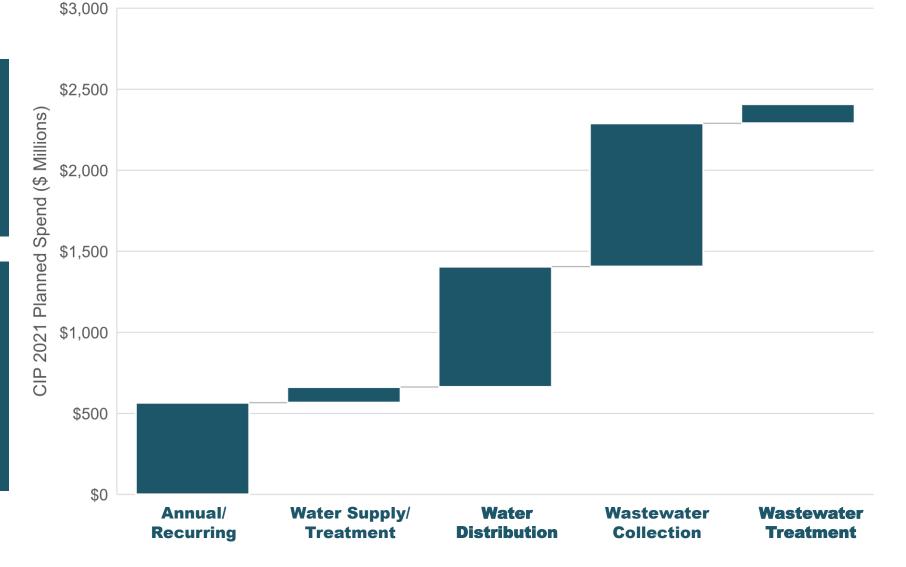
CIP 2021 DEFINITION & FUNDING REPORT

unununununun.

Overview to CIPAG of CIP 2021

March 12, 2021


CIP 2021

PROPOSED PLANNED SPEND \$240 M/YR

Average annual investment

5 PROJECT CATEGORIES

Annual/Recurring Water Supply and Treatment Water Distribution Wastewater Collection Wastewater Treatment

CIP 2021 Planned 10-Year Spend by Category

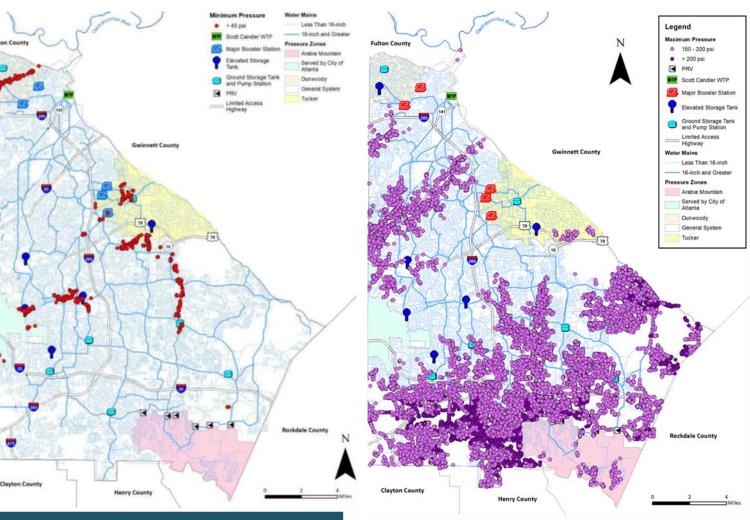
CREATION OF CIP 2021

STATE-OF-THE-ART TOOLS ALLOW BEST-PRACTICE PLANNING & PRIORITIZATION

ANALYSIS

Computer-based Hydraulic Models of water and sewer (dynamic) systems

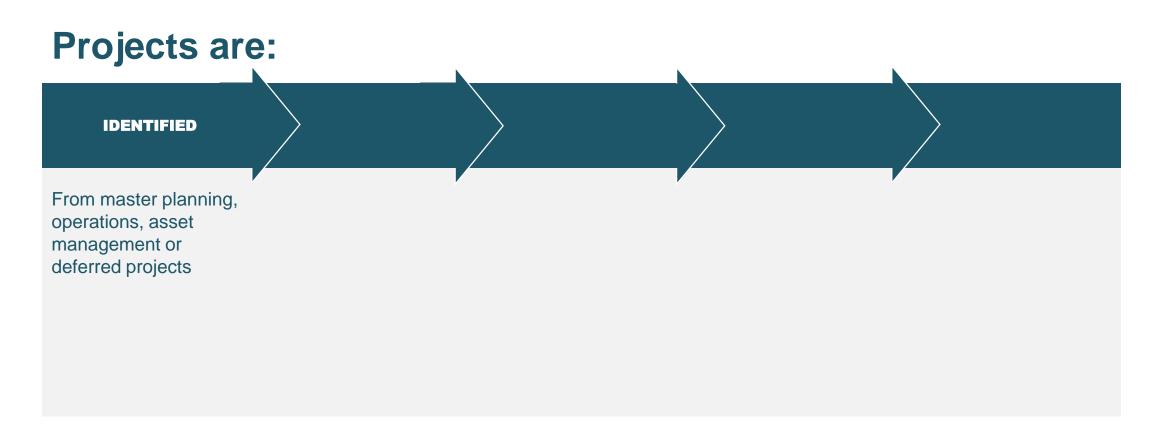
> W – completed 2019 WW – completed 2020

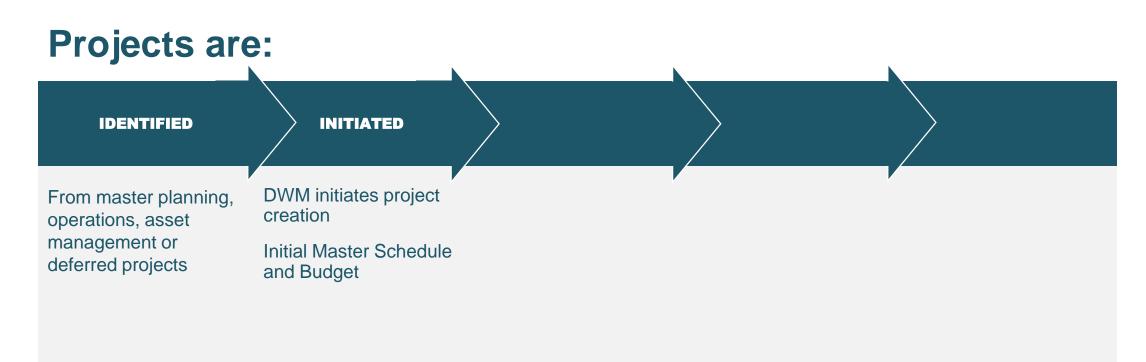


Started 2017 PWI update on key assumptions 8/2019 Documented, detailed, inclusive and data-driven CIP Prioritization Process CIP

COMPUTER-BASED HYDRAULIC MODELS

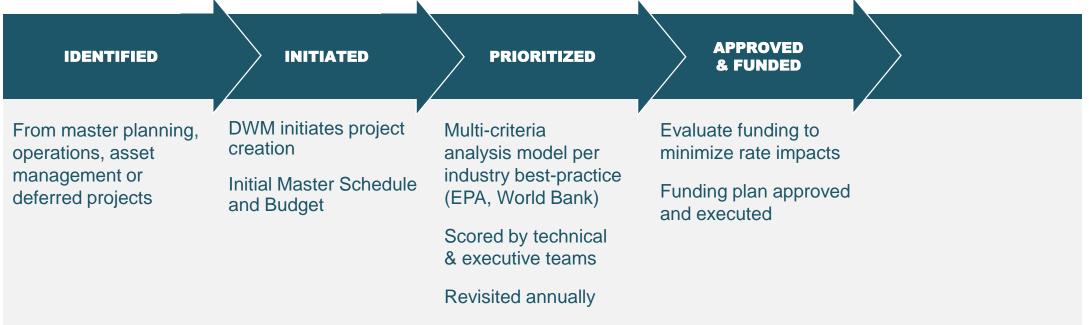
Allow new level of understanding of the performance of DWM's system

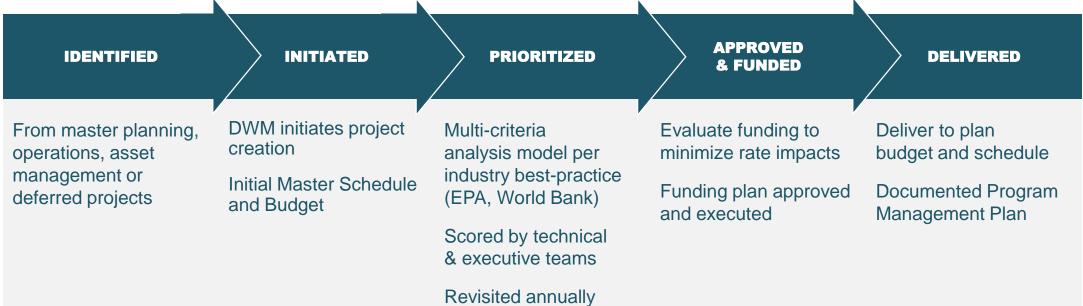

- Identify & troubleshoot system issues (e.g. Briarcliff 2019)
- Evaluate and compare alternative future scenarios
- Compare costs and benefits of different alternative servicing solutions



WATER MODEL SAMPLE OUTPUT

CIP PRIORITIZATION


Documented, Detailed, Inclusive & Data-driven



Projects are: PRIORITIZED **IDENTIFIED** INITIATED DWM initiates project From master planning, Multi-criteria creation analysis model per operations, asset management or industry best-practice **Initial Master Schedule** deferred projects (EPA, World Bank) and Budget Scored by technical & executive teams **Revisited annually**

Projects are:

Projects are:

PROJECTS DEFINED & SCORED

Project Manager:					
Project Name	Project Number	Proposed Planning Budget	Date Created	Commisioner District	Project Manage
Dunwoody Ground Tank Replacement	W - DS GT01	\$6,733,000		xxxxx	
		Schedule (antic		*	
Duratio	n	100% Design S	ubmittal	Bid Docume	ent to P&C
	Procureme	nt Schedule (ar	iticipated)		
Advertisement	Pre-Proposal Conference	Proposal Openig BOC Date		BOC Date	NTP
	Design	Schedule (antic	ipated)		
Duration [Jays	Substatial Con	npletion	Final Con	npletion
unwoody Ground Storage nplementation Con plementation Considerat letails	siderations				

D	DWM Project Prioritization CIP Program				
DeKalb County	,	Overall Score			
	Dunwoody Ground Tank Replacement	3.3/5			
Class	Criteria	Score	Justification		
	Drinking Water Quality	Low			
ental	Leak Reduction	Medium			
Environmental	Energy Efficiency	Medium			
Envii	Impact to Natural Resources	Medium			
	Permittability/ Regulatory Complexity	Medium			
a.	Revenue Generation	Medium			
Financial	Reduction of Operational Cost	Medium			
<u> </u>	Concurrence with Other CIP Projects	Medium			
	Employment (Job Creation)	Medium			
Social	Supporting Growth & Development	Medium			
S	Quality of Life/Customer Satisfaction /Resilience	High			
	Public Health/Safety (Fire Protection)	High			

SUMMARY

Multi-criteria tool allows competing priorities to be systematically evaluated by a broad group of stakeholders The process is bestpractice, defensible, and reproducible

44 water and 105 wastewater projects identified, prioritized, and ranked

~80% of identified projects are in CIP 2021

Effective identification, scoring, and prioritization have been made possible with the Master Plan and hydraulic models

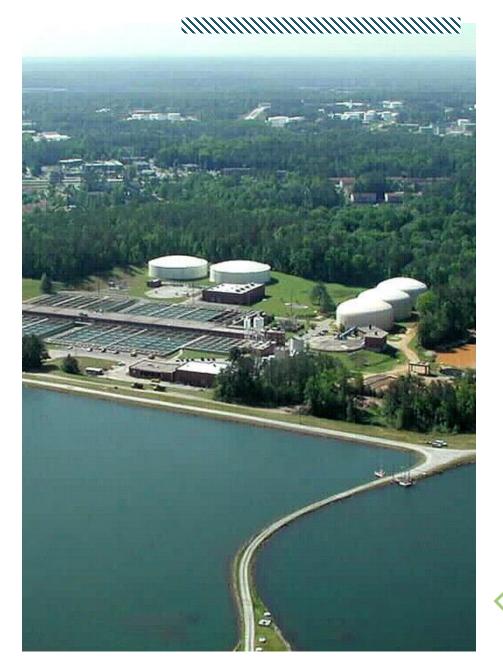
PROJECTS OVERVIEW

.......

ONGOING/RECURING

INTERGOVERNMENTAL AGREEMENTS (IGA)

- City of Atlanta treats ~50% of the County's sewer load
- Coordinated projects with GDOT
- Gwinnett County


EMERGENCY & ANNUAL CONTRACTS

- Address unforeseen projects
- Task orders based on "bid tab" pricing

OTHER ANNUAL CONTRACTS

Water meter installation, water service replacement and renewals, manhole raising, fire line & fire hydrant replacement, easement clearing, ongoing OSARP assessments

DWM STAFF, RENT, CONSULTANT & OVERHEAD COSTS

WATER TREATMENT

- Scott Candler Water Treatment Plant (SCWTP) rebuilt in 2007 and remains state-of-the-art
- Key projects address resiliency.
- Smallest spend category at 4% of CIP 2021 budget

SCWTP is the sole drinking water plant in DeKalb and can treat up to 150 million gallons per day

 Snapfinger Wastewater Treatment Plant

✓ Photo: Google Maps

WASTEWATER TREATMENT

- Snapfinger
 - Phase 2 complete in 2022,
 Phase 3A to follow immediately
 - Bulk of project category spend
- Pole Bridge
 - Minor system upgrades and resiliency
- Wastewater Treatment is 5% of CIP 2021 budget

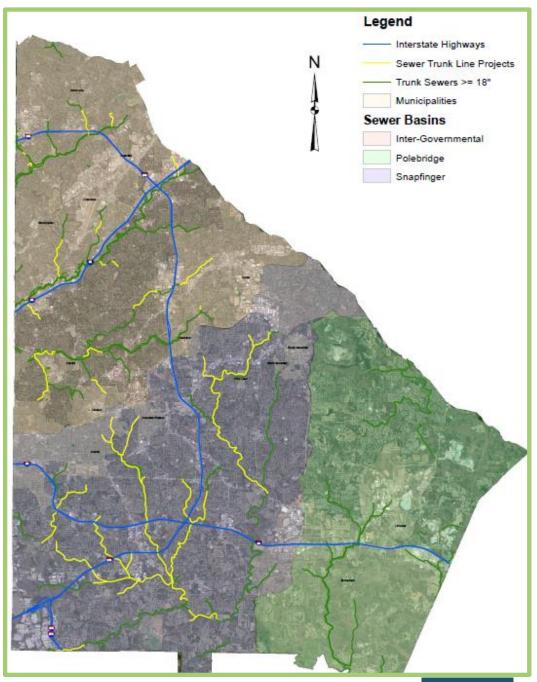
......

Major Investment 1 -Next Phase of Consent Decree Projects

TO DATE

Maintenance Activities Completed

- 2910 tons of debris removed
- 6,315 creek crossings inspected
- 435 miles of sewer pipes treated for root control
- 2,992 vented manhole covers replaced
- 20 million square feet of easement cleared


CD-Required Rehabilitation

- Year Completed
- 133 miles of pipe lining
- Spot repairs on 28 miles
- 10 miles of pipe replacement
- 35 miles of small diameter sewer pipe upsizing

Repair, Replace, or Install 59 miles of New Trunk Sewer Lines

SEWER BASIN	LENGTH (MILES)
Snapfinger	41
Pole Bridge	3
South Fork Peachtree Creek	10
North Fork Peachtree Creek	4
Nancy Creek	1
TOTAL	59

Greatest needs are in the Snapfinger Basin (~41 miles)

What is a trunk sewer?

- The county's trunk sewer lines range from 30 inches to 72 inches in diameter.
- Trunk sewers receive wastewater from many tributary feeder branch sewer lines.
- They convey the combined flows to the treatment plants.

Snapfinger Basin Project Example

Part of the Snapfinger Basin Project includes the Shoal Creek Trunk Sewer Upgrade

Initial studies and procurement started

Size	 10 miles of major trunk sewer capacity projects Up to equivalent of 72-inch main Storage tanks up to 20 million gallons
Permit Challenges	 3 highway crossings (Memorial Dr., Glenwood Rd., Flat Shoals Pkwy.) 2 interstate crossings (I-20 and I-285) Mostly adjacent to Shoal Creek and South River
	126 properties on main Shoal Creek trunk alone

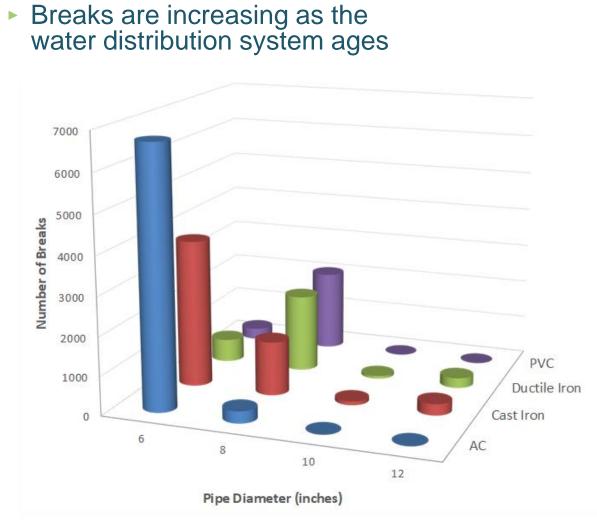
Trunk Sewer Project Cost Estimates

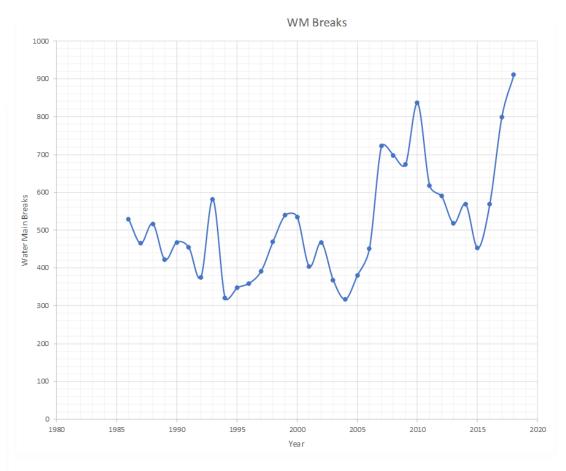
Project Type	Snapfinger Basin	Whole County
Trunk Sewer Pipe Capacity	\$193 million	\$268 million
Sewer Tank Storage	\$170 million	\$170 million
TOTAL	\$363 million	\$438 million

......

Major Investment 2 -Pivot to Needed Water Distribution System Projects

 Tuberculation: build-up of corrosion that restricts water flow


Aging AC pipe is past its service life and prone v to breaks.



WATER DISTRIBUTION

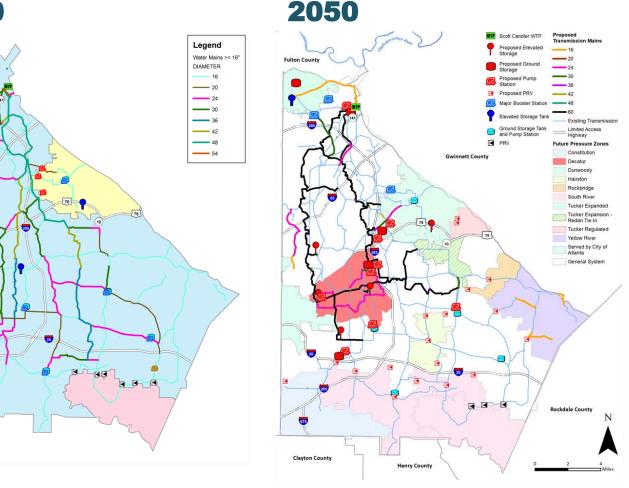
- By 2030 ~600 miles of water pipe needs replacement due to age, size or material type
- Age of pipes can cause risk of breaks or tuberculation
- Now prioritizing projects based on a new riskbased approach and hydraulic modeling, ensuring a need and operational efficiency from each project implemented
- Non-revenue water at unacceptable levels
- 36% of CIP 2021 budget

COSTS OF AN AGING WATER SYSTEM

∧ Water main breaks per year (1986-2018)

K Breaks by pipe type and size (1986 to 2018)

PROBLEMATIC PIPE TYPES


MATERIAL	LENGTH (MILES)	BREAKS (% of overall)	CHALLENGE
PRESTRESSED CONCRETE PRESSURE PIPE (PCCP)	7	<1	9x as likely to break as other materials, often catastrophically
ASBESTOS CEMENT (AC)	522	35	High break rate after 50-70 years of service (132 miles already greater than 65 years old)
POLYVINYL CHLORIDE (PVC)	210	12	
CAST IRON (CI)	820	27	Pipe will tuberculate with age, substantially reducing water flow (e.g. Briarcliff water pressure project)

- Miles of <u>water</u> pipe reaching 70 years old:
 - Now (2020): 215 miles (install date 1950 or earlier)
 - By 2030: 596 miles (install date 1960 or earlier)
 - By 2040: 1290 miles (install date 1970 or earlier)
 - By 2050: 1745 miles (install date 1980 or earlier)

SYSTEM DEVELOPMENT

- Looped mains are industry bestpractice for resiliency
- Additional capacity of water service "backbone" required to:
 - Meet levels of service in future years
 - Increase resiliency
- New pressure zones recommended to manage:
 - High and low pressures
 - Local storage
 - Reduce breaks and non revenue water

RULES OF THUMB

ONCE THE SYSTEM IS STABILIZED ... CAN MOVE TO 1% RULE ON PIPES

- Pipe lifespan: ~100 years
- Minimum 1% of pipe needs to be replaced per year

6,000 MILES OF WATER & SEWER PIPE IN DEKALB COUNTY 1% = 60 MILES 60 MILES = ~\$100 M/YR to replace

NEXT STEPS

CIP 2021 Approved Governing Authority approval of projects and priorities.

Revenue Optimized

Ensure we are optimizing revenues and minimizing costs, and all are paying their fair share.

Funding Plan Approved

Implement plan to fund in a responsible and sustainable way.

NEW DAY PROJECT WATER METER REPLACEMENTS IN PROGRESS

41 (404) 378-4475 or visit www.dekalbcountyga.gov/newdayproject

QUESTIONS?

unununununun

DeKalb County Contractor New Day Project