peak of 1000 V and a peak current of 500 A. Protection shall be provided at the equipment. Additional surge protectors, rated for the application, shall be installed on each circuit within 36 inches (900 mm) of the cable entrance to the building.
 - c. Fuses shall not be used for surge protection.
 - 3. Sensor Wiring Surge Protection: Digital and analog inputs and outputs shall be protected against surges induced by sensor wiring. The inputs and outputs shall be tested with the following waveforms:
 - a. 10 by 1000 mic.sec. waveform with a peak of 1500 V and a peak current of 60 A.
 - b. 8 by 20 mic.sec. waveform with a peak of 1000 V and a peak current of 500 A.
 - c. Fuses shall not be used for surge protection.

2.5 ACCESSORIES

A. Operator's Console:

1. Capable of initiating recorded messages and displays, and for delivering live voice messages.

- 2. Capacity for at least eight pre-recorded messages and the ability to automatically repeat pre-recorded messages.
- 3. Having a microphone for delivering live messages.

B. LOC:

- 1. LOC shall provide redundant control of the notification system control panel.
- 2. When an installation has more than one LOC, they shall be programmed to allow only one LOC to be available for messaging at a time. Once one LOC becomes active, all other LOC will have an indication that the system is busy (Amber Busy Light) and cannot be used at that time.
- 3. LOC shall be capable of being locked out or overridden from the Master Control Panel according to NFPA 72.
- C. Fire Alarm Interface: Adequate discrete outputs to temporarily deactivate the fire alarm audible notification appliances while delivering voice messages.

2.6 SOFTWARE

A. Control Units and Control Panels: PC-based equipment that is field programmable for control, notification, and supervisory functions; menu-driven program configuration; is password protected.

B. Operational Capability:

- 1. Loading and editing instructions and operating sequences as necessary.
- 2. Storing and downloading while the system is in operation.
- 3. A second set of operating software shall reside in control panels as backup in case primary operating software is corrupted.
- C. Memory: Software operations shall be stored in a nonvolatile programmable memory within the MNS control unit. Loss of primary and secondary power shall not erase nonvolatile programmable memory.

2.7 SOURCE QUALITY CONTROL

- A. Factory Tests: Test and inspect assembled equipment according to NEMA.
- B. MNS will be considered defective if it does not pass tests and inspections.
- C. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Comply with installation requirements in NFPA 70, NFPA 72, and NECA 1.

- B. Install remote amplification and control units in terminal cabinets. Power each remote amplification and control unit from a wiring riser specifically for that use or from a local emergency power panel located on the same floor as the remote unit.
- C. Equipment Installation: Install MNS cabinets with seismic rated anchors and mounting apparatus. Comply with requirements for seismic-restraint devices specified in Section 270548.16 "Seismic Controls for Communications Systems."
- D. Comply with requirements in Section 270513 "Conductors and Cables for Communications Systems" for cables and conductors for mass notification systems.
- E. Do not install cable through structural members or in contact with pipes, ducts, or other potentially damaging items.
- F. Do not install bruised, kinked, scored, deformed, or abraded cable. Do not splice cable between termination, tap, or junction points. Remove and discard cable if damaged during installation and replace it with new cable.
- G. Cold-Weather Installation: Bring cable to room temperature before dereeling. The use of heat lamps is prohibited.
- H. Weatherproof Equipment: For units that are mounted outdoors, in damp locations, or where exposed to weather, install consistent with requirements of weatherproof rating.
- I. Separation of Wires: Separate speaker-microphone, line-level, speaker-level, and power wiring runs. Install MNS wiring in separate raceways or, where exposed or in same enclosure, separate conductors at least 12 inches (300 mm) apart for speaker-microphone wiring and adjacent parallel power and telephone wiring. Separate other intercommunication equipment conductors as recommended by equipment manufacturer.

J. Connections:

- 1. Make all terminations on numbered terminal strips in terminal cabinets or equipment enclosures. No splices or butt joints will be accepted.
- 2. Terminate all conductors; no cable shall contain unterminated elements.
- 3. Crimp-on type spade lugs shall be used for terminations of stranded conductors to binder screw or stud type terminals. Spade lugs shall have upset legs and insulation sleeves sized for the conductors.
- K. Mount all devices and appliances to or in an approved electrical box.
- L. Install operating instruction placard on the interior of the mass notification control panel.
- M. Install operating instruction placard on the frame in a location acceptable to the Architect and observable from the mass notification control panel.

N. Cybersecurity:

1. Software:

a. Coordinate security requirements with IT department.

- b. Ensure that latest stable software release is installed and properly operating.
- c. Disable or change default passwords to password using a combination of uppercase and lower letters, numbers, and symbols at least 8 characters in length. Record passwords and turn over to party responsible for system operation and administration.

2. Hardware:

- a. Coordinate location and access requirements with IT department.
- b. Enable highest level of wireless encryption that is compatible with Owner's ICT network.
- c. Disable dual network connections.

3.2 GROUNDING

- A. Ground cable shields and equipment to eliminate shock hazard and to minimize ground loops, common-mode returns, noise pickup, cross talk, and other impairments.
- B. Signal Ground Terminal: Locate at main equipment cabinet. Connect to instrument ground system and isolate from power system and equipment grounding.

3.3 FIELD QUALITY CONTROL

- A. Prepare a written ATP for testing the MNS components and installation according to NFPA 72 and this Section. Demonstrate specified function of the system and verify the correct operation of all system components, circuits, and programming.
 - 1. Prepare a complete listing of device labels for alphanumeric annunciator displays prior to the ATP.
- B. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- C. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
 - 1. Take resistance, current, and voltage readings as work progresses.
 - 2. Signal Ground Test: Measure and report ground resistance at pubic address equipment signal ground. Comply with testing requirements specified in Section 280526 "Grounding and Bonding for Electronic Safety and Security."
 - 3. Verify that wiring for each device is terminated at the properly identified terminals.
 - 4. Test wiring runs for continuity, short circuits, and grounds before system is energized.
 - 5. All test equipment, instruments, tools, and labor required to conduct the system tests shall be made available by the installing Contractor.
 - 6. Schedule tests with at least seven days' advance notice of test performance.
 - 7. After installing MNS and after electrical circuitry has been energized, test for compliance with requirements.
 - 8. Perform the following tests in 50 percent of all zones and rooms.
 - 9. Perform indoor sound tests in a single test location in rooms less than 20 ft. (6 m) by 20 ft. (6 m). Tests shall be made on a 20 ft. (6 m) by 20 ft. (6 m) grid for larger rooms.

- 10. Sound test measurements shall be taken at a worst case location within each room or grid, not near any speaker.
- 11. Operational Test: Perform tests that include originating messages at microphone outlets, prerecorded messages, remote wired and non-wired inputs, telephone, cellular and other inputs. Verify proper routing and volume levels and that system is free of noise and distortion.
- 12. Signal-to-Noise Ratio Test: Measure signal-to-noise ratio of complete system at normal gain settings as follows:
 - a. Disconnect microphone at connector or jack closest to it and replace it in the circuit with a signal generator using a 1000-Hz signal. Measure signal-to-noise ratio.
 - b. Repeat test for each separately controlled zone of loudspeakers.
 - c. Minimum acceptance ratio is 50 dB.
- 13. Distortion Test: Measure distortion at normal gain settings and rated power. Feed signals at frequencies of 50, 200, 400, 1000, 3000, 8000, and 12,000 Hz into each preamplifier channel. For each frequency, measure distortion in the paging and all-call amplifier outputs. Maximum acceptable distortion at any frequency is 3 percent total harmonics.
- 14. Intelligibility Test: Test for intelligibility in accordance with ANSI/ASA S3.2.
- 15. Power Output Test: Measure electrical power output of each power amplifier at normal gain settings of 50, 1000, and 12,000 Hz. Maximum variation in power output at these frequencies shall not exceed plus or minus 1 dB. Outdoor sound levels where personnel may be present shall not exceed 120 dB when measured on the A-scale of a standard sound level meter at slow response. Sound levels shall not exceed 85 dB at any local microphone of the MNS under the same conditions.
- 16. System notification appliances shall be demonstrated as follows:
 - a. All alarm notification appliances actuate as programmed.
 - b. Audibility and visibility at required levels.
- 17. System indications shall be demonstrated as follows:
 - a. Correct message display at MNS control panel for each alarm input.
 - b. Correct message display at remote panels and annunciators for each alarm input.
 - c. Correct history logging for all system activity.
- 18. System off-site reporting functions shall be demonstrated as follows:
 - a. Correct zone transmitted for each alarm input.
 - b. Trouble signals received.
- D. MNS will be considered defective if it does not pass tests and inspections.
- E. Prepare test and inspection reports.

3.4 SOFTWARE SERVICE AGREEMENT

A. Technical Support: Beginning at Substantial Completion, service agreement shall include software support for two years.

- B. Upgrade Service: At Substantial Completion, update software to latest version. Install and program software upgrades that become available within two years from date of Substantial Completion. Upgrading software shall include operating system and new or revised licenses for using software.
 - 1. Upgrade Notice: At least 30 days to allow Owner to schedule and access the system and to upgrade computer equipment if necessary.

3.5 DEMONSTRATION

[Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain units.

1. Train a minimum of four employees of the Owner.

END OF SECTION 284700

SECTION 311000 - SITE CLEARING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Protecting existing vegetation to remain.
- 2. Removing existing vegetation.
- 3. Clearing and grubbing.
- 4. Stripping and stockpiling topsoil.
- 5. Removing above- and below-grade site improvements.
- 6. Disconnecting, capping, or sealing site utilities.
- 7. Temporary erosion and sedimentation control.

1.2 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.3 MATERIAL OWNERSHIP

A. Except for materials indicated to be stockpiled or otherwise remain Owner's property, cleared materials shall become Contractor's property and shall be removed from Project site.

1.4 FIELD CONDITIONS

- A. Traffic: Minimize interference with adjoining roads, streets, walks, and other adjacent occupied or used facilities during site-clearing operations.
 - 1. Do not close or obstruct streets, walks, or other adjacent occupied or used facilities without permission from Owner and authorities having jurisdiction.
 - 2. Provide alternate routes around closed or obstructed trafficways if required by Owner or authorities having jurisdiction.
- B. Utility Locator Service: Notify utility locator service for area where Project is located before site clearing.
- C. Do not commence site clearing operations until temporary erosion- and sedimentation-control and plant-protection measures are in place.
- D. Tree- and Plant-Protection Zones: Protect according to requirements in Section 015639 "Temporary Tree and Plant Protection."

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Satisfactory Soil Material: Requirements for satisfactory soil material are specified in Section 312000 "Earth Moving."
 - 1. Obtain approved borrow soil material off-site when satisfactory soil material is not available on-site.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Protect and maintain benchmarks and survey control points from disturbance during construction.
- B. Verify that trees, shrubs, and other vegetation to remain or to be relocated have been flagged and that protection zones have been identified and enclosed according to requirements in Section 015639 "Temporary Tree and Plant Protection."
- C. Protect existing site improvements to remain from damage during construction.
 - 1. Restore damaged improvements to their original condition, as acceptable to Owner.

3.2 TEMPORARY EROSION AND SEDIMENTATION CONTROL

- A. Provide temporary erosion- and sedimentation-control measures to prevent soil erosion and discharge of soil-bearing water runoff or airborne dust to adjacent properties and walkways, according to erosion- and sedimentation-control Drawings and requirements of authorities having jurisdiction.
- B. Verify that flows of water redirected from construction areas or generated by construction activity do not enter or cross protection zones.
- C. Inspect, maintain, and repair erosion- and sedimentation-control measures during construction until permanent vegetation has been established.
- D. Remove erosion and sedimentation controls and restore and stabilize areas disturbed during removal.

3.3 TREE AND PLANT PROTECTION

A. Protect trees and plants remaining on-site according to requirements in Section 015639 "Temporary Tree and Plant Protection."

B. Repair or replace trees, shrubs, and other vegetation indicated to remain or be relocated that are damaged by construction operations according to requirements in Section 015639 "Temporary Tree and Plant Protection."

3.4 EXISTING UTILITIES

- A. Locate, identify, disconnect, and seal or cap utilities indicated to be removed or abandoned in place.
 - 1. Arrange with utility companies to shut off indicated utilities.
- B. Interrupting Existing Utilities: Do not interrupt utilities serving facilities occupied by Owner or others, unless permitted under the following conditions and then only after arranging to provide temporary utility services according to requirements indicated:
 - 1. Notify Architect not less than two days in advance of proposed utility interruptions.
 - 2. Do not proceed with utility interruptions without Architect's written permission.
- C. Removal of underground utilities is included in earthwork sections; in applicable fire suppression, plumbing, HVAC, electrical, communications, electronic safety and security, and utilities sections; and in Section 024116 "Structure Demolition" and Section 024119 "Selective Demolition."

3.5 CLEARING AND GRUBBING

- A. Remove obstructions, trees, shrubs, and other vegetation to permit installation of new construction.
 - 1. Grind down stumps and remove roots larger than 3 inches in diameter, obstructions, and debris to a depth of 18 inches below exposed subgrade.
 - 2. Use only hand methods or air spade for grubbing within protection zones.
- B. Fill depressions caused by clearing and grubbing operations with satisfactory soil material unless further excavation or earthwork is indicated.
 - 1. Place fill material in horizontal layers not exceeding a loose depth of 8 inches, and compact each layer to a density equal to adjacent original ground.

3.6 TOPSOIL STRIPPING

- A. Remove sod and grass before stripping topsoil.
- B. Strip topsoil to depth of 6 inches in a manner to prevent intermingling with underlying subsoil or other waste materials.

C. Stockpile topsoil away from edge of excavations without intermixing with subsoil or other materials. Grade and shape stockpiles to drain surface water. Cover to prevent windblown dust and erosion by water.

3.7 SITE IMPROVEMENTS

A. Remove existing above- and below-grade improvements as indicated and necessary to facilitate new construction.

3.8 DISPOSAL OF SURPLUS AND WASTE MATERIALS

- A. Remove surplus soil material, unsuitable topsoil, obstructions, demolished materials, and waste materials including trash and debris, and legally dispose of them off Owner's property.
- B. Separate recyclable materials produced during site clearing from other nonrecyclable materials. Store or stockpile without intermixing with other materials, and transport them to recycling facilities. Do not interfere with other Project work.

END OF SECTION 311000

SECTION 312000 - EARTH MOVING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Excavating and filling for rough grading the Site.
- 2. Preparing subgrades for slabs-on-grade, walks, pavements, turf and grasses, and plants.
- 3. Excavating and backfilling for buildings and structures.
- 4. Drainage course for concrete slabs-on-grade.
- 5. Subbase course for concrete walks and pavements.
- 6. Subbase course and base course for asphalt paving.
- 7. Subsurface drainage backfill for walls and trenches.
- 8. Excavating and backfilling trenches for utilities and pits for buried utility structures.

B. Related Requirements:

- 1. Section 013200 "Construction Progress Documentation" and Section 013233 "Photographic Documentation" for recording preexcavation and earth-moving progress.
- 2. Section 311000 "Site Clearing" for site stripping, grubbing, stripping and stockpiling topsoil, and removal of above- and below-grade improvements and utilities.
- 3. Section 329200 "Turf and Grasses" for finish grading in turf and grass areas, including preparing and placing planting soil for turf areas.
- 4. Section 329300 "Plants" for finish grading in planting areas and tree and shrub pit excavation and planting.

1.2 DEFINITIONS

- A. Backfill: Soil material or controlled low-strength material used to fill an excavation.
 - 1. Initial Backfill: Backfill placed beside and over pipe in a trench, including haunches to support sides of pipe.
 - 2. Final Backfill: Backfill placed over initial backfill to fill a trench.
- B. Base Course: Aggregate layer placed between the subbase course and hot-mix asphalt paving.
- C. Bedding Course: Aggregate layer placed over the excavated subgrade in a trench before laying pipe.
- D. Borrow Soil: Satisfactory soil imported from off-site for use as fill or backfill.
- E. Drainage Course: Aggregate layer supporting the slab-on-grade that also minimizes upward capillary flow of pore water.

- F. Excavation: Removal of material encountered above subgrade elevations and to lines and dimensions indicated.
 - 1. Authorized Additional Excavation: Excavation below subgrade elevations or beyond indicated lines and dimensions as directed by Engineer. Authorized additional excavation and replacement material will be paid for according to Contract provisions for unit prices.
 - 2. Bulk Excavation: Excavation more than 8 feet in width and more than 30 feet in length.
 - 3. Unauthorized Excavation: Excavation below subgrade elevations or beyond indicated lines and dimensions without direction by Engineer. Unauthorized excavation, as well as remedial work directed by Engineer, shall be without additional compensation.
- G. Fill: Soil materials used to raise existing grades.
- H. Rock: Rock material in beds, ledges, unstratified masses, conglomerate deposits, and boulders of rock material that exceed 1 cubic yard for bulk excavation or 1/2 cubic yard for footing, trench, and pit excavation that cannot be removed by rock-excavating equipment equivalent to the following in size and performance ratings, without systematic drilling, ram hammering, ripping, or blasting, when permitted:
 - 1. Equipment for Footing, Trench, and Pit Excavation: Late-model, track-mounted hydraulic excavator; equipped with a 42-inch-maximum-width, short-tip-radius rock bucket; rated at not less than 138-hp flywheel power with bucket-curling force of not less than 28,700 lbf and stick-crowd force of not less than 18,400 lbf with extra-long reach boom.
 - 2. Equipment for Bulk Excavation: Late-model, track-mounted loader; rated at not less than 230-hp flywheel power and developing a minimum of 47,992-lbf breakout force with a general-purpose bare bucket.
- I. Structures: Buildings, footings, foundations, retaining walls, slabs, tanks, curbs, mechanical and electrical appurtenances, or other man-made stationary features constructed above or below the ground surface.
- J. Subbase Course: Aggregate layer placed between the subgrade and base course for hot-mix asphalt pavement, or aggregate layer placed between the subgrade and a cement concrete pavement or a cement concrete or hot-mix asphalt walk.
- K. Subgrade: Uppermost surface of an excavation or the top surface of a fill or backfill immediately below subbase, drainage fill, drainage course, or topsoil materials.
- L. Utilities: On-site underground pipes, conduits, ducts, and cables as well as underground services within buildings.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of the following manufactured products required:
 - 1. Controlled low-strength material, including design mixture.
 - 2. Warning tapes.
- B. Samples for Verification: For the following products, in sizes indicated below:
 - 1. Warning Tape: 12 inches long; of each color.

1.4 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For qualified testing agency.
- B. Material Test Reports: For each on-site and borrow soil material proposed for fill and backfill as follows:
 - 1. Classification according to ASTM D2487.
 - 2. Laboratory compaction curve according to ASTM D698.
- C. Preexcavation Photographs or Videotape: Show existing conditions of adjoining construction and site improvements, including finish surfaces that might be misconstrued as damage caused by earth-moving operations. Submit before earth moving begins.

1.5 FIELD CONDITIONS

- A. Traffic: Minimize interference with adjoining roads, streets, walks, and other adjacent occupied or used facilities during earth-moving operations.
 - 1. Do not close or obstruct streets, walks, or other adjacent occupied or used facilities without permission from Owner and authorities having jurisdiction.
 - 2. Provide alternate routes around closed or obstructed traffic ways if required by Owner or authorities having jurisdiction.
- B. Utility Locator Service: Notify Georgia 811 before beginning earth-moving operations.
- C. Do not commence earth-moving operations until temporary site fencing and erosion- and sedimentation-control measures specified in the Project Plans, Section 015000 "Temporary Facilities and Controls" and Section 311000 "Site Clearing" are in place.
- D. Do not commence earth-moving operations until plant-protection measures specified in Section 015639 "Temporary Tree and Plant Protection" are in place.
- E. The following practices are prohibited within protection zones:
 - 1. Storage of construction materials, debris, or excavated material.
 - 2. Parking vehicles or equipment.
 - 3. Foot traffic.
 - 4. Erection of sheds or structures.
 - 5. Impoundment of water.
 - 6. Excavation or other digging unless otherwise indicated.
 - 7. Attachment of signs to or wrapping materials around trees or plants unless otherwise indicated.
- F. Do not direct vehicle or equipment exhaust towards protection zones.
- G. Prohibit heat sources, flames, ignition sources, and smoking within or near protection zones.

PART 2 - PRODUCTS

2.1 SOIL MATERIALS

- A. General: Provide borrow soil materials when sufficient satisfactory soil materials are not available from excavations.
- B. Satisfactory Soils: Soil Classification Groups GW, GP, GM, GC, SW, SP, SM, SC, CL, and ML according to ASTM D2487, or a combination of these groups; free of rock or gravel larger than 3 inches in any dimension, debris, waste, frozen materials, vegetation, and other deleterious matter.
 - 1. Liquid Limit: 45.
 - 2. Plasticity Index: 25.
- C. Unsatisfactory Soils: Soil Classification Groups OL, CH, MH, OH, and PT according to ASTM D2487, or a combination of these groups.
 - 1. Unsatisfactory soils also include satisfactory soils not maintained within 2 percent of optimum moisture content at time of compaction.
- D. Subbase Material: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D2940/D2940M; with at least 90 percent passing a 1-1/2-inch sieve and not more than 12 percent passing a No. 200 sieve.
- E. Base Course: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D2940/D2940M; with at least 95 percent passing a 1-1/2-inch sieve and not more than 8 percent passing a No. 200 sieve.
- F. Engineered Fill: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D2940/D2940M; with at least 90 percent passing a 1-1/2-inch sieve and not more than 12 percent passing a No. 200 sieve.
- G. Bedding Course: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D2940/D2940M; except with 100 percent passing a 1-inch sieve and not more than 8 percent passing a No. 200 sieve.
- H. Drainage Course: Narrowly graded mixture of washed crushed stone, or crushed or uncrushed gravel; ASTM D448; coarse-aggregate grading Size 57; with 100 percent passing a 1-1/2-inch sieve and zero to 5 percent passing a No. 8 sieve.
- I. Filter Material: Narrowly graded mixture of natural or crushed gravel, or crushed stone and natural sand; ASTM D448; coarse-aggregate grading Size 67; with 100 percent passing a 1-inch sieve and zero to 5 percent passing a No. 4 sieve.
- J. Sand: ASTM C33/C33M; fine aggregate.
- K. Impervious Fill: Clayey gravel and sand mixture capable of compacting to a dense state.

2.2 CONTROLLED LOW-STRENGTH MATERIAL

- A. Controlled Low-Strength Material: Self-compacting, flowable concrete material produced from the following:
 - 1. Portland Cement: ASTM C150/C150M, Type I Type II or Type III.
 - 2. Fly Ash: ASTM C618, Class C or F.
 - 3. Normal-Weight Aggregate: ASTM C33/C33M, 3/8-inch nominal maximum aggregate size.
 - 4. Foaming Agent: ASTM C869/C869M.
 - 5. Water: ASTM C94/C94M.
 - 6. Air-Entraining Admixture: ASTM C260/C260M.
- B. Produce conventional-weight, controlled low-strength material with 80-psi compressive strength when tested according to ASTM C495/C495M.

2.3 ACCESSORIES

- A. Warning Tape: Acid- and alkali-resistant, polyethylene film warning tape manufactured for marking and identifying underground utilities, 6 inches wide and 4 mils thick, continuously inscribed with a description of the utility; colored as follows:
 - 1. Red: Electric.
 - 2. Yellow: Gas, oil, steam, and dangerous materials.
 - 3. Orange: Telephone and other communications.
 - 4. Blue: Water systems.
 - 5. Green: Sewer systems.
- B. Detectable Warning Tape: Acid- and alkali-resistant, polyethylene film warning tape manufactured for marking and identifying underground utilities, a minimum of 6 inches wide and 4 mils thick, continuously inscribed with a description of the utility, with metallic core encased in a protective jacket for corrosion protection, detectable by metal detector when tape is buried up to 30 inches deep; colored as follows:
 - 1. Red: Electric.
 - 2. Yellow: Gas, oil, steam, and dangerous materials.
 - 3. Orange: Telephone and other communications.
 - 4. Blue: Water systems.
 - 5. Green: Sewer systems.

PART 3 - EXECUTION

3.1 PREPARATION

A. Protect structures, utilities, sidewalks, pavements, and other facilities from damage caused by settlement, lateral movement, undermining, washout, and other hazards created by earth-moving operations.

- B. Protect and maintain erosion and sedimentation controls during earth-moving operations.
- C. Protect subgrades and foundation soils from freezing temperatures and frost. Remove temporary protection before placing subsequent materials.

3.2 DEWATERING

- A. Provide dewatering system of sufficient scope, size, and capacity to control hydrostatic pressures and to lower, control, remove, and dispose of ground water and permit excavation and construction to proceed on dry, stable subgrades.
- B. Prevent surface water and ground water from entering excavations, from ponding on prepared subgrades, and from flooding Project site and surrounding area.
- C. Protect subgrades from softening, undermining, washout, and damage by rain or water accumulation.
 - 1. Reroute surface water runoff away from excavated areas. Do not allow water to accumulate in excavations. Do not use excavated trenches as temporary drainage ditches.
- D. Dispose of water removed by dewatering in a manner that avoids endangering public health, property, and portions of work under construction or completed. Dispose of water and sediment in a manner that avoids inconvenience to others.

3.3 EXPLOSIVES

A. Explosives: Do not use explosives.

3.4 EXCAVATION, GENERAL

- A. Unclassified Excavation: Excavate to subgrade elevations regardless of the character of surface and subsurface conditions encountered. Unclassified excavated materials may include rock, soil materials, and obstructions. No changes in the Contract Sum or the Contract Time will be authorized for rock excavation or removal of obstructions.
 - 1. If excavated materials intended for fill and backfill include unsatisfactory soil materials and rock, replace with satisfactory soil materials.
 - 2. Remove rock to lines and grades indicated to permit installation of permanent construction without exceeding the following dimensions:
 - a. 24 inches outside of concrete forms other than at footings.
 - b. 12 inches outside of concrete forms at footings.
 - c. 6 inches outside of minimum required dimensions of concrete cast against grade.
 - d. Outside dimensions of concrete walls indicated to be cast against rock without forms or exterior waterproofing treatments.
 - e. 6 inches beneath bottom of concrete slabs-on-grade.
 - f. 6 inches beneath pipe in trenches and the greater of 24 inches wider than pipe or 42 inches wide.

3.5 EXCAVATION FOR STRUCTURES

- A. Excavate to indicated elevations and dimensions within a tolerance of plus or minus 1 inch. If applicable, extend excavations a sufficient distance from structures for placing and removing concrete formwork, for installing services and other construction, and for inspections.
 - 1. Excavations for Footings and Foundations: Do not disturb bottom of excavation. Excavate by hand to final grade just before placing concrete reinforcement. Trim bottoms to required lines and grades to leave solid base to receive other work.
 - 2. Pile Foundations: Stop excavations 6 to 12 inches above bottom of pile cap before piles are placed. After piles have been driven, remove loose and displaced material. Excavate to final grade, leaving solid base to receive concrete pile caps.
 - 3. Excavation for Underground Tanks, Basins, and Mechanical or Electrical Utility Structures: Excavate to elevations and dimensions indicated within a tolerance of plus or minus 1 inch. Do not disturb bottom of excavations intended as bearing surfaces.
- B. Excavations at Edges of Tree- and Plant-Protection Zones:
 - 1. Excavate by hand or with an air spade to indicated lines, cross sections, elevations, and subgrades. If excavating by hand, use narrow-tine spading forks to comb soil and expose roots. Do not break, tear, or chop exposed roots. Do not use mechanical equipment that rips, tears, or pulls roots.
 - 2. Cut and protect roots according to requirements in Section 015639 "Temporary Tree and Plant Protection."

3.6 EXCAVATION FOR WALKS AND PAVEMENTS

A. Excavate surfaces under walks and pavements to indicated lines, cross sections, elevations, and subgrades.

3.7 EXCAVATION FOR UTILITY TRENCHES

- A. Excavate trenches to indicated gradients, lines, depths, and elevations.
 - 1. Beyond building perimeter, excavate trenches to allow installation of top of pipe below frost line.
- B. Excavate trenches to uniform widths to provide the following clearance on each side of pipe or conduit. Excavate trench walls vertically from trench bottom to 12 inches higher than top of pipe or conduit unless otherwise indicated.
 - 1. Clearance: 12 inches each side of pipe or conduit.
- C. Trench Bottoms: Excavate and shape trench bottoms to provide uniform bearing and support of pipes and conduit. Shape subgrade to provide continuous support for bells, joints, and barrels of pipes and for joints, fittings, and bodies of conduits. Remove projecting stones and sharp objects along trench subgrade.

- 1. For pipes and conduit less than 6 inches in nominal diameter, hand-excavate trench bottoms and support pipe and conduit on an undisturbed subgrade.
- 2. For pipes and conduit 6 inches or larger in nominal diameter, shape bottom of trench to support bottom 90 degrees of pipe or conduit circumference. Fill depressions with tamped sand backfill.
- 3. For flat-bottomed, multiple-duct conduit units, hand-excavate trench bottoms and support conduit on an undisturbed subgrade.
- 4. Excavate trenches 6 inches deeper than elevation required in rock or other unyielding bearing material to allow for bedding course.
- D. Trench Bottoms: Excavate trenches 4 inches deeper than bottom of pipe and conduit elevations to allow for bedding course. Hand-excavate deeper for bells of pipe.
 - 1. Excavate trenches 6 inches deeper than elevation required in rock or other unyielding bearing material to allow for bedding course.

E. Trenches in Tree- and Plant-Protection Zones:

- 1. Hand-excavate to indicated lines, cross sections, elevations, and subgrades. Use narrow-tine spading forks to comb soil and expose roots. Do not break, tear, or chop exposed roots. Do not use mechanical equipment that rips, tears, or pulls roots.
- 2. Do not cut main lateral roots or taproots; cut only smaller roots that interfere with installation of utilities.
- 3. Cut and protect roots according to requirements in Section 015639 "Temporary Tree and Plant Protection."

3.8 SUBGRADE INSPECTION

- A. Notify Engineer when excavations have reached required subgrade.
- B. If Engineer determines that unsatisfactory soil is present, continue excavation and replace with compacted backfill or fill material as directed.
- C. Proof-roll subgrade below the building slabs, pavements and areas that are designated to receive fill with a pneumatic-tired and half-loaded 10-wheel, tandem-axle dump truck weighing not less than 15 tons to identify soft pockets and areas of excess yielding. Do not proof-roll wet or saturated subgrades.
 - 1. Completely proof-roll subgrade in one direction, repeating proof-rolling in direction perpendicular to first direction. Limit vehicle speed to 3 mph.
 - 2. Excavate soft spots, unsatisfactory soils, and areas of excessive pumping or rutting, as determined by Engineer and replace with compacted backfill or fill as directed.
- D. Authorized additional excavation and replacement material will be paid for according to Contract provisions for unit prices.
- E. Reconstruct subgrades damaged by freezing temperatures, frost, rain, accumulated water, or construction activities, as directed by Engineer, without additional compensation.

3.9 UNAUTHORIZED EXCAVATION

- A. Fill unauthorized excavation under foundations or wall footings by extending bottom elevation of concrete foundation or footing to excavation bottom, without altering top elevation. Lean concrete fill, with 28-day compressive strength of 2500 psi, may be used when approved by Engineer.
 - 1. Fill unauthorized excavations under other construction, pipe, or conduit as directed by Engineer.

3.10 STORAGE OF SOIL MATERIALS

- A. Stockpile borrow soil materials and excavated satisfactory soil materials without intermixing. Place, grade, and shape stockpiles to drain surface water. Cover to prevent windblown dust.
 - 1. Stockpile soil materials away from edge of excavations. Do not store within drip line of remaining trees.

3.11 BACKFILL

- A. Place and compact backfill in excavations promptly, but not before completing the following:
 - 1. Construction below finish grade including, where applicable, subdrainage, dampproofing, waterproofing, and perimeter insulation.
 - 2. Surveying locations of underground utilities for Record Documents.
 - 3. Testing and inspecting underground utilities.
 - 4. Removing concrete formwork.
 - 5. Removing trash and debris.
 - 6. Removing temporary shoring, bracing, and sheeting.
 - 7. Installing permanent or temporary horizontal bracing on horizontally supported walls.
- B. Place backfill on subgrades free of mud, frost, snow, or ice.

3.12 UTILITY TRENCH BACKFILL

- A. Place backfill on subgrades free of mud, frost, snow, or ice.
- B. Place and compact bedding course on trench bottoms and where indicated. Shape bedding course to provide continuous support for bells, joints, and barrels of pipes and for joints, fittings, and bodies of conduits.
- C. Trenches under Footings: Backfill trenches excavated under footings and within 18 inches of bottom of footings with satisfactory soil; fill with concrete to elevation of bottom of footings. Concrete is specified in Section 033000 "Cast-in-Place Concrete."
- D. Trenches under Roadways: Backfill material shall be placed in uniform six-inch layers, loose measure and compacted to 95% of the maximum dry density as determined by ASTM D 698, to within two feet of the top of the trench. The top 24 inches shall be compacted to 98% density of

the same specification. Moisture content at the time of compaction shall be $\pm 2\%$ of optimum moisture content (OMC) as determined by ASTM D698, Standard Proctor.

E. Backfill voids with satisfactory soil while removing shoring and bracing.

F. Initial Backfill:

- 1. Soil Backfill: Place and compact initial backfill of satisfactory soil, free of particles larger than 1 inch in any dimension, to a height of 12 inches over the pipe or conduit.
 - a. Carefully compact initial backfill under pipe haunches and compact evenly up on both sides and along the full length of piping or conduit to avoid damage or displacement of piping or conduit. Coordinate backfilling with utilities testing.
- 2. Controlled Low-Strength Material: Place initial backfill of controlled low-strength material to a height of 12 inches over the pipe or conduit. Coordinate backfilling with utilities testing.

G. Final Backfill:

- 1. Soil Backfill: Backfill material shall be placed in uniform 8 inch layers, loose measure and compacted to 98% of the Standard Proctor maximum dry density as determined by ASTM D 698 within the top two feet of the subgrade surface, and 95% of Standard Proctor below the top two feet. Moisture content at the time of compaction shall be ±2% of optimum moisture content (OMC) as determined by ASTM D698, Standard Proctor.
- 2. Controlled Low-Strength Material: Place final backfill of controlled low-strength material to final subgrade elevation.
- H. Warning Tape: Install warning tape directly above utilities, 12 inches below finished grade, except 6 inches below subgrade under pavements and slabs.

3.13 SOIL FILL

- A. Plow, scarify, bench, or break up sloped surfaces steeper than 1 vertical to 4 horizontal so fill material will bond with existing material.
- B. Place and compact fill material in layers to required elevations as follows:
 - 1. Under grass and planted areas, use satisfactory soil material.
 - 2. Under walks and pavements, use satisfactory soil material.
 - 3. Under steps and ramps, use engineered fill.
 - 4. Under building slabs, use engineered fill.
 - 5. Under footings and foundations, use engineered fill.
- C. Place soil fill on subgrades free of mud, frost, snow, or ice.

3.14 SOIL MOISTURE CONTROL

- A. Uniformly moisten or aerate subgrade and each subsequent fill or backfill soil layer before compaction to within 2 percent of optimum moisture content.
 - 1. Do not place backfill or fill soil material on surfaces that are muddy, frozen, or contain frost or ice.
 - 2. Remove and replace, or scarify and air dry, otherwise satisfactory soil material that exceeds optimum moisture content by 2 percent and is too wet to compact to specified dry unit weight.

3.15 COMPACTION OF SOIL BACKFILLS AND FILLS

- A. Place backfill and fill soil materials in layers not more than 8 inches in loose depth for material compacted by heavy compaction equipment and not more than 4 inches in loose depth for material compacted by hand-operated tampers.
- B. Place backfill and fill soil materials evenly on all sides of structures to required elevations and uniformly along the full length of each structure.
- C. Compact soil materials to not less than the following percentages of maximum dry unit weight according to ASTM D698:
 - 1. Under structures, building slabs, steps, and pavements, scarify and recompact top 12 inches of existing subgrade and each layer of backfill or fill soil material at 98% of the Standard Proctor maximum dry density as determined by ASTM D 698 within the top two feet of the subgrade surface, and 95% of Standard Proctor below the top two feet.
 - 2. Under walkways, scarify and recompact top 6 inches below subgrade and compact each layer of backfill or fill soil material at 98% of the Standard Proctor maximum dry density as determined by ASTM D 698 within the top two feet of the subgrade surface, and 95% of Standard Proctor below the top two feet.
 - 3. Under turf or unpaved areas, scarify and recompact top 6 inches below subgrade and compact each layer of backfill or fill soil material at 85 percent.
 - 4. For utility trenches, refer to Article 3.12 above.

3.16 GRADING

- A. General: Uniformly grade areas to a smooth surface, free of irregular surface changes. Comply with compaction requirements and grade to cross sections, lines, and elevations indicated.
 - 1. Provide a smooth transition between adjacent existing grades and new grades.
 - 2. Cut out soft spots, fill low spots, and trim high spots to comply with required surface tolerances.
- B. Site Rough Grading: Slope grades to direct water away from buildings and to prevent ponding. Finish subgrades to elevations required to achieve indicated finish elevations, within the following subgrade tolerances:
 - 1. Turf or Unpaved Areas: Plus or minus 1 inch.

- 2. Walks: Plus \(\frac{1}{4} \) inch or minus \(\frac{1}{2} \) inch.
- 3. Payements: Plus \(\frac{1}{4} \) inch or minus \(\frac{1}{2} \) inch.
- C. Grading inside Building Lines: Finish subgrade to a tolerance of 1/2 inch when tested with a 10-foot straightedge.

3.17 SUBBASE AND BASE COURSES UNDER PAVEMENTS AND WALKS

- A. Place subbase course and base course on subgrades free of mud, frost, snow, or ice.
- B. On prepared subgrade, place subbase course and base course under pavements and walks as follows:
 - 1. Place base course material over subbase course under hot-mix asphalt pavement.
 - 2. Shape subbase course and base course to required crown elevations and cross-slope grades.
 - 3. Place subbase course and base course 6 inches or less in compacted thickness in a single layer.
 - 4. Place subbase course and base course that exceeds 6 inches in compacted thickness in layers of equal thickness, with no compacted layer more than 6 inches thick or less than 3 inches thick.
 - 5. Compact subbase course and base course at optimum moisture content to required grades, lines, cross sections, and thickness to not less than 100 percent of maximum dry unit weight according to ASTM D1557, Modified Proctor.

3.18 FIELD QUALITY CONTROL

- A. Special Inspections: Owner will engage a qualified special inspector to perform the following special inspections:
 - 1. Determine prior to placement of fill that site has been prepared in compliance with requirements.
 - 2. Determine that fill material classification and maximum lift thickness comply with requirements.
 - 3. Determine, during placement and compaction, that in-place density of compacted fill complies with requirements.
- B. Testing Agency: Owner will engage a qualified geotechnical engineering testing agency to perform tests and inspections.
- C. Allow testing agency to inspect and test subgrades and each fill or backfill layer. Proceed with subsequent earth moving only after test results for previously completed work comply with requirements.
- D. Footing Subgrade: At footing subgrades, at least one test of each soil stratum will be performed to verify design bearing capacities. Subsequent verification and approval of other footing subgrades may be based on a visual comparison of subgrade with tested subgrade when approved by Engineer.

- E. Testing agency will test compaction of soils in place according to ASTM D1556, ASTM D2167, ASTM D2937, and ASTM D6938, as applicable. Tests will be performed at the following locations and frequencies:
 - 1. Paved and Building Slab Areas: At subgrade and at each compacted fill and backfill layer, at least one test for every 2000 sq. ft. or less of paved area or building slab but in no case fewer than three tests.
 - 2. Foundation Wall Backfill: At each compacted backfill layer, at least one test for every 100 feet or less of wall length but no fewer than two tests.
 - 3. Trench Backfill: At each compacted initial and final backfill layer, at least one test for every 100 feet or less of trench length but no fewer than two tests.
- F. When testing agency reports that subgrades, fills, or backfills have not achieved degree of compaction specified, scarify and moisten or aerate, or remove and replace soil materials to depth required; recompact and retest until specified compaction is obtained.

3.19 PROTECTION

- A. Protecting Graded Areas: Protect newly graded areas from traffic, freezing, and erosion. Keep free of trash and debris.
- B. Repair and reestablish grades to specified tolerances where completed or partially completed surfaces become eroded, rutted, settled, or where they lose compaction due to subsequent construction operations or weather conditions.
 - 1. Scarify or remove and replace soil material to depth as directed by Engineer; reshape and recompact.
- C. Where settling occurs before Project correction period elapses, remove finished surfacing, backfill with additional soil material, compact, and reconstruct surfacing.
 - 1. Restore appearance, quality, and condition of finished surfacing to match adjacent work, and eliminate evidence of restoration to greatest extent possible.

3.20 DISPOSAL OF SURPLUS AND WASTE MATERIALS

- A. Remove surplus satisfactory soil and waste materials, including unsatisfactory soil, trash, and debris, and legally dispose of them off Owner's property.
- B. Transport surplus satisfactory soil to designated storage areas on Owner's property. Stockpile or spread soil as directed by Engineer.
 - 1. Remove waste materials, including unsatisfactory soil, trash, and debris, and legally dispose of them off Owner's property.

END OF SECTION 312000

SECTION 312301 - EXCAVATING, BACKFILLING, AND COMPACTING FOR STRUCTURES

PART 1 - GENERAL

1.1 SECTION INCLUDES

A. Section includes the excavation, backfilling and compacting required for the structures shown in the Contract Drawings.

1.2 RELATED SECTIONS

- A. Section 013330 Structural Submittals.
- B. Section 014525 Structural Testing/Inspection Agency Services.

1.3 REFERENCES

- A. ASTM D422 Standard Test Method for Particle-Size Analysis of Soils.
- B. ASTM D698 Test Method for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft³).
- C. ASTM D1556 Standard Test Method for Density and Unit Weight of Soil in Place by the Sand-Cone Method.
- D. ASTM D3017 Standard Test Method for Water Content of Soil and Rock in Place by Nuclear Methods (Shallow Depth).
- E. ASTM D4318 Standard Test Method for Liquid Limit, Plastic Limit, and Plasticity Index of Soils.

1.4 DEFINITIONS

- A. Granular subbase: Granular fill directly beneath slabs-on-grade.
- B. Backfill: Fill immediately behind foundation elements or retaining walls.
- C. Structural fill: Fill under the structure other than the granular subbase.

1.5 SUBMITTALS

A. Upon request, submit soil test reports performed by the Structural Testing/Inspection Agency.

1.6 QUALITY ASSURANCE

- A. Structural Testing/Inspection Agency shall perform the following quality related items:
 - 1. Verify structural fill complies with specifications.
 - 2. Determine particle size, liquid limit, plastic limit, plasticity index and maximum density of each type of soil.
 - 3. Observe proofrolling.
 - 4. Perform a sufficient number of field density tests to verify compaction of structural fill. As a minimum, perform one test per lift for every 2500 square feet of fill placed.
 - 5. Verify foundation bearing capacity.
 - 6. Verify quantities of material removed and quantities of material placed where Unit Prices are involved.

1.7 SURVEY

A. Prior to construction, have structure location staked and certified by a licensed surveyor. If discrepancies between actual lines and elevations exist, notify Design Professional before proceeding with layout of structure.

1.8 SUBSURFACE CONDITIONS

- A. Copies of a subsurface investigation of the site will be made available upon request. The data is not intended as a representation or warranty of the continuity of such conditions. Owner will not be responsible for interpretation or conclusions drawn therefrom by the Contractor. The data is made available for the convenience of the Contractor and is not guaranteed to represent all conditions that may be encountered.
- B. Contractor may examine the site and make his own subsurface explorations at no additional cost to the Owner. Notify Owner prior to making any subsurface explorations.

1.9 EXISTING UTILITIES

- A. Locate existing underground utilities by careful hand excavation. If utilities are to remain in place, provide protection from damage during construction operations.
- B. Cooperate with Owner and utility companies in keeping respective services and facilities in operation. Do not interrupt existing utility service facilities occupied and used by Owner or others, unless written permission is given by the Design Professional and then only after temporary utility services have been provided.
- C. Should uncharted or incorrectly charted piping or other utilities be encountered during excavation, consult the Design Professional immediately for directions.
- D. Repair damaged utilities to satisfaction of utility owner.

1.10 NOTICE

A. Notify the Design Professional 48 hours prior to the beginning of any excavation work.

PART 2 - PRODUCTS

2.1 GRANULAR SUBBASE

A. Granular subbase shall be sound and free-draining, such as sand, gravel or crushed stone with less than 10% passing the 200 sieve. Maximum diameter shall be 1-1/2 inches.

2.2 BACKFILL

A. Backfill shall meet the requirements of the granular subbase.

2.3 STRUCTURAL FILL

- A. Structural fill shall have a plasticity index less than 25, and a maximum particle size of four inches with not more than 30 percent greater than 34-inch.
- B. Structural fill shall be free of organics, debris and deleterious materials.

PART 3 - EXECUTION

3.1 STRIPPING

- A. Strip vegetation, topsoil, roots, and other unsuitable material to a depth determined by the Structural Testing/Inspection Agency but not less than one foot, nor less than 10 feet outside the perimeter of the structure.
- B. Stockpile sufficient amounts of topsoil as required to cover areas to be landscaped with a minimum of six inches of material.

3.2 EXCAVATION

- A. Excavation shall be considered unclassified.
- B. Perform excavation to the depths and limits on the Drawings and as specified herein.
- C. Do not excavate to full depth when there is probability of frost forming or ground freezing in excavation before concrete is placed.

- D. Ground water may be encountered during the foundation excavation. Provide a system for controlling the ground water to a level at least three feet below the lowest point of the excavation.
- E. Keep excavations dry by sloping ground away from holes and trenches.

3.3 PROOFROLLING

- A. After stripping or excavation and before any fill placement, fill areas shall be proofrolled with a minimum of two coverages of a loaded dump truck or scraper in each of two perpendicular directions.
- B. Areas found to be soft or pumping shall have the soft soil removed and replaced with structural fill and compacted as outlined herein.

3.4 PLACEMENT OF STRUCTURAL FILL

- A. Do not place structural fill on subgrade that contains frost, mud or is frozen.
- B. Structural fill shall be placed and compacted in 8 -inch thick loose layers.
- C. Compact structural fill to 98 percent of the maximum dry density as measured by Standard Proctor, ASTM D698, with water content within +/-3 percent of the optimum moisture content.

3.5 PLACEMENT OF GRANULAR SUBBASE

- A. Do not place granular subbase on subgrade that contains frost, mud or is frozen.
- B. Compact granular subbase to 95 percent of the maximum dry density as measured by Standard Proctor, ASTM D698, with the water content within +/-3 percent of the optimum moisture content.

3.6 PLACEMENT OF BACKFILL

- A. Backfill behind wall shall be placed in layers of six inches.
- B. Compact backfill behind walls to 95 percent of the maximum dry density as measured by Standard Proctor, ASTM D698, with water content within +/-3 percent of the optimum moisture content.

3.7 CLEAN UP

A. Remove excess excavated materials from job site and upon completion leave site in clean condition.

END OF SECTION 312301

SECTION 313116 - TERMITE CONTROL

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Soil treatment.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components, and profiles for termite control products.
 - 2. Include the EPA-Registered Label for termiticide products.

1.4 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For qualified Installer.
- B. Product Certificates: For each type of termite control product.
- C. Soil Treatment Application Report: After application of termiticide is completed, submit report for Owner's records and include the following:
 - 1. Date and time of application.
 - 2. Moisture content of soil before application.
 - 3. Termiticide brand name and manufacturer.
 - 4. Quantity of undiluted termiticide used.
 - 5. Dilutions, methods, volumes used, and rates of application.
 - 6. Areas of application.
 - 7. Water source for application.
- D. Sample Warranties: For special warranties.

1.5 QUALITY ASSURANCE

A. Installer Qualifications: A specialist who is licensed according to regulations of authorities having jurisdiction to apply termite control treatment and products in jurisdiction where Project is located.

1.6 FIELD CONDITIONS

A. Soil Treatment:

- 1. Environmental Limitations: To ensure penetration, do not treat soil that is water saturated or frozen. Do not treat soil while precipitation is occurring. Comply with requirements of the EPA-Registered Label and requirements of authorities having jurisdiction.
- 2. Related Work: Coordinate soil treatment application with excavating, filling, grading, and concreting operations. Treat soil under footings, grade beams, and ground-supported slabs before construction.

1.7 WARRANTY

- A. Soil Treatment Special Warranty: Manufacturer's standard form, signed by Applicator and Contractor, certifying that termite control work consisting of applied soil termiticide treatment will prevent infestation of subterranean termites, including Formosan termites (Coptotermes formosanus). If subterranean termite activity or damage is discovered during warranty period, re-treat soil and repair or replace damage caused by termite infestation.
 - 1. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 SOIL TREATMENT

- A. Termiticide: EPA-Registered termiticide acceptable to authorities having jurisdiction, in an aqueous solution formulated to prevent termite infestation.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. BASF Corporation.
 - b. Bayer Environmental Science.
 - c. Ensystex, Inc.
 - d. Syngenta.
 - 2. Service Life of Treatment: Soil treatment termiticide that is effective for not less than five years against infestation of subterranean termites.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Applicator present, for compliance with requirements for moisture content of soil per termiticide label, interfaces with earthwork, slab and foundation work, landscaping, utility installation, and other conditions affecting performance of termite control.
- B. Proceed with application only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. General: Prepare work areas according to the requirements of authorities having jurisdiction and according to manufacturer's written instructions before beginning application and installation of termite control treatment(s). Remove extraneous sources of wood cellulose and other edible materials, such as wood debris, tree stumps and roots, stakes, formwork, and construction waste wood from soil within and around foundations.
- B. Soil Treatment Preparation: Remove foreign matter and impermeable soil materials that could decrease treatment effectiveness on areas to be treated. Loosen, rake, and level soil to be treated, except previously compacted areas under slabs and footings. Termiticides may be applied before placing compacted fill under slabs if recommended in writing by termiticide manufacturer.
 - 1. Fit filling hose connected to water source at the site with a backflow preventer, according to requirements of authorities having jurisdiction.

3.3 APPLYING SOIL TREATMENT

- A. Application: Mix soil treatment termiticide solution to a uniform consistency. Distribute treatment uniformly. Apply treatment at the product's EPA-Registered Label volume and rate for maximum specified concentration of termiticide to the following so that a continuous horizontal and vertical termiticidal barrier or treated zone is established around and under building construction.
 - 1. Slabs-on-Grade: Under ground-supported slab construction, including footings, building slabs, and attached slabs as an overall treatment. Treat soil materials before concrete footings and slabs are placed.
 - 2. Foundations: Soil adjacent to and along the entire inside perimeter of foundation walls; along both sides of interior partition walls; around plumbing pipes and electric conduit penetrating the slab; around interior column footers, piers, and chimney bases; and along the entire outside perimeter, from grade to bottom of footing.
 - 3. Masonry: Treat voids.
 - 4. Penetrations: At expansion joints, control joints, and areas where slabs and below-grade walls will be penetrated.
- B. Post warning signs in areas of application.

C. Reapply soil treatment solution to areas disturbed by subsequent excavation, grading, landscaping, or other construction activities following application.

3.4 PROTECTION

- A. Avoid disturbance of treated soil after application. Keep off treated areas until completely dry.
- B. Protect termiticide solution dispersed in treated soils and fills from being diluted by exposure to water spillage or weather until ground-supported slabs are installed. Use waterproof barrier according to EPA-Registered Label instructions.

3.5 MAINTENANCE SERVICE

- A. Continuing Maintenance Proposal: Provide from termite-control-treatment Installer to Owner, in the form of a standard yearly (or other period) maintenance agreement, starting on date initial maintenance service is concluded. State services, obligations, conditions, and terms for agreement period and for future renewal options.
 - 1. Include annual inspection for termite activity and effectiveness of termite treatment according to manufacturer's written instructions.

END OF SECTION 313116

SECTION 321216 - ASPHALT PAVING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Cold milling of existing asphalt pavement.
- 2. Hot-mix asphalt patching.
- 3. Hot-mix asphalt paving.
- 4. Hot-mix asphalt overlay.
- 5. Asphalt curbs.
- 6. Asphalt traffic-calming devices.
- 7. Asphalt surface treatments.

B. Related Requirements:

- 1. Section 312000 "Earth Moving" for subgrade preparation, fill material, separation geotextiles, unbound-aggregate subbase and base courses, and aggregate pavement shoulders.
- 2. Section 321313 "Concrete Paving" for concrete pavement and for separate concrete curbs, gutters, and driveway aprons.
- 3. Section 321373 "Concrete Paving Joint Sealants" for joint sealants and fillers at pavement terminations.
- 4. Section 321400 "Unit Paving" for bituminous setting bed for pavers and for stone and precast concrete curbs.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include technical data and tested physical and performance properties.
 - 2. Job-Mix Designs: Certification, by authorities having jurisdiction, of approval of each job mix proposed for the Work.

1.3 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For manufacturer and testing agency.
- B. Material Certificates: For each paving material. Include statement that mixes containing recycled materials will perform equal to mixes produced from all new materials.
- C. Material Test Reports: For each paving material, by a qualified testing agency.
- D. Field quality-control reports.

1.4 QUALITY ASSURANCE

- A. Manufacturer Qualifications: A paving-mix manufacturer registered with and approved the Georgia Department of Transportation.
- B. Testing Agency Qualifications: Qualified according to ASTM D3666 for testing indicated.
- C. Regulatory Requirements: Comply with materials, workmanship, and other applicable requirements of the 2013 Standard Specifications Construction of Transportation Systems, with 2106 Supplemental Specifications, of the Georgia Department of Transportation for asphalt paving work.
 - 1. Measurement and payment provisions and safety program submittals included in standard specifications do not apply to this Section.

1.5 FIELD CONDITIONS

- A. Environmental Limitations: Do not apply asphalt materials if subgrade is wet or excessively damp, if rain is imminent or expected before time required for adequate cure, or if the following conditions are not met:
 - 1. Prime Coat: Minimum surface temperature of 60 deg F.
 - 2. Tack Coat: Minimum surface temperature of 60 deg F.
 - 3. Slurry Coat: Comply with weather limitations in ASTM D3910.
 - 4. Asphalt Base or Binder Course: Minimum surface temperature of 40 deg F and rising at time of placement.
 - 5. Asphalt Surface Course: Minimum surface temperature of 55 deg F at time of placement.

PART 2 - PRODUCTS

2.1 MATERIALS

A. General: Asphaltic concrete mixes and associated materials shall conform the most current GDOT Standard Specifications and relevant GDOT QPL documents.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Verify that subgrade is dry and in suitable condition to begin paving.
- B. Proceed with paying only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Protection: Provide protective materials, procedures, and worker training to prevent asphalt materials from spilling, coating, or building up on curbs, driveway aprons, manholes, and other surfaces adjacent to the Work.
- B. Proof-roll subgrade below pavements with heavy pneumatic-tired equipment to identify soft pockets and areas of excess yielding. Do not proof-roll wet or saturated subgrades.
 - 1. Completely proof-roll subgrade in one direction, repeating proof-rolling in direction perpendicular to first direction. Limit vehicle speed to 3 mph.
 - 2. Proof roll with a half-loaded 10-wheel, tandem-axle dump truck weighing not less than 15 tons
 - 3. Excavate soft spots, unsatisfactory soils, and areas of excessive pumping or rutting, as determined by Architect, and replace with compacted backfill or fill as directed.

3.3 SURFACE PREPARATION

- A. Immediately before placing asphalt materials, remove loose and deleterious material from substrate surfaces. Ensure that prepared subgrade is ready to receive paving.
- B. Emulsified Asphalt Prime Coat: Apply uniformly over surface of compacted unbound-aggregate base course at a rate of 0.10 to 0.30 gal./sq. yd. per inch depth. Apply enough material to penetrate and seal, but not flood, surface. Allow prime coat to cure.
 - 1. If prime coat is not entirely absorbed within 24 hours after application, spread sand over surface to blot excess asphalt. Use enough sand to prevent pickup under traffic. Remove loose sand by sweeping before pavement is placed and after volatiles have evaporated.
 - 2. Protect primed substrate from damage until ready to receive paving.
- C. Tack Coat: Apply uniformly to surfaces of existing pavement at a rate of 0.04 to 0.06 gal./sq. yd. On thin leveling courses and freshly placed asphaltic concrete mixes, reduce the application rate to 0.02 to 0.04 gal./sq. yd.
 - 1. Allow tack coat to cure undisturbed before applying hot-mix asphalt paving.
 - 2. Avoid smearing or staining adjoining surfaces, appurtenances, and surroundings. Remove spillages and clean affected surfaces.

3.4 PLACING HOT-MIX ASPHALT

- A. Machine place hot-mix asphalt on prepared surface, spread uniformly, and strike off. Place asphalt mix by hand in areas inaccessible to equipment in a manner that prevents segregation of mix. Place each course to required grade, cross section, and thickness when compacted.
 - 1. Place hot-mix asphalt base or binder course in number of lifts and thicknesses indicated.
 - 2. Place hot-mix asphalt surface course in single lift.
 - 3. Spread mix at a minimum temperature of 250 deg F.
 - 4. Begin applying mix along centerline of crown for crowned sections and on high side of one-way slopes unless otherwise indicated.

- 5. Regulate paver machine speed to obtain smooth, continuous surface free of pulls and tears in asphalt-paving mat.
- B. Place paving in consecutive strips not less than 10 feet wide unless infill edge strips of a lesser width are required.
 - 1. After first strip has been placed and rolled, place succeeding strips and extend rolling to overlap previous strips. Overlap mix placement about 1 to 1-1/2 inches from strip to ensure proper compaction of mix along longitudinal joints.
 - 2. When the laydown width requires a paver screed extension, use bolt-on screed extensions to extend the screeds, or use an approved mechanical screed extension device. When the screed is extended, add auger extensions to assure a length of no more than 18 inches (0.5 m) from the auger to the end gate of the paver. Auger extensions may be omitted when paving variable widths. Ensure the paver is equipped with tunnel extensions when the screed and augers are extended. Do not use extendible strike-off devices instead of approved screed extensions. Only use a strike-off device in areas that would normally be luted in by hand labor.
 - 3. Complete a section of asphalt base course before placing asphalt surface course.
- C. Promptly correct surface irregularities in paving course behind paver. Use suitable hand tools to remove excess material forming high spots. Fill depressions with hot-mix asphalt to prevent segregation of mix; use suitable hand tools to smooth surface.

3.5 JOINTS

- A. Construct joints to ensure a continuous bond between adjoining paving sections. Construct joints free of depressions, with same texture and smoothness as other sections of hot-mix asphalt course.
 - 1. Clean contact surfaces and apply tack coat to joints.
 - 2. Offset longitudinal joints, in successive courses, a minimum of 6 inches.
 - 3. Offset transverse joints, in successive courses, a minimum of 24 inches.
 - 4. Construct transverse joints at each point where paver ends a day's work and resumes work at a subsequent time. Construct these joints using either "bulkhead" or "papered" method according to AI MS-22, for both "Ending a Lane" and "Resumption of Paving Operations."
 - 5. Compact joints as soon as hot-mix asphalt will bear roller weight without excessive displacement.
 - 6. Compact asphalt at joints to a density within 2 percent of specified course density.

3.6 COMPACTION

- A. General: Begin compaction as soon as placed hot-mix paving will bear roller weight without excessive displacement. Compact hot-mix paving with hot, hand tampers or with vibratory-plate compactors in areas inaccessible to rollers.
 - 1. Complete compaction before mix temperature cools to 185 deg F.

- B. Breakdown Rolling: Complete breakdown or initial rolling immediately after rolling joints and outside edge. Examine surface immediately after breakdown rolling for indicated crown, grade, and smoothness. Correct laydown and rolling operations to comply with requirements.
- C. Intermediate Rolling: Begin intermediate rolling immediately after breakdown rolling while hot-mix asphalt is still hot enough to achieve specified density. Continue rolling until hot-mix asphalt course has been uniformly compacted to the following density as determined using either GDT 39, GDT 59 or AASHTO T 331:
 - 1. Average Density: The targeted maximum Pavement Mean Air Void content for all Superpave Asphalt mixtures is 5.0 percent. Ensure that the maximum Pavement Mean Air Voids for all Superpave mixtures does not exceed 7.0 percent.
- D. Finish Rolling: Finish roll paved surfaces to remove roller marks while hot-mix asphalt is still warm.
- E. Edge Shaping: While surface is being compacted and finished, trim edges of pavement to proper alignment. Bevel edges while asphalt is still hot; compact thoroughly.
- F. Repairs: Remove paved areas that are defective or contaminated with foreign materials and replace with fresh, hot-mix asphalt. Compact by rolling to specified density and surface smoothness.
- G. Protection: After final rolling, do not permit vehicular traffic on pavement until it has cooled and hardened.
- H. Erect barricades to protect paving from traffic until mixture has cooled enough not to become marked.

3.7 ASPHALT TRAFFIC-CALMING DEVICES

- A. Construct hot-mix asphalt speed humps and tables over compacted pavement surfaces. Apply a tack coat unless pavement surface is still tacky and free from dust. Spread mix at a minimum temperature of 250 deg F.
 - 1. Tack Coat Application: Apply uniformly to surfaces of existing pavement at a rate of 0.05 to 0.15 gal./sq. yd..
 - 2. Asphalt Mix: Same as pavement surface-course mix.
- B. Place and compact hot-mix asphalt to cross section indicated, by machine or by hand in wood or metal forms. Tamp hand-placed materials and screed to smooth finish. Remove forms after hot-mix asphalt has cooled.

3.8 INSTALLATION TOLERANCES

- A. Pavement Thickness: Compact each course to produce the thickness indicated within the following tolerances:
 - 1. Base or Binder Course: Plus or minus 1/2 inch.
 - 2. Surface Course: Plus 1/4 inch, no minus.

- B. Pavement Surface Smoothness: Compact each course to produce a surface smoothness within the following tolerances as determined by using a 10-foot straightedge applied transversely or longitudinally to paved areas:
 - 1. Base Course: 3/16 inch.
 - 2. Surface Course: 1/8 inch.
 - 3. Crowned Surfaces: Test with crowned template centered and at right angle to crown. Maximum allowable variance from template is 1/4 inch.
- C. Asphalt Traffic-Calming Devices: Compact and form asphalt to produce the contour indicated and within a tolerance of plus or minus 1/8 inch of height indicated above pavement surface.

3.9 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Thickness: In-place compacted thickness of hot-mix asphalt courses will be determined according to ASTM D3549/D3549M.
- C. Surface Smoothness: Finished surface of each hot-mix asphalt course will be tested for compliance with smoothness tolerances.
- D. Asphalt Traffic-Calming Devices: Finished height of traffic-calming devices above pavement will be measured for compliance with tolerances.
- E. In-Place Density: Testing agency will take samples of uncompacted paving mixtures and compacted pavement according to ASTM D979/D979M or AASHTO T 168.
 - 1. Reference maximum theoretical density will be determined by averaging results from four samples of hot-mix asphalt-paving mixture delivered daily to site, prepared according to ASTM D2041/D2041M, and compacted according to job-mix specifications.
 - 2. In-place density of compacted pavement will be determined by testing core samples according to ASTM D1188 or ASTM D2726/D2726M.
 - a. One core sample will be taken for every 1000 sq. yd. or less of installed pavement, with no fewer than three cores taken.
 - b. Field density of in-place compacted pavement may also be determined by nuclear method according to ASTM D2950 and correlated with ASTM D1188 or ASTM D2726/D2726M.
- F. Replace and compact hot-mix asphalt where core tests were taken.
- G. Remove and replace or install additional hot-mix asphalt where test results or measurements indicate that it does not comply with specified requirements.

3.10 WASTE HANDLING

A. General: Handle asphalt-paving waste according to approved waste management plan required in Section 017419 "Construction Waste Management and Disposal."

END OF SECTION 321216

SECTION 321313 - CONCRETE PAVING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes Concrete Paving
 - Walks.
- B. Related Requirements:
 - 1. Section 321373 "Concrete Paving Joint Sealants" for joint sealants in expansion and contraction joints within concrete paving and in joints between concrete paving and asphalt paving or adjacent construction.

1.3 DEFINITIONS

- A. Cementitious Materials: Portland cement alone or in combination with one or more of blended hydraulic cement, fly ash, slag cement, and other pozzolans.
- B. W/C Ratio: The ratio by weight of water to cementitious materials.

1.4 PREINSTALLATION MEETINGS

- A. Preinstallation Conference:
 - 1. Review methods and procedures related to concrete paving, including but not limited to, the following:
 - a. Concrete mixture design.
 - b. Quality control of concrete materials and concrete paving construction practices.
 - 2. Require representatives of each entity directly concerned with concrete paving to attend, including the following:
 - a. Contractor's superintendent.

1.5 ACTION SUBMITTALS

A. Product Data: For each type of product.

- B. Samples for Initial Selection: For each type of product, ingredient, or admixture.
- C. Samples for Verification: For each type of product.
- D. Design Mixtures: For each concrete paving mixture. Include alternate design mixtures when characteristics of materials, Project conditions, weather, test results, or other circumstances warrant adjustments.

1.6 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For qualified installer, ready-mix concrete manufacturer and testing agency.
- B. Material Certificates: For the following, from manufacturer:
 - 1. Cementitious materials.
 - 2. Steel reinforcement and reinforcement accessories.
 - 3. Fiber reinforcement.
 - 4. Admixtures.
 - 5. Curing compounds.
 - 6. Applied finish materials.
 - 7. Bonding agent or epoxy adhesive.
 - 8. Joint fillers.
 - 9. Repair materials.
- C. Material Test Reports: For each of the following:
 - 1. Aggregates: Include service-record data indicating absence of deleterious expansion of concrete due to alkali-aggregate reactivity.
- D. Field quality-control reports.
- E. Surface levelness measurements indicating compliance with specified tolerances.
- F. Minutes of pre-installation conference.

1.7 QUALITY ASSURANCE

- A. Ready-Mix-Concrete Manufacturer Qualifications: A firm experienced in manufacturing readymixed concrete products and that complies with ASTM C 94/C 94M requirements for production facilities and equipment.
 - 1. Manufacturer certified according to NRMCA's "Certification of Ready Mixed Concrete Production Facilities" (Quality Control Manual Section 3, "Plant Certification Checklist").
- B. Testing Agency Qualifications: Qualified according to ASTM C 1077 and ASTM E 329 for testing indicated.

- 1. Personnel conducting field tests shall be qualified as ACI Concrete Field Testing Technician, Grade 1, according to ACI CP-1 or an equivalent certification program.
- C. Mockups: Build mockups to verify selections made under Sample submittals and to demonstrate aesthetic effects and set quality standards for materials and execution.
 - 1. Build mockups of full-thickness sections of concrete paving to demonstrate typical joints; surface finish, texture, and color; curing; and standard of workmanship.
 - 2. Build mockups of concrete paving in the location and of the size indicated or, if not indicated, build mockups where directed by Architect and not less than 96 inches (2400 mm) by 96 inches (2400 mm). Include full-size detectable warning.
 - 3. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
 - 4. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.8 PRECONSTRUCTION TESTING

A. Preconstruction Testing Service: Engage a qualified independent testing agency to perform preconstruction testing on concrete paving mixtures.

1.9 FIELD CONDITIONS

- A. Traffic Control: Maintain access for vehicular and pedestrian traffic as required for other construction activities.
- B. Cold-Weather Concrete Placement: Protect concrete work from physical damage or reduced strength that could be caused by frost, freezing, or low temperatures. Comply with ACI 306.1 and the following:
 - 1. When air temperature has fallen to or is expected to fall below 40 deg F (4.4 deg C), uniformly heat water and aggregates before mixing to obtain a concrete mixture temperature of not less than 50 deg F (10 deg C) and not more than 80 deg F (27 deg C) at point of placement.
 - 2. Do not use frozen materials or materials containing ice or snow.
 - 3. Do not use calcium chloride, salt, or other materials containing antifreeze agents or chemical accelerators unless otherwise specified and approved in design mixtures.
- C. Hot-Weather Concrete Placement: Comply with ACI 301 (ACI 301M) and as follows when hot-weather conditions exist:
 - 1. Cool ingredients before mixing to maintain concrete temperature below 90 deg F (32 deg C) at time of placement. Chilled mixing water or chopped ice may be used to control temperature, provided water equivalent of ice is calculated in total amount of mixing water. Using liquid nitrogen to cool concrete is Contractor's option.
 - 2. Cover steel reinforcement with water-soaked burlap, so steel temperature will not exceed ambient air temperature immediately before embedding in concrete.

3. Fog-spray forms, steel reinforcement, and subgrade just before placing concrete. Keep subgrade moisture uniform without standing water, soft spots, or dry areas.

PART 2 - PRODUCTS

2.1 CONCRETE, GENERAL

A. ACI Publications: Comply with ACI 301 (ACI 301M) unless otherwise indicated.

2.2 FORMS

- A. Form Materials: Plywood, metal, metal-framed plywood, or other approved panel-type materials to provide full-depth, continuous, straight, and smooth exposed surfaces.
 - 1. Use flexible or uniformly curved forms for curves with a radius of 100 feet (30.5 m) or less. Do not use notched and bent forms.
- B. Form-Release Agent: Commercially formulated form-release agent that will not bond with, stain, or adversely affect concrete surfaces and that will not impair subsequent treatments of concrete surfaces.

2.3 STEEL REINFORCEMENT

- A. Plain-Steel Welded-Wire Reinforcement: ASTM A 1064/A 1064M, fabricated from steel wire into flat sheets.
- B. Bar Supports: Bolsters, chairs, spacers, and other devices for spacing, supporting, and fastening reinforcing bars, welded-wire reinforcement, and dowels in place. Manufacture bar supports according to CRSI's "Manual of Standard Practice" from steel wire, plastic, or precast concrete of greater compressive strength than concrete specified, and as follows:
 - 1. Equip wire bar supports with sand plates or horizontal runners where base material will not support chair legs.
 - 2. For epoxy-coated reinforcement, use epoxy-coated or other dielectric-polymer-coated wire bar supports.

2.4 CONCRETE MATERIALS

- A. Cementitious Materials: Use the following cementitious materials, of same type, brand, and source throughout Project:
 - 1. Portland Cement: ASTM C 150/C 150M, gray portland cement Type I.
 - 2. Fly Ash: ASTM C 618, Class F.
 - 3. Slag Cement: ASTM C 989/C 989M, Grade 100 or 120.
 - 4. Blended Hydraulic Cement: ASTM C 595/C 595M, Type IS, portland blast-furnace slag cement.

- B. Normal-Weight Aggregates: ASTM C 33/C 33M, Class 4M, uniformly graded. Provide aggregates from a single source with documented service-record data of at least 10 years' satisfactory service in similar paving applications and service conditions using similar aggregates and cementitious materials.
 - 1. Coarse-Aggregate: Size no. 57.
 - 2. Fine Aggregate: Free of materials with deleterious reactivity to alkali in cement.
- C. Air-Entraining Admixture: ASTM C 260/C 260M.
- D. Chemical Admixtures: Admixtures certified by manufacturer to be compatible with other admixtures and to contain not more than 0.1 percent water-soluble chloride ions by mass of cementitious material.
 - 1. Water-Reducing Admixture: ASTM C 494/C 494M, Type A.
 - 2. Retarding Admixture: ASTM C 494/C 494M, Type B.
 - 3. Water-Reducing and Retarding Admixture: ASTM C 494/C 494M, Type D.
 - 4. High-Range, Water-Reducing Admixture: ASTM C 494/C 494M, Type F.
 - 5. High-Range, Water-Reducing and Retarding Admixture: ASTM C 494/C 494M, Type G.
 - 6. Plasticizing and Retarding Admixture: ASTM C 1017/C 1017M, Type II.
- E. Water: Potable and complying with ASTM C 94/C 94M.

2.5 CURING MATERIALS

- A. Absorptive Cover: AASHTO M 182, Class 3, burlap cloth made from jute or kenaf, weighing approximately 9 oz./sq. yd. (305 g/sq. m) dry.
- B. Moisture-Retaining Cover: ASTM C 171, polyethylene film or white burlap-polyethylene sheet.
- C. Water: Potable.
- D. Evaporation Retarder: Waterborne, monomolecular, film forming, manufactured for application to fresh concrete.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - BASF Corporation.
 - b. ChemMasters, Inc.
 - c. <u>Dayton Superior</u>.
 - d. Euclid Chemical Company (The); an RPM company.
 - e. Kaufman Products, Inc.
 - f. Lambert Corporation.
 - g. Nox-Crete Products Group.
 - h. SpecChem, LLC.
 - i. TK Products.

- E. Clear, Waterborne, Membrane-Forming Curing Compound: ASTM C 309, Type 1, Class B, dissipating.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. ChemMasters, Inc.
 - b. <u>Dayton Superior</u>.
 - c. Euclid Chemical Company (The); an RPM company.
 - d. Kaufman Products, Inc.
 - e. <u>Lambert Corporation</u>.
 - f. Nox-Crete Products Group.
 - g. SpecChem, LLC.
 - h. TK Products.
- F. White, Waterborne, Membrane-Forming Curing Compound: ASTM C 309, Type 2, Class B, dissipating.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. ChemMasters, Inc.
 - b. Dayton Superior.
 - c. Euclid Chemical Company (The); an RPM company.
 - d. Kaufman Products, Inc.
 - e. <u>Lambert Corporation</u>.
 - f. Nox-Crete Products Group.
 - g. SpecChem, LLC.
 - h. TK Products.

2.6 RELATED MATERIALS

- A. Joint Fillers: ASTM D 1751, asphalt-saturated cellulosic fiber or ASTM D 1752, cork or self-expanding cork in preformed strips.
- B. Bonding Agent: ASTM C 1059/C 1059M, Type II, non-redispersible, acrylic emulsion or styrene butadiene.
- C. Epoxy-Bonding Adhesive: ASTM C 881/C 881M, two-component epoxy resin capable of humid curing and bonding to damp surfaces; of class suitable for application temperature, of grade complying with requirements, and of the following types:
 - 1. Types I and II, nonload bearing, for bonding hardened or freshly mixed concrete to hardened concrete.

2.7 CONCRETE MIXTURES

- A. Prepare design mixtures, proportioned according to ACI 301 (ACI 301M), for each type and strength of normal-weight concrete, and as determined by either laboratory trial mixtures or field experience.
 - 1. Use a qualified independent testing agency for preparing and reporting proposed concrete design mixtures for the trial batch method.
 - 2. When automatic machine placement is used, determine design mixtures and obtain laboratory test results that comply with or exceed requirements.
- B. Cementitious Materials: Limit percentage, by weight, of cementitious materials other than portland cement in concrete as follows:
 - 1. Fly Ash or Pozzolan: 25 percent.
 - 2. Slag Cement: 50 percent.
 - 3. Combined Fly Ash or Pozzolan, and Slag Cement: 50 percent, with fly ash or pozzolan not exceeding 25 percent.
- C. Add air-entraining admixture at manufacturer's prescribed rate to result in normal-weight concrete at point of placement having an air content of 4.0 percent to 7.0 percent.
- D. Limit water-soluble, chloride-ion content in hardened concrete to 0.15 percent by weight of cement.
- E. Chemical Admixtures: Use admixtures according to manufacturer's written instructions.
 - 1. Use high-range, water-reducing admixture in concrete as required for placement and workability.
 - 2. Use water-reducing and retarding admixture when required by high temperatures, low humidity, or other adverse placement conditions.
- F. Concrete Mixtures: Normal-weight concrete.
 - 1. Compressive Strength (28 Days): [4000 psi (27.6 MPa)].
 - 2. Maximum W/C Ratio at Point of Placement: 0.45.
 - 3. Slump Limit: 5 inches (125 mm), plus or minus 1 inch (25 mm).

2.8 CONCRETE MIXING

- A. Ready-Mixed Concrete: Measure, batch, and mix concrete materials and concrete according to ASTM C 94/C 94M and ASTM C 1116/C 1116M. Furnish batch certificates for each batch discharged and used in the Work.
 - 1. When air temperature is between 85 and 90 deg F (30 and 32 deg C), reduce mixing and delivery time from 1-1/2 hours to 75 minutes; when air temperature is above 90 deg F (32 deg C), reduce mixing and delivery time to 60 minutes.

- B. Project-Site Mixing: Measure, batch, and mix concrete materials and concrete according to ASTM C 94/C 94M. Mix concrete materials in appropriate drum-type batch machine mixer.
 - 1. For concrete batches of 1 cu. yd. (0.76 cu. m) or smaller, continue mixing at least 1-1/2 minutes, but not more than 5 minutes after ingredients are in mixer, before any part of batch is released.
 - 2. For concrete batches larger than 1 cu. yd. (0.76 cu. m), increase mixing time by 15 seconds for each additional 1 cu. yd. (0.76 cu. m).
 - 3. Provide batch ticket for each batch discharged and used in the Work, indicating Project identification name and number, date, mixture type, mixing time, quantity, and amount of water added.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine exposed subgrades and subbase surfaces for compliance with requirements for dimensional, grading, and elevation tolerances.
- B. Proof-roll prepared subbase surface below concrete paving to identify soft pockets and areas of excess yielding.
 - 1. Completely proof-roll subbase in one direction and repeat in perpendicular direction. Limit vehicle speed to 3 mph (5 km/h).
 - 2. Proof-roll with a pneumatic-tired and loaded, 10-wheel, tandem-axle dump truck weighing not less than 15 tons (13.6 tonnes).
 - 3. Correct subbase with soft spots and areas of pumping or rutting exceeding depth of 1/2 inch (13 mm) according to requirements in Section 312000 "Earth Moving."
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Remove loose material from compacted subbase surface immediately before placing concrete.

3.3 EDGE FORMS AND SCREED CONSTRUCTION

- A. Set, brace, and secure edge forms, bulkheads, and intermediate screed guides to required lines, grades, and elevations. Install forms to allow continuous progress of work and so forms can remain in place at least 24 hours after concrete placement.
- B. Clean forms after each use and coat with form-release agent to ensure separation from concrete without damage.

3.4 STEEL REINFORCEMENT INSTALLATION

- A. General: Comply with CRSI's "Manual of Standard Practice" for fabricating, placing, and supporting reinforcement.
- B. Clean reinforcement of loose rust and mill scale, earth, ice, or other bond-reducing materials.
- C. Arrange, space, and securely tie bars and bar supports to hold reinforcement in position during concrete placement. Maintain minimum cover to reinforcement.
- D. Install welded-wire reinforcement in lengths as long as practicable. Lap adjoining pieces at least one full mesh, and lace splices with wire. Offset laps of adjoining widths to prevent continuous laps in either direction.

3.5 JOINTS

- A. General: Form construction, isolation, and contraction joints and tool edges true to line, with faces perpendicular to surface plane of concrete. Construct transverse joints at right angles to centerline unless otherwise indicated.
 - 1. When joining existing paving, place transverse joints to align with previously placed joints unless otherwise indicated.
- B. Construction Joints: Set construction joints at side and end terminations of paving and at locations where paving operations are stopped for more than one-half hour unless paving terminates at isolation joints.
 - 1. Continue steel reinforcement across construction joints unless otherwise indicated. Do not continue reinforcement through sides of paving strips unless otherwise indicated.
 - 2. Provide tie bars at sides of paving strips where indicated.
 - 3. Butt Joints: Use bonding agent at joint locations where fresh concrete is placed against hardened or partially hardened concrete surfaces.
 - 4. Keyed Joints: Provide preformed keyway-section forms or bulkhead forms with keys unless otherwise indicated. Embed keys at least 1-1/2 inches (38 mm) into concrete.
 - 5. Doweled Joints: Install dowel bars and support assemblies at joints where indicated. Lubricate or coat with asphalt one-half of dowel length to prevent concrete bonding to one side of joint.
- C. Isolation Joints: Form isolation joints of preformed joint-filler strips abutting concrete curbs, catch basins, manholes, inlets, structures, other fixed objects, and where indicated.
 - 1. Locate expansion joints at intervals of 50 feet (15.25 m) unless otherwise indicated.
 - 2. Extend joint fillers full width and depth of joint.
 - 3. Terminate joint filler not less than 1/2 inch (13 mm) or more than 1 inch (25 mm) below finished surface if joint sealant is indicated.
 - 4. Place top of joint filler flush with finished concrete surface if joint sealant is not indicated.
 - 5. Furnish joint fillers in one-piece lengths. Where more than one length is required, lace or clip joint-filler sections together.

- 6. During concrete placement, protect top edge of joint filler with metal, plastic, or other temporary preformed cap. Remove protective cap after concrete has been placed on both sides of joint.
- D. Contraction Joints: Form weakened-plane contraction joints, sectioning concrete into areas as indicated. Construct contraction joints for a depth equal to at least one-fourth of the concrete thickness, as follows, to match jointing of existing adjacent concrete paving:
 - 1. Sawed Joints: Form contraction joints with power saws equipped with shatterproof abrasive or diamond-rimmed blades. Cut 1/8-inch- (3-mm-) wide joints into concrete when cutting action will not tear, abrade, or otherwise damage surface and before developing random contraction cracks.
 - a. Tolerance: Ensure that sawed joints are within 3 inches (75 mm) either way from centers of dowels.
 - 2. Doweled Contraction Joints: Install dowel bars and support assemblies at joints where indicated. Lubricate or coat with asphalt one-half of dowel length to prevent concrete bonding to one side of joint.
- E. Edging: After initial floating, tool edges of paving, gutters, curbs, and joints in concrete with an edging tool to a 1/4-inch (6-mm) radius. Repeat tooling of edges after applying surface finishes. Eliminate edging-tool marks on concrete surfaces.

3.6 CONCRETE PLACEMENT

- A. Before placing concrete, inspect and complete formwork installation, steel reinforcement, and items to be embedded or cast-in.
- B. Remove snow, ice, or frost from subbase surface and steel reinforcement before placing concrete. Do not place concrete on frozen surfaces.
- C. Moisten subbase to provide a uniform dampened condition at time concrete is placed. Do not place concrete around manholes or other structures until they are at required finish elevation and alignment.
- D. Comply with ACI 301 (ACI 301M) requirements for measuring, mixing, transporting, and placing concrete.
- E. Do not add water to concrete during delivery or at Project site. Do not add water to fresh concrete after testing.
- F. Deposit and spread concrete in a continuous operation between transverse joints. Do not push or drag concrete into place or use vibrators to move concrete into place.
- G. Consolidate concrete according to ACI 301 (ACI 301M) by mechanical vibrating equipment supplemented by hand spading, rodding, or tamping.

- 1. Consolidate concrete along face of forms and adjacent to transverse joints with an internal vibrator. Keep vibrator away from joint assemblies, reinforcement, or side forms. Use only square-faced shovels for hand spreading and consolidation. Consolidate with care to prevent dislocating reinforcement, dowels and joint devices.
- H. Screed paving surface with a straightedge and strike off.
- I. Commence initial floating using bull floats or darbies to impart an open-textured and uniform surface plane before excess moisture or bleedwater appears on the surface. Do not further disturb concrete surfaces before beginning finishing operations or spreading surface treatments.
- J. Curbs and Gutters: Use design mixture for automatic machine placement. Produce curbs and gutters to required cross section, lines, grades, finish, and jointing.
- K. Slip-Form Paving: Use design mixture for automatic machine placement. Produce paving to required thickness, lines, grades, finish, and jointing.
 - 1. Compact subbase and prepare subgrade of sufficient width to prevent displacement of slip-form paving machine during operations.

3.7 FLOAT FINISHING

- A. General: Do not add water to concrete surfaces during finishing operations.
- B. Float Finish: Begin the second floating operation when bleedwater sheen has disappeared and concrete surface has stiffened sufficiently to permit operations. Float surface with power-driven floats or by hand floating if area is small or inaccessible to power units. Finish surfaces to true planes. Cut down high spots and fill low spots. Refloat surface immediately to uniform granular texture.
 - 1. Medium-to-Coarse-Textured Broom Finish: Provide a coarse finish by striating float-finished concrete surface 1/16 to 1/8 inch (1.6 to 3 mm) deep with a stiff-bristled broom, perpendicular to line of traffic.

3.8 CONCRETE PROTECTION AND CURING

- A. General: Protect freshly placed concrete from premature drying and excessive cold or hot temperatures.
- B. Comply with ACI 306.1 for cold-weather protection.
- C. Evaporation Retarder: Apply evaporation retarder to concrete surfaces if hot, dry, or windy conditions cause moisture loss approaching 0.2 lb/sq. ft. x h (1 kg/sq. m x h) before and during finishing operations. Apply according to manufacturer's written instructions after placing, screeding, and bull floating or darbying concrete but before float finishing.
- D. Begin curing after finishing concrete but not before free water has disappeared from concrete surface.

- E. Curing Methods: Cure concrete by moisture curing, moisture-retaining-cover curing, curing compound, or a combination of these as follows:
 - 1. Moisture Curing: Keep surfaces continuously moist for not less than seven days with the following materials:
 - a. Water.
 - b. Continuous water-fog spray.
 - c. Absorptive cover, water saturated and kept continuously wet. Cover concrete surfaces and edges with 12-inch (300-mm) lap over adjacent absorptive covers.
 - 2. Moisture-Retaining-Cover Curing: Cover concrete surfaces with moisture-retaining cover, placed in widest practicable width, with sides and ends lapped at least 12 inches (300 mm), and sealed by waterproof tape or adhesive. Immediately repair any holes or tears occurring during installation or curing period, using cover material and waterproof tape.
 - 3. Curing Compound: Apply uniformly in continuous operation by power spray or roller according to manufacturer's written instructions. Recoat areas subjected to heavy rainfall within three hours after initial application. Maintain continuity of coating, and repair damage during curing period.

3.9 PAVING TOLERANCES

- A. Comply with tolerances in ACI 117 (ACI 117M) and as follows:
 - 1. Elevation: 3/4 inch (19 mm).
 - 2. Thickness: Plus 3/8 inch (10 mm), minus 1/4 inch (6 mm).
 - 3. Surface: Gap below 10-feet- (3-m-) long; unleveled straightedge not to exceed 1/2 inch (13 mm).
 - 4. Alignment of Tie-Bar End Relative to Line Perpendicular to Paving Edge: 1/2 inch per 12 inches (13 mm per 300 mm) of tie bar.
 - 5. Lateral Alignment and Spacing of Dowels: 1 inch (25 mm).
 - 6. Vertical Alignment of Dowels: 1/4 inch (6 mm).
 - 7. Alignment of Dowel-Bar End Relative to Line Perpendicular to Paving Edge: 1/4 inch per 12 inches (6 mm per 300 mm) of dowel.
 - 8. Joint Spacing: 3 inches (75 mm).
 - 9. Contraction Joint Depth: Plus 1/4 inch (6 mm), no minus.
 - 10. Joint Width: Plus 1/8 inch (3 mm), no minus.

3.10 FIELD QUALITY CONTROL

- A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.
- B. Testing Services: Testing and inspecting of composite samples of fresh concrete obtained according to ASTM C 172/C 172M shall be performed according to the following requirements:
 - 1. Testing Frequency: Obtain at least one composite sample for each 100 cu. yd. (76 cu. m) or fraction thereof of each concrete mixture placed each day.

- a. When frequency of testing will provide fewer than five compressive-strength tests for each concrete mixture, testing shall be conducted from at least five randomly selected batches or from each batch if fewer than five are used.
- 2. Slump: ASTM C 143/C 143M; one test at point of placement for each composite sample, but not less than one test for each day's pour of each concrete mixture. Perform additional tests when concrete consistency appears to change.
- 3. Air Content: ASTM C 231/C 231M, pressure method; one test for each composite sample, but not less than one test for each day's pour of each concrete mixture.
- 4. Concrete Temperature: ASTM C 1064/C 1064M; one test hourly when air temperature is 40 deg F (4.4 deg C) and below and when it is 80 deg F (27 deg C) and above, and one test for each composite sample.
- 5. Compression Test Specimens: ASTM C 31/C 31M; cast and laboratory cure one set of three standard cylinder specimens for each composite sample.
- 6. Compressive-Strength Tests: ASTM C 39/C 39M; test one specimen at seven days and two specimens at 28 days.
 - a. A compressive-strength test shall be the average compressive strength from two specimens obtained from same composite sample and tested at 28 days.
- C. Strength of each concrete mixture will be satisfactory if average of any three consecutive compressive-strength tests equals or exceeds specified compressive strength and no compressive-strength test value falls below specified compressive strength by more than 500 psi (3.4 MPa).
- D. Test results shall be reported in writing to Architect, concrete manufacturer, and Contractor within 48 hours of testing. Reports of compressive-strength tests shall contain Project identification name and number, date of concrete placement, name of concrete testing and inspecting agency, location of concrete batch in Work, design compressive strength at 28 days, concrete mixture proportions and materials, compressive breaking strength, and type of break for both 7- and 28-day tests.
- E. Nondestructive Testing: Impact hammer, sonoscope, or other nondestructive device may be permitted by Architect but will not be used as sole basis for approval or rejection of concrete.
- F. Additional Tests: Testing and inspecting agency shall make additional tests of concrete when test results indicate that slump, air entrainment, compressive strengths, or other requirements have not been met, as directed by Architect.
- G. Concrete paying will be considered defective if it does not pass tests and inspections.
- H. Additional testing and inspecting, at Contractor's expense, will be performed to determine compliance of replaced or additional work with specified requirements.
- I. Prepare test and inspection reports.

3.11 REPAIR AND PROTECTION

- A. Remove and replace concrete paving that is broken, damaged, or defective or that does not comply with requirements in this Section. Remove work in complete sections from joint to joint unless otherwise approved by Architect.
- B. Drill test cores, where directed by Architect, when necessary to determine magnitude of cracks or defective areas. Fill drilled core holes in satisfactory paving areas with portland cement concrete bonded to paving with epoxy adhesive.
- C. Protect concrete paving from damage. Exclude traffic from paving for at least 14 days after placement. When construction traffic is permitted, maintain paving as clean as possible by removing surface stains and spillage of materials as they occur.
- D. Maintain concrete paving free of stains, discoloration, dirt, and other foreign material. Sweep paving not more than two days before date scheduled for Substantial Completion inspections.

END OF SECTION 321313

SECTION 321373 - CONCRETE PAVING JOINT SEALANTS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Cold-applied joint sealants.
- 2. Hot-applied joint sealants.
- 3. Cold-applied, fuel-resistant joint sealants.
- 4. Hot-applied, fuel-resistant joint sealants.
- 5. Joint-sealant backer materials.
- 6. Primers.

B. Related Requirements:

1. Section 079200 "Joint Sealants" for sealing nontraffic and traffic joints in locations not specified in this Section.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Samples for Verification: For each kind and color of joint sealant required, provide Samples with joint sealants in 1/2-inch-wide joints formed between two 6-inch-long strips of material matching the appearance of exposed surfaces adjacent to joint sealants.
- C. Paving-Joint-Sealant Schedule: Include the following information:
 - 1. Joint-sealant application, joint location, and designation.
 - 2. Joint-sealant manufacturer and product name.
 - 3. Joint-sealant formulation.
 - 4. Joint-sealant color.

1.3 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For Installer, testing agency.
- B. Product Certificates: For each type of joint sealant and accessory.

1.4 QUALITY ASSURANCE

A. Installer Qualifications: An entity that employs installers and supervisors who are trained and approved by manufacturer.

B. Product Testing: Test joint sealants using a qualified testing agency.

1.5 FIELD CONDITIONS

- A. Do not proceed with installation of joint sealants under the following conditions:
 - 1. When ambient and substrate temperature conditions are outside limits permitted by joint-sealant manufacturer or are below 40 deg F.
 - 2. When joint substrates are wet.
 - 3. Where joint widths are less than those allowed by joint-sealant manufacturer for applications indicated.
 - 4. Where contaminants capable of interfering with adhesion have not yet been removed from joint substrates.

PART 2 - PRODUCTS

2.1 MATERIALS, GENERAL

A. Compatibility: Provide joint sealants, backing materials, and other related materials that are compatible with one another and with joint substrates under conditions of service and application, as demonstrated by joint-sealant manufacturer, based on testing and field experience.

2.2 COLD-APPLIED JOINT SEALANTS

A. Single-Component, Self-Leveling, Silicone Joint Sealant: ASTM D5893/D5893M, Type SL.

2.3 JOINT-SEALANT BACKER MATERIALS

- A. Joint-Sealant Backer Materials: Nonstaining; compatible with joint substrates, sealants, primers, and other joint fillers; and approved for applications indicated by joint-sealant manufacturer, based on field experience and laboratory testing.
- B. Round Backer Rods for Cold-Applied Joint Sealants: ASTM D5249, Type 1, of diameter and density required to control sealant depth and prevent bottom-side adhesion of sealant.
- C. Round Backer Rods for Cold-Applied Joint Sealants: ASTM D5249, Type 3, of diameter and density required to control joint-sealant depth and prevent bottom-side adhesion of sealant.
- D. Backer Strips for Cold-Applied Joint Sealants: ASTM D5249; Type 2; of thickness and width required to control joint-sealant depth, prevent bottom-side adhesion of sealant, and fill remainder of joint opening under sealant.

2.4 PRIMERS

A. Primers: Product recommended by joint-sealant manufacturer where required for adhesion of sealant to joint substrates indicated.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine joints to receive joint sealants, with Installer present, for compliance with requirements for joint configuration, installation tolerances, and other conditions affecting joint-sealant performance.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Surface Cleaning of Joints: Before installing joint sealants, clean out joints immediately to comply with joint-sealant manufacturer's written instructions.
 - 1. Remove all foreign material from joint substrates that could interfere with adhesion of joint sealant, including dust, old joint sealants, oil, grease, waterproofing, water repellents, water, surface dirt, and frost.
- B. Joint Priming: Prime joint substrates where indicated or where recommended in writing by joint-sealant manufacturer, based on preconstruction joint-sealant-substrate tests or prior experience. Apply primer to comply with joint-sealant manufacturer's written instructions. Confine primers to areas of joint-sealant bond; do not allow spillage or migration onto adjoining surfaces.

3.3 INSTALLATION OF JOINT SEALANTS

- A. Comply with joint-sealant manufacturer's written installation instructions for products and applications indicated unless more stringent requirements apply.
- B. Joint-Sealant Installation Standard: Comply with recommendations in ASTM C1193 for use of joint sealants as applicable to materials, applications, and conditions.
- C. Install joint-sealant backings to support joint sealants during application and at position required to produce cross-sectional shapes and depths of installed sealants relative to joint widths that allow optimum sealant movement capability.
 - 1. Do not leave gaps between ends of joint-sealant backings.
 - 2. Do not stretch, twist, puncture, or tear joint-sealant backings.
 - 3. Remove absorbent joint-sealant backings that have become wet before sealant application and replace them with dry materials.

- D. Install joint sealants immediately following backing installation, using proven techniques that comply with the following:
 - 1. Place joint sealants so they fully contact joint substrates.
 - 2. Completely fill recesses in each joint configuration.
 - 3. Produce uniform, cross-sectional shapes and depths relative to joint widths that allow optimum sealant movement capability.
- E. Tooling of Nonsag Joint Sealants: Immediately after joint-sealant application and before skinning or curing begins, tool sealants according to the following requirements to form smooth, uniform beads of configuration indicated; to eliminate air pockets; and to ensure contact and adhesion of sealant with sides of joint:
 - 1. Remove excess joint sealant from surfaces adjacent to joints.
 - 2. Use tooling agents that are approved in writing by joint-sealant manufacturer and that do not discolor sealants or adjacent surfaces.
- F. Provide joint configuration to comply with joint-sealant manufacturer's written instructions unless otherwise indicated.

3.4 CLEANING AND PROTECTION

- A. Clean off excess joint sealant as the Work progresses, by methods and with cleaning materials approved in writing by joint-sealant manufacturers.
- B. Protect joint sealants, during and after curing period, from contact with contaminating substances and from damage resulting from construction operations or other causes so sealants are without deterioration or damage at time of Substantial Completion. If, despite such protection, damage or deterioration occurs, cut out and remove damaged or deteriorated joint sealants immediately and replace with joint sealant so installations in repaired areas are indistinguishable from the original work.

3.5 PAVING-JOINT-SEALANT SCHEDULE

- A. Joint-Sealant Application: Joints within concrete paving[].
 - 1. Joint Location:
 - a. Expansion and isolation joints in concrete paving.
 - b. Other joints as indicated.
 - 2. Joint Sealant: Single-component, self-leveling, silicone joint sealant.
 - 3. Joint-Sealant Color: Manufacturer's standard.

END OF SECTION 321373

SECTION 321713 - PARKING BUMPERS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes concrete wheel stops.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Samples for Initial Selection: For each type of exposed finish requiring color selection.
- C. Samples for Verification: For wheel stops, 6 inches long, showing color and cross section; with fasteners.

PART 2 - PRODUCTS

2.1 PARKING BUMPERS

- A. Concrete Wheel Stops: Precast, steel-reinforced, air-entrained concrete, 4000-psi minimum compressive strength, 4-1/2 inches high by 9 inches wide by 72 inches long. Provide chamfered corners, transverse drainage slots on underside, and a minimum of two factory-formed or drilled vertical holes through wheel stop for anchoring to substrate.
 - 1. Surface Appearance: Free of pockets, sand streaks, honeycombs, and other obvious defects. Corners shall be uniform, straight, and sharp.
 - 2. Surface Sealer: Manufacturer's standard salt-resistant, clear sealer, applied at precasting location.
 - 3. Mounting Hardware: Galvanized-steel spike or dowel, 1/2-inch diameter, 10-inch minimum length.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Verify that pavement is in suitable condition to begin installation according to manufacturer's written instructions.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

PARKING BUMPERS 321713 - 1

3.2 INSTALLATION

- A. Install wheel stops according to manufacturer's written instructions unless otherwise indicated.
- B. Install wheel stops in bed of adhesive before anchoring.
- C. Securely anchor wheel stops to pavement with hardware in each preformed vertical hole in wheel stop as recommended in writing by manufacturer. Recess head of hardware beneath top of wheel stop.

END OF SECTION 321713

PARKING BUMPERS 321713 - 2

SECTION 321723 - PAVEMENT MARKINGS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes painted markings applied to asphalt and concrete pavement.

B. Related Requirements:

- 1. Section 071800 "Traffic Coatings" for painting whole areas of building floors and pavements with coatings having an integral wearing surface.
- 2. Section 099113 "Exterior Painting" for painting exterior concrete surfaces other than pavement.
- 3. Section 099123 "Interior Painting" for painting interior concrete surfaces other than pavement.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include technical data and tested physical and performance properties.
- B. Shop Drawings: For pavement markings.
 - 1. Indicate pavement markings, colors, lane separations, defined parking spaces, and dimensions to adjacent work.
 - 2. Indicate, with international symbol of accessibility, spaces allocated for people with disabilities.
- C. Samples: For each exposed product and for each color and texture specified; on rigid backing, 8 inches square.

1.3 QUALITY ASSURANCE

- A. Regulatory Requirements: Comply with materials, workmanship, and other applicable requirements of the 2013 Standard Specifications Construction of Transportation Systems, with 2106 Supplemental Specifications, of the Georgia Department of Transportation for pavement-marking work.
 - 1. Measurement and payment provisions and safety program submittals included in standard specifications do not apply to this Section.

1.4 FIELD CONDITIONS

A. Environmental Limitations: Proceed with pavement marking only on clean, dry surfaces and at a minimum ambient or surface temperature of 40 deg F for alkyd materials or 55 deg F for water-based materials, and not exceeding 95 deg F.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Accessibility Standard: Comply with applicable provisions in the USDOJ's "2010 ADA Standards for Accessible Design".

2.2 PAVEMENT-MARKING PAINT

- A. Traffic Line Paint: Waterborne, GDOT Section 870.2.02 or approved equivalent.
 - 1. Color: As indicated.
- B. Glass Beads: AASHTO M 247, Type 1.
 - 1. Roundness: Minimum 80 percent true spheres by weight.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Verify that pavement is dry and in suitable condition to begin pavement marking according to manufacturer's written instructions.
- B. Proceed with pavement marking only after unsatisfactory conditions have been corrected.

3.2 PAVEMENT MARKING

- A. Do not apply pavement-marking paint until layout, colors, and placement have been verified with Architect.
- B. Allow paving to age for a minimum of 30 days before starting pavement marking.
- C. Sweep and clean surface to eliminate loose material and dust.
- D. Apply paint with mechanical equipment to produce pavement markings, of dimensions indicated, with uniform, straight edges. Apply at manufacturer's recommended rates to provide a minimum wet film thickness of 25 mils.

CONSTRUCTION DOCUMENTS FINAL SUBMITTAL

- 1. Apply graphic symbols and lettering with paint-resistant, die-cut stencils, firmly secured to pavement. Mask an extended area beyond edges of each stencil to prevent paint application beyond stencil. Apply paint so that it cannot run beneath stencil.
- 2. Broadcast glass beads uniformly into wet markings at a rate of 6 lb/gal.

3.3 PROTECTING AND CLEANING

- A. Protect pavement markings from damage and wear during remainder of construction period.
- B. Clean spillage and soiling from adjacent construction using cleaning agents and procedures recommended by manufacturer of affected construction.

END OF SECTION 321723

SECTION 321726 - TACTILE WARNING SURFACING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Cast-in-place detectable warning tiles.

B. Related Requirements:

1. Section 321313 "Concrete Paving" for concrete walkways serving as substrates for tactile warning surfacing.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Samples for Initial Selection: For each type of exposed finish requiring color selection.
- C. Samples for Verification: For each type of tactile warning surface, in manufacturer's standard sizes unless otherwise indicated, showing edge condition, truncated-dome pattern, texture, color, and cross section; with fasteners and anchors.

1.3 CLOSEOUT SUBMITTALS

A. Maintenance Data: For tactile warning surfacing, to include in maintenance manuals.

1.4 QUALITY ASSURANCE

- A. Mockups: Build mockups to verify selections made under Sample submittals, to demonstrate aesthetic effects, and to set quality standards for materials and execution.
 - 1. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.5 PROJECT CONDITIONS

A. Cold-Weather Protection: Do not use frozen materials or materials mixed or coated with ice or frost. Do not build on frozen subgrade or setting beds. Remove and replace unit paver work damaged by frost or freezing.

1.6 WARRANTY

- A. Special Warranty: Manufacturer agrees to repair or replace components of tactile warning surfaces that fail in materials or workmanship within specified warranty period.
 - 1. Failures include, but are not limited to, the following:
 - a. Deterioration of finishes beyond normal weathering and wear.
 - b. Separation or delamination of materials and components.
 - 2. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 TACTILE WARNING SURFACING, GENERAL

- A. Accessibility Requirements: Comply with applicable provisions in the U.S. Architectural & Transportation Barriers Compliance Board's ADA-ABA Accessibility Guidelines for Buildings and Facilities and ICC A117.1 for tactile warning surfaces.
 - 1. For tactile warning surfaces composed of multiple units, provide units that when installed provide consistent side-to-side and end-to-end dome spacing that complies with requirements.
- B. Source Limitations: Obtain each type of tactile warning surfacing, joint material, setting material, anchor, and fastener from single source with resources to provide materials and products of consistent quality in appearance and physical properties.

2.2 DETECTABLE WARNING TILES

- A. Cast-in-Place Detectable Warning Tiles: Accessible truncated-dome detectable warning tiles configured for setting flush in new concrete walkway surfaces, with slip-resistant surface treatment on domes and field of tile.
 - 1. Material: Cast-fiber-reinforced polymer concrete tile.
 - 2. Color: As selected by Architect from manufacturer's full line.
 - 3. Shapes and Sizes:
 - a. Rectangular panel, 12 by 12 inches.
 - b. Radius panel, nominal 24 inches deep, per Project Drawings.
 - 4. Dome Spacing and Configuration: Manufacturer's standard compliant spacing, in pattern.
 - 5. Mounting:
 - a. Permanently embedded detectable warning tile wet-set into freshly poured concrete.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Verify that pavement is in suitable condition to begin installation according to manufacturer's written instructions. Verify that installation of tactile warning surfacing will comply with accessibility requirements upon completion.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION OF TACTILE WARNING SURFACING

- A. General: Prepare substrate and install tactile warning surfacing according to manufacturer's written instructions unless otherwise indicated.
- B. Place tactile warning surfacing units in dimensions and orientation indicated. Comply with location requirements of AASHTO MP 12.

3.3 INSTALLATION OF DETECTABLE WARNING TILES

- A. Cast-in-Place Detectable Warning Tiles:
 - 1. Concrete Paving Installation: Comply with installation requirements in Section 321313 "Concrete Paving." Mix, place, and finish concrete to conditions complying with detectable warning tile manufacturer's written requirements for satisfactory embedment of tile.
 - 2. Set each detectable warning tile accurately and firmly in place and completely seat tile back and embedments in wet concrete by tamping or vibrating. If necessary, temporarily apply weight to tiles to ensure full contact with concrete.
 - 3. Set surface of tile flush with surrounding concrete and adjacent tiles, with variations between tiles and between concrete and tiles not exceeding plus or minus 1/8 inch from flush
 - 4. Protect exposed surfaces of installed tiles from contact with wet concrete. Complete finishing of concrete paving surrounding tiles. Remove concrete from tile surfaces.
 - 5. Clean tiles using methods recommended in writing by manufacturer.

3.4 CLEANING AND PROTECTION

- A. Remove and replace tactile warning surfacing that is broken or damaged or does not comply with requirements in this Section. Remove in complete sections from joint to joint unless otherwise approved by Architect. Replace using tactile warning surfacing installation methods acceptable to Architect.
- B. Protect tactile warning surfacing from damage and maintain free of stains, discoloration, dirt, and other foreign material.

1180510 TOBIE GRANT RECREATION CENTER 03/22/2019

CONSTRUCTION DOCUMENTS FINAL SUBMITTAL

END OF SECTION 321726

SECTION 323300 - SITE FURNISHINGS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Seating.
 - 2. Bicycle racks.
 - 3. Trash receptacles.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Samples: For each exposed product and for each color and texture specified.

1.3 CLOSEOUT SUBMITTALS

A. Maintenance data.

PART 2 - PRODUCTS

2.1 SEATING

A. Refer to drawings

2.2 BICYCLE RACKS

A. Refer to drawings

2.3 TRASH RECEPTACLES

- A. Refer to drawings
- B. Trash Receptacles:
 - 1. Refer to Drawings

SITE FURNISHINGS 323300 - 1

2.4 MATERIALS

- A. Materials to meet specifications of manufacturer serving as basis for design for each product:
 - 1. Bench: Abril Bench by Landscape Forms
 - a. Add-Alternate: Solar Bench by Soofa
 - 2. Trash Receptacle: Austin Litter Receptacle by Landscape Forms
 - 3. Bike Rack: Ride Bike Back by Landscape Forms
- B. Erosion-Resistant Anchoring Cement: Factory-packaged, nonshrink, nonstaining, hydraulic-controlled expansion cement formulation for mixing with potable water at Project site to create pourable anchoring, patching, and grouting compound; resistant to erosion from water exposure without needing protection by a sealer or waterproof coating; recommended in writing by manufacturer, for exterior applications.

C.

1.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with manufacturer's written installation instructions unless more stringent requirements are indicated. Complete field assembly of site furnishings where required.
- B. Unless otherwise indicated, install site furnishings after landscaping and paving have been completed.
- C. Install site furnishings level, plumb, true, and securely anchored at locations indicated on Drawings.

END OF SECTION 323300

SITE FURNISHINGS 323300 - 2

SECTION 32 9100 PLANTING SOIL

PART 1 – GENERAL

1.1 SUMMARY

- A. The scope of work includes all labor, materials, tools, supplies, equipment, facilities, transportation and services necessary for, and incidental to performing all operations in connection with furnishing, delivery, and installation of Planting Soil and /or the modification of existing site soil for use as Planting Soil, complete as shown on the drawings and as specified herein.
- B. The scope of work in this section includes, but is not limited to, the following:
 - 1. Locate, purchase, deliver and install Imported Planting Soil and soil amendments.
 - 2. Harvest and stockpile existing site soils suitable for Planting Soil.
 - 3. Modify existing stockpiled site soil.
 - a. Modify existing site soil in place for use as Planting Soil.
 - b. Install existing or modified existing soil for use as Planting Soil.
 - 4. Locate, purchase, deliver and install subsurface Drain Lines.
 - 5. Fine grade Planting Soil.
 - 6. Install Compost into Planting Soil.
 - 7. Clean up and disposal of all excess and surplus material.

1.2 CONTRACT DOCUMENTS

A. Shall consist of specifications, general conditions, and the drawings. The intent of these documents is to include all labor, materials, and services necessary for the proper execution of the work. The documents are to be considered as one. Whatever is called for by any parts shall be as binding as if called for in all parts.

1.3 RELATED DOCUMENTS AND REFERENCES

A. Related Documents:

- 1. Drawings and general provisions of contract, including general and supplementary conditions and Division I specifications, apply to work of this section.
- 2. Related Specification Section
 - a. Section 329300- Plants
 - b. Section 329200- Turf and Grasses
 - c. Section 015639- Temporary Tree and Plant Protection
- B. References: The following specifications and standards of the organizations and documents listed in this paragraph form a part of the Specification to the extent required by the references thereto. In the event that the requirements of the following referenced standards and specification conflict with this specification section the requirements of this specification shall prevail. In the event that the requirements of any of the following referenced standards and specifications conflict with each other the more stringent requirement shall prevail.

- 1. ASTM: American Society of Testing Materials cited section numbers.
- 2. U.S. Department of Agriculture, Natural Resources Conservation Service, 2003. National Soil Survey Handbook, title 430-VI. Available Online.
- 3. US Composting Council <u>www.compostingcouncil.org</u> and <u>http://compostingcouncil.org/admin/wp-content/plugins/wp-pdfupload/pdf/191/LandscapeArch_Specs.pdf.</u>
- 4. *Methods of Soil Analysis*, as published by the Soil Science Society of America (http://www.soils.org/).
- 5. Up by Roots: healthy soils and trees in the built environment. 2008. J. Urban. International Society of Arboriculture, Champaign, IL.

1.4 VERIFICATION

A. All scaled dimensions on the drawings are approximate. Before proceeding with any work, the Contractor shall carefully check and verify all dimensions and quantities, and shall immediately inform the Owner's Representative of any discrepancies between the information on the drawings and the actual conditions, refraining from doing any work in said areas until given approval to do so by the Owner's Representative.

1.5 PERMITS AND REGULATIONS

- A. The Contractor shall obtain and pay for all permits related to this section of the work unless previously excluded under provision of the contract or general conditions. The Contractor shall comply with all laws and ordinances bearing on the operation or conduct of the work as drawn and specified. If the Contractor observes that a conflict exists between permit requirements and the work outlined in the contract documents, the Contractor shall promptly notify the Owner's Representative in writing including a description of any necessary changes and changes to the contract price resulting from changes in the work.
- B. Wherever references are made to standards or codes in accordance with which work is to be performed or tested, the edition or revision of the standards and codes current on the effective date of this contract shall apply, unless otherwise expressly set forth.
- C. In case of conflict among any referenced standards or codes or among any referenced standards and codes and the specifications, the more restrictive standard shall apply or Owner's Representative shall determine which shall govern.

1.6 PROTECTION OF WORK, PROPERTY AND PERSON

A. The Contractor shall adequately protect the work, adjacent property, and the public, and shall be responsible for any damages or injury due to the Contractor's actions.

1.7 CHANGES IN WORK

- A. The Owner's Representative may order changes in the work, and the contract sum adjusted accordingly. All such orders and adjustments plus claims by the Contractor for extra compensation must be made and approved in writing before executing the work involved.
- B. All changes in the work, notifications and contractor's request for information (RFI) shall conform to the contract general condition requirements.

1.8 CORRECTION OF WORK

A. The Contractor shall re-execute any work that fails to conform to the requirements of the contract and shall remedy defects due to faulty materials or workmanship upon written notice from the Owner's Representative, at the soonest possible time that can be coordinated with other work and seasonal weather demands but not more than 180 (one hundred and eighty) days after notification.

1.9 DEFINITIONS

- A. Acceptable drainage: Drainage rate is sufficient for the plants to be grown. Not too fast and not too slow. Typical rates for installed Planting Soil are between 1 5 inches per hour. Turf soils are often higher, but drainage rates above 2 3 inches per hour will dry out very fast. In natural undisturbed soil a much lower drainage rate, as low as 1/8th inch per hour can still support good plant growth. Wetland plants can grow on top of perched water layers or even within seasonal perched water layers, but could become unstable in high wind events.
- B. Amendment: material added to Topsoil to produce Planting Soil Mix. Amendments are classified as general soil amendments, fertilizers, biological, and pH amendments.
- C. Compacted soil: soil where the density of the soil is greater that the threshold for root limiting, and further defined in this specification.
- D. Compost: well decomposed stable organic material as defined by the US Composting Council and further defined in this specification.
- E. Drainage: The rate at which soil water moves through the soil transitioning the soil from saturated condition to field capacity. Most often expressed as saturated hydraulic conductivity (Ksat; units are inches per hour).
- F. End of Warranty Acceptance: The date when the Owner's Representative accepts that the plants and work in this section meet all the requirements of the warranty. It is intended that the materials and workmanship warranty for Planting, Planting Soil, and Irrigation (if applicable) work run concurrent with each other, and further defined in this specification.
- G. Existing Soil: Mineral soil existing at the locations of proposed planting after the majority of the construction within and around the planting site is completed and just prior to the start of work to prepare the planting area for soil modification and/or planting, and further defined in this specification.
- H. Fertilizer: amendment used for the purpose of adjusting soil nutrient composition and balance.
- I. Fine grading: The final grading of the soil to achieve exact contours and positive drainage, often accomplished by hand rakes or drag rakes other suitable devices, and further defined in this specification, and further defined in this specification.
- J. Finished grade: surface or elevation of Planting Soil after final grading and 12 months of settlement of the soil, and further defined in this specification.
- K. Graded soil: Soil where the A horizon has been stripped and relocated or re-spread; cuts and fills deeper than 12 inches, and further defined in this specification.
- L. Installed soil: Planting soil and existing site soil that is spread and or graded to form a planting soil, and further defined in this specification.
- M. Minor disturbance: Minor grading as part of agricultural work that only adjusts the A horizon soil, minor surface compaction in the top 6 inches of the soil, applications of fertilizers, installation of utility pipes smaller than 18 inches in diameter thru the soil zone.

- N. Owner's Representative: The person or entity, appointed by the Owner to represent their interest in the review and approval of the work and to serve as the contracting authority with the Contractor. The Owner's Representative may appoint other persons to review and approve any aspects of the work.
- O. Ped: a clump or clod of soil held together by a combination of clay, organic matter, and fungal hyphae, retaining the original structure of the harvested soil.
- P. Planting Soil: Topsoil, or Planting Soil Mixes which are imported or existing at the site, or made from components that exist at the site, or are imported to the site; and further defined in this specification.
- Q. Poor drainage: Soil drainage that is slower than that to which the plants can adapt. This is a wide range of metrics, but generally if the soil is turning grey in color it is reasonable preferable to either to plant moisture adaptive plants at smaller sizes that are young in age with shallow root balls or look at options to improve the drainage
- R. Scarify: Loosening and roughening the surface of soil and sub soil prior to adding additional soil on top, and further defined in this specification.
- S. Soil Fracturing: Deep loosening the soil to the depths specified by using a back hoe, and further defined in this specification.
- T. Soil Horizons: as defined in the USDA National Soil Survey Handbook http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/scientists/?cid=nrcs142p2_054242.
- U. Soil Ripping: Loosening the soil by dragging a ripping shank or chisel thru the soil to the depths and spacing specified, and further defined in this specification.
- V. Soil Tilling: Loosening the surface of the soil to the depths specified with a rotary tine tilling machine, roto tiller, or spade tiller, and further defined in this specification.
- W. Subgrade: surface or elevation of subsoil remaining after completing excavation, or top surface of a fill or backfill, before placing Planting Soil.
- X. Substantial Completion Acceptance: The date at the end of the Planting, Planting Soil, and Irrigation installation (if applicable) where the Owner's Representative accepts that all work in these sections is complete and the Warranty period has begun. This date may be different than the date of substantial completion for the other sections of the project, and further defined in this specification.
- Y. Topsoil: naturally produced and harvested soil from the A horizon or upper layers or the soil as further defined in this specification.
- Z. Undisturbed soil: Soils with the original A horizon intact that have not been graded or compacted. Soils that have been farmed, subjected to fire or logged but not graded, and natural forested land will be considered as undisturbed.

1.10 SUBMITTALS

- A. See the contract General Conditions for policy and procedures related to submittals.
- B. Submit all product submittals eight weeks prior to the start of the soil work.
- C. Product data and certificates: For each type of manufactured product, submit data and certificates that the product meets the specification requirements, signed by the product manufacturer, and complying with the following:
 - 1. Submit manufacturers or supplier's product data and literature certified analysis for standard

products and bulk materials, complying with testing requirements and referenced standards and specific requested testing.

- a. For each Compost product submit the following analysis by a recognized laboratory:
 - pH
 - 2.) Salt concentration (electrical conductivity)
 - 3.) Moisture content %, wet weight basis
 - 4.) Particle size % passing a selected mesh size, dry weight basis
 - 5.) Stability carbon dioxide evolution rate mg CO2-C per g OM per day
 - 6.) Solvita maturity test
 - 7.) Physical contaminants (inerts) %, dry weight basis
 - 8.) US EPA Class A standard, 40CFR § 503.13, Tables 1 and 3 levels Chemical Contaminants mg/kg (ppm)
- b. For Coarse Sand product submit the following analysis by a recognized laboratory:
 - 1.) pH
 - 2.) Particle size distribution (percent passing the following sieve sizes):

3/8 inch (9.5 mm)

No 4 (4.75 mm)

No 8 (2.36 mm)

No 16(1.18 mm)

No 30 (.60 mm)

No 50 (.30 mm)

No 100 (.15 mm)

No 200 (.075 mm)

- D. Samples: Submit samples of each product and material, where required by Part 2 of the specification, to the Owner's Representative for approval. Label samples to indicate product, characteristics, and locations in the work. Samples will be reviewed for appearance only.
 - 1. Submit samples a minimum of 8 weeks prior to the anticipated date of the start of soil installation.
 - 2. Samples of all Topsoil, Coarse Sand, Compost and Planting Soil shall be submitted at the same time as the particle size and physical analysis of that material.
- E. Soil testing for Imported and Existing Topsoil, existing site soil to be modified as Planting Soil and Planting Soil Mixes.
 - 1. Topsoil, existing site soil and Planting Soil Mix testing: Submit soil test analysis report for each sample of Topsoil, existing site soil and Planting Soil from an approved soil-testing laboratory and where indicated in Part 2 of the specification as follows:
 - a. Submit Topsoil, Planting Soil, Compost, and Coarse Sand for testing at least 8 weeks before scheduled installation of Planting Soil Mixes. Submit Planting Soil Mix test no more than 2 weeks after the approval of the Topsoil, Compost and Coarse Sand. Do not submit to the testing laboratory, Planting Soil Mixes, for testing until all Topsoil, Compost and Coarse Sand have been approved.
 - b. If tests fail to meet the specifications, obtain other sources of material, retest and resubmit until accepted by the Owner's Representative.
 - c. All soil testing will be at the expense of the Contractor.
 - 2. Provide a particle size analysis (% dry weight) and USDA soil texture analysis. Soil testing of Planting Soil Mixes shall also include USDA gradation (percentage) of gravel, coarse sand,

medium sand, and fine sand in addition to silt and clay.

- 3. Provide the following other soil properties:
 - a. pH and buffer pH.
 - b. Percent organic content by oven dried weight.
 - c. Nutrient levels by parts per million including: phosphorus, potassium, magnesium, manganese, iron, zinc and calcium. Nutrient test shall include the testing laboratory recommendations for supplemental additions to the soil for optimum growth of the plantings specified.
 - d. Soluble salt by electrical conductivity of a 1:2 soil water sample measured in Milliohm per cm.
 - e. Cation Exchange Capacity (CEC).

1.11 OBSERVATION OF THE WORK

- A. The Owner's Representative may observe the work at any time. They may remove samples of materials for conformity to specifications. Rejected materials shall be immediately removed from the site and replaced at the Contractor's expense. The cost of testing materials not meeting specifications shall be paid by the Contractor.
 - 1. The Owner's Representative may utilize the Contractor's penetrometer and moisture meter at any time to check soil compaction and moisture.
- B. The Owner's Representative shall be informed of the progress of the work so the work may be observed at the following key times in the construction process. The Owner's Representative shall be afforded sufficient time to schedule visit to the site. Failure of the Owner's Representative to make field observations shall not relieve the Contractor from meeting all the requirements of this specification.
 - 1. COMPLETION OF FINE GRADING AND SURFACE SOIL MODIFICATIONS REVIEW: Upon completion of all surface soil modifications and fine grading but prior to the installation of shrubs, ground covers, or lawns.

1.12 PRE-CONSTRUCTION CONFERENCE

A. Schedule a pre-construction meeting with the Owner's Representative at least seven (7) days before beginning work to review any questions the Contractor may have regarding the work, administrative procedures during construction and project work schedule.

1.13 QUALITY ASSURANCE

- A. Soil testing laboratory qualifications: an independent laboratory, with the experience and capability to conduct the testing indicated and that specializes in USDA agricultural soil testing, Planting Soil Mixes, and the types of tests to be performed. Geotechnical engineering testing labs shall not be used.
- B. All delivered and installed Planting Soil shall conform to the approved submittals sample color, texture and approved test analysis.
 - 1. The Owner's Representative may request samples of the delivered or installed soil be tested for analysis to confirm the Planting Soil conforms to the approved material.
 - 2. All testing shall be performed by the same soil lab that performed the original Planting Soil testing.

- 3. Testing results shall be within 10% plus or minus of the values measured in the approved Planting Soil Mixes.
- 4. Any Planting Soil that fails to meet the above criteria, if requested by the Owner's Representative, shall be removed and new soil installed.
- C. Soil compaction testing: following installation or modification of soil, test soil compaction with a penetrometer.
 - 1. Maintain at the site at all times a soil cone penetrometer with pressure dial and a soil moisture meter to check soil compaction and soil moisture.
 - a. Penetrometer shall be AgraTronix Soil Compaction Meter distributed by Ben Meadows, www.benmeadows.com or approved equal.
 - b. Moisture meter shall be "general digital soil moisture meter" distributed by Ben Meadows, www.benmeadows.com or approved equal.
 - 2. Prior to testing the soil with the penetrometer check the soil moisture and penetrometer readings in the mockup soils. Penetrometer readings are impacted by soil moisture and excessively wet or dry soils will read significantly lower or higher than soils at optimum moisture.
 - 3. The penetrometer readings shall be within 20% plus or minus of the readings in the approved mockup when at similar moisture levels.

1.14 SITE CONDITIONS

- A. It is the responsibility of the Contractor to be aware of all surface and subsurface conditions, and to notify the Owner's Representative, in writing, of any circumstances that would negatively impact the health of plantings. Do not proceed with work until unsatisfactory conditions have been corrected.
 - 1. Should subsurface drainage or soil conditions be encountered which would be detrimental to growth or survival of plant material, the Contractor shall notify the Owner's Representative in writing, stating the conditions and submit a proposal covering cost of corrections. If the Contractor fails to notify the Owner's Representative of such conditions, they shall remain responsible for plant material under the warrantee clause of the specifications.
 - 2. This specification requires that all Planting Soil and Irrigation (if applicable) work be completed and accepted prior to the installation of any plants.

1.15 SOIL COMPACTION – GENERAL REQUIREMENTS

- A. Except where more stringent requirements are defined in this specification. The following parameters shall define the general description of the threshold points of soil compaction in existing, modified or installed soil and subsoil.
- B. The following are threshold levels of compaction as determined by each method.
 - 1. Acceptable Compaction: Good rooting anticipated, but increasing settlement expected as compaction is reduced and/or in soil with a high organic matter content.
 - a. Bulk Density Method Varies by soil type see Chart on page 32 in <u>Up By Roots</u>.
 - b. Standard Proctor Method 75-85%; soil below 75% is unstable and will settle excessively.
 - c. Penetration Resistance Method about 75-250 psi, below 75 psi soil becomes increasingly unstable and will settle excessively.
 - 2. Root limiting Compaction: Root growth is limited with fewer, shorter and slower growing roots.
 - a. Bulk Density Method Varies by soil type see Chart on page 32 in Up By Roots.

- b. Standard Proctor Method above approximately 85%.
- c. Penetration Resistance Method about 300 psi.
- 3. Excessive Compaction: Roots not likely to grow but can penetrate soil when soil is above field capacity.
 - a. Bulk Density Method Varies by soil type see Chart on page 32 in <u>Up By Roots</u>.
 - b. Standard Proctor Method Above 90%.
 - c. Penetration Resistance Method Approximately above 400 psi

1.16 DELIVERY, STORAGE, AND HANDLING

- A. Weather: Do not mix, deliver, place or grade soils when frozen or with moisture above field capacity.
- B. Protect soil and soil stockpiles, including the stockpiles at the soil blender's yard, from wind, rain and washing that can erode soil or separate fines and coarse material, and contamination by chemicals, dust and debris that may be detrimental to plants or soil drainage. Cover stockpiles with plastic sheeting or fabric at the end of each workday.
- C. All manufactured packaged products and material shall be delivered to the site in unopened containers and stored in a dry enclosed space suitable for the material and meeting all environmental regulations. Biological additives shall be protected from extreme cold and heat. All products shall be freshly manufactured and dated for the year in which the products are to be used.
- D. Deliver all chemical amendments in original, unopened containers with original labels intact and legible, which state the guaranteed chemical analysis. Store all chemicals in a weather protected enclosure.
- E. Bulk material: Coordinate delivery and storage with Owner's Representative and confine materials to neat piles in areas acceptable to Owner's Representative.

1.17 EXCAVATING AND GRADING AROUND UTILITIES

- A. Contractor shall carefully examine the civil, record, and survey drawings to become familiar with the existing underground conditions before digging.
- B. Determine location of underground utilities and perform work in a manner that will avoid damage. Hand excavate as required. Maintain grade stakes set by others until parties concerned mutually agree upon removal.
- C. Notification of the local utility locator service, Call Before You Dig, Dial 811, is required for all planting areas. The Contractor is responsible for knowing the location and avoiding utilities that are not covered by the local utility locator service.

PART 2 - **PRODUCTS**

2.1 IMPORTED TOPSOIL

A. Imported Topsoil definition: Fertile, friable soil containing less than 5% total volume of the combination of subsoil, refuse, roots larger than 1 inch diameter, heavy, sticky or stiff clay, stones larger than 2 inches in diameter, noxious seeds, sticks, brush, litter, or any substances deleterious to plant growth. The percent (%) of the above objects shall be controlled by source selection not by screening the soil. Topsoil shall be suitable for the germination of seeds and the support of vegetative growth. Imported Topsoil shall not contain weed seeds in quantities that cause noticeable weed infestations in the final planting beds. Imported Topsoil shall meet the following physical and chemical criteria:

- 1. Soil texture: USDA loam, sandy clay loam or sandy loam with clay content between 15 and 25%. And a combined clay/silt content of no more than 55%.
- 2. pH value shall be between 5.5 and 7.0.
- 3. Percent organic matter (OM): 2.0-5.0%, by dry weight.
- 4. Soluble salt level: Less than 2 mmho/cm.
- 5. Soil chemistry suitable for growing the plants specified.
- B. Imported Topsoil shall be a harvested soil from fields or development sites. The organic content and particle size distribution shall be the result of natural soil formation. Manufactured soils where Coarse Sand, Composted organic material or chemical additives has been added to the soil to meet the requirements of this specification section shall not be acceptable. Retained soil peds shall be the same color on the inside as is visible on the outside.
- C. Imported Topsoil for Planting Soil shall NOT have been screened and shall retain soil peds or clods larger than 2 inches in diameter throughout the stockpile after harvesting.
- D. Stockpiled Existing Topsoil at the site meeting the above criteria may be acceptable.
- E. Provide a two gallon sample from each Imported Topsoil source with required soil testing results. The sample shall be a mixture of the random samples taken around the source stockpile or field. The soil sample shall be delivered with soil peds intact that represent the size and quantity of expected peds in the final delivered soil.

2.2 COMPOST

- A. Compost: Blended and ground leaf, wood and other plant based material, composted for a minimum of 9 months and at temperatures sufficient to break down all woody fibers, seeds and leaf structures, free of toxic material at levels that are harmful to plants or humans. Source material shall be yard waste trimmings blended with other plant or manure based material designed to produce Compost high in fungal material.
 - 1. Compost shall be commercially prepared Compost and meet US Compost Council STA/TMECC criteria or as modified in this section for "Compost as a Landscape Backfill Mix Component".

http://compostingcouncil.org/admin/wp-content/plugins/wp-pdfupload/pdf/191/LandscapeArch_Specs.pdf

- 2. Compost shall comply with the following parameters:
 - a. pH: 5.5 8.0.
 - b. Soil salt (electrical conductivity): maximum 5 dS/m (mmhos/cm).
 - c. Moisture content %, wet weight basis: 30 60.
 - d. Particle size, dry weight basis: 98% pass through 3/4 inch screen or smear.
 - e. Stability carbon dioxide evolution rate: mg CO₂-C/ g OM/ day < 2.
 - f. Solvita maturity test: > 6.
 - g. Physical contaminants (inerts), %, dry weight basis: <1%.
 - h. Chemical contaminants, mg/kg (ppm): meet or exceed US EPA Class A standard, 40CFR § 503.13, Tables 1 and 3 levels.
 - i. Biological contaminants select pathogens fecal coliform bacteria, or salmonella, meet or exceed US EPA Class A standard, 40 CFR § 503.32(a) level requirements.
- B. Provide a two gallon sample with manufacturer's literature and material certification that the product

meets the requirements.

2.3 COARSE SAND

- A. Clean, washed, sand, free of toxic materials
 - 1. Coarse concrete sand, ASTM C-33 Fine Aggregate, with a Fines Modulus Index of 2.8 and 3.2.
 - 2. Coarse Sands shall be clean, sharp, natural Coarse Sands free of limestone, shale and slate particles. Manufactured Coarse Sand shall not be permitted.
 - 3. pH shall be lower than 7.0.
 - 4. Provide Coarse Sand with the following particle size distribution:

Sieve	Percent passing
3/8 inch (9.5 mm)	100
No 4 (4.75 mm)	95-100
No 8 (2.36 mm)	80-100
No 16 (1.18 mm)	50-85
No 30 (.60 mm)	25-60
No 50 (.30 mm)	10-30
No 100 (.15 mm)	2-10
No 200 (0.75 mm	2-5

B. Provide a two gallon sample with manufacturer's literature and material certification that the product meets the requirements.

2.4 LIME

- A. ASTM C 602, agricultural limestone containing a minimum 80 percent calcium carbonate equivalent and as follows:
 - 1. Class: Class T, with a minimum 99 percent passing through No. 8 sieve and a minimum 75 percent passing through No. 60 sieve.
 - 2. Provide lime in form of dolomitic limestone.
- B. Provide manufacturer's literature and material certification that the product meets the requirements.
- 2.5 EXISTING SOIL (Acceptable for planting with minimum modifications)
 - A. General definition of existing soil: Surface soil in the areas designated on the soils plan as existing soil, that is not altered, compacted to root limiting density, graded or contaminated before or during the construction process and considered acceptable for planting and long term health of the plants specified either as it exists or with only minor modification.
 - 1. The Owner's Representative shall verify that the soil in the designated areas is suitable at the beginning of planting bed preparation work in that area. In the event that the work of this project construction has damaged the existing soil in areas designated for use as Planting Soil to the point where the soil is no longer suitable to support the plants specified, the Owner's Representative may require modification of the damaged soil up to and including removal and replacement with soil of equal quality to the soil that existed prior to construction. Examples of damage include further compaction, contamination, grading, creation of hard pan or drainage problems, and loss of the O, and or A horizon.
 - a. Do not begin work on additional modifications until changes to the contract price are

approved by Owner's Representative.

- B. Protect existing soil from compaction, contamination, and degradation during the construction process.
- C. Unless otherwise instructed, remove all existing plants, root thatch, and non-soil debris from the surface of the soil using equipment that does not increase compaction of soil to root limiting levels.

D. Modifications:

- 1. When results of soil tests recommend chemical adjustments, till surface soil to six inches or greater after chemical adjustments have been are applied.
- 2. Remove existing turf thatch, ground cover plants and weeds.
- 3. Provide pre-emergent weed control if indicated.
- 4. Make chemical adjustment as recommended by the soil test.

2.6 MODIFIED EXISTING SOIL (SOIL SUITABLE FOR PLANTING WITH INDICATED MODIFICATION)

- A. General definition: Surface soil in the areas designated as Modified Existing Soil has been altered and or graded before or during the construction process but is still considered acceptable for planting and long-term health of the plants specified with the proposed modifications. Modifications respond to the soil problems expected or encountered. The Owner's Representative shall verify that the soil in the designated areas is suitable for modification at the beginning of planting bed preparation work in that area.
 - 1. The Owner's Representative shall verify that the soil in the designated areas is suitable for the specified modification at the beginning of planting bed preparation work in that area. In the event that the work of this project construction has damaged the existing soil in areas designated for modification to the point where the soil is no longer suitable to support the plants specified with the specified modification, the Owner's Representative may require further modification of the damaged soil up to an including removal and replacement with soil of equal quality to the soil that would have resulted from the modification. Damage may include further compaction, contamination, grading, creation of hard pan or drainage problem, and loss of the O, and or A horizon.
 - 2. General requirements for all soil modifications:
 - a. Take soil samples, test for chemical properties, and make appropriate adjustments.
 - b. Unless otherwise instructed, remove all existing plants, root thatch, and non-soil debris from the surface of the soil using equipment that does not add to the compaction in the soil.
 - c. All soil grading, tilling and loosening must be completed at times when the soil moisture is below field capacity. Allow soil to drain for at least two days after any rain event more than 1 inch in 24 hours, or long enough so that the soil does not make the hand muddy when squeezed.
 - d. Provide pre-emergent weed control after the soil work is complete and plants planted but prior to adding mulch to the surface, if indicated by weed type and degree of threat.
- B. Modified existing soil soil removed, stockpiled, and spread
 - 1. Description of condition to be modified: Existing soil that is suitable for reuse as Planting Soil

but is in the wrong place of elevation, or cannot be adequately protected during construction. Soil is to be harvested, stockpiled and re-spread with or without further modifications as indicated.

2. Modifications:

- a. Excavate existing soil from the areas and to depths designated on the drawings. Stockpile in zones noted on the drawings or in areas proposed by the Contractor.
- b. Excavate soil using equipment and methods to preserve the clumps and peds in the soil. Generally this means using the largest piece of equipment that is practical for the project size and scope.
- c. Protect stock piles from erosion by compacting or tracking the soil surface, covering with breathable fabric or planting with annual grasses as appropriate for the season, location, and length of expected time of storage.
- d. Re-spread soil as required in Part 3 of this specification.

C. Modified existing soil – compacted surface soil (Tilling Option)

Description of condition to be modified: Surface soil compaction to a maximum of 6 inches deep
from traffic or light grading. Original A horizon may be previously removed or graded but lower
profile intact with acceptable compaction levels and limited grading. The soil organic matter, pH
and chemistry in the A horizon may not be suitable for the proposed plants and may need to be
modified as required.

2. Modifications:

- a. Till top 6 inches or deeper of the soil surface, with a *roto tiller*, ripper or agricultural plow. Spread 2 3 inches of Compost on the surface of the tilled soil and make any chemical adjustment as recommended by the soil test.
- b. Till or disk the Compost into the loosened soil. Smooth out grades with a drag rake or drag slip.

D. Modified existing soil – compacted subsoil

1. Description of condition to be modified: Deep soil compaction the result of previous grading, filling and dynamic or static compaction forces. Original A horizon likely removed or buried. The soil organic matter, pH and chemistry in the A horizon is likely not suitable for the proposed plants and should be modified as required.

2. Soil Fracturing:

- a. Step one: After grading and removing all plants and debris from the surface, spread 2-3 inches of Compost over the surface of the soil. Loosen the soil to depth of 18-24 inches, using a backhoe to dig into the soil through the Compost. Lift and then drop the loosened soil immediately back into the hole. The bucket then moves to the adjacent soil and repeats the process until the entire area indicated has been loosened.
- b. Step 2: Spread 3-4 inches of Compost over the ripped area and till into the top 6 inches of the soil surface.
- 3. Following soil ripping or fracturing the average penetration resistance should be less than 250 psi to the depth of the ripping or fracturing.
- 4. Do not start planting into ripped or fractured soil until soil has been settled or leave grades sufficiently high to anticipate settlement of 10 15% of ripped soil depth.
- E. Modified existing soil low organic matter

- Description of condition to be modified: Low soil organic matter and/or missing A horizon but soil is not compacted except for some minor surface compaction. The soil organic matter, pH and/or chemistry are likely not suitable for the proposed plants and should be modified as required.
- 2. Modifications:
 - a. Spread 3 4 inches of Compost over the surface of the soil and make chemical adjustment as recommended by the soil test.
 - b. Till Compost into the top 6 inches of the soil.
- F. Modified existing soil soil within the root zone of existing established trees
 - 1. Description of condition to be modified: Surface compaction near or above root limited levels in the upper soil horizon the result of traffic or other mechanical compaction.
 - 2. Modifications:
 - a. Remove the tops of all plants to be removed from the root zone. Remove sod with a walk behind sod cutter. Do not grub out the roots of plants to be removed.
 - b. Use a pneumatic air knife to loosen the top 9-12 inches of the soil. Surface roots may move and separate from soil during this process but the bark on roots should not be broken
 - 1.) Pneumatic air knife shall be as manufactured by: Concept Engineering Group, Inc., Verona, PA (412) 826-8800 or
 - Supersonic Air Knife, Inc., Allison Park, PA (866) 328 5723
 - c. Make chemical adjustment as recommended by the soil test and add 2 3 inches of Compost over the soil.
 - d. Using the pneumatic air knife, mix the Compost into the top 6-8 inches of the loosened soil.
 - e. Work in sections such that the entire process including irrigation can be completed in one day. Apply approximately one inch of water over the loosened soil at the completion of each day's work. Apply mulch or turf as indicated on the drawings within one week of the completion of work.

2.7 PLANTING SOIL MIXES

- A. General definition: Mixes of Existing Soil or Imported Topsoil, Coarse Sand, and or Compost to make a new soil that meets the project goals for the indicated planting area. These may be mixed off site or onsite, and will vary in Mix components and proportions as indicated.
- B. Planting Mix moderately slow draining soil for trees and shrub beds
 - 1. A Mix of Imported Topsoil, Coarse Sand and Compost. The approximate Mix ratio shall be: Mix component % by moist volume

Imported Topsoil unscreened 45-50% Coarse sand 40-45% Compost 10%

- 2. Final tested organic matter between 2.75 and 4% (by dry weight).
- 3. Mix the Coarse Sand and Compost together first and then add to the Topsoil. Mix with a loader bucket to loosely incorporate the Topsoil into the Coarse Sand/Compost Mix. DO NOT OVER MIX! Do not mix with a soil blending machine. Do not screen the soil. Clumps of Soil, Compost and Coarse Sand will be permitted in the overall Mix.

- 4. At the time of final grading, add fertilizer if required to the Planting Soil at rates recommended by the testing results for the plants to be grown.
- 5. Provide a two gallon sample with testing data that includes recommendations for chemical additives for the types of plants to be grown. Samples and testing data shall be submitted at the same time.

PART 3 – **EXECUTION**

3.1 SITE EXAMINATION

- A. Prior to installation of Planting Soil, examine site to confirm that existing conditions are satisfactory for the work of this section to proceed.
 - 1. Confirm that the subgrade is at the proper elevation and compacted as required. Subgrade elevations shall slope toward the under drain lines as shown on the drawings.
 - 2. Confirm that surface all areas to be filled with Planting Soil are free of construction debris, refuse, compressible or biodegradable materials, stones greater than 2 inches diameter, soil crusting films of silt or clay that reduces or stops drainage from the Planting Soil into the subsoil; and/or standing water. Remove unsuitable material from the site.
 - 3. Confirm that no adverse drainage conditions are present.
 - 4. Confirm that no conditions are present which are detrimental to plant growth.
 - 5. Confirm that utility work has been completed per the drawings.
 - 6. Confirm that irrigation work, which is shown to be installed below prepared soil levels, has been completed.
- B. If unsatisfactory conditions are encountered, notify the Owner's Representative immediately to determine corrective action before proceeding.

3.2 COORDINATION WITH PROJECT WORK

- A. The Contractor shall coordinate with all other work that may impact the completion of the work.
- B. Prior to the start of work, prepare a detailed schedule of the work for coordination with other trades.
- C. Coordinate the relocation of any irrigation lines, heads or the conduits of other utility lines that are in conflict with tree locations. Root balls shall not be altered to fit around lines. Notify the Owner's Representative of any conflicts encountered.

3.3 GRADE AND ELEVATION CONTROL

A. Provide grade and elevation control during installation of Planting Soil. Utilize grade stakes, surveying equipment, and other means and methods to assure that grades and contours conform to the grades indicated on the plans.

3.4 SITE PREPARATION

A. Excavate to the proposed subgrade. Maintain all required angles of repose of the adjacent materials as shown on the drawings or as required by this specification. Do not over excavate compacted subgrades of adjacent pavement or structures. Maintain a supporting 1:1 side slope of compacted

- subgrade material along the edges of all paving and structures where the bottom of the paving or structure is above the bottom elevation of the excavated planting area.
- B. Remove all construction debris and material including any construction materials from the subgrade.
- C. Confirm that the subgrade is at the proper elevation and compacted as required. Subgrade elevations shall slope approximately parallel to the finished grade and/or toward the subsurface drain lines as shown on the drawings.
- D. In areas where Planting Soil is to be spread, confirm subgrade has been scarified.
- E. Protect adjacent walls, walks and utilities from damage or staining by the soil. Use 1/2 inch plywood and or plastic sheeting as directed to cover existing concrete, metal and masonry work and other items as directed during the progress of the work.
 - 1. At the end of each working day, clean up any soil or dirt spilled on any paved surface.
 - 2. Any damage to the paving or site features or work shall be repaired at the Contractor's expense.

3.5 SOIL MOISTURE

A. Volumetric soil moisture level, in both the Planting Soil and the root balls of all plants, prior to, during and after planting shall be above permanent wilt point and below field capacity for each type of soil texture within the following ranges.

Soil texture	Permanent wilting point	Field capacity
Sand, Loamy sand, Sandy loam	5-8%	12-18%
Loam, Sandy clay, Sandy clay loam	14-25%	27-36%
Clay loam, Silt loam	11-22%	31-36%
Silty clay, Silty clay loam	22-27%	38-41%

B. The Contractor shall confirm the soil moisture levels with a moisture meter (Digital Soil Moisture Meter, DSMM500 by General Specialty Tools and Instruments, or approved equivalent). If moisture is found to be too low, the planting holes shall be filled with water and allowed to drain before starting any planting operations. If the moisture is too high, suspend planting operations until the soil moisture drains to below field capacity.

3.6 EXISTING SOIL MODIFICATION

A. Follow the requirements for modifying existing soil as indicated in Part 2 for the different types of soil modifications. The extent of the areas of different soil modification types are indicated on the plans or as directed by the Owner's Representative.

3.7 PLANTING SOIL AND PLANTING SOIL MIX INSTALLATION

A. Prior to installing any Planting Soil from stockpiles or Planting Soil Mixes blended off site, the Owner's Representative shall approve the condition of the subgrade and the previously installed subgrade preparation and the installation of subsurface drainage.

- B. All equipment utilized to install or grade Planting Soils shall be wide track or balloon tire machines rated with a ground pressure of 4 psi or less. All grading and soil delivery equipment shall have buckets equipped with 6 inch long teeth to scarify any soil that becomes compacted.
- C. In areas of soil installation above existing subsoil, scarify the subgrade material prior to installing Planting Soil.
 - 1. Scarify the subsoil of the subgrade to a depth of 3-6 inches with the teeth of the back hoe or loader bucket, tiller or other suitable device.
 - 2. Immediately install the Planting Soil. Protect the loosened area from traffic. DO NOT allow the loosened subgrade to become compacted.
 - 3. In the event that the loosened area becomes overly compacted, loosen the area again prior to installing the Planting Soil.
- D. Install the Planting Soil in 12 18 inch lifts to the required depths. Apply compacting forces to each lift as required to attain the required compaction. Scarify the top of each lift prior to adding more Planting Soil by dragging the teeth of a loader bucket or backhoe across the soil surface to roughen the surface.
- E. Phase work such that equipment to deliver or grade soil does not have to operate over previously installed Planting Soil. Work in rows of lifts the width of the extension of the bucket on the loader. Install all lifts in one row before proceeding to the next. Work out from the furthest part of each bed from the soil delivery point to the edge of the each bed area.
- F. Installing soil with soil or mulch blowers or soil slingers shall not be permitted due to the over mixing and soil ped breakdown cause by this type of equipment.
- G. Where travel over installed soil is unavoidable, limit paths of traffic to reduce the impact of compaction in Planting Soil. Each time equipment passes over the installed soil it shall reverse out of the area along the same path with the teeth of the bucket dropped to scarify the soil. Comply with the paragraph "Compaction Reduction" (section 3.9) in the event that soil becomes over compacted.
- H. The depths and grades shown on the drawings are the final grades after settlement and shrinkage of the compost material. The Contractor shall install the Planting Soil at a higher level to anticipate this reduction of Planting Soil volume. A minimum settlement of approximately 10 15% of the soil depth is expected. All grade increases are assumed to be as measured prior to addition of surface Compost till layer, mulch, or sod.

3.8 COMPACTION REQUIREMENTS FOR INSTALLED OR MODIFIED PLANTING SOIL

- A. Compact installed Planting Soil to the compaction rates indicated and using the methods approved for the soil mockup. Compact each soil lift as the soil is installed.
- B. Existing soil that is modified by tilling, ripping or fracturing shall have a density to the depth of the modification, after completion of the loosening, such that the penetrometer reads approximately 75 to 250 psi at soil moisture approximately the mid-point between wilting point and field capacity. This will be approximately between 75 and 82% of maximum dry density standard proctor.
- C. Installed Planting Soil Mix and re-spread existing soil shall have a soil density through the required depth of the installed layers of soil, such that the penetrometer reads approximately 75 to 250 psi at soil moisture approximately the mid-point between wilt point and field capacity. This will be approximately between 75 and 82% of maximum dry density standard proctor.

- D. Planting Soil compaction shall be tested at each lift using a penetrometer calibrated to the mockup soil and its moisture level. The same penetrometer and moisture meter used for the testing of the mockup shall be used to test installed soil throughout the work.
- E. Maintain moisture conditions within the Planting Soil during installation or modification to allow for satisfactory compaction. Suspend operations if the Planting Soil becomes wet. Apply water if the soil is overly dry.
- F. Provide adequate equipment to achieve consistent and uniform compaction of the Planting Soils. Use the smallest equipment that can reasonably perform the task of spreading and compaction. Use the same equipment and methods of compaction used to construct the Planting Soil mockup.
- G. Do not pass motorized equipment over previously installed and compacted soil except as authorized below.
 - 1. Light weight equipment such as trenching machines or motorized wheel barrows is permitted to pass over finished soil work.
 - 2. If work after the installation and compaction of soil compacts the soil to levels greater than the above requirements, follow the requirements of the paragraph "Over Compaction Reduction" below.

3.9 OVER COMPACTION REDUCTION

- A. Any soil that becomes compacted to a density greater than the specified density and/or the density in the approved mockup shall be dug up and reinstalled. This requirement includes compaction caused by other sub-contractors after the Planting Soil is installed and approved.
- B. Surface roto tilling shall not be considered adequate to reduce over compaction at levels 6 inches or greater below finished grade.

3.10 INSTALLATION OF CHEMICAL ADDITIVES

- A. Following the installation of each soil and prior to fine grading and installation of the Compost till layer, apply chemical additives as recommended by the soil test, and appropriate to the soil and specific plants to be installed.
- B. Types, application rates and methods of application shall be approved by the Owner's Representative prior to any applications.

3.11 FINE GRADING

- A. The Owner's Representative shall approve all rough grading prior to the installation of Compost, fine grading, planting, and mulching.
- B. Grade the finish surface of all planted areas to meet the grades shown on the drawings, allowing the finished grades to remain higher (10-15%) of depth of soil modification) than the grades on the grading plan, as defined in paragraph Planting Soil Installation, to anticipate settlement over the first year.
- C. Utilize hand equipment, small garden tractors with rakes, or small garden tractors with buckets with teeth for fine grading to keep surface rough without further compaction. Do not use the flat bottom of a loader bucket to fine grade, as it will cause the finished grade to become overly smooth and or slightly compressed.
- D. Provide for positive drainage from all areas toward the existing inlets, drainage structures and or the

- edges of planting beds. Adjust grades as directed to reflect actual constructed field conditions of paving, wall and inlet elevations. Notify the Owner's Representative in the event that conditions make it impossible to achieve positive drainage.
- E. Provide smooth, rounded transitions between slopes of different gradients and direction. Modify the grade so that the finish grade before adding mulch and after settlement is one or two inches below all paving surfaces or as directed by the drawings.
- F. Fill all dips and remove any bumps in the overall plane of the slope. The tolerance for dips and bumps in shrub and ground cover planting areas shall be a 2 inch deviation from the plane in 10 feet. The tolerance for dips and bumps in lawn areas shall be a 1 inch deviation from the plane in 10 feet.

3.12 INSTALLATION OF COMPOST TILL LAYER

A. After Planting Soil Mixes are installed in planting bed areas and just prior to the installation of shrub or groundcover plantings, spread 3 – 4 inches of Compost over the beds and roto till into the top 4 - 6 inches of the Planting Soil. This step will raise grades slightly above the grades required in paragraph "Fine Grading". This specification anticipates that the raise in grade due to this tilling will settle within a few months after installation as Compost breaks down. Additional settlement as defined in paragraph "Planting Soil and Planting Soil Mix installation" must still be accounted for in the setting of final grades.

3.13 CLEAN-UP

- A. During installation, keep the site free of trash, pavements reasonably clean and work area in an orderly condition at the end of each day. Remove trash and debris in containers from the site no less than once a week.
 - 1. Immediately clean up any spilled or tracked soil, fuel, oil, trash or debris deposited by the Contractor from all surfaces within the project or on public right of ways and neighboring property.
- B. Once installation is complete, wash all soil from pavements and other structures. Ensure that mulch is confined to planting beds and that all tags and flagging tape are removed from the site. The Owner's Representative seals are to remain on the trees and removed at the end of the warranty period.
 - 1. Make all repairs to grades, ruts, and damage to the work or other work at the site.
 - 2. Remove and dispose of all excess Planting Soil, subsoil, mulch, plants, packaging, and other material brought to the site by the Contractor.

3.14 PLANTING SOIL AND MODIFIED EXISTING SOIL PROTECTION

- A. The Contractor shall protect installed and/or modified Planting Soil from damage including contamination and over compaction due to other soil installation, planting operations, and operations by other Contractors or trespassers. Maintain protection during installation until acceptance. Utilize fencing and matting as required or directed to protect the finished soil work. Treat, repair or replace damaged Planting Soil immediately.
- B. Loosen compacted Planting Soil and replace Planting Soil that has become contaminated as determined by the Owner's Representative. Planting Soil shall be loosened or replaced at no expense to the Owner.
 - a. Till and restore grades to all soil that has been driven over or compacted during the installation of plants.

b. Where modified existing soil has become contaminated and needs to be replaced, provide imported soil that is of similar composition, depth and density as the soil that was removed.

3.15 PROTECTION DURING CONSTRUCTION

- A. The Contractor shall protect planting and related work and other site work from damage due to planting operations, operations by other Contractors or trespassers.
 - 1. Maintain protection during installation until the date of plant acceptance (see specifications section Planting). Treat, repair or replace damaged work immediately.
 - 2. Provide temporary erosion control as needed to stop soil erosion until the site is stabilized with mulch, plantings or turf.
- B. Damage done by the Contractor, or any of their sub-contractors to existing or installed plants, or any other parts of the work or existing features to remain, including large existing trees, soil, paving, utilities, lighting, irrigation, other finished work and surfaces including those on adjacent property, shall be cleaned, repaired or replaced by the Contractor at no expense to the Owner. The Owner's Representative shall determine when such cleaning, replacement or repair is satisfactory. Damage to existing trees shall be assessed by a certified arborist.

3.16 SUBSTANTIAL COMPLETION ACCEPTANCE

- A. Upon written notice from the Contractor, the Owners Representative shall review the work and make a determination if the work is substantially complete.
- B. The date of substantial completion of the planting soil shall be the date when the Owner's Representative accepts that all work in Planting, Planting Soil, and Irrigation installation sections is complete.

3.17 FINAL ACCEPTANCE / SOIL SETTLEMENT

- A. At the end of the plant warrantee and maintenance period, (see Specification section Planting) the Owner's Representative shall observe the soil installation work and establish that all provisions of the contract are complete and the work is satisfactory.
 - 1. Restore any soil settlement and or erosion areas to the grades shown on the drawings. When restoring soil grades remove plants and mulch and add soil before restoring the planting. Do not add soil over the root balls of plants or on top of mulch.
- B. Failure to pass acceptance: If the work fails to pass final acceptance, any subsequent observations must be rescheduled as per above. The cost to the Owner for additional observations will be charged to the Contractor at the prevailing hourly rate of the Owner's Representative.

END OF SECTION 32 9100

SECTION 329200 - TURF AND GRASSES

1.1 SUMMARY

- A. Section Includes:
 - 1. Sodding.

1.2 DEFINITIONS

- A. Pesticide: A substance or mixture intended for preventing, destroying, repelling, or mitigating a pest. This includes insecticides, miticides, herbicides, fungicides, rodenticides, and molluscicides. It also includes substances or mixtures intended for use as a plant regulator, defoliant, or desiccant.
- B. Planting Soil: Existing, on-site soil; imported soil; or manufactured soil that has been modified with soil amendments and perhaps fertilizers to produce a soil mixture best for plant growth. See Section 329113 "Soil Preparation" and drawing designations for planting soils.

1.3 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.4 INFORMATIONAL SUBMITTALS

A. Product certificates.

1.5 QUALITY ASSURANCE

- A. Installer Qualifications: A qualified landscape Installer whose work has resulted in successful turf establishment.
 - 1. Installer's Field Supervision: Require Installer to maintain an experienced full-time supervisor on Project site when work is in progress.
 - 2. Pesticide Applicator: State licensed, commercial.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Seed and Other Packaged Materials: Deliver packaged materials in original, unopened containers showing weight, certified analysis, name and address of manufacturer, and indication of compliance with state and Federal laws, as applicable.
- B. Sod: Harvest, deliver, store, and handle sod according to requirements in "Specifications for Turfgrass Sod Materials" and "Specifications for Turfgrass Sod Transplanting and Installation"

TURF AND GRASSES 329200 - 1

sections in TPI's "Guideline Specifications to Turfgrass Sodding." Deliver sod within 24 hours of harvesting and in time for planting promptly. Protect sod from breakage and drying.

PART 2 - PRODUCTS

2.1 TURFGRASS SOD

- A. Turfgrass Sod: Certifiedcomplying with "Specifications for Turfgrass Sod Materials" in TPI's "Guideline Specifications to Turfgrass Sodding." Furnish viable sod of uniform density, color, and texture that is strongly rooted and capable of vigorous growth and development when planted.
- B. Turfgrass Species: Sod of grass species as specified on plans.

2.2 FERTILIZERS

- A. Commercial Fertilizer: Commercial-grade complete fertilizer of neutral character, consisting of fast- and slow-release nitrogen, 50 percent derived from natural organic sources of urea formaldehyde, phosphorous, and potassium in the following composition:
 - 1. Composition: 1 lb/1000 sq. ft. of actual nitrogen, 4 percent phosphorous, and 2 percent potassium, by weight.
- B. Slow-Release Fertilizer: Granular or pelleted fertilizer consisting of 50 percent water-insoluble nitrogen, phosphorus, and potassium in the following composition:
 - 1. Composition: 20 percent nitrogen, 10 percent phosphorous, and 10 percent potassium, by weight.

2.3 MULCHES

A. Hardwood mulch: weed and bug free

2.4 PESTICIDES

A. General: Pesticide, registered and approved by the EPA, acceptable to authorities having jurisdiction, and of type recommended by manufacturer for each specific problem and as required for Project conditions and application. Do not use restricted pesticides unless authorized in writing by authorities having jurisdiction.

TURF AND GRASSES 329200 - 2

PART 3 - EXECUTION

3.1 TURF AREA PREPARATION

- A. General: Prepare planting area for soil placement and mix planting soil according to Section 329113 "Soil Preparation." Retain first paragraph below for sodded turf.
- B. Reduce elevation of planting soil to allow for soil thickness of sod.
- C. Moisten prepared area before planting if soil is dry. Water thoroughly and allow surface to dry before planting. Do not create muddy soil.
- D. Before planting, obtain Architect's acceptance of finish grading; restore planting areas if eroded or otherwise disturbed after finish grading.

3.2 SODDING

- A. Lay sod within 24 hours of harvesting. Do not lay sod if dormant or if ground is frozen or muddy.
- B. Lay sod to form a solid mass with tightly fitted joints. Butt ends and sides of sod; do not stretch or overlap. Stagger sod strips or pads to offset joints in adjacent courses. Avoid damage to soil or sod during installation. Tamp and roll lightly to ensure contact with soil, eliminate air pockets, and form a smooth surface. Work sifted soil or fine sand into minor cracks between pieces of sod; remove excess to avoid smothering sod and adjacent grass.
 - 1. Lay sod across slopes exceeding 1:3.
 - 2. Anchor sod on slopes exceeding 1:6 with wood pegs or steel staples spaced as recommended by sod manufacturer but not less than two anchors per sod strip to prevent slippage.
- C. Saturate sod with fine water spray within two hours of planting. During first week after planting, water daily or more frequently as necessary to maintain moist soil to a minimum depth of 1-1/2 inches below sod.

3.3 TURF MAINTENANCE

- A. General: Maintain and establish turf by watering, fertilizing, weeding, mowing, trimming, replanting, and performing other operations as required to establish healthy, viable turf. Roll, regrade, and replant bare or eroded areas and remulch to produce a uniformly smooth turf. Provide materials and installation the same as those used in the original installation.
- B. Mow turf as soon as top growth is tall enough to cut. Repeat mowing to maintain specified height without cutting more than one-third of grass height. Remove no more than one-third of grass-leaf growth in initial or subsequent mowings.

TURE AND GRASSES 329200 - 3

100% SUBMITTAL

3.4 SATISFACTORY TURF

- A. Turf installations shall meet the following criteria as determined by Architect:
 - 1. Satisfactory Sodded Turf: At end of maintenance period, a healthy, well-rooted, evencolored, viable turf has been established, free of weeds, open joints, bare areas, and surface irregularities.
- B. Use specified materials to reestablish turf that does not comply with requirements, and continue maintenance until turf is satisfactory.

END OF SECTION 329200

TURF AND GRASSES 329200 - 4

SECTION 329300 - PLANTS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Plants.
- 2. Tree-watering devices.
- 3. Landscape edgings.

1.2 DEFINITIONS

- A. Backfill: The earth used to replace or the act of replacing earth in an excavation.
- B. Pesticide: A substance or mixture intended for preventing, destroying, repelling, or mitigating a pest. Pesticides include insecticides, miticides, herbicides, fungicides, rodenticides, and molluscicides. They also include substances or mixtures intended for use as a plant regulator, defoliant, or desiccant. Some sources classify herbicides separately from pesticides.
- C. Planting Soil: Existing, on-site soil; imported soil; or manufactured soil that has been modified with soil amendments and perhaps fertilizers to produce a soil mixture best for plant growth. See Section 329113 "Soil Preparation" for drawing designations for planting soils.
- D. Root Flare: Also called "trunk flare." The area at the base of the plant's stem or trunk where the stem or trunk broadens to form roots; the area of transition between the root system and the stem or trunk.

1.3 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Samples of each type of mulch.

1.5 INFORMATIONAL SUBMITTALS

- A. Product certificates.
- B. Sample warranty.

1.6 CLOSEOUT SUBMITTALS

A. Maintenance Data: Recommended procedures to be established by Owner for maintenance of plants during a calendar year.

1.7 QUALITY ASSURANCE

- A. Installer's Field Supervision: Require Installer to maintain an experienced full-time supervisor on Project site when work is in progress.
 - 1. Pesticide Applicator: State licensed, commercial.
- B. Provide quality, size, genus, species, and variety of plants indicated, complying with applicable requirements in ANSI Z60.1.

1.8 DELIVERY, STORAGE, AND HANDLING

- A. Do not prune trees and shrubs before delivery. Protect bark, branches, and root systems from sun scald, drying, wind burn, sweating, whipping, and other handling and tying damage. Do not bend or bind-tie trees or shrubs in such a manner as to destroy their natural shape. Provide protective covering of plants during shipping and delivery. Do not drop plants during delivery and handling.
- B. Handle planting stock by root ball.
- C. Store bulbs, corms, and tubers in a dry place at 60 to 65 deg F until planting.
- D. Deliver plants after preparations for planting have been completed, and install immediately. If planting is delayed more than six hours after delivery, set plants and trees in their appropriate aspect (sun, filtered sun, or shade), protect from weather and mechanical damage, and keep roots moist.

1.9 WARRANTY

- A. Special Warranty: Installer agrees to repair or replace plantings and accessories that fail in materials, workmanship, or growth within specified warranty period.
 - 1. Failures include, but are not limited to, the following:
 - a. Death and unsatisfactory growth, except for defects resulting from abuse, lack of adequate maintenance, or neglect by Owner.
 - b. Structural failures including plantings falling or blowing over.
 - 2. Warranty Periods: From date of Substantial Completion.
 - a. 12 months for all plants

PART 2 - PRODUCTS

2.1 PLANT MATERIAL

- A. General: Furnish nursery-grown plants true to genus, species, variety, cultivar, stem form, shearing, and other features indicated in Plant List, Plant Schedule, or Plant Legend indicated on Drawings and complying with ANSI Z60.1; and with healthy root systems developed by transplanting or root pruning. Provide well-shaped, fully branched, healthy, vigorous stock, densely foliated when in leaf and free of disease, pests, eggs, larvae, and defects such as knots, sun scald, injuries, abrasions, and disfigurement.
- B. Root-Ball Depth: Furnish trees and shrubs with root balls measured from top of root ball, which begins at root flare according to ANSI Z60.1. Root flare shall be visible before planting.

2.2 MULCHES

A. Organic Mulch: Aged Shredded hardwood.

PART 3 - EXECUTION

3.1 PLANTING AREA ESTABLISHMENT

- A. General: Prepare planting area for soil placement and mix planting soil according to Section 329113 "Soil Preparation."
- B. Coordinate "Placing Planting Soil" Paragraph below with Section 329113 "Soil Preparation".
- C. Placing Planting Soil: Blend planting soil in place.
- D. Before planting, obtain Architect's acceptance of finish grading; restore planting areas if eroded or otherwise disturbed after finish grading.

3.2 EXCAVATION FOR TREES AND SHRUBS

- A. Planting Pits and Trenches: Excavate circular planting pits.
 - 1. Excavate planting pits with sides sloping inward at a 45-degree angle. Excavations with vertical sides are unacceptable. Trim perimeter of bottom leaving center area of bottom raised slightly to support root ball and assist in drainage away from center. Do not further disturb base. Ensure that root ball will sit on undisturbed base soil to prevent settling. Scarify sides of planting pit smeared or smoothed during excavation.
 - 2. Excavate approximately three times as wide as ball diameter.
 - 3. Excavate at least 12 inches wider than root spread and deep enough to accommodate vertical roots for bare-root stock.
 - 4. Do not excavate deeper than depth of the root ball, measured from the root flare to the bottom of the root ball.

B. Backfill Soil: Subsoil and topsoil removed from excavations may not be used as backfill soil unless otherwise indicated.

3.3 TREE, SHRUB, AND VINE PLANTING

- A. Inspection: At time of planting, verify that root flare is visible at top of root ball according to ANSI Z60.1. If root flare is not visible, remove soil in a level manner from the root ball to where the top-most root emerges from the trunk. After soil removal to expose the root flare, verify that root ball still meets size requirements.
- B. Roots: Remove stem girdling roots and kinked roots. Remove injured roots by cutting cleanly; do not break.
- C. Set each plant plumb and in center of planting pit or trench with root flare 1 inch above adjacent finish grades.
 - 1. Backfill: Planting soil. For trees, use excavated soil for backfill.
 - 2. Balled and Burlapped Stock: After placing some backfill around root ball to stabilize plant, carefully cut and remove burlap, rope, and wire baskets from tops of root balls and from sides, but do not remove from under root balls. Remove pallets, if any, before setting. Do not use planting stock if root ball is cracked or broken before or during planting operation.
 - 3. Balled and Potted and Container-Grown Stock: Carefully remove root ball from container without damaging root ball or plant.
 - 4. Backfill around root ball in layers, tamping to settle soil and eliminate voids and air pockets. When planting pit is approximately one-half filled, water thoroughly before placing remainder of backfill. Repeat watering until no more water is absorbed.
 - 5. Continue backfilling process. Water again after placing and tamping final layer of soil.
- D. Slopes: When planting on slopes, set the plant so the root flare on the uphill side is flush with the surrounding soil on the slope; the edge of the root ball on the downhill side will be above the surrounding soil. Apply enough soil to cover the downhill side of the root ball.

3.4 TREE, SHRUB, AND VINE PRUNING

- A. Remove only dead, dying, or broken branches. Do not prune for shape.
- B. Prune, thin, and shape trees, shrubs, and vines as directed by Architect.
- C. Prune, thin, and shape trees, shrubs, and vines according to standard professional horticultural and arboricultural practices. Unless otherwise indicated by Architect, do not cut tree leaders; remove only injured, dying, or dead branches from trees and shrubs; and prune to retain natural character.
- D. Do not apply pruning paint to wounds.

3.5 GROUND COVER AND PLANT PLANTING

- A. Set out and space ground cover and plants other than trees, shrubs, and vines as indicated on Drawings in even rows with triangular spacing.
- B. Use planting soil for backfill.
- C. Dig holes large enough to allow spreading of roots.
- D. Work soil around roots to eliminate air pockets and leave a slight saucer indentation around plants to hold water.
- E. Water thoroughly after planting, taking care not to cover plant crowns with wet soil.
- F. Protect plants from hot sun and wind; remove protection if plants show evidence of recovery from transplanting shock.

3.6 PLANTING AREA MULCHING

A. Mulch backfilled surfaces of planting areas and other areas indicated as shown on Drawings.

3.7 PLANT MAINTENANCE

- A. Maintain plantings by pruning, cultivating, watering, weeding, fertilizing, mulching, restoring planting saucers, resetting to proper grades or vertical position, and performing other operations as required to establish healthy, viable plantings.
- B. Fill in, as necessary, soil subsidence that may occur because of settling or other processes. Replace mulch materials damaged or lost in areas of subsidence.
- C. Apply treatments as required to keep plant materials, planted areas, and soils free of pests and pathogens or disease. Use integrated pest management practices when possible to minimize use of pesticides and reduce hazards. Treatments include physical controls such as hosing off foliage, mechanical controls such as traps, and biological control agents.
- D. Apply pesticides and other chemical products and biological control agents according to authorities having jurisdiction and manufacturer's written recommendations. Coordinate applications with Owner's operations and others in proximity to the Work. Notify Owner before each application is performed.
- E. Protect plants from damage due to landscape operations and operations of other contractors and trades. Maintain protection during installation and maintenance periods. Treat, repair, or replace damaged plantings.
- F. At time of Substantial Completion, verify that tree-watering devices are in good working order and leave them in place. Replace improperly functioning devices.

END OF SECTION 329300

SECTION 334200 - STORMWATER CONVEYANCE

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Corrugated-steel pipe and fittings.
- 2. PE pipe and fittings.
- 3. PVC pipe and fittings.
- 4. Concrete pipe and fittings.
- 5. Non-pressure transition couplings.
- 6. Cleanouts.
- 7. Drains.
- 8. Manholes.
- 9. Catch basins.
- 10. Stormwater inlets.
- 11. Pipe outlets.

1.2 DEFINITIONS

A. FRP: Fiberglass-reinforced plastic.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings:
 - 1. Manholes: Include plans, elevations, sections, details, frames, and covers.
 - 2. Catch basins stormwater inlets and dry wells. Include plans, elevations, sections, details, frames, covers, and grates.
 - 3. Stormwater Detention Structures: Include plans, elevations, sections, details, frames, covers, design calculations, and concrete design-mix reports.

1.4 INFORMATIONAL SUBMITTALS

- A. Product Certificates: For each type of cast-iron soil pipe and fitting, from manufacturer.
- B. Field quality-control reports.

1.5 QUALITY ASSURANCE

A. Piping materials shall bear label, stamp, or other markings of specified testing agency.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Do not store plastic manholes, pipe, and fittings in direct sunlight.
- B. Protect pipe, pipe fittings, and seals from dirt and damage.
- C. Handle manholes in accordance with manufacturer's written rigging instructions.
- D. Handle catch basins and stormwater inlets in accordance with manufacturer's written rigging instructions.

1.7 FIELD CONDITIONS

- A. Interruption of Existing Storm Drainage Service: Do not interrupt service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary service in accordance with requirements indicated:
 - 1. Notify Owner no fewer than two business days in advance of proposed interruption of service.
 - 2. Do not proceed with interruption of service without Owner's written permission.

PART 2 - PRODUCTS

2.1 CORRUGATED-STEEL PIPE AND FITTINGS

- A. Source Limitations: Obtain corrugated-steel pipe and fittings from single manufacturer.
- B. Corrugated-Steel Pipe and Fittings: ASTM A760/A760M, Type I with fittings of similar form and construction as pipe.
 - 1. Special-Joint Bands: Corrugated steel with O-ring seals.
 - 2. Standard-Joint Bands: Corrugated steel.
 - 3. Coating: Aluminum.

2.2 CORRUGATED-PE PIPE AND FITTINGS

- A. Source Limitations: Obtain corrugated-PE pipe and fittings from single manufacturer.
- B. Corrugated-PE Drainage Pipe and Fittings NPS 3 to NPS 10: AASHTO M 252, Type S, with smooth waterway for coupling joints.
- C. Corrugated-PE Pipe and Fittings NPS 12 to NPS 60: AASHTO M 294, Type S, with smooth waterway for coupling joints.
- D. Corrugated-PE Silttight Couplings: PE sleeve with ASTM D1056, Type 2, Class A, Grade 2 gasket material that mates with pipe and fittings.
- E. Corrugated-PE Soiltight Couplings: AASHTO M 294, corrugated, matching pipe and fittings.

2.3 PVC PIPE AND FITTINGS

- A. Source Limitations: Obtain PVC pipe and fittings from single manufacturer.
- B. NSF Marking: Comply with NSF 14, "Plastics Piping Systems Components and Related Materials," for plastic piping components. Include marking with "NSF-drain" for plastic storm drain and "NSF-sewer" for plastic storm sewer piping.
- C. PVC Cellular-Core Piping:
 - 1. PVC Cellular-Core Pipe and Fittings: ASTM F891, Sewer and Drain Series, PS 50 minimum stiffness, PVC cellular-core pipe with plain ends for solvent-cemented joints.
 - 2. Fittings: ASTM D3034, SDR 35, PVC socket-type fittings.
- D. PVC Corrugated Sewer Piping:
 - 1. Pipe: ASTM F949, PVC, corrugated pipe with bell-and-spigot ends for gasketed joints.
 - 2. Fittings: ASTM F949, PVC molded or fabricated, socket type.
 - 3. Gaskets: ASTM F477, elastomeric seals.
- E. PVC Gravity Sewer Piping:
 - 1. Pipe and Fittings: ASTM F679, T-1 wall thickness, PVC gravity sewer pipe with bell-and-spigot ends and with integral ASTM F477, elastomeric seals for gasketed joints.
- F. Adhesive Primer: ASTM F656.

2.4 CONCRETE PIPE AND FITTINGS

- A. Source Limitations: Obtain concrete pipe and fittings from single manufacturer.
- B. Reinforced-Concrete Sewer Pipe and Fittings: ASTM C76.
 - 1. Bell-and-spigot or tongue-and-groove ends and gasketed joints with ASTM C443, rubber gaskets
 - 2. Class III, Wall B.

2.5 NONPRESSURE TRANSITION COUPLINGS

- A. Comply with ASTM C1173, elastomeric, sleeve-type, reducing or transition coupling, for joining underground nonpressure piping. Include ends of same sizes as piping to be joined, and corrosion-resistant-metal tension band and tightening mechanism on each end.
- B. Sleeve Materials:
 - 1. For Concrete Pipes: ASTM C443, rubber.
 - 2. For Plastic Pipes: ASTM F477, elastomeric seal or ASTM D5926, PVC.
 - 3. For Dissimilar Pipes: ASTM D5926, PVC or other material compatible with pipe materials being joined.

C. Unshielded, Flexible Couplings:

- 1. Source Limitations: Obtain unshielded, flexible couplings from single manufacturer.
- 2. Description: Elastomeric sleeve with stainless-steel shear ring and corrosion-resistant-metal tension band and tightening mechanism on each end.

D. Shielded, Flexible Couplings:

- 1. Source Limitations: Obtain shielded, flexible couplings from single manufacturer.
- 2. Description: ASTM C1460, elastomeric or rubber sleeve with full-length, corrosion-resistant outer shield and corrosion-resistant-metal tension band and tightening mechanism on each end.

E. Ring-Type, Flexible Couplings:

- 1. Source Limitations: Obtain ring-type, flexible couplings from single manufacturer.
- 2. Description: Elastomeric compression seal with dimensions to fit inside bell of larger pipe and for spigot of smaller pipe to fit inside ring.

2.6 DRAINS

A. Cast-Iron Area Drains:

- 1. Source Limitations: Obtain cast-iron area drains from single manufacturer.
- 2. Description: ASME A112.6.3 gray-iron round body with anchor flange and round secured grate. Include bottom outlet with inside caulk or spigot connection, of sizes indicated.
- 3. Top-Loading Classification(s): Medium Duty and Heavy Duty.
- B. Grate Openings: 3/8-by-3-inch slots.

2.7 MANHOLES

A. Standard Precast Concrete Manholes:

- 1. Description: ASTM C478, precast, reinforced concrete, of depth indicated, with provision for sealant joints.
- 2. Diameter: 48 inches minimum unless otherwise indicated.
- 3. Ballast: Increase thickness of precast concrete sections or add concrete to base section as required to prevent flotation.
- 4. Base Section: 6-inch minimum thickness for floor slab and 4-inch minimum thickness for walls and base riser section, and separate base slab or base section with integral floor.
- 5. Riser Sections: 4-inch minimum thickness, and lengths to provide depth indicated.
- 6. Top Section: Eccentric-cone type unless concentric-cone or flat-slab-top type is indicated, and top of cone of size that matches grade rings.
- 7. Joint Sealant: ASTM C990, bitumen or butyl rubber.
- 8. Resilient Pipe Connectors: ASTM C923, cast or fitted into manhole walls, for each pipe connection.
- 9. Steps: ASTM A615/A615M, deformed, 1/2-inch steel reinforcing rods encased in ASTM D4101, PP, wide enough to allow worker to place both feet on one step and designed to prevent lateral slippage off step. Cast or anchor steps into sidewalls at 12- to 16-inch intervals. Omit steps if total depth from floor of manhole to finished grade is less than 48 inches.

- 10. Adjusting Rings: Interlocking HDPE rings with level or sloped edge in thickness and diameter matching manhole frame and cover, and of height required to adjust manhole frame and cover to indicated elevation and slope. Include sealant recommended by ring manufacturer.
- 11. Grade Rings: Reinforced-concrete rings, 6- to 9-inch total thickness, to match diameter of manhole frame and cover, and height as required to adjust manhole frame and cover to indicated elevation and slope.

B. Designed Precast Concrete Manholes:

- 1. Description: ASTM C913; designed in accordance with ASTM C890 for A-16 (AASHTO HS20-44), heavy-traffic, structural loading; of depth, shape, and dimensions indicated, with provision for sealant joints.
- 2. Ballast: Increase thickness of one or more precast concrete sections or add concrete to manhole as required to prevent flotation.
- 3. Joint Sealant: ASTM C990, bitumen or butyl rubber.
- 4. Resilient Pipe Connectors: ASTM C923, cast or fitted into manhole walls, for each pipe connection.
- 5. Steps: ASTM A615/A615M, deformed, 1/2-inch steel reinforcing rods encased in ASTM D4101, PP, wide enough to allow worker to place both feet on one step and designed to prevent lateral slippage off step. Cast or anchor steps into sidewalls at 12- to 16-inch intervals. Omit steps if total depth from floor of manhole to finished grade is less than 48 inches.
- 6. Adjusting Rings: Interlocking HDPE rings with level or sloped edge in thickness and diameter matching manhole frame and cover, and of height required to adjust manhole frame and cover to indicated elevation and slope. Include sealant recommended by ring manufacturer.
- 7. Grade Rings: Reinforced-concrete rings, 6- to 9-inch total thickness, to match diameter of manhole frame and cover, and of height required to adjust manhole frame and cover to indicated elevation and slope.

C. Manhole Frames and Covers:

- 1. Description: Ferrous; 24-inch ID by 7- to 9-inch riser with 4-inch-minimum width flange and 36-inch-diameter cover. Include indented top design with lettering cast into cover, using wording equivalent to "STORM SEWER."
- 2. Material: ASTM A536, Grade 60-40-18 ductile iron unless otherwise indicated.

2.8 CONCRETE

- A. General: Cast-in-place concrete in accordance with ACI 318, ACI 350, and the following:
 - 1. Cement: ASTM C150/C150M, Type II.
 - 2. Fine Aggregate: ASTM C33/C33M, sand.
 - 3. Coarse Aggregate: ASTM C33/C33M, crushed gravel.
 - 4. Water: Potable.
- B. Portland Cement Design Mix: 4000 psi minimum, with 0.45 maximum water/cementitious materials ratio.

- 1. Reinforcing Fabric: ASTM A1064/A1064M, steel, welded wire fabric, plain.
- 2. Reinforcing Bars: ASTM A615/A615M, Grade 60 (420 MPa) deformed steel.
- C. Manhole Channels and Benches: Factory or field formed from concrete. Portland cement design mix, 4000 psi minimum, with 0.45 maximum water/cementitious materials ratio. Include channels and benches in manholes.
 - 1. Channels: Concrete invert, formed to same width as connected piping, with height of vertical sides to three-fourths of pipe diameter. Form curved channels with smooth, uniform radius and slope.
 - a. Invert Slope: 1 percent through manhole.
 - 2. Benches: Concrete, sloped to drain into channel.
 - a. Slope: 4 percent.
- D. Ballast and Pipe Supports: Portland cement design mix, 3000 psi minimum, with 0.58 maximum water/cementitious materials ratio.
 - 1. Reinforcing Fabric: ASTM A1064/A1064M, steel, welded wire fabric, plain.
 - 2. Reinforcing Bars: ASTM A615/A615M, Grade 60 (420 MPa) deformed steel.

2.9 CATCH BASINS

- A. Standard Precast Concrete Catch Basins:
 - 1. Description: ASTM C478, precast, reinforced concrete, of depth indicated, with provision for sealant joints.
 - 2. Base Section: 6-inch minimum thickness for floor slab and 4-inch minimum thickness for walls and base riser section, and separate base slab or base section with integral floor.
 - 3. Riser Sections: 4-inch minimum thickness, 48-inch diameter, and lengths to provide depth indicated.
 - 4. Top Section: Eccentric-cone type unless concentric-cone or flat-slab-top type is indicated. Top of cone of size that matches grade rings.
 - 5. Joint Sealant: ASTM C990, bitumen or butyl rubber.
 - 6. Adjusting Rings: Interlocking rings with level or sloped edge in thickness and shape matching catch basin frame and grate. Include sealant recommended by ring manufacturer.
 - 7. Grade Rings: Include two or three reinforced-concrete rings, of 6- to 9-inch total thickness, that match 24-inch-diameter frame and grate.
 - 8. Steps: ASTM A615/A615M, deformed, 1/2-inch steel reinforcing rods encased in ASTM D4101, PP, wide enough to allow worker to place both feet on one step and designed to prevent lateral slippage off step. Cast or anchor steps into sidewalls at 12- to 16-inch intervals. Omit steps if total depth from floor of catch basin to finished grade is less than 48 inches.
 - 9. Pipe Connectors: ASTM C923, resilient, of size required, for each pipe connecting to base section.

- B. Designed Precast Concrete Catch Basins: ASTM C913, precast, reinforced concrete; designed in accordance with ASTM C890 for A-16 (ASSHTO HS20-44), heavy-traffic, structural loading; of depth, shape, and dimensions indicated, with provision for joint sealants.
 - 1. Joint Sealants: ASTM C990, bitumen or butyl rubber.
 - 2. Adjusting Rings: Interlocking rings with level or sloped edge in thickness and shape matching catch basin frame and grate. Include sealant recommended by ring manufacturer.
 - 3. Grade Rings: Include two or three reinforced-concrete rings, of 6- to 9-inch total thickness, that match 24-inch-diameter frame and grate.
 - 4. Steps: ASTM A615/A615M, deformed, 1/2-inch steel reinforcing rods encased in ASTM D4101, PP, wide enough to allow worker to place both feet on one step and designed to prevent lateral slippage off step. Cast or anchor steps into sidewalls at 12- to 16-inch intervals. Omit steps if total depth from floor of catch basin to finished grade is less than 48inches.
 - 5. Pipe Connectors: ASTM C923, resilient, of size required, for each pipe connecting to base section.
- C. Frames and Grates: ASTM A536, Grade 60-40-18, ductile iron designed for A-16 (AASHTO HS20-44), structural loading. Include flat grate with small square or short-slotted drainage openings.
 - 1. Size: 24 by 24 inches minimum unless otherwise indicated.
 - 2. Grate Free Area: Approximately 50 percent unless otherwise indicated.
- D. Frames and Grates: ASTM A536, Grade 60-40-18, ductile iron designed for A-16 (AASHTO HS20-44), structural loading. Include 24-inch ID by 7- to 9-inch riser with 4-inch-minimum width flange, and 26-inch-diameter flat grate with small square or short-slotted drainage openings.
 - 1. Grate Free Area: Approximately 50 percent unless otherwise indicated.

2.10 STORMWATER INLETS

- A. Curb Inlets: Made with vertical curb opening, of materials and dimensions in accordance with GDOT standards.
- B. Gutter Inlets: Made with horizontal gutter opening, of materials and dimensions in accordance with GDOT standards. Include heavy-duty frames and grates.
- C. Combination Inlets: Made with vertical curb and horizontal gutter openings, of materials and dimensions in accordance with GDOT standards. Include heavy-duty frames and grates.
- D. Frames and Grates: Heavy duty, in accordance with GDOT standards.

2.11 PIPE OUTLETS

A. Head Walls: Cast-in-place reinforced concrete, with apron and tapered sides (GDOT Std. Dwg. No. 1125).

B. Riprap Basins: Broken, irregularly sized and shaped, graded stone in accordance with the Project Drawings.

PART 3 - EXECUTION

3.1 EARTHWORK

A. Excavation, trenching, and backfilling are specified in Section 312000 "Earth Moving."

3.2 PIPING INSTALLATION

- A. General Locations and Arrangements: Drawing plans and details indicate general location and arrangement of underground storm drainage piping. Location and arrangement of piping layout take into account design considerations. Install piping as indicated, to extent practical. Where specific installation is not indicated, follow piping manufacturer's written instructions.
- B. Install piping beginning at low point, true to grades and alignment indicated with unbroken continuity of invert. Place bell ends of piping facing upstream. Install gaskets, seals, sleeves, and couplings in accordance with manufacturer's written instructions for use of lubricants, cements, and other installation requirements.
- C. Install manholes for changes in direction unless fittings are indicated. Use fittings for branch connections unless direct tap into existing sewer is indicated.
- D. Install proper size increasers, reducers, and couplings where different sizes or materials of pipes and fittings are connected. Reducing size of piping in direction of flow is prohibited.
- E. When installing pipe under streets or other obstructions that cannot be disturbed, use pipe-jacking process of microtunneling.
- F. Install gravity-flow, nonpressure drainage piping in accordance with the following:
 - 1. Install piping pitched down in direction of flow.
 - 2. Install piping NPS 6 and larger with restrained joints at tee fittings and at changes in direction. Use corrosion-resistant rods, pipe or fitting manufacturer's proprietary restraint system, or cast-in-place concrete supports or anchors.
 - 3. Install piping with 24 inch-minimum cover unless otherwise specified.
 - 4. Install corrugated-steel piping in accordance with ASTM A798/A798M.
 - 5. Install PE corrugated sewer piping in accordance with ASTM D2321.
 - 6. Install PVC cellular-core piping in accordance with ASTM D2321 and ASTM F1668.
 - 7. Install PVC sewer piping in accordance with ASTM D2321 and ASTM F1668.
 - 8. Install reinforced-concrete sewer piping in accordance with ASTM C1479 and ACPA's "Concrete Pipe Installation Manual."

3.3 PIPE JOINT CONSTRUCTION

A. Join gravity-flow, nonpressure drainage piping in accordance with the following:

- 1. Join corrugated-steel sewer piping in accordance with ASTM A798/A798M.
- 2. Join corrugated-PE piping in accordance with ASTM D3212 for push-on joints.
- 3. Join PVC cellular-core piping in accordance with ASTM D2321 and ASTM F891 for solvent-cemented joints.
- 4. Join PVC corrugated sewer piping in accordance with ASTM D2321 for elastomeric-seal joints.
- 5. Join PVC sewer piping in accordance with ASTM D2321 and ASTM D3034 for elastomeric-seal joints or ASTM D3034 for elastomeric-gasketed joints.
- 6. Join reinforced-concrete sewer piping in accordance with ACPA's "Concrete Pipe Installation Manual" for rubber-gasketed joints.
- 7. Join dissimilar pipe materials with nonpressure-type flexible couplings.

3.4 CLEANOUT INSTALLATION

- A. Install cleanouts and riser extensions from sewer pipes to cleanouts at grade. Use cast-iron soil pipe fittings in sewer pipes at branches for cleanouts and cast-iron soil pipe for riser extensions to cleanouts. Install piping so cleanouts open in direction of flow in sewer pipe.
 - 1. Use Light-Duty, top-loading classification cleanouts in earth or unpaved foot-traffic areas.
 - 2. Use Medium-Duty, top-loading classification cleanouts in paved foot-traffic areas.
 - 3. Use Heavy-Duty, top-loading classification cleanouts in vehicle-traffic service areas.
 - 4. Use Extra-Heavy-Duty, top-loading classification cleanouts in roads.
- B. Set cleanout frames and covers in earth in cast-in-place concrete block, 18 by 18 by 12 inches deep. Set with tops 1 inch(es above surrounding earth grade.
- C. Set cleanout frames and covers in concrete pavement and roads with tops flush with pavement surface.

3.5 DRAIN INSTALLATION

- A. Install type of drains in locations indicated.
 - 1. Use Light-Duty, top-loading classification drains in earth or unpayed foot-traffic areas.
 - 2. Use Medium-Duty, top-loading classification drains in paved foot-traffic areas.
 - 3. Use Heavy-Duty, top-loading classification drains in vehicle-traffic service areas.
 - 4. Use Extra-Heavy-Duty, top-loading classification drains in roads.
- B. Embed drains in 4-inch-minimum concrete around bottom and sides.
- C. Fasten grates to drains if indicated.
- D. Set drain frames and covers with tops flush with pavement surface.

3.6 MANHOLE INSTALLATION

A. General: Install manholes, complete with appurtenances and accessories indicated.

- B. Install precast concrete manhole sections with sealants in accordance with ASTM C891.
- C. Where specific manhole construction is not indicated, follow manhole manufacturer's written instructions.
- D. Set tops of frames and covers flush with finished surface of manholes that occur in pavements. Set tops 3 inches above finished surface elsewhere unless otherwise indicated.

3.7 CATCH BASIN INSTALLATION

- A. Construct catch basins to sizes and shapes indicated.
- B. Set frames and grates to elevations indicated.

3.8 STORMWATER INLET AND OUTLET INSTALLATION

- A. Construct inlet head walls, aprons, and sides of reinforced concrete, as indicated.
- B. Construct riprap of broken stone, as indicated.
- C. Install outlets that spill onto grade, anchored with concrete, where indicated.
- D. Install outlets that spill onto grade, with flared end sections that match pipe, where indicated.
- E. Construct energy dissipaters at outlets, as indicated.

3.9 CONCRETE PLACEMENT

A. Place cast-in-place concrete in accordance with ACI 318.

3.10 CONNECTIONS

- A. Connect nonpressure, gravity-flow drainage piping in building's storm building drains specified in Section 221413 "Facility Storm Drainage Piping."
- B. Make connections to existing piping and underground manholes.
 - 1. Use commercially manufactured wye fittings for piping branch connections. Remove section of existing pipe; install wye fitting into existing piping; and encase entire wye fitting, plus 6-inch overlap, with not less than 6 inches of concrete with 28-day compressive strength of 3000 psi.
 - 2. Make branch connections from side into existing piping, NPS 4 to NPS 20. Remove section of existing pipe, install wye fitting into existing piping, and encase entire wye with not less than 6 inches of concrete with 28-day compressive strength of 3000 psi.
 - 3. Make branch connections from side into existing piping, NPS 21 or larger, or to underground manholes and structures by cutting into existing unit and creating an opening large enough to allow 3 inches of concrete to be packed around entering connection. Cut end of connection pipe passing through pipe or structure wall to conform

to shape of and be flush with inside wall unless otherwise indicated. On outside of pipe, manhole, or structure wall, encase entering connection in 6 inches of concrete for minimum length of 12 inches to provide additional support of collar from connection to undisturbed ground.

- a. Use concrete that will attain a minimum 28-day compressive strength of 3000 psi unless otherwise indicated.
- b. Use epoxy-bonding compound as interface between new and existing concrete and piping materials.
- 4. Protect existing piping, manholes, and structures to prevent concrete or debris from entering while making tap connections. Remove debris or other extraneous material that may accumulate.
- C. Pipe couplings, expansion joints, and deflection fittings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.
 - 1. Use nonpressure-type flexible couplings where required to join gravity-flow, nonpressure sewer piping unless otherwise indicated.
 - a. Unshielded flexible couplings for same or minor difference OD pipes.
 - b. Unshielded, increaser/reducer-pattern, flexible couplings for pipes with different OD
 - c. Ring-type flexible couplings for piping of different sizes where annular space between smaller piping's OD and larger piping's ID permits installation.

3.11 CLOSING ABANDONED STORM DRAINAGE SYSTEMS

- A. Abandoned Piping: Close open ends of abandoned underground piping indicated to remain in place. Include closures strong enough to withstand hydrostatic and earth pressures that may result after ends of abandoned piping have been closed. Use either procedure below:
 - 1. Close open ends of piping with at least 8- inch-thick, brick masonry bulkheads.
 - 2. Close open ends of piping with threaded metal caps, plastic plugs, or other acceptable methods suitable for size and type of material being closed. Do not use wood plugs.
- B. Abandoned Manholes and Structures: Excavate around manholes and structures as required and use one procedure below:
 - 1. Remove manhole or structure and close open ends of remaining piping.
 - 2. Remove top of manhole or structure down to at least 36 inches below final grade. Fill to within 12 inches of top with stone, rubble, gravel, or compacted dirt. Fill to top with concrete.
- C. Backfill to grade in accordance with Section 312000 "Earth Moving."

3.12 IDENTIFICATION

- A. Materials and their installation are specified in Section 312000 "Earth Moving." Arrange for installation of green warning tape directly over piping and at outside edge of underground structures.
 - 1. Use detectable warning tape over ferrous piping.
 - 2. Use detectable warning tape over nonferrous piping and over edges of underground structures.

3.13 FIELD QUALITY CONTROL

- A. Inspect interior of piping to determine whether line displacement or other damage has occurred. Inspect after approximately 24 inches of backfill is in place, and again at completion of Project.
 - 1. Submit separate reports for each system inspection.
 - 2. Defects requiring correction include the following:
 - a. Alignment: Less than full diameter of inside of pipe is visible between structures.
 - b. Deflection: Flexible piping with deflection that prevents passage of ball or cylinder of size not less than 92.5 percent of piping diameter.
 - c. Damage: Crushed, broken, cracked, or otherwise damaged piping.
 - d. Infiltration: Water leakage into piping.
 - e. Exfiltration: Water leakage from or around piping.
 - 3. Replace defective piping using new materials, and repeat inspections until defects are within allowances specified.
 - 4. Reinspect and repeat procedure until results are satisfactory.
- B. Test new piping systems, and parts of existing systems that have been altered, extended, or repaired, for leaks and defects.
 - 1. Do not enclose, cover, or put into service before inspection and approval.
 - 2. Test completed piping systems in accordance with requirements of authorities having jurisdiction.
 - 3. Schedule tests and inspections by authorities having jurisdiction with at least 24 hours' advance notice.
 - 4. Submit separate report for each test.
 - 5. Gravity-Flow Storm Drainage Piping: Test in accordance with requirements of authorities having jurisdiction, UNI-B-6, and the following:
 - a. Exception: Piping with soiltight joints unless required by authorities having jurisdiction.
 - b. Option: Test plastic piping in accordance with ASTM F1417.
- C. Leaks and loss in test pressure constitute defects that must be repaired.
- D. Replace leaking piping using new materials and repeat testing until leakage is within allowances specified.

3.14 CLEANING

A. Clean interior of piping of dirt and superfluous materials. Flush with potable water.

END OF SECTION 334200

SECTION 334210 - STORMWATER OIL AND SEDIMENT SEPARATOR

PART 1 - GENERAL

1.1 REFERENCE STANDARDS

- A. ASTM D-4097: Contact Molded Glass Fiber Reinforced Chemical Resistant Tanks
- B. ASTM C 478: Standard Specification for Precast Reinforced Concrete Manhole Sections
- C. ASTM C 443: Standard Specification for Joints for Concrete Pipe and Manholes, Using Rubber Gaskets

1.2 SHOP DRAWINGS

- A. Shop drawings consisting of catalog cuts or fabricator drawings showing the structure and frames, grates, or covers shall be submitted by the Contractor to the Engineer for approval.
- B. Where an external bypass is required, the manufacturer must provide calculations and designs for all structures, piping and any other required material applicable to the proper functioning of the system, stamped by a Professional Engineer.

1.3 HANDLING AND STORAGE

A. Care shall be taken in loading, transporting, and unloading to prevent damage to materials during storage and handling.

PART 2 - PRODUCTS

2.1 GENERAL

- A. The stormwater quality treatment device shall remove oil and sediment from stormwater.
- B. The separator shall be circular and constructed from pre-cast concrete circular riser and slab components. The internal fiberglass insert shall be bolted and sealed watertight inside the reinforced concrete component. The separator shall be capable to be used as a bend or junction structure within the stormwater drainage system.

2.2 MATERIALS

A. PRECAST CONCRETE SECTIONS – All precast concrete components shall be designed and manufactured to a minimum live load of AASHTO HS20-44 truck loading or greater based on local regulatory specifications.

- B. JOINTS The concrete joints shall be water-tight and meet the design criteria according to ASTM C-443. Mastic sealants or butyl tape are not an acceptable alternative.
- C. FRAME AND COVER The frame and cover shall include an indented top design with lettering of the unit's name cast into the cover to allow for easy identification in the field.
- D. CONCRETE All reinforced concrete components shall be manufactured according to local specifications and shall meet the requirements of ASTM C 478.
- E. FIBERGLASS The fiberglass portion of the water treatment device shall be constructed in accordance with the following standard: ASTM D-4097: Contact Molded Glass Fiber Reinforced Chemical Resistant Tanks.
- F. INSPECTION All precast concrete sections shall be inspected to ensure that dimensions, appearance and quality of the product meet local specifications and ASTM C 478.

2.3 PERFORMANCE

A. TOTAL SUSPENDED SOLIDS

- 1. The treatment device shall be capable of removing 80 percent of the average annual total suspended solids (TSS) load without scouring previously captured pollutants.
- 2. Design methodologies shall provide calculations substantiating removal efficiencies and correlation to field monitoring results using both particle size and TSS removal efficiency.
- 3. All manufactures shall provide performance data that the stormwater quality treatment system does not scour previously captured pollutants based on the particle size distribution specified in section 3.4. Performance data should be laboratory testing with an initial sediment load of 50 percent of the unit's sediment capacity at an operating rate of 125% or greater. Particle size distribution (PSD) for the initial sediment load shall conform to Table 2.3.

B. FREE OIL

- 1. The separator must be capable of removing 95 percent of the floatable free oil.
- 2. The first 16 inches (405 mm) of hydrocarbon storage shall be lined with fiberglass to provide a double wall containment of the hydrocarbon materials.

C. PARTICLE SIZE

- 1. The separator must be capable of trapping fine sand, silt, clay and organic particles in addition to larger sand, gravel particles and small floatables.
- 2. The stormwater quality treatment device shall be sized to a specific particle size distribution that is clearly identified in both diameter and specific gravity. The example below is a Fine Particle Size that is a common PSD used in design of water quality devices to ensure proper design for capturing smaller particles and the high load of associated pollutants.

Table 2.3 – Particle Size Distribution

AMOUNT	DIAMETER	SPECIFIC GRAVITY
20%	20 micron	1.3
20%	60 micron	1.8
20%	150 micron	2.2
20%	400 micron	2.65
20%	2000 micron	2.65

PART 3 - EXECUTION

3.1 INSTALLATION

A. The installation of the pre-cast concrete stormwater quality treatment device should conform to state highway, municipal or local specifications for the construction of manholes. Selected sections of a general specification that are applicable are summarized below.

3.2 EARTHWORK

- A. Excavation, trenching, and backfilling are specified in Section 312000 "Earth Moving."
- B. The stormwater quality treatment device should not be installed on frozen ground. Excavation should allow for adequate compaction around the structure. If the bottom of the excavation provides an unsuitable foundation additional excavation may be required.

3.3 WATER QUALITY DEVICE CONSTRUCTION SEQUENCE

- A. The concrete water quality device is installed in sections in the following sequence:
 - 1. aggregate base
 - 2. base slab
 - 3. treatment chamber section(s)
 - 4. transition slab (if required)
 - 5. bypass section
 - 6. connect inlet and outlet pipes
 - 7. riser section and/or transition slab (if required)
 - 8. maintenance riser section(s) (if required)
 - 9. frame and access cover
- B. The precast base should be placed level at the specified grade. The entire base should be in contact with the underlying compacted granular material. Subsequent sections, complete with gasketed joint seals, should be installed in accordance with the precast concrete manufacturer's recommendations.
- C. Adjustment of the stormwater quality treatment device can be performed by lifting the upper sections free of the excavated area, re-leveling the base, and re-installing the sections. Damaged sections and gaskets should be repaired or replaced as necessary. Once the stormwater quality treatment device has been constructed, any lift holes must be plugged with mortar.

3.4 DROP PIPE AND RISER PIPE

A. Once the upper chamber has been attached to the lower chamber, the inlet drop tee, and riser pipe must be attached. Pipe installation instructions and required materials shall be provided with the insert.

3.5 INLET AND OUTLET PIPES

A. Inlet and outlet pipes should be securely set into the upper chamber using non-shrink grout or approved pipe seals (flexible boot connections, where applicable) so that the structure is watertight.

3.6 FRAME AND COVER OR FRAME AND GRATE INSTALLATION

A. The grade adjustment units should be laid in a full bed of mortar with successive units being joined using sealant recommended by the manufacturer. Frames for the cover should be set in a full bed of mortar at the elevation specified.

END OF SECTION 334210

SECTION 334220 - STORMWATER UNDERGROUND DETENTION

PART 1 - GENERAL

- 1.1 This item shall govern the furnishing and installation of Underground Detention and Infiltration Systems for all types, sizes and designations as shown on the plans.
- 1.2 Contractor shall furnish all labor, materials, equipment and incidentals necessary to install the CMP System, appurtenances and incidentals in accordance with the Drawings and as specified herein.
- 1.3 Stormwater Oil and Sediment Separator device(s) upstream of the CMP System is (are) required as shown in the Project Drawings and as specified in Section 334210 Stormwater Oil and Sediment Separator.
- 1.4 Applicable provisions of any Division shall govern work in this section.
- 1.5 American Association of State Highway and Transportation Officials (AASHTO)
 - A. AASTHO Design Section 12 Soil-Corrugated Metal Structure Interaction Systems
 - B. AASHTO Construction Section 26 Metal Culverts
 - C. AASHTO M36 Standard Specification for Corrugated Steel Pipe, Metallic-Coated for Sewers and Drains
 - D. AASHTO M274 Standard Specification for Steel Sheet, Aluminum-Coated (Type 2), for Corrugated Steel Pipe
- 1.6 American Society for Testing and Materials (ASTM)
 - A. ASTM A760: Standard Specification for Corrugated Steel Pipe, Metallic-Coated for Sewers and Drains
 - B. ASTM A929: Standard Specification for Steel Sheet, Metallic-Coated by the Hot-Dip Process for Corrugated Steel Pipe
 - C. ASTM A798: Standard Practice for Installing Factory-Made Corrugated Steel Pipe for Sewers and Other Applications
 - D. ASTM A998: Standard Practice for Structural Design of Reinforcements for fittings in Factory-Made Corrugated Steel Pipe for Sewers and Other Applications

- E. ASTM D698: Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort
- 1.7 Shop drawings shall be annotated to indicate all materials to be furnished and installed under this section, and all applicable standards for materials, required tests of materials and design assumptions for structural analysis. Before installation of the CMP System, Contractor shall obtain the written approval of the EOR for the stormwater system and the installation drawings.

PART 2 - PRODUCTS

2.1 Materials

- A. Aluminized Type II material shall conform to the applicable requirements of AASHTO M274 or ASTM A929. CMP shall be manufactured in accordance with the applicable requirements of AASHTO M36 or ASTM A760.
- B. The pipe sizes, gauges and corrugations shall be as shown on the project plans. Joint performance requirements are published in Division II, Section 26.4.2, of the current edition of the AASHTO Bridge Construction Specifications.
- C. Soil tight, gravity flow, non-pressure, drainage pipe joints shall conform to AASHTO M36 and ASTM A760. Minimum joint spacing shall be 10 ft.
- D. Overlapping of adjacent pipes are not permitted and appropriate banding must be utilized in order to properly secure individual pipes in place.
- E. Integral End Sections: Each barrel of the CMP System shall either be connected to a fitting composing a manifold for hydraulic distribution or have an integrated bulkhead to resist loading at the end/start of the barrel, end cap sections shall not be permitted.
- F. Material selected shall be flame resistant and capable of retaining 80% of strength when subjected to a temperature of 400 degrees Fahrenheit for one hour.
- G. All fittings shall be manufactured prior to arriving on the jobsite to ensure structural integrity. Fitting reinforcement shall be in accordance with ASTM A998 and reinforcing details. Bulkhead design and fabrication does not vary with differing coatings on the steel components.
- H. Sampling, testing, and inspection of metal sheets and coils used for manufacturing the CMP System shall be in accordance with to the above applicable referenced specifications.

2.2 Performance

- A. The CMP System proposal shall be sized in accordance to the design provided and approved by the Engineer of Record (EOR).
- B. The CMP System shall comprise of manhole access with minimum dimensions of 36 inches diameter to provide adequate inspection and maintenance without restrictions and obstructions to entry into interior of the CMP System. Manholes shall be provided to allow full entry into

- and visual inspection of the complete CMP System, at a minimum as to allow full maintenance of the CMP System. Cleanouts or inspection ports are not acceptable access points for maintenance and inspection nor are any other alternatives which do not allow for full entry into the system.
- C. The CMP System shall be designed for a minimum HS20-44 final live loading conditions. The CMP System shall meet HS20-44 loading requirements with a minimum of 12-inches of cover to bottom of flexible pavement or top of rigid pavement for pipe spans less than or equal to 96 inches and 18 inches of cover to bottom of flexible pavement or top of rigid pavement for pipe spans greater than 96 inches.
- D. The CMP System shall be designed so as the hydraulic grade line will increase evenly throughout whereas transverse movement from one storage compartment to another shall not be permitted. All storage compartments shall be connected via manifold (or connecting pipe) versus by transporting stormwater through stone.
- E. Stormwater Oil and Sediment Separator device(s) upstream of the CMP System is (are) required as shown in the Project Drawings and as specified in Section 334210 Stormwater Oil and Sediment Separator.

PART 3 - EXECUTION

- 3.1 The CMP System installation shall be in accordance with AASHTO Standard Specifications for Highways Bridges, Section 26, Division II or ASTM A798 and in conformance with the project plans and specifications.
- 3.2 The CMP System shall be installed in accordance with the manufacturer's recommendations and related sections of the contract documents. Handling & assembly shall be in accordance with National Corrugated Steel Pipe Association's (NCSPA) recommendations.
- 3.3 Minimum cover is measured from the top of the pipe to the top of the maintained construction roadway surface. Refer to "System Backfill Detail" presented in the Project Drawings. The use of heavy construction equipment necessitates greater protection for the pipe than finished grade cover minimums for normal vehicular traffic. For temporary construction vehicle loads, an extra amount of compacted cover may be required over the top of the pipe. The Height-of-Cover shall meet the minimum requirements shown in the Table 3.3 below:

Table 3.3 Minimum Cover (ft) Requirements

Pipe Span	Axle Loads (kips)				
(in)	18-50	50-75	75-110	110-150	
12 - 42	2.0	2.5	3.0	3.0	
48 - 72	3.0	3.0	3.5	4.0	
78 – 120	3.0	3.5	4.0	4.0	
126 - 144	3.5	4.0	4.5	4.5	

- 3.4 The contractor shall follow Occupational Safety and Health Association (OSHA) guidelines for safe practices in executing the installation process in accordance with the manufacturer/supplier installation recommendations.
- 3.5 Backfill material shall be placed in lifts not to exceed 8 inches loose thickness and compacted to 98% of Standard Proctor (ASTM D 698) maximum dry density within the top two feet and at least 95% of Standard Proctor maximum dry density below the top two feet.
- 3.6 Supplier will conduct an on-site preconstruction meeting with the contractor prior to the scheduled delivery date of the CMP System.

END OF SECTION 334220